Integralrechnung = 4. = n

Größe: px
Ab Seite anzeigen:

Download "Integralrechnung = 4. = n"

Transkript

1 Computer ud Medie im Mthemtikuterriht WS 00/ Itegrlrehug. Allgemei Die Berehug vo Bogeläge, Shwerpukte ud Trägheitsmomete, der Areit ud des Effektivwertes eies elektrishe Wehselstromes, der Bhkurve vo Stellite, des Zeitverhltes vo Shwiguge oder der Zuverlässigkeit vo Buteile k mit Hilfe der Itegrlrehug erfolge. Alle diese Frgestelluge lsse sih uf eie Grudufge zurükführe: die Bestimmug des Fläheihltes vo krummliig egrezte Flähe. Dei zeigt sih die üerrshede Ttshe, dss die Itegrlrehug direkt uf die Umkehrug des Differezieres führt. Utersumme Oersumme Bsp.: Uter- Oersumme für die Fuktio f(x)(x^)/: Breite der Teilitervlle: x 0 4 Utersumme: U x [ f ( x ) + f ( x ) f ( x )] * 0 [ f (0) + f ( ) + f () * f ( )] [0,5 * 0 + 0,5 * 0,5 + 0,5 * Oersumme: O x [ f ( x ) + f ( x ) f ( x )] * + 0,5 *,5 ] 0,875 [ f ( ) + f () + f ( ) * f ()] [0,5 * 0,5 + 0,5 * Zettler Alexder Seite + 0,5 *,5 + 0,5 * ],875

2 Computer ud Medie im Mthemtikuterriht WS 00/. Bestimmtes Itegrl Es sei y f(x) eie Fuktio, die uf dem Itervll [, ] defiiert ud eshräkt ist. M zerlegt u ds Itervll [, ] i gleih reite Teilitervlle ud ildet für diese Zerlegug die Oersumme O ud die Utersumme U. Existiert d für sowohl der Grezwert lim U der Folge der Utersumme ls uh der Grezwert lim O der Folge der Oersumme ud stimme diese Grezwerte üerei, so heißt die Fuktio y f(x) itegrierr uf [, ]. Der gemeisme Grezwert wird estimmtes Itegrl vo y f(x) uf [, ] get. M shreit: f x) dx lim U ( lim O ). ( Bezeihuge: f(x) Itegrd x Itegrtiosvrile, utere zw. oere Itegrtiosgreze [, ] Itegrtiositervll Amerkug: Itegrierr sid, ws iht weiter egrüdet wird, vor llem die stetige Fuktioe ud uh die stükweise stetige Fuktioe. Für die Itegrierrkeit eier Fuktio estehe weiger strege Forderuge ls für die Differezierrkeit. Geometrishe Deutug: Ds estimmte Itegrl vo y f(x) uf [, ] ist der orietierte Fläheihlt der flähe zwishe dem Grphe vo y f(x) ud der x-ahse vo x is x. Ist eie Fuktio y f(x) itegrierr, k h eier Zerlegug des Itegrtiositervlles i Teilitervlle jeder Fuktioswert i eiem Teilitervll ls Höhe eies Rehteks geomme werde: stets erhält m im Grezfll ls Grezwert I der Formulierug ls Grezwert der Utersumme gilt: dx lim f ( xi ) x i 0. Drus leitet sih historish die Shreiug eies estimmte Itegrls her. Ds Itegrlzeihe ist ei i die Läge gezogees S; es eriert, dss ds Itegrl der Grezwert eier Summe ist. Die Itegrtiosvrile k elieig ezeihet werde: dx f ( t) dt f ( u)... Ds estimmte Itegrl ist ls Grezwert eier Produktsumme defiiert (worus sih die geometrishe Deutug ls Fläheihlt ergit). Viele physiklishe Größe werde ls solhe Grezwerte ud dmit ls Itegrle defiiert. Ds esprohee Itegrl, ds so gete RIEMANN Itegrl, ist der eifhste, er für die Awedug wihtigste Itegrlegriff. Es git oh dere Itegrllegriffe. Zettler Alexder Seite

3 Computer ud Medie im Mthemtikuterriht WS 00/. Stükweise Itegrtio Stükweise Itegrtio h Zerlegug des Itegrtiositervll: Für < < gilt: dx dx +.4 Bestimmtes Itegrl ls Summe vo orietierte Fläheihlte x) dx f ( // Vertushe der Itegrtiosgreze ewirkt eie Vorzeihewehsel. dx 0 Zettler Alexder Seite

4 Computer ud Medie im Mthemtikuterriht WS 00/ Im Üerlik:. Es sei U die Utersumme ud O die Oersumme eier Fuktio y f(x) für eie Zerlegug des Itervlls [, ] i gleih reite Teilitervlle. Existiere d die Grezwerte lim U ud lim O ud stimme sie üerei, so heißt die Fuktio itegrierr. De gemeisme Grezwert wird estimmtes Itegrl vo y f(x) uf dem Itervll [, ] get. y f(x) heißt Itegrd, x Itegrtiosvrile, ud sid die Itegrtiosgreze.. Geometrishe Deutug: Ds estimmte Itegrl ist gleih dem (orietierte) Fläheihlt der Flähe zwishe dem Fuktiosgrphe ud der x-ahse.. Stetige oder stükweise stetige Fuktioe sid itegrierr. 4. Stükweise Itegrtio ei eier Zerlegug des Itegrtiositervlles [, ]: Ist < <, so gilt: dx dx + 5. Vereiruge: x) dx f ( dx sowie dx 0. 5 Huptstz der Differetil- ud Itegrlrehug.5. Stmmfuktio ud uestimmtes Itegrl Die Itegrtio ist die Umkehrug der Differetitio. F(x) ist die Stmmfuktio vo f(x), we F (x)f(x). Außerdem esitzt eie Fuktio uedlih viele Stmmfuktioe. Bsp.: Ermittle eie Stmmfuktio vo f(x)x³+x²+ itegriere 4 x x f(x) x³+x²+ + + x 4 differeziere Die Mege ller Stmmfuktioe vo f(x) wird ls uestimmtes Itegrl der Fuktio f(x) ezeihet. Shreiweise: dx F( x) f(x) x C Itegrd Itegrtiosvrile Itegrtioskostte Die Itegrtioskostte drf ei eiem uestimmte Itegrl iht weggelsse werde. Git m C eie Wert, so ekommt m die zu dieser Kostte gehörige Stmmfuktio. Zettler Alexder Seite 4

5 Computer ud Medie im Mthemtikuterriht WS 00/ Die Proe für die uestimmte Itegrtio lutet: ( dx) ' Bsp.: Ermittle ds uestimmte Itegrl. 7 6 x x ( x + x x) dx + x Huptstz der Differetil- ud Itegrlrehug We m eie stetige Fuktio f(t) ht d gilt:.) Die Fuktio x 4 A( x) f ( t) dt ist die Stmmfuktio vo f(t). A (x)f(x)..) We F(x) eie elieige Stmmfuktio vo f(t) ist d gilt: dx F( ) F( ) Jede Flähefuktio A(x) ist eie Stmmfuktio ud k durh Itegriere ermittelt werde. Existiert keie Stmmfuktio vo f(x), (kommt ei stetige Fuktioe vor), oder we die Stmmfuktio iht ermittelt werde k verwedet m zur Berehug des estimmte Itegrls umerishe Methode. Bsp.: (x² ) dx x² dx ³ ( )³ dx [ ( ) ] 45 5 x² x³ dx [ x].6 Gruditegrle M k eie Itegrtiosufge kum direkt mit Hilfe der Gruditegrle löse, jedoh ilde sie eie gute Ausggspukt für ds prktishe Rehe. Weitere Gruditegrle fide sie uf der Formelsmmlug. Zettler Alexder Seite 5

Integralrechnung kurzgefasst

Integralrechnung kurzgefasst Itegrlrehug kurzgefsst. Flähe uter eiem Grphe Die Eistiegsfrge lutet: Wie k m de Fläheihlt A eies Flähestüks erehe, ds egrezt wird - vom Grphe G f eier (stetige) Fuktio - vo der -Ahse - vo zwei Prllele

Mehr

Analysis II für Studierende der Ingenieurwissenschaften

Analysis II für Studierende der Ingenieurwissenschaften Fchbereich Mthemtik der Uiversität Hmburg SoSe 2015 Dr. K. Rothe Alysis II für Studierede der Igeieurwisseschfte Hörslübug mit Beispielufgbe zu Bltt 3 Recheregel für Potezreihe Stz: Die Potezreihe g(z

Mehr

Flächenberechnung. Flächenberechnung

Flächenberechnung. Flächenberechnung Itegrlrechug Gegee sei eie Fuktio. 1 Itegrlrechug Gesucht ist die Fläche zwische der Kurve vo 0 is 1 ud der -Achse. 0 1 2 197 Wegeer Mth/5_Itegrl_k Mittwoch 04.04.2007 18:38:48 Itegrlrechug Wir eee 1 um

Mehr

Das Riemann-Integral und seine Eigenschaften

Das Riemann-Integral und seine Eigenschaften Ds Riem-Itegrl u seie Eigeshfte Defiitio. Sei ie Fuktio f beshräkt uf [, b]. Stimme ie beie Drboux-Itegrle überei, heißt f Riem-itegrierbr uf [, b] (oer R-itegierbr). Der gemeisme Wert heißt Riem- Itegrl

Mehr

Übersicht Integralrechnung

Übersicht Integralrechnung Vorbemerkug Übersicht Itegrlrechug Diese Übersicht fßt wesetliche Pukte der Vorlesug zusmme. Sie ersetzt icht die usführliche Vorlesugsmitschrift, weil die dort behdelte Beispiele ud Erläuteruge für die

Mehr

4.2 Das bestimmte Integral

4.2 Das bestimmte Integral 4.. DAS BESTIMMTE INTEGRAL 63 4. Ds bestimmte Itegrl Die geometrische Iterprettio eies bestimmte Itegrls ist die Fläche uter eiem Fuktiosgrphe ft. M zerlege ei Itervl [, b] uf der t-achse äquidistt i Teilitervlle

Mehr

1. Übungsblatt zur Analysis II

1. Übungsblatt zur Analysis II Fchereich Mthemtik Prof Dr Steffe Roch Nd Sissouo WS 9/ 69 Üugsltt zur Alysis II Gruppeüug Aufge G Bestimme Sie für jede der folgede Fuktioe f : [, ] R ds utere ud oere Itegrl ud etscheide Sie, o die Fuktio

Mehr

KAPITEL 6: GRUNDLAGEN DER INTEGRALRECHNUNG

KAPITEL 6: GRUNDLAGEN DER INTEGRALRECHNUNG KAPITEL 6: GRUNDLAGEN DER INTEGRALRECHNUNG Grudlegede Ketisse der Itegrlrechug sid für Forstleute icht weiger wichtig ls die Grudlge der Differetilrechug. Bektlich wird die Wchstumsfuktio eier forstliche

Mehr

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c 03.05.0 Elemetre Termumformuge Kommuttivgesetz. + + Etsprehede Umformuge gelte... für Sutrktio ud Divisio iht. Assozitivgesetz 3. ( + + + ( + + + 4. (... (... 5. ( + - + ( - + - 6. (. :. ( :. : Etsprehede

Mehr

Brückenkurs Mathematik Dr. Karl TH Nürnberg

Brückenkurs Mathematik Dr. Karl TH Nürnberg Brükekurs Mthemtik Dr. Krl TH Nürerg Qudrtishe Gleihuge Ugleihuge Copyright : Huert Krl Alle Rehte vorehlte. Diese Puliktio drf ohe die usdrüklihe shriftlihe Geehmigug des Autors weder gz oh uszugsweise

Mehr

Taylor Formel: f(x)p(x)dx = f(c)

Taylor Formel: f(x)p(x)dx = f(c) Tylor Formel Die Tylorsche Formel liefert eie Approximtio eier Fuktio durch ei Polyom, gemeism mit eier Abschätzug des Fehlerterms. Zwischewertstz: Eie stetige Fuktio f : [, b] R immt jede Wert γ zwische

Mehr

BRÜCKENKURS MATHEMATIK

BRÜCKENKURS MATHEMATIK BRÜCKENKURS MATHEMATIK ELEMENTE DER DIFFERENTIAL- UND INTEGRALRECHNUNG Schwerpute: Begri der Aleitug Aleitugsregel Uestimmtes Itegrl Bestimmtes Itegrl Itegrtiosregel Aweduge Pro. Dr. hil. M. Ludwig TU

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

Prof. Dr. Wolfgang Konen Mathematik 1, WS Warum Informatiker Integralrechnung brauchen

Prof. Dr. Wolfgang Konen Mathematik 1, WS Warum Informatiker Integralrechnung brauchen Pro. Dr. Wolgg Koe Mthemtik, WS 9.. 7. Itegrlrechug "Sius mius Itegrl, Cosius hilt lleml..." [Studiosus Aoymus] 7.. Wrum Iormtiker Itegrlrechug ruche Die Itegrtio ist ls Umkehrug der Dieretitio us sich

Mehr

Analysis I Probeklausur 2

Analysis I Probeklausur 2 WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch

Mehr

45.1 Die Streifenmethode Archimedes wollte ja den Inhalt der Fläche unter der Normalparabel zwischen 0 und 1 berechnen. Dazu zerschnitt er

45.1 Die Streifenmethode Archimedes wollte ja den Inhalt der Fläche unter der Normalparabel zwischen 0 und 1 berechnen. Dazu zerschnitt er 5 Vertiefug des Itegrlegriffs Die Wurzel der Flächeerechug liege i der Atike. Archimedes vo yrkus (87 v.chr. v. Chr.) eschäftigte sich sehr usführlich mit der Flächeerechug des Kreises. Er versuchte dei

Mehr

Mittelwerte. Sarah Kirchner & Thea Göllner

Mittelwerte. Sarah Kirchner & Thea Göllner Mittelwerte Srh Kirher The Göller Mittelwerte sid vershiedee mthemtish defiierte Kegröße. Uter dem Mittelwert zweier oder mehrerer Zhle versteht m meistes de Durhshitt, owohl viele dere Mittelilduge vorkomme.

Mehr

Logarithmus - Übungsaufgaben. I. Allgemeines

Logarithmus - Übungsaufgaben. I. Allgemeines Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht

Mehr

Numerisches Integrieren

Numerisches Integrieren Numerisches Itegriere Ac I der Prxis werde Itegrle i der Regel umerisch, lso pproximtiv, bestimmt. Dzu solle hier verschiedee Algorithme betrchtet werde ( Rechteck, Mitterechteck, Trpez, Simpso, Romberg

Mehr

Abiturprüfung Baden-Württemberg: Mathematische Merkhilfe, 1. Auflage (2017) S. 1/8. Dreieck Flächeninhalt: Mindestens zwei Seiten sind gleich lang.

Abiturprüfung Baden-Württemberg: Mathematische Merkhilfe, 1. Auflage (2017) S. 1/8. Dreieck Flächeninhalt: Mindestens zwei Seiten sind gleich lang. Aiturprüfug Bde-Württemerg: Mthemtishe Merkhilfe,. Auflge (7) S. /8 Eee Figure Dreiek Fläheihlt: A g hg gleihshekliges Dreiek Midestes zwei Seite sid gleih lg. gleihseitiges Dreiek Alle drei Seite sid

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

Ergebnis: Abhängigkeit y(x) in der impliziten Form G(y) = F(x) + C. y =

Ergebnis: Abhängigkeit y(x) in der impliziten Form G(y) = F(x) + C. y = Lösugsmethode Differetilgleihuge erster Ordug Für gewisse Tpe vo Differetilgleihuge läßt sih ei Weg gee, uf dem m, die Lösug der Differetilgleihug uf Qudrture d.h. uf ds Ausrehe vo Itegrle, urükführe k..

Mehr

BBS Nürnberg Grundwissen Mathematik 8. Jahrgangsstufe

BBS Nürnberg Grundwissen Mathematik 8. Jahrgangsstufe S Nürerg Grudwisse Mthetik 8. Jhrggsstufe Wisse ud Köe. Fuktioe eeihuge: D Defiitiosege f( Fuktiosvorshrift f( Fuktioster f( Fuktiosgleihug Fuktioswert vo ufge ud eispiele Eie Fuktio ist eie Zuordug, die

Mehr

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1 8 7 Potezreihe 7 Potezreihe 7. Fuktioefolge ud -reihe Puktweise ud gleichmäßige Kovergez vo Fuktioefolge Sei f j ) j= eie Folge vo reelle) Fuktioe mit Defiitiosgebiete Df j), j N, ud = Df j ) R. j= D bilde

Mehr

14. EINFÜHRUNG IN DIE INTEGRALRECHNUNG

14. EINFÜHRUNG IN DIE INTEGRALRECHNUNG Itegrlrechug. EINFÜHRUNG IN DIE INTEGRALRECHNUNG.. Prolemstellug () Stmmfuktioe Im Kpitel Differetilrechug wurde festgestellt, dß es eie Zusmmehg zwische zurückgelegtem Weg, Geschwidigkeit ud Beschleuigug

Mehr

Didaktik der Mathematik der Sekundarstufe II Anwendungen des bestimmten Integrals

Didaktik der Mathematik der Sekundarstufe II Anwendungen des bestimmten Integrals Didaktik der Mathematik der Sekudarstufe II Aweduge des bestimmte Itegrals Fläche zwische zwei Graphe Mittelwert eier Fuktio Volume eies Rotatioskörpers Läge vo Kurve, die Graphe vo Fuktioe sid (Bogeläge

Mehr

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen Them 8 Kovergez vo Fuktioe-Folge ud - Reihe Defiitio Sei (f ) eie Folge vo Fuktioe vo D R i R. Wir sge, dß f puktweise gege eie Fuktio f kovergiert, flls gilt: f () f() für jedes D. Dies ist der türliche

Mehr

Formelsammlung. 2 c 3. Wenn die Ebene durch die Gerade g und den Punkt g gehen soll, gilt: 3 und h : 2

Formelsammlung. 2 c 3. Wenn die Ebene durch die Gerade g und den Punkt g gehen soll, gilt: 3 und h : 2 Formelsmmlug Gere urh zwei Pukte A( 3 ) u B( 3 ) g AB : 3 Eee urh rei Pukte A( 3 ), B( 3 ) u C( 3 ) [Eee i Prmeterform] E ABC : 3 s 3 Eee urh Gere u Pukt. Sei P( p p p 3 ) u g : We ie Eee urh ie Gere g

Mehr

Kaiser Prüfungsordner Analysis Theoriefragen

Kaiser Prüfungsordner Analysis Theoriefragen Mtemti ür Iormtier Kiser Prüugsorder Alysis Teorierge tulisierte Ausreitug vo Micel Jros mici24, Std 6..24 23:37 revisio # 89 Alle Atworte wurde vo mir muell eu eigetippt. Sie stmme teilweise us dem Kiser-Sriptum,

Mehr

Carl Friedrich Gauß (Deutscher Mathematiker, 1777 bis 1855) formulierte die folgende Formel n

Carl Friedrich Gauß (Deutscher Mathematiker, 1777 bis 1855) formulierte die folgende Formel n mthphys-ole Alyss. Klsse Techk Itegrlrechug Vertefug des Itegrlegrffs De Itegrlrechug ht ds Zel, de Flächehlt krummlg egrezter Flächestücke zu ereche. Be der äherugswese Berechug der Fläche uter Polyomfuktoe

Mehr

Das bestimmte Riemannsche Integral

Das bestimmte Riemannsche Integral Ds bestimmte Riemsche Itegrl Im Folgede sei f stets eie uf dem kompkte Itervll [, b] defiierte, beschräkte Fuktio. Defiitio 1 (Riem- ud Drbouxsumme) 1. Seie N ud x i [, b], i =, 1,..., gegebe. Flls = x

Mehr

Die Berechnung des Flächeninhalts krummlinig begrenzter Flächen

Die Berechnung des Flächeninhalts krummlinig begrenzter Flächen Die Berechug des Flächeihlts krummliig egrezter Fläche Eiführug i die Itegrlrechug Teil : Die Fläche zwische der Normlprel y = x ud der x-achse im Bereich 0 x Die Fläche sieht us wie ei Dreieck, ei dem

Mehr

N.6.1. Die Simpsonsche Regel zur Näherung eines bestimmten Integrals

N.6.1. Die Simpsonsche Regel zur Näherung eines bestimmten Integrals N.6.. Die Simpsosce Regel zur Näerug eies estimmte Itegrls lutet. F Simpso ) ) ) ) )... N ) ) N ) ) )) Dei geügt die Scrittweite der Formel N mit eier türlice Zl N. Der Approximtioseler wird gescätzt durc:

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

Plädoyer für das harmonische Mittel

Plädoyer für das harmonische Mittel Bulleti Plädoyer für das harmoishe Mittel Beat Jaggi, beat.jaggi@phber.h Eileitug Das Bilde vo Mittelwerte ist ei zetrales Kozept i der Mathematik (siehe z.b. [], [], [7] oder [8]). Im Mathematikuterriht

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

8.3. Komplexe Zahlen

8.3. Komplexe Zahlen 8.. Komplee Zhle Wie bereits i 8.. drgestellt, wurde die fortlufede Erweiterug der Zhlbereiche durch die Eiführug immer kompleerer Recheopertioe otwedig:. Auf de türliche Zhle führte der Wusch ch iverse

Mehr

Ohm Gymnasium Grundwissen Mathematik 8. Jahrgangsstufe

Ohm Gymnasium Grundwissen Mathematik 8. Jahrgangsstufe Oh Gsiu Grudwisse Mthetik 8. Jhrggsstufe Wisse ud Köe. Fuktioe ezeihuge: Fuktiosvorshrift: Fuktioster kurz f( ist hier: Fuktiosgleihug = Grph eier Fuktio: ufge ud eispiele Eie Fuktio ist eie eideutige

Mehr

Lösungsformel für quadratische Gleichungen. = ± q + Lösungsformel für. Potenzen. negative Exponenten: gebrochene Exponenten: a a.

Lösungsformel für quadratische Gleichungen. = ± q + Lösungsformel für. Potenzen. negative Exponenten: gebrochene Exponenten: a a. HUNKLOIHDWKHPDWLN Dies ist keie Fomelsmmlug im klssische Si - die vewedete Bezeichuge wede icht eklät ud Voussetzuge fü die ültigkeit de Fomel wede i de Regel icht gegee. 7HLO,6WRIIJHELHWHHULWWHOVWXIH

Mehr

Ober- und Untersummen

Ober- und Untersummen Q Mthemtik GK Mrti-Niemöller-Schule Stef Krissel Oer- ud Utersumme Q Mthemtik GK Mrti-Niemöller-Schule Stef Krissel Oer- ud Utersumme mit ud uedlich viele Streife siehe uch S. 5 im Buch. Oer- ud Utersumme

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

Grundwissen Mathematik 8.Klasse Gymnasium SOB. Darstellung im Koordinatensystem: Der Kreisumfang ist direkt proportional zu seinem Radius.

Grundwissen Mathematik 8.Klasse Gymnasium SOB. Darstellung im Koordinatensystem: Der Kreisumfang ist direkt proportional zu seinem Radius. Gymso 1 Grundwissen Mthemtik 8.Klsse Gymnsium SOB 1.Funktionle Zusmmenhänge 1.1.Proportionlität Ändern sih ei einer Zuordnung die eiden Größen im gleihen Verhältnis, so spriht mn von einer direkten Proportionlität.

Mehr

5.6 Additionsverfahren

5.6 Additionsverfahren 5.6 Additiosverfhre Prizip Die eide Gleihuge werde so umgeformt, dss ei der Additio der eide Gleihuge eie Vrile wegfällt. Es müsse h der Umformug lso i eide Gleihuge gleih viele x oder gleih viele y (er

Mehr

Integralrechnung. Inhaltsverzeichnis. A. Mentzendorff Geändert: Januar 2009

Integralrechnung. Inhaltsverzeichnis. A. Mentzendorff Geändert: Januar 2009 A. Metzedorff Geädert: Jur 29 Itegrlrechug Ihltsverzeichis Ds bestimmte Itegrl ls Flächeihlt 2. Physiklische Beispiele zur Eiführug...................... 2.2 Itegrlschreibweise. Itegrle bei liere Fuktioe.............

Mehr

Teilbarkeit. Christoph Dohmen. Judith Coenen. 17. Mai Christoph Dohmen, Diskrete Mathematik Teilbarkeit. Judith Coenen

Teilbarkeit. Christoph Dohmen. Judith Coenen. 17. Mai Christoph Dohmen, Diskrete Mathematik Teilbarkeit. Judith Coenen Diskrete Mthemtik Teilrkeit Christoph Dohme 7. Mi 2006 Diskrete Mthemtik Teilrkeit Ihltsverzeichis. Eileitug 2. Der größte gemeisme Teiler 3. Divisio mit Rest 4. Der Eukli sche Algorithmus 5. Ds kleiste,

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

Zusammenfassung: Komplexe Zahlen

Zusammenfassung: Komplexe Zahlen LGÖ Ks VM Schuljhr 06/07 Zusmmefssug: Komplexe Zhle Ihltsvereichis Komplexe Zhleeee che mit komplexe Zhle Polrform komplexer Zhle 4 Wurel komplexer Zhle 6 Formel vo Crdo 8 Nullstelle ud Fktorisierug vo

Mehr

2 Asymptotische Schranken

2 Asymptotische Schranken Asymptotische Schrake Sowohl die Laufzeit T () als auch der Speicherbedarf S() werde meist durch asymptotische Schrake agegebe. Die Kostate c i, welche i der Eiführug deiert wurde, sid direkt vo der Implemetatio

Mehr

Algebra/Arithmetik. Eine Variable ist ein Platzhalter oder ein Stellvertreter für eine Zahl.

Algebra/Arithmetik. Eine Variable ist ein Platzhalter oder ein Stellvertreter für eine Zahl. Algebr/Arithmetik 1. Grudbegriffe Geometrie: Lehre vo de Rumgrösse Algebr: Lehre vo de Gleichuge Arithmetik: Lehre vo de Zhlegrösse (Zhle, Vrible) Defiitio: Eie Vrible ist ei Pltzhlter oder ei Stellvertreter

Mehr

4 Konvergenz von Folgen

4 Konvergenz von Folgen 4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder

Mehr

Parametrische Koordinatenposition (r, θ, φ) auf der Kugeloberfläche mit einem Radius r ... θ π. φ π/2. Based on material by Werner Purgathofer

Parametrische Koordinatenposition (r, θ, φ) auf der Kugeloberfläche mit einem Radius r ... θ π. φ π/2. Based on material by Werner Purgathofer Bse o mteril y Werer rgthofer er/ber 8.4-8.5 8.8-8. 8.-8. Möglihe D-Ojetreräsettio Grhishe Szee eihlte solie geometrishe Ojete Bäme Blme Wole Felse Wsser Reräsettioe Oerflähe Iemoelle rozerle Moelle hysilish

Mehr

Integralrechnung I. Teil

Integralrechnung I. Teil Itegrlrechg I. Teil f() F() F() INHALT. Ds estimmte Itegrl. Stmmfktioe. Itegrtiosregel 6. Fktoreregel 6. Smmeregel 6. Gritegrle 6. Itegrtiosmethoe 8. Sstittiosmethoe 8. Ügseispiele 8. Proktitegrtio 4.

Mehr

4.5 Integralrechnung

4.5 Integralrechnung .5 Itegrlrechug Ihltsverzeichis 1 Checkliste Eiführugsufgbe Die Lösug des Problems.1 Utersumme.......................................... Ds Summezeiche...................................... Die Berechug

Mehr

Stochastisches Integral

Stochastisches Integral Kapitel 11 Stochastisches Itegral Josef Leydold c 26 Mathematische Methode XI Stochastisches Itegral 1 / 2 Lerziele Wieer Prozess ud Browsche Bewegug Stochastisches Itegral Stochastische Differetialgleichug

Mehr

Übungsaufgaben BLF. 1. Berechne! d) 0, 2. Löse!

Übungsaufgaben BLF. 1. Berechne! d) 0, 2. Löse! ohe Hilfsmittel. Bereche! ) 0 Üugsufge BLF ) lg 0, 0 c) 0 d) 0, 0 e) f) 00% vo 0, 7. Löse! ) 0, ) lg c) ( ) 0 0. Wie groß ist die Fläche des Kreises? ), cm² ) 5, cm² c) 6,5. Gi Defiitios ud Werteereich!

Mehr

Formelsammlung WS 2005/06

Formelsammlung WS 2005/06 Forelslug WS 005/06 FH Düsseldorf Fhereih Mshieu ud Verfhrestehik Mthetik für Igeieure Prof. Dr. W. Sheideler Ausreitug: Sevd Mer Ihltsverzeihis. Zeihe für esodere Zhleege 3. Poteze 3 Reheregel für Poteze

Mehr

MATHEMATIK F 1 MEG Sek II > Formeln. Formelsammlung. Mathematik. Sekundarstufe II. --- Grundlagen & Analysis ---

MATHEMATIK F 1 MEG Sek II > Formeln. Formelsammlung. Mathematik. Sekundarstufe II. --- Grundlagen & Analysis --- MATHEMATIK F 1 MEG Sek II > Formel Formelsmmlug Mthemtik Sekudrstufe II --- Grudlge & Alysis --- MATHEMATIK F 2 MEG Sek II > Formel Ihltsverzeichis Zhlereiche & Itervlle...3 Termumformuge...3 Bruchrechug...3

Mehr

Die Näherung ist umso genauer, je kleiner die Zellen sind. Der Grenzwert ist

Die Näherung ist umso genauer, je kleiner die Zellen sind. Der Grenzwert ist Höhere Mthemtik Mehrfhintegrle sind Integrle üer eiete R n Zweifhintegrle treten B ei der Berehnung des Fläheninhltes und von Flähenträgheitsmomenten uf Dreifhintegrle kommen ei der Berehnung des Volumeninhltes

Mehr

c) Wir betrachten alle möglichen Potenzen der natürlichen Zahlen. In welchen Fällen endet das Ergebnis einer Potenz immer auf eine 1?

c) Wir betrachten alle möglichen Potenzen der natürlichen Zahlen. In welchen Fällen endet das Ergebnis einer Potenz immer auf eine 1? Aufge : Poteze ) We die Zhl elieig oft mit sich selst multipliziert wird, d edet ds Ergeis immer uf eie. Git es och mehr Zhle, die diese Eigeschft esitze? ) Welche Edziffer esitzt die ute stehede Summe?

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

Lineare Gleichungssysteme Der Gaußsche Algorithmus

Lineare Gleichungssysteme Der Gaußsche Algorithmus Mthemtik Jessi Liere Gleihugsssteme // www.re-lueker.de Liere Gleihugsssteme Der Gußshe Algorithmus iführedes Beispiel s sei ei lieres Gleihugssstem mit drei Gleihuge ud drei ubekte Größe, ud gegebe: (

Mehr

5.7. Aufgaben zu Folgen und Reihen

5.7. Aufgaben zu Folgen und Reihen 5.7. Aufgbe zu Folge ud Reihe Aufgbe : Lieres ud beschrätes Wchstum Aus eiem Qudrt mit der Seiteläge dm gehe uf die rechts gedeutete Weise eue Figure hervor. Die im -te Schritt gefügte Qudrte sid jeweils

Mehr

Folgen, Reihen und Grenzwert. Vorlesung zur Didaktik der Analysis

Folgen, Reihen und Grenzwert. Vorlesung zur Didaktik der Analysis Folge, Reihe ud Grezwert Vorlesug zur Didktik der Alysis Ihlt Motivtio Folge Spezielle Folge Grezwertdefiitio Wichtige Zusmmehäge ud Strtegie der Kovergezutersuchug Fuktioegrezwert Reihe Prdoxie ud Zusmmefssug

Mehr

Die Logarithmusfunktion

Die Logarithmusfunktion Ihltsverzeichis Ihltsverzeichis...1 Die Logrithusfuktio...2 Eiführug...2 Eiige Beispiele...2 Spezielle Logrithe...3 Die Ukehrfuktio der Epoetilfuktio...3 Die Eigeschfte der Logrithusfuktio...4 Defiitiosereich

Mehr

Analysis. mit dem Computer-Algebra-System des TI-92. Teil 3: Integralrechnung. Beat Eicke und Edmund Holzherr 11. November 1997

Analysis. mit dem Computer-Algebra-System des TI-92. Teil 3: Integralrechnung. Beat Eicke und Edmund Holzherr 11. November 1997 ETH EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE ZÜRICH Alysis mit dem Computer-Alger-System des TI-9 Teil : Itegrlrechug Bet Eicke ud Edmud Holzherr. Novemer 997 Eidgeössische Techische Hochschule CH 89 Zürich

Mehr

In jeder noch so kleinen Umgebung von 2 liegen fast alle Folgenglieder. Die Folge hat den Grenzwert 2 und wir schreiben dafür: lim a = 2

In jeder noch so kleinen Umgebung von 2 liegen fast alle Folgenglieder. Die Folge hat den Grenzwert 2 und wir schreiben dafür: lim a = 2 0. Kovergez vo Folge ud Reihe Der i de Aschitte geometrische Folge ud Reihe eigeführte Grezwertegriff ist für die Alysis (Ifiitesimlrechug) grudleged. Im Folgede werde Grezwerte ei elieige Folge ud Fuktioe

Mehr

29 Uneigentliche Riemann-Integrale

29 Uneigentliche Riemann-Integrale 29 Uneigentlihe Riemnn-Integrle 29.2 Uneigentlihe Riemnn-Integrle bei einer kritishen Integrtionsgrenze 29.3 Zusmmenhng des uneigentlihen mit dem eigentlihen Riemnn-Integrl 29.5 Cuhy-Kriterium für uneigentlihe

Mehr

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2 1

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2 1 Vorkurs Mthemtik Fchhochschule Frkfurt, Fchbereich 1 Reche mit Poteze N bezeichet die Mege der türliche Zhle, Q die Mege der rtiole Zhle ud R die Mege der reelle Zhle. N bedeutet: ist eie türliche Zhl.

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

Cristian Rosca & Timm Kruse: Ungleichungen II (Proseminar Mathematisches Problemlösen SS 2006: Dozent - Natalia Grinberg) UNGLEICHUNGEN II

Cristian Rosca & Timm Kruse: Ungleichungen II (Proseminar Mathematisches Problemlösen SS 2006: Dozent - Natalia Grinberg) UNGLEICHUNGEN II Cisti Ros & Timm Kuse: Ugleihuge II (Posemi Mthemtishes Polemlöse SS 006: Dozet - tli Gieg) Posemi Mthemtishes Polemlöse Uivesität Klsuhe SS 006 UGLEICHUGE II Youg-Ugleihug... Hölde-Ugleihug...6 Miowsi-Ugleihug...0

Mehr

10: Lineare Abbildungen

10: Lineare Abbildungen Chr.Nelius: Linere Alger SS 2008 1 10: Linere Aildungen 10.1 BEISPIEL: Die Vektorräume V 2 und Ê 2 hen diegleiche Struktur. Es git eine ijektive Aildung f : V 2 Ê 2, die durch die Vorschrift definiert

Mehr

Z R Z R Z R Z = 50. mit. aus a) Z L R. Wie groß ist der Leistungsfaktor cos der gesamten Schaltung?

Z R Z R Z R Z = 50. mit. aus a) Z L R. Wie groß ist der Leistungsfaktor cos der gesamten Schaltung? Aufge F 99: Drehstromverruher Ein symmetrisher Verruher ist n ds Drehstromnetz ( 0 V, f 50 Hz) ngeshlossen. Die us dem Netz entnommene Wirkleistung eträgt,5 kw ei einem eistungsfktor os 0,7. ) Berehnen

Mehr

2.1 Motivation, Zurückführung auf ein Doppelintegral. Wir betrachten einen zylindrischen Körper K, der von der Fläche

2.1 Motivation, Zurückführung auf ein Doppelintegral. Wir betrachten einen zylindrischen Körper K, der von der Fläche Kpitel 2 Ds Flähenintegrl 2.1 Motivtion, Zurükführung uf ein Doppelintegrl Wir betrhten einen zylindrishen Körper K, der von der Flähe z f(x, y, seitlih von einer Zylinderflähe mit Erzeugenden prllel zur

Mehr

Funktion: Grundbegriffe A 8_01

Funktion: Grundbegriffe A 8_01 Fuktio: Grudegriffe A 8_ Eie Fuktio ist eie eideutige Zuordug: Jede Wert us der Defiitiosege wird geu ei Wert us der Werteege zugeordet. Ist f eie Fuktio ud sid ud y eider zugeordete Werte, d schreit kurz:

Mehr

Vektorrechnung. Ronny Harbich, 2003

Vektorrechnung. Ronny Harbich, 2003 Vektorrechug Ro Hrich, 2003 Eiführug Ihlt Defiitio Betrg Sklrmultipliktio Nullvektor Gegevektor Eiheitsvektor Additio Sutrktio Gesetze Defiitio Ei Vektor ist eie Mege vo Pfeile, die gleichlg (kogruet),

Mehr

Versuchsprotokoll zum Versuch Nr. 5 Spezifische Wärme vom 18.11.1996

Versuchsprotokoll zum Versuch Nr. 5 Spezifische Wärme vom 18.11.1996 Gruppe: A vom 8..996 Laut der Versuhsaleitug sollte zuerst der Wasserwert bestimmt werde. Eimal durh Leermessug (jeweils zwei Messuge) ud eimal mit dem Mishugsverfahre (ebefalls 2 Messuge). Ashließed sollte

Mehr

HISTORIE DAS BESTIMMTE INTEGRAL

HISTORIE DAS BESTIMMTE INTEGRAL HITORIE Die Itegralrecug ettad urprüglic au dem Prolem, de Ialt olcer eee Bereice zu erkläre, die vo elieige Kurve egrezt werde. Die Itegralrecug ediet ic daei der Uterucug vo Grezwerte ud ägt eg mit der

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. Vo der relative Häufigkeit zur Wahrscheilichkeit Es werde 20 Schüler befragt, ob sie ei Hady besitze. Das Ergebis der Umfrage lautet: Vo 20 Schüler besitze 99 ei Hady. Ereigis E: Schüler besitzt ei Hady

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

x mit Hilfe eines linearen, zeitinvarianten

x mit Hilfe eines linearen, zeitinvarianten Übug &Prktiku zu Digitle Sigle ud Systee The: Fltug Diskrete Fltug Wird ei zeitdiskretes Sigl ( T ) x it Hile eies liere, zeitivrite Siglverrbeitugssystes verrbeitet, so lässt sich ds Verhlte des verrbeitede

Mehr

Aufgaben zur Analysis I

Aufgaben zur Analysis I Aufgabe zur Aalysis I Es werde folgede Theme behadelt:. Logik, Iduktio, Mege, Abbilduge 2. Supremum, Ifimum 3. Folge, Fuktioefolge 4. Reihe, Potezreihe 5. Mootoie ud Stetigkeit 6. Differetialrechug 7.

Mehr

2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters:

2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters: . Schätzverfahre. Puktschätzug wirtschaftlicher Kezahle Allgemei: Puktschätzug eies Parameters: Ermittlug eies Schätzwertes für eie ubekate Parameter eier Zufallsvariable i der Grudgesamtheit mit Hilfe

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

ALGEBRA. Potenzen und Wurzeln. Grundlagen. Manuskript zur Wiederholung. Datei Nr Dezember Friedrich W. Buckel

ALGEBRA. Potenzen und Wurzeln. Grundlagen. Manuskript zur Wiederholung. Datei Nr Dezember Friedrich W. Buckel ALGEBRA Poteze ud Wurzel Grudlge Muskript zur Wiederholug Dtei Nr. Dezember 00 Friedrich W. Buckel Itertsgymsium Schloß Torgelow Ihlt Poteze mit türliche Expoete Potezgesetze Poteze mit egtive gze Expoete

Mehr

Finanzierung: Übungsserie IV Aussenfinanzierung

Finanzierung: Übungsserie IV Aussenfinanzierung Them Dokumetrt Fizierug: Übugsserie IV Aussefizierug Lösuge Theorie im Buch "Itegrle Betriebswirtschftslehre" Teil: pitel: D Fizmgemet 2.4 Aussefizierug Fizierug: Übugsserie IV Aussefizierug Aufgbe Eie

Mehr

Wirksamkeit, Effizienz

Wirksamkeit, Effizienz 3 Parameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische Verteilugsaahme mit Parameterraum Θ. 1 Seie θ ud θ erwartugstreue

Mehr

Mathematik für Wirtschaftswissenschaftler Beispiele, Graken, Beweise. c Uwe Jensen

Mathematik für Wirtschaftswissenschaftler Beispiele, Graken, Beweise. c Uwe Jensen Mathematik für Wirtschaftswisseschaftler Beispiele, Grake, Beweise c Uwe Jese 8. Oktober 2007 Ihaltsverzeichis 4 Folge, Reihe, Grezwerte, Stetigkeit 47 4. Folge ud Reihe............................ 47

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10. 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.000, 1 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Defiitio: Eie

Mehr

Musterlösung zur Musterprüfung 1 in Mathematik

Musterlösung zur Musterprüfung 1 in Mathematik Musterlösug zur Musterprüfug i Mthemtik Diese Musterlösug ethält usführliche Lösuge zu lle Aufgbe der Musterprüfug i Mthemtik sowie Hiweise zum Selbstlere. Literturhiweise ) Bosch: Brückekurs Mthemtik,

Mehr

Kapitel 11: Funktionen in einer Variablen

Kapitel 11: Funktionen in einer Variablen Kapitel : Fuktioe i eier Variable Für Fuktioe i eier Variable werde folgede elemetare e gelöst: Die Nullstelle vo Fuktioe erhält ma über de solve- bzw. fsolve-, die Liearfaktorezerlegug erfolgt mit factor

Mehr

Thema: Bilanzen, Heizwert, Standardbildungsenthalpie

Thema: Bilanzen, Heizwert, Standardbildungsenthalpie Thema: Bilaze, eizwert, Stadardbildgsethalpie fgabe: Bestimme Sie de obere, molare eizwert o eies Kohlewasserstoffgases as de a eiem Drhflss-Kalorimeter (Bild 1) gemessee Date. T 1, m w Gas Lft V g T G

Mehr

Zentrale Klassenarbeit unter Prüfungsbedingungen im Schuljahr 2009/2010. Mathematik (A) 26. März 2010

Zentrale Klassenarbeit unter Prüfungsbedingungen im Schuljahr 2009/2010. Mathematik (A) 26. März 2010 Miisterium für Bildug, Juged ud Sport Zetrale Klassearbeit uter Prüfugsbediguge im Schuljahr 009/00 Mathematik (A) 6. März 00 Zugelassee Hilfsmittel: - Tascherecher (icht programmierbar ud icht grafikfähig)

Mehr

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2)

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2) . Stmmfunktion Definition Stmmfunktion: Gegeen sei eine Funktion f(). Gesucht ist eine Funktion F (), so dss d = f(). Die Funktion F() heisst Stmmfunktion. Schreiweise: F () = f()d. Mn spricht uch vom

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Seminar De Rham Kohomologie und harmonische Differentialformen - 2. Sitzung

Seminar De Rham Kohomologie und harmonische Differentialformen - 2. Sitzung Semiar De Rham Kohomologie ud harmoische Differetialforme - 2. Sitzug Torste Hilgeberg 26. April 24 1 Orietierug Defiitio: Zwei Karte heiße orietiert verbude, we das Differetial des Kartewechsels positive

Mehr

Die Exponentialfunktion - Herleitung und einige Eigenschaften

Die Exponentialfunktion - Herleitung und einige Eigenschaften Die Expoetialfuktio - Herleitug ud eiige Eigeschafte Klaus-R Löffler Ihaltsverzeichis 0 Die Fuktioalgleichug 0 Die Ableitug 03 Vo der Differetialgleichug zur Fuktioalgleichug 04 Eigeschafte der Eulersche

Mehr

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt.

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt. Rdiziere 7 Rdiziere 7.1 Eiführug Uter der -te Wurzel us versteht eie Zhl x, die it poteziert ergibt. x x für 0 9 3 3 9 * : Wurzelexpoet, N ud 1 : Rdikd, 0 x: Wurzel(wer) t Poteziere: Bsis ud Expoet sid

Mehr

Seminar zum anorganisch-chemischen Praktikum I. Quantitative Analyse. Prof. Dr. M. Scheer Patrick Schwarz

Seminar zum anorganisch-chemischen Praktikum I. Quantitative Analyse. Prof. Dr. M. Scheer Patrick Schwarz Seminr zum norgnish-hemishen Prktikum I Quntittive Anlyse Prof. Dr. M. Sheer Ptrik Shwrz itertur A. F. Hollemn, E. Wierg, ehruh der Anorgnishen Chemie, de Gruyter Verlg, Berlin, New York (Ahtung, neue

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Istitut für Techologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 3/4 Prof. Dr. J. Schmalia Blatt 7 Dr. P. P. Orth Abgabe ud Besprechug 3..3. Tayloretwicklug I 5 + 5 + 5 + 5

Mehr

Mathematik Vorkurs. Fachhochschule Konstanz Fachbereich Elektrotechnik & Informationstechnik Prof. Birkhölzer

Mathematik Vorkurs. Fachhochschule Konstanz Fachbereich Elektrotechnik & Informationstechnik Prof. Birkhölzer Mthemtik Vorkurs Fchhochschule Kostz Fchbereich Versio 5.8 Copright 0 Versio 5.8 Copright 0 Mthemtik Wozu, Wie, Ws?.... Mthemtik Wozu?..... Hitergrud: Aspekte der Mthemtik..... Mthemtische Aspekte im Alltg

Mehr