Versuch 27: Messungen zum Wiedemann-Franzschen Gesetz

Größe: px
Ab Seite anzeigen:

Download "Versuch 27: Messungen zum Wiedemann-Franzschen Gesetz"

Transkript

1 Versuch 27: Messungen zum Wiedemann-Franzschen Gesetz Es soll die Temperaturverteilung an Metallstäben in ihrer zeitlichen Entwicklung untersucht werden. Damit kann die zeitliche und räumliche Abhängigkeit des Wärmetransports studiert werden. Weiterhin wird die Methode von van der Pauw zur Messung der elektrischen Leitfähigkeit von dünnen Filmen vorgestellt. Der Vergleich von Meßergebnissen aus beiden Versuchsteilen soll zum Wiedemann-Franzschen Gesetz führen. Vorkenntnisse Wärme und Temperatur Mechanismen des Wärmetransports Umwandlung von elektrischer Energie in Wärme Wärmeleitung und Stromtransport in Metallen Kontinuitätsgleichung Temperaturabhängikeit des elektrischen Widerstandes Ohmsches Gesetz Meßmethoden der elektrischen Leitfähigkeit Physikalische Grundlagen Die folgenden Abschnitte behandeln gewisse versuchsrelevante Zusammenhänge. Sie können eine ergänzende Hilfestellung für die Vorbereitung geben; der Tet reicht für eine Vorbereitung aber nicht aus. Für die Einarbeitung kann die im Anhang aufgelistete Literatur herangezogen werden. Für diesen Versuch sind unter anderen insbesondere folgende Quellen geeignet: Feynman Lectures, Bd.. Gerthsen, Physik, Kap. 5.4., Kap Bergmann-Schäfer, Bd. 2. Das Wiedemann-Franzsche Gesetz Sowohl die Wärmeleitfähigkeit λ als auch die elektrische Leitfähigkeit σ wird in (reinen) Metallen beinahe ausschließlich von den freien Ladungsträgern getragen. Unter dieser Voraussetzung ist das Verhältnis beider Größen zueinander konstant und der absoluten Temperatur T proportional (Wiedemann-Franzsches Gesetz). Im Rahmen eines rein klassischen Modells wurde die Proportionalitätskonstante L von L. Lorentz 872 berechnet zu: λ k 2 σ = L T = 3 T also L V 2 e K 2 () Betreffs einer Ableitung dieser Beziehung sei auf die Literatur verwiesen, so z.b. Bergmann Schäfer, Bd. 2.

2 Versuch 27: Messungen zum Wiedemann-Franzschen Gesetz 2 Leitfähigkeitsmessung nach van der Pauw Die (hier als skalar angenommene) spezifische elektrische Leitfähigkeit σ und der elektrische Widerstand ρ el = /σ sind definiert über das Ohmsche Gesetz: ȷ el = σ E (2) Eine interessante Methode zur Messung des elektrischen Widerstandes hat van der Pauw angegeben. Im Gegensatz zu den sonst üblichen eindimensionalen Verfahren wird dazu eine zweidimensionale Probe in Form einer Folie oder einer flachen Scheibe mit konstanter Dicke d und beliebig geformtem Rand benutzt (siehe dazu die Abb. ). Die Probe muß einfach zusammenhängend sein, d.h. sie darf keine Löcher aufweisen. A D Abb. : Schema zur Bestimmung des Widerstandes nach van der Pauw. C B Auf dem Probenrand sind insgesamt vier Kontakte (A, B, C und D) möglichst geringer Ausdehnung mehr oder weniger willkürlich angeordnet, von denen zunächst A und B zur Stromeinspeisung und C und D zur Spannungsmessung verwendet werden. Das Verhältnis von Spannung zu Strom werde als Widerstand R AB,CD definiert. Einen zweiten Widerstand R BC,DA erhält man analog, wenn die Kontakte zyklisch getauscht werden. Mit den so gewonnenen Widerstandswerten ergibt sich der hier gesuchte spezifische Widerstand nach folgender Gleichung: ρ el = πd 2 ln 2 (R RAB,CD AB,CD + R BC,DA ) f R BC,DA (3) f[r(ab,cd)/r(bc,da)] R(AB,CD)/R(BC,DA) Abb. 2: Funktionsverlauf von f RAB,CD R BC,DA RAB,CD Die Funktion f R BC,DA wurde von van der Pauw berechnet und ist für die praktische Anwendung in Abb. 2 wiedergegeben. Herleitung Van der Pauw hat selbst eine Herleitung obiger Gleichung angegeben (Philips Res. Repts. 3, (958)). Er zeigt hier die allgemeine Gültigkeit der Beziehung ep πr AB,CDd/ρ el + ep πr BC,DAd/ρ el = (4)

3 Versuch 27: Messungen zum Wiedemann-Franzschen Gesetz 3 für die oben angegebene Geometrie, indem er zunächst von einer halbunendlichen Probe mit den Kontakten P, Q, R und S auf deren Rand (in dieser Reihenfolge) ausgeht und den Spannungsabfall V S V R bei Einspeisung des Stromes I in P und Q berechnet. Dann zeigt er, daß (4) auch für beliebig geformte, einfach zusammenhängende Proben mit konstanter Dicke ihre Gültigkeit beibehält. Dies gelingt mit der Theorie der konformen Abbildungen. Faßt man die Probe als obere Hälfte der kompleen z-ebene auf, so läßt sich nach einem wohlbekannten Theorem eine Transformation in Form einer analytischen Funktion t(z) angeben, die die Halbebene mit den Kontakten P, Q, R und S auf das der tatsächlichen Probenform entsprechende Gebiet in der t- Ebene mit den Kontakten A, B, C und D konform abbildet. Eine solche Abbildung ist winkeltreu und überführt Feldlinien in Feldlinien und Äquipotentiallinien in Äquipotentiallinien, so daß die Potentialdifferenzen V S V R und V D V C invariant gegenüber konformen Abbildungen und somit gleich sind. Die obigen Gleichungen bleiben daher unverändert bestehen, wenn man die Bezeichnungen der Kontakte auswechselt. Damit ist die Gültigkeit von Gleichung (4) für alle Proben mit der genannten Geometrie gezeigt. Die Beziehung (3) zur Bestimmung von ρ el wird durch Umformung aus Gleichung (4) erhalten. Hierzu wird die oben erwähnte Funktion f verwendet. Sie wirkt auf das Verhältnis R AB,CD R BC,DA der Widerstände. Sie ist definiert durch: R AB,CD R BC,DA R AB,CD + R BC,DA = f ln 2 arcosh { } ep(ln 2/f) Zur Berechnung von f ist es leider nicht möglich, diese Gleichung eplizit nach f aufzulösen. f ist eben nur durch diese sogenannte implizite Darstellung verfügbar. Daher wird in Abbildung 2 der graphische Verlauf von f mitgeliefert. Wärmeleitung:. und 2. Ficksches Gesetz Die Definition der (hier als skalar angenommenen) Wärmeleitfähigkeit λ ergibt sich aus dem. Fickschen Gesetz, welches die Proportionalität der Wärmestromdichte ȷ w zum vorhandenen Temperaturgradienten ausdrückt: ȷ w = λ grad r T (6) Für die Wärmestromdichte ȷ w ergibt sich andererseits aus der Kontinuitätsgleichung: div r ȷ w + q t 2 (5) = W (7) Hierbei ist W die Wärmeleistungsdichte und q die im Volumenelement enthaltene Wärme, also dq = ρ c p dt (8) mit der Massendichte ρ und der spezifischen Wärme bei konstantem Druck c p. Durch Einsetzen von (6) und (8) in die Kontinuitätsgleichung (7) erhält man die Temperaturleitungsgleichung: r T = ρ c p λ T t W λ (9) Für den Quotienten aus der Wärmeleitfähigkeit λ und der spezifischen Wärme pro Volumen ρ c p führt man die Temperaturleitfähigkeit α ein und erhält schließlich die Temperaturleitungsgleichung in ihrer endgültigen Form (2. Ficksches Gesetz): T t = α r T + α λ W mit α = λ ρ c p (0)

4 Versuch 27: Messungen zum Wiedemann-Franzschen Gesetz 4 Man erkennt, daß sowohl eine positive Krümmung des Temperaturprofils als auch die direkte Freisetzung von Wärme zu einem Temperaturanstieg führen. Als Spezialfall betrachten wir den Fall konstanter Wärmezufuhr (W (t) = const). Hier stellt sich nach hinreichend langer Zeit ein sogenannter stationärer Zustand ein. Die Temperaturverteilung wird dann zeitunabhängig ( T t = 0). Gleichung (0) erhält dann dir Form einer Potentialgleichung: Eperiment Aufbau zur Messung der Wärmeleitfähigkeit r T = λ W () 0 2 Cu R 0 2 Al WB R 2.0 Th Abb. 3: Schematische Skizze des Versuchsaufbaus. Zur Messung der Wärmeleitfähigkeit werden zwei wärmeisolierte Metallstäbe aus Kupfer und Aluminium verwendet, die an ihrem oberen Ende bei 0 mit einem Heizwiderstand R versehen sind. Der Heizstrom wird von einem Netzteil geliefert, wobei Strom und Spannung zur Bestimmung der Heizleistung mit Hilfe zweier Digitalvoltmeter und/oder direkt am Gerät gemessen werden können. Zwei Digitalmultimeter werden für die Temperaturmessung in Verbindung mit zwei Platin-PTC-Widerständen benötigt. Die Sensoren sind im Abstand von 00 mm voneinander in den Stäben bei und 2 integriert. In der folgenden Tabelle sind die Kalibrierdaten für die Widerstände aufgeführt. Die entsprechende Kalibrierfunktion ist aus diesen Daten zu berechnen (Auftragung der Widerstandswerte über der Temperatur und Berechnung der Ausgleichsgeraden). Temperatur ( C) Widerstand (Ω) Temperatur ( C) Widerstand (Ω) 0 000, , , , , ,0 30 6, , , , , , , , , ,0 Um einen Wärmerückstau zu vermeiden, sind die Stäbe mit ihrem unteren Ende an ein Temperaturbad gekoppelt. Dieses Bad ist durch eine dicke Aluminiumplatte realisiert. Aufbau zur Bestimmung des spezifischen Widerstandes Für die Messung des spezifischen Widerstandes steht jeweils eine bereits mit Kontakten versehene Folie aus Kupfer bzw. Aluminium zur Verfügung. Die Dicke dieser Folien ist am Meßplatz angegeben. Zur Durchführung der Messung werden ferner ein Netzteil und zwei Digitalmultimeter (Strom- und Spannungsmessung) benötigt.

5 Versuch 27: Messungen zum Wiedemann-Franzschen Gesetz 5 Versuchsaufgaben. Wärmeleitfähigkeit von Kupfer und Aluminium Messen Sie den zeitlichen Verlauf der Temperaturverteilung in einem Cu Stab und Al Stab, wie er sich nach Einschalten einer an einem Ende angebrachten Heizung ergibt. Stellen Sie die Abhängigkeit der Temperatur von der Entfernung zum Heizwiderstand dar, die sich zum Ende des Versuchs eingestellt hat, und bestimmen Sie die Wärmeleitfähigkeit von Kupfer und Aluminium. Es werden gleichzeitig mit dem Einschalten des Heizstromes die Widerstandswerte der zwei Thermowiderstände etwa 30 Min. aufgezeichnet. Nach dieser Zeit hat sich, unabhängig von der verwendeten Heizleistung, ein nahezu stationärer Zustand eingestellt. Die Widerstandswerte werden direkt in ein Diagramm R(t) eingezeichnet. T ergibt sich durch Umrechnung von R = R( ) R( 2 ). Zeigen sie anhand des zeitlichen Verlaufs Ihrer Daten, dass trotz leichter Drift der Widerstände ein stationärer Zustand der Wärmeleitung erreicht ist. Wie kann die weitere Drift erklärt werden? Die Messung von T /2 (t) bzw. R /2 (t) ist mit beiden Stäben durchzuführen. Die Messung der Temperaturleitfähigkeit erfolgt nach Gleichung (6) mit Hilfe eines konstanten Wärmestromes, der zwischen den beiden Meßpunkten und 2 einen Temperaturabfall verursacht (analog einem Spannungsabfall über einen elektrischen Widerstand). Die elektrische Energie wird im Heizwiderstand vollständig in Joulesche Wärme umgewandelt. Daher kann die sich einstellende Wärmestromdichte ȷ w leicht aus dem Heizstrom, der Heizspannung und der Querschnittsfläche des Stabes mit dem Radius r berechnet werden: ȷ w = πr 2 P el = πr 2 U I (2) Die Stabdurchmesser werden mit Hilfe einer Schieblehre gemessen: Man berechne Durchschnitt und Standardabweichung von mindestens fünf Messungen. Voraussetzung für sinnvolle Ergebnisse ist die hinreichende Stationarität. Daher ist es angebracht, für die Berechnung der Wärmestromdichte nur Werte gegen Ende der Messung zu verwenden wenn T const. gilt. Man achte darauf, daß die Maimalleistung des Widerstandes nicht überschritten wird! Für beide Metalle sind die gewonnenen Daten mit den Literaturwerten zu vergleichen. 2. Spezifischen Widerstandes von Kupfer und Aluminium Bestimmen Sie den spezifischen Widerstand von Aluminium und Kupfer nach der Methode von van der Pauw. Der Strom wird über je zwei der vier vorhandenen Kontakte eingespeist. Dabei ist die Stromstärke am dazu in Serie geschalteten Multimeter abzulesen, während das zweite Multimeter zur Spannungsmessung an den anderen beiden Kontakten anzuschließen ist. Man führe die Messung zunächst für Kupfer bei unterschiedlichen Einstellungen der Stromstärke durch und bilde daraus die Mittelwerte der Widerstände R AB,CD und (nach zyklischem Vertauschen der Anschlüsse) R BC,DA. Die Berechnung des spezifischen Widerstandes erfolgt nach Gleichung (3). Anschließend sind die Messungen für Aluminium zu wiederholen. Geben Sie für beide Metalle auch die elektrische Leitfähigkeit an und vergleichen Sie diese mit den Literaturwerten!

6 Versuch 27: Messungen zum Wiedemann-Franzschen Gesetz 6 3. Bestimmung der Lorentzkonstante Berechnen Sie mit den gewonnenen Daten die Lorentzkonstante L und vergleichen Sie das Ergebnis mit dem Theoriewert. Um aus der Temperaturleitfähigkeit (Vergleich mit Literaturwerten!) die Wärmeleitfähigkeit berechnen zu können, seien die Dichte ρ und die spezifische Wärmekapazität c p in folgender Tabelle mit aufgeführt (Literaturwerte): Material λ in W m K α in m2 s σ in Ωm ρ in kg m 3 c p in J kg K L in V 2 K 2 Al Cu

Versuch W8 - Wärmeleitung von Metallen. Gruppennummer: lfd. Nummer: Datum:

Versuch W8 - Wärmeleitung von Metallen. Gruppennummer: lfd. Nummer: Datum: Ernst-Moritz-Arndt Universität Greifswald Institut für Physik Versuch W8 - Wärmeleitung von Metallen Name: Mitarbeiter: Gruppennummer: lfd. Nummer: Datum: 1. Aufgabenstellung 1.1. Versuchsziel Bestimmen

Mehr

W10. Wärmeleitung. Es werden die Wärme- und die elektrische Leitfähigkeit zweier Metalle bestimmt und die Proportionalität

W10. Wärmeleitung. Es werden die Wärme- und die elektrische Leitfähigkeit zweier Metalle bestimmt und die Proportionalität W10 Wärmeleitung Es werden die Wärme- und die elektrische Leitfähigkeit zweier Metalle bestimmt und die Proportionalität dieser Größen nachgewiesen. 1. Theoretische Grundlagen 1.1 Wärmeleitung Mikroskopisch

Mehr

Versuch W6 für Nebenfächler Wärmeleitung

Versuch W6 für Nebenfächler Wärmeleitung Versuch W6 für Nebenfächler Wärmeleitung I. Physikalisches Institut, Raum 104 Stand: 4. November 2013 generelle Bemerkungen bitte Versuchspartner angeben bitte Versuchsbetreuer angeben bitte nur handschriftliche

Mehr

t ). Wird diese Verteilung experimentell ermittelt, so ist entsprechend Gl.(1) eine Bestimmung der Wärmeleitfähigkeit

t ). Wird diese Verteilung experimentell ermittelt, so ist entsprechend Gl.(1) eine Bestimmung der Wärmeleitfähigkeit W 4 Wärmeleitfähigkeit. Aufgabenstellung. Bestimmen Sie aus der zeitlichen Änderung der Wassertemperatur des Kalorimeters den Wärmeaustausch mit der Umgebung.. Stellen Sie die durch Wärmeleitung hervorgerufene

Mehr

TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg

TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg PROTOKOLL Modul: Versuch: Physikalische Eigenschaften I. VERSUCHSZIEL Die

Mehr

Leseprobe. Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer. PHYSIK in Aufgaben und Lösungen. ISBN (Buch): 978-3-446-43235-2

Leseprobe. Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer. PHYSIK in Aufgaben und Lösungen. ISBN (Buch): 978-3-446-43235-2 Leseprobe Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer PHYSIK in Aufgaben und Lösungen ISBN Buch: 978-3-446-4335- Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-4335-

Mehr

Peltier-Element kurz erklärt

Peltier-Element kurz erklärt Peltier-Element kurz erklärt Inhaltsverzeichnis 1 Peltier-Kühltechnk...3 2 Anwendungen...3 3 Was ist ein Peltier-Element...3 4 Peltier-Effekt...3 5 Prinzipieller Aufbau...4 6 Wärmeflüsse...4 6.1 Wärmebilanz...4

Mehr

3 Elektrische Leitung

3 Elektrische Leitung 3.1 Strom und Ladungserhaltung 3 Elektrische Leitung 3.1 Strom und Ladungserhaltung Elektrischer Strom wird durch die Bewegung von Ladungsträgern hervorgerufen. Er ist definiert über die Änderung der Ladung

Mehr

Theoretische Grundlagen

Theoretische Grundlagen Theoretische Grundlagen 1. Mechanismen der Wärmeübertragung Wärmeübertragung ist die Übertragung von Energie in Form eines Wärmestromes. ie erfolgt stets dort, wo Temperaturunterschiede innerhalb eines

Mehr

Grundwissen Physik (8. Klasse)

Grundwissen Physik (8. Klasse) Grundwissen Physik (8. Klasse) 1 Energie 1.1 Energieerhaltungssatz 1.2 Goldene egel der Mechanik Energieerhaltungssatz: n einem abgeschlossenen System ist die Gesamtenergie konstant. Goldene egel der Mechanik:

Mehr

Wellen. 3.&6. November 2008. Alexander Bornikoel, Tewje Mehner, Veronika Wahl

Wellen. 3.&6. November 2008. Alexander Bornikoel, Tewje Mehner, Veronika Wahl 1 Übungen Seismik I: 3.&6. November 2008 1. Torsionswellenkette Die Torsionswellenkette ist ein oft verwendetes Modell zur Veranschaulichung der ausbreitung. Sie besteht aus zahlreichen hantelförmigen

Mehr

Transportvorgänge. 1. Einleitung. 2. Wärmetransport (makroskopische Betrachtung) KAPITEL D

Transportvorgänge. 1. Einleitung. 2. Wärmetransport (makroskopische Betrachtung) KAPITEL D 3 KAPITEL D Transportvorgänge. Einleitung Bisher wurde das Hauptaugenmerk auf Gleichgewichtszustände gerichtet. Hat man in einem System an unterschiedlichen Orten unterschiedliche Temperaturen, so liegt

Mehr

Daniell-Element. Eine graphische Darstellung des Daniell-Elementes finden Sie in der Abbildung 1.

Daniell-Element. Eine graphische Darstellung des Daniell-Elementes finden Sie in der Abbildung 1. Dr. Roman Flesch Physikalisch-Chemische Praktika Fachbereich Biologie, Chemie, Pharmazie Takustr. 3, 14195 Berlin rflesch@zedat.fu-berlin.de Physikalisch-Chemische Praktika Daniell-Element 1 Grundlagen

Mehr

WÄRMELEITFÄHIGKEIT UND ELEKTRISCHE LEITFÄHIGKEIT VON METALLEN

WÄRMELEITFÄHIGKEIT UND ELEKTRISCHE LEITFÄHIGKEIT VON METALLEN INSIU FÜR ANGEWANDE PHYSIK Physikaisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße WÄRMELEIFÄHIGKEI UND ELEKRISCHE LEIFÄHIGKEI VON MEALLEN Eineitung In diesem

Mehr

Versuch 26 Kennlinien von Glühlampen, Z-Diode und Transistor. durchgeführt am 22. Juni 2007

Versuch 26 Kennlinien von Glühlampen, Z-Diode und Transistor. durchgeführt am 22. Juni 2007 1 Versuch 26 Kennlinien von Glühlampen, Z-Diode und Transistor Sascha Hankele sascha@hankele.com Kathrin Alpert kathrin.alpert@uni-ulm.de durchgeführt am 22. Juni 2007 INHALTSVERZEICHNIS 2 Inhaltsverzeichnis

Mehr

Elektrischer Widerstand von Metallen und Halbleitern

Elektrischer Widerstand von Metallen und Halbleitern - C01.1 - Versuch C1: Elektrischer Widerstand von Metallen und Halbleitern 1. Literatur: Demtröder, Experimentalphysik, Bd. II Bergmann-Schaefer, Experimentalphysik, Bd. II Walcher, Praktikum der Physik

Mehr

Tauchsieder, elektrische Energie

Tauchsieder, elektrische Energie Tauchsieder, elektrische Energie Aufgabe Aus einem Konstantandraht werden zwei Spulen unterschiedlicher Länge im Verhältnis 1:3 gewickelt. Mit den parallel geschalteten Spulen erhitzt man zwei gleiche

Mehr

Elektrischer Widerstand als Funktion der Temperatur

Elektrischer Widerstand als Funktion der Temperatur V10 Elektrischer Widerstand als Funktion der Temperatur 1. Aufgabenstellung 1.1 Messung Sie den elektrischen Widerstand vorgegebener Materialien als Funktion der Temperatur bei tiefen Temperaturen. 1.2

Mehr

Ferienkurs - Experimentalphysik 2

Ferienkurs - Experimentalphysik 2 Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 Montag Daniel Jost Datum 20/08/202 Inhaltsverzeichnis Einleitung 2 Mathematische Grundlagen 3 Die Maxwellgleichungen

Mehr

Eigenleitung von Germanium

Eigenleitung von Germanium Eigenleitung von Germanium Fortgeschrittenen Praktikum I Zusammenfassung In diesem Versuch wird an einem undotierten Halbleiter die Temperaturabhängigkeit der elektrischen Leitfähigkeit bestimmt. Im Gegensatz

Mehr

Versuch Nr. 9 Aufbauten 9 a bzw. 29 a Wärmeleitfähigkeit und elektrische Leitfähigkeit von Metallen

Versuch Nr. 9 Aufbauten 9 a bzw. 29 a Wärmeleitfähigkeit und elektrische Leitfähigkeit von Metallen Hochschule Augsburg Versuch Nr. 9 Aufbauten 9 a bzw. 29 a Wärmeleitfähigkeit und elektrische Leitfähigkeit von Metallen Physikalisches Praktikum 1. Grundlagen_und_Versuchsidee 1.1 Elektrische Leitfähigkeit

Mehr

Versuch 14: Transistor

Versuch 14: Transistor Versuch 14: Transistor Transistoren werden sowohl als Schalter (in der Digitaltechnik) als auch als Verstärker betrieben. Hier sollen die Grundlagen des Transistors als Verstärkerelement erlernt werden,

Mehr

Nr. 11 Transistor als Verstärker Teil A

Nr. 11 Transistor als Verstärker Teil A Nr. 11 Transistor als Verstärker Teil Der Transistor ( Transmitting Resistor ), was so etwas wie steuerbarer Widerstand bedeutet, hat vor Jahrzehnten durch blösung der Elektronenröhre eine technische Revolution

Mehr

Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007

Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007 Protokoll zum Versuch Transistorschaltungen Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007 1 Transistor-Kennlinien 1.1 Eingangskennlinie Nachdem wir die Schaltung wie in Bild 13 aufgebaut hatten,

Mehr

Regelungstechnik 1 Praktikum Versuch 1.1. 1 Unterschied zwischen Steuerung und Regelung Reglereinstellung mittels Schwingversuch

Regelungstechnik 1 Praktikum Versuch 1.1. 1 Unterschied zwischen Steuerung und Regelung Reglereinstellung mittels Schwingversuch Regelungstechnik 1 Praktikum Versuch 1.1 1 nterschied zwischen Steuerung und Regelung Reglereinstellung mittels Schwingversuch Die Aufgabe der Regelungstechnik besteht im weitesten Sinne darin, einen bestimmten

Mehr

3.8 Wärmeausbreitung. Es gibt drei Möglichkeiten der Energieausbreitung:

3.8 Wärmeausbreitung. Es gibt drei Möglichkeiten der Energieausbreitung: 3.8 Wärmeausbreitung Es gibt drei Möglichkeiten der Energieausbreitung: ➊ Konvektion: Strömung des erwärmten Mediums, z.b. in Flüssigkeiten oder Gasen. ➋ Wärmeleitung: Ausbreitung von Wärmeenergie innerhalb

Mehr

D = 10 mm δ = 5 mm a = 0, 1 m L = 1, 5 m λ i = 0, 4 W/mK ϑ 0 = 130 C ϑ L = 30 C α W = 20 W/m 2 K ɛ 0 = 0, 8 ɛ W = 0, 2

D = 10 mm δ = 5 mm a = 0, 1 m L = 1, 5 m λ i = 0, 4 W/mK ϑ 0 = 130 C ϑ L = 30 C α W = 20 W/m 2 K ɛ 0 = 0, 8 ɛ W = 0, 2 Seminargruppe WuSt Aufgabe.: Kabelkanal (ehemalige Vordiplom-Aufgabe) In einem horizontalen hohlen Kabelkanal der Länge L mit einem quadratischen Querschnitt der Seitenlänge a verläuft in Längsrichtung

Mehr

FK06 Elektrische Leitfähigkeit

FK06 Elektrische Leitfähigkeit FK06 Elektrische Leitfähigkeit in Metallen, Halbleitern und Supraleitern Vorausgesetzte Kenntnisse: Boltzmann- und Fermi-Dirac-Statistik, Bänderschema für Metalle, undotierte und dotierte Halbleiter, grundlegende

Mehr

Der Elastizitätsmodul

Der Elastizitätsmodul Der Elastizitätsmodul Stichwort: Hookesches Gesetz 1 Physikalische Grundlagen Jedes Material verormt sich unter Einwirkung einer Krat. Diese Verormung ist abhängig von der Art der Krat (Scher-, Zug-, Torsionskrat

Mehr

Energie, mechanische Arbeit und Leistung

Energie, mechanische Arbeit und Leistung Grundwissen Physik Klasse 8 erstellt am Finsterwalder-Gymnasium Rosenheim auf Basis eines Grundwissenskatalogs des Klenze-Gymnasiums München Energie, mechanische Arbeit und Leistung Mit Energie können

Mehr

Infrarot Thermometer. Mit 12 Punkt Laserzielstrahl Art.-Nr. E220

Infrarot Thermometer. Mit 12 Punkt Laserzielstrahl Art.-Nr. E220 Infrarot Thermometer Mit 12 Punkt Laserzielstrahl Art.-Nr. E220 Achtung Mit dem Laser nicht auf Augen zielen. Auch nicht indirekt über reflektierende Flächen. Bei einem Temperaturwechsel, z.b. wenn Sie

Mehr

Oberflächenspannung und Dichte von n-propanollösungen

Oberflächenspannung und Dichte von n-propanollösungen Oberflächenspannung und Dichte von n-propanollösungen Zusammenfassung Die Oberflächenspannungen von n-propanollösungen wurden mit Hilfe eines Tropfentensiometers bei Raumtemperatur bestimmt. Dabei wurden

Mehr

Praktikum Physik. Freier Fall

Praktikum Physik. Freier Fall Praktikum Physik Kommentiertes Musterprotokoll zum Versuch 1 Freier Fall Durchgeführt am 24.12.2008 von Gruppe 42 Anton Student und Berta Studentin (anton.student@uni-ulm.de) (berta.studentin@uni-ulm.de)

Mehr

Vervollständigen Sie das Schema mit Stromversorgung und Widerstandsmessgerät!

Vervollständigen Sie das Schema mit Stromversorgung und Widerstandsmessgerät! Übungen Elektronik Versuch 1 Elektronische Bauelemente In diesem Versuch werden die Eigenschaften und das Verhalten nichtlinearer Bauelemente analysiert. Dazu werden die Kennlinien aufgenommen. Für die

Mehr

1 Grundwissen Energie. 2 Grundwissen mechanische Energie

1 Grundwissen Energie. 2 Grundwissen mechanische Energie 1 Grundwissen Energie Die physikalische Größe Energie E ist so festgelegt, dass Energieerhaltung gilt. Energie kann weder erzeugt noch vernichtet werden. Sie kann nur von einer Form in andere Formen umgewandelt

Mehr

Transistor-Mismatch bei einem Strom-DAC in 65nm-Technologie

Transistor-Mismatch bei einem Strom-DAC in 65nm-Technologie Electronic Vision(s) Universität Heidelberg Transistor-Mismatch bei einem Strom-DAC in 65nm-Technologie Projektpraktikum Für den Studiengang Bachelor Physik Christian Graf 2011 1 Inhaltsverzeichnis Inhaltsverzeichnis

Mehr

Versuch 21. Der Transistor

Versuch 21. Der Transistor Physikalisches Praktikum Versuch 21 Der Transistor Name: Christian Köhler Datum der Durchführung: 07.02.2007 Gruppe Mitarbeiter: Henning Hansen Assistent: Jakob Walowski testiert: 3 1 Einleitung Der Transistor

Mehr

9.Vorlesung EP WS2009/10

9.Vorlesung EP WS2009/10 9.Vorlesung EP WS2009/10 I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik c) Oberflächenspannung und Kapillarität 6. Hydro- und Aerodynamik

Mehr

Radioaktivität II. Gamma Absorption. (Lehrer AB) Abstract:

Radioaktivität II. Gamma Absorption. (Lehrer AB) Abstract: Radioaktivität II Gamma Absorption (Lehrer AB) Abstract: Den SchülerInnen soll der Umgang mit radioaktiven Stoffen nähergebracht werden. Im Rahmen dieses Versuches nehmen die SchülerInnen Messwerte eines

Mehr

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale 300 Arbeit, Energie und Potential 30 Arbeit und Leistung 30 Felder und Potentiale um was geht es? Arten on (mechanischer) Energie Potentialbegriff Beschreibung on Systemen mittels Energie 3 potentielle

Mehr

6. Transporteigenschaften von Metallen

6. Transporteigenschaften von Metallen 6. Transporteigenschaften von Metallen 6. llgemeine Transportgleichung a) elektrische Leitung b) Wärmeleitung c) Diffusion llgemeine Transportgleichung: j C Φ j : C : Φ : Stromdichte Proportionalitätskonstante

Mehr

Versuch 17.2 Der Transistor

Versuch 17.2 Der Transistor Physikalisches A-Praktikum Versuch 17.2 Der Transistor Praktikanten: Gruppe: Julius Strake Niklas Bölter B006 Betreuer: Johannes Schmidt Durchgeführt: 11.09.2012 Unterschrift: E-Mail: niklas.boelter@stud.uni-goettingen.de

Mehr

Optimierung des Energieverbrauchs eingebetteter Software

Optimierung des Energieverbrauchs eingebetteter Software Optimierung des Energieverbrauchs eingebetteter Software Welchen Einfluss hat eine Programmänderung auf den Energiebedarf einer Applikation? Welcher Programmteil verursacht den größten Energieverbrauch?

Mehr

Spannungen und Ströme

Spannungen und Ströme niversität Koblenz Landau Name:..... Institut für Physik orname:..... Hardwarepraktikum für Informatiker Matr. Nr.:..... Spannungen und Ströme ersuch Nr. 1 orkenntnisse: Stromkreis, Knotenregel, Maschenregel,

Mehr

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 TECHNISCHE UNIVERSITÄT MÜNCHEN Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 Patrick Christ und Daniel Biedermann 16.10.2009 1. INHALTSVERZEICHNIS 1. INHALTSVERZEICHNIS... 2 2. AUFGABE 1...

Mehr

Versuch 21: Der Transistor

Versuch 21: Der Transistor Versuch 21: Der Transistor Protokoll Namen: Christina Thiede Datum der Durchführung: 18.10.2004 Martin Creutziger Assistent: Alexander Weismann Gruppe: A6 testiert: 1 Einleitung Neben dem Vermitteln eines

Mehr

kg K dp p = R LuftT 1 ln p 2a =T 2a Q 12a = ṁq 12a = 45, 68 kw = 288, 15 K 12 0,4 Q 12b =0. Technische Arbeit nach dem Ersten Hauptsatz:

kg K dp p = R LuftT 1 ln p 2a =T 2a Q 12a = ṁq 12a = 45, 68 kw = 288, 15 K 12 0,4 Q 12b =0. Technische Arbeit nach dem Ersten Hauptsatz: Übung 9 Aufgabe 5.12: Kompression von Luft Durch einen Kolbenkompressor sollen ṁ = 800 kg Druckluft von p h 2 =12bar zur Verfügung gestellt werden. Der Zustand der angesaugten Außenluft beträgt p 1 =1,

Mehr

Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum

Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum Fachhochschule Bielefeld Fachbereich Elektrotechnik Versuchsbericht für das elektronische Praktikum Praktikum Nr. 3 Manuel Schwarz Matrikelnr.: 207XXX Pascal Hahulla Matrikelnr.: 207XXX Thema: Transistorschaltungen

Mehr

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1 Thermische Isolierung mit Hilfe von Vakuum 9.1.2013 Thermische Isolierung 1 Einleitung Wieso nutzt man Isolierkannen / Dewargefäße, wenn man ein Getränk über eine möglichst lange Zeit heiß (oder auch kalt)

Mehr

EO - Oszilloskop Blockpraktikum Frühjahr 2005

EO - Oszilloskop Blockpraktikum Frühjahr 2005 EO - Oszilloskop, Blockpraktikum Frühjahr 25 28. März 25 EO - Oszilloskop Blockpraktikum Frühjahr 25 Alexander Seizinger, Tobias Müller Assistent René Rexer Tübingen, den 28. März 25 Einführung In diesem

Mehr

Magnetics 4 Freaks Alles rund um den Elektromagnetismus Wintersemester 2011/12

Magnetics 4 Freaks Alles rund um den Elektromagnetismus Wintersemester 2011/12 Magnetics 4 Freaks Alles rund um den Elektromagnetismus Wintersemester 2011/12 Willkommen an der Reinhold Würth Hochschule in Künzelsau Die Kolloquiumsreihe von Hochschule und Industrie Prof. Dr.-Ing.

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 200 24. 28. Mai 200 Physik für Bauingenieure Übungsblatt 6. Luftfeuchtigkeit Gruppenübungen In einer Finnischen Sauna

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 2010 17. 21. Mai 2010 Physik für Bauingenieure Übungsblatt 5 Gruppenübungen 1. Wärmepumpe Eine Wärmepumpe hat eine Leistungszahl

Mehr

Simultane Bestimmung des Seebeck-Koeffizienten und der elektrischen Leitfähigkeit

Simultane Bestimmung des Seebeck-Koeffizienten und der elektrischen Leitfähigkeit Analysieren & Prüfen Simultane Bestimmung des Seebeck-Koeffizienten und der elektrischen Leitfähigkeit Methode und Technik für die Charakterisierung thermoelektrischer Materialien SBA 458 Das richtige

Mehr

Seite 1 von 2. Teil Theorie Praxis S Punkte 80+25 120+73 200+98 erreicht

Seite 1 von 2. Teil Theorie Praxis S Punkte 80+25 120+73 200+98 erreicht Seite 1 von 2 Ostfalia Hochschule Fakultät Elektrotechnik Wolfenbüttel Prof. Dr.-Ing. T. Harriehausen Bearbeitungszeit: Theoretischer Teil: 60 Minuten Praktischer Teil: 60 Minuten Klausur FEM für elektromagnetische

Mehr

Elektrische Energie, Arbeit und Leistung

Elektrische Energie, Arbeit und Leistung Elektrische Energie, Arbeit und Leistung Wenn in einem Draht ein elektrischer Strom fließt, so erwärmt er sich. Diese Wärme kann so groß sein, dass der Draht sogar schmilzt. Aus der Thermodynamik wissen

Mehr

Bild 1: Siedeverhalten im beheizten Rohr (Nach VDI- Wärmeatlas, hier liegend gezeichnet)

Bild 1: Siedeverhalten im beheizten Rohr (Nach VDI- Wärmeatlas, hier liegend gezeichnet) erdampfung Labor für Thermische erfahrenstechnik bearbeitet von Prof. r.-ing. habil. R. Geike. Grundlagen der erdampfung In der chemischen, pharmazeutischen und Lebensmittelindustrie sowie in weiteren

Mehr

WÄRMEÜBERTRAGUNG. Grundbegriffe, Einheiten, Kermgr8ßen. da ( 1)

WÄRMEÜBERTRAGUNG. Grundbegriffe, Einheiten, Kermgr8ßen. da ( 1) OK 536.:003.6 STAi... DATIDSTELLE GRUNDBEGRIFFE.. Wärmeleitung WÄRMEÜBERTRAGUNG Weimar Grundbegriffe, Einheiten, Kermgr8ßen März 963 t&l 0-34 Gruppe 034 Verbind.lieh ab.0.963... Die Wärmeleitfähigkeit

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I Name: Abschwächung von γ-strahlung Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 202 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

Physikalisch-Chemisches Grundpraktikum

Physikalisch-Chemisches Grundpraktikum Physikalisch-Cheisches Grundpraktiku Versuch Nuer G3: Bestiung der Oberflächen- spannung it der Blasenethode Gliederung: I. Aufgabenbeschreibung II. Theoretischer Hintergrund III. Versuchsanordnung IV.

Mehr

1.3. Inhalt dieses Vorlesungsteils - ROADMAP MIKROWELLEN-HEIZPROZESSE. Einsatz von Mikrowellenenergie in der Verfahrenstechnik

1.3. Inhalt dieses Vorlesungsteils - ROADMAP MIKROWELLEN-HEIZPROZESSE. Einsatz von Mikrowellenenergie in der Verfahrenstechnik Inhalt dieses Vorlesungsteils - ROADMAP GR UN DL AG EN MW-VT TRIKA OR T PROLOG APPLIKA TIONEN TE CH NI K 41 Einsatz von Mikrowellenenergie in der Verfahrenstechnik W ÄR M ET RA NS P ÄR M UN G+ DIELEK ER

Mehr

Die Avogadro-Konstante N A

Die Avogadro-Konstante N A Die Avogadro-Konstante N A Das Ziel der folgenden Seiten ist es, festzustellen, wie viele Atome pro cm³ oder pro g in einem Stoff enthalten sind. Chemische Reaktionen zwischen Gasen (z.b. 2H 2 + O 2 2

Mehr

Schulinterner Lehrplan (Stand Juni 2015)

Schulinterner Lehrplan (Stand Juni 2015) Schulinterner Lehrplan (Stand Juni 2015) Matrix für die Planung kompetenzorientierten Unterrichts im Fach Physik Stufe 9 Themen: Werkzeuge und Maschinen erleichtern die Arbeit, Blitze und Gewitter, Elektroinstallationen

Mehr

Praktische Einführung in die Chemie Integriertes Praktikum:

Praktische Einführung in die Chemie Integriertes Praktikum: Praktische Einführung in die Chemie Integriertes Praktikum: Versuch 1-2 (MWG) Massenwirkungsgesetz Versuchs-Datum: 20. Juni 2012 Gruppenummer: 8 Gruppenmitglieder: Domenico Paone Patrick Küssner Michael

Mehr

Oszilloskope. Fachhochschule Dortmund Informations- und Elektrotechnik. Versuch 3: Oszilloskope - Einführung

Oszilloskope. Fachhochschule Dortmund Informations- und Elektrotechnik. Versuch 3: Oszilloskope - Einführung Oszilloskope Oszilloskope sind für den Elektroniker die wichtigsten und am vielseitigsten einsetzbaren Meßgeräte. Ihr besonderer Vorteil gegenüber anderen üblichen Meßgeräten liegt darin, daß der zeitliche

Mehr

Physikalisches Anfängerpraktikum Universität Hannover Sommersemester 2009 Kais Abdelkhalek - Vitali Müller. Versuch: D10 - Radioaktivität Auswertung

Physikalisches Anfängerpraktikum Universität Hannover Sommersemester 2009 Kais Abdelkhalek - Vitali Müller. Versuch: D10 - Radioaktivität Auswertung Physikalisches Anfängerpraktikum Universität Hannover Sommersemester 2009 Kais Abdelkhalek - Vitali Müller Versuch: D0 - Radioaktivität Auswertung Radioaktivität beschreibt die Eigenschaft von Substanzen

Mehr

Photovoltaik. Physikalisch-Chemische Praktika

Photovoltaik. Physikalisch-Chemische Praktika Physikalisch-Chemische Praktika Photovoltaik Hinweis. Dieser Versuch wird in diesem Semester erstmals ausgegeben. Die Skripte ist möglicherweise fehlerbehaftet. Die Versuchsdurchführung ist vielleicht

Mehr

Protokoll Grundpraktikum I: F7 Statistik und Radioaktivität

Protokoll Grundpraktikum I: F7 Statistik und Radioaktivität Protokoll Grundpraktikum I: F7 Statistik und Radioaktivität Sebastian Pfitzner 13. Mai 013 Durchführung: Sebastian Pfitzner (553983), Anna Andrle (55077) Arbeitsplatz: Platz Betreuer: Michael Große Versuchsdatum:

Mehr

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals:

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals: 1 Arbeit und Energie Von Arbeit sprechen wir, wenn eine Kraft ~ F auf einen Körper entlang eines Weges ~s einwirkt und dadurch der "Energieinhalt" des Körpers verändert wird. Die Arbeit ist de niert als

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Aufbau der Röntgenapperatur

Aufbau der Röntgenapperatur Physikalische Grundlagen der Röntgentechnik und Sonographie Aufbau der Röntgenapperatur PD Dr. Frank Zöllner Computer Assisted Clinical Medicine Faculty of Medicine Mannheim University of Heidelberg Theodor-Kutzer-Ufer

Mehr

VERDAMPFUNGSGLEICHGEWICHTE: SIEDEDIAGRAMM EINER BINÄREN MISCHUNG

VERDAMPFUNGSGLEICHGEWICHTE: SIEDEDIAGRAMM EINER BINÄREN MISCHUNG VERDAMPFUNGSGLEICHGEWICHTE: RAMM EINER BINÄREN MISCHUNG 1. Lernziel Ziel des Versuchs ist es, ein zu bestimmen, um ein besseres Verständnis für Verdampfungsgleichgewichte und Mischeigenschaften flüssiger

Mehr

Versuch 1: Messung elektrischer Größen Prof. Dr. Oliver Zielinski / Hans Stross. Versuchsprotokoll. Datum:

Versuch 1: Messung elektrischer Größen Prof. Dr. Oliver Zielinski / Hans Stross. Versuchsprotokoll. Datum: Laborversuch Elektrotechnik I Hochschule Bremerhaven Versuch 1: Messung elektrischer Größen Prof. Dr. Oliver Zielinski / Hans Stross Versuchsprotokoll Teilnehmer: Name: 1. 2. 3. 4. Testat Datum: Matrikelnummer:

Mehr

Taupunktmessung (T6) Ziel des Versuches. Theoretischer Hintergrund

Taupunktmessung (T6) Ziel des Versuches. Theoretischer Hintergrund Taupunktmessung (T6) Ziel des Versuches In diesem Versuch soll der Taupunkt bestimmt und daraus die absolute und relative Luftfeuchtigkeit berechnet werden. Ziel dieses Versuches ist nicht nur die eigentliche

Mehr

Baumberger Electronic AG, Herzogenmühlestrasse 20, CH-8051 Zürich Tel. 01/325 33 20, Fax 01/325 33 25, E-Mail info@baumberger-electronic.

Baumberger Electronic AG, Herzogenmühlestrasse 20, CH-8051 Zürich Tel. 01/325 33 20, Fax 01/325 33 25, E-Mail info@baumberger-electronic. Inhalt 1 Allgemein...3 1.1 Aufbau...3 1.2 Submount-Halter...3 1.3 Heizplatte...4 1.4 Photodiodenhalter...4 1.5 Messdatenerfassungssystem...4 2 Burn-In-Betrieb...4 3 Messen...5 4 Software...5 5 Technische

Mehr

SCHÜEX MECKLENBURG-VORPOMMERN

SCHÜEX MECKLENBURG-VORPOMMERN DEUTSCHE GESELLSCHAFT FÜR ZERSTÖRUNGSFREIE PRÜFUNG E.V. ZfP-Sonderpreis der DGZfP beim Landeswettbewerb Jugend forscht SCHÜEX MECKLENBURG-VORPOMMERN Der Transistor - Anschlussermittlung und Kennlinienaufnahme

Mehr

Grundlagen der Elektronik

Grundlagen der Elektronik Grundlagen der Elektronik Wiederholung: Elektrische Größen Die elektrische Stromstärke I in A gibt an,... wie viele Elektronen sich pro Sekunde durch den Querschnitt eines Leiters bewegen. Die elektrische

Mehr

Abschlussprüfung 2012 an den Realschulen in Bayern

Abschlussprüfung 2012 an den Realschulen in Bayern Nachtermin lektrizitätslehre I C1 1.1.0 Schließt man eine handelsübliche Glühlampe (Betriebsdaten: ) an eine lektrizitätsquelle mit der Spannung an, so fließt ein Strom der Stärke Beim Anschluss derselben

Mehr

Effiziente Wärmeableitung von PCB-Power-Modulen

Effiziente Wärmeableitung von PCB-Power-Modulen Effiziente Wärmeableitung von PCB-Power-Modulen Entwickler von Stromversorgungsmodulen sind stets auf der Suche nach mehr Leistungsdichte auf kleinerem Raum. Dies trifft vor allem auf Server in Datencentern

Mehr

Schulcurriculum des Faches Physik. für die Klassenstufen 7 10

Schulcurriculum des Faches Physik. für die Klassenstufen 7 10 Geschwister-Scholl-Gymnasium Schulcurriculum Schulcurriculum des Faches Physik für die Klassenstufen 7 10 Gesamt Physik 7-10 09.09.09 Physik - Klasse 7 Akustik Schallentstehung und -ausbreitung Echolot

Mehr

Temperatur-Messung - Thermometer

Temperatur-Messung - Thermometer Temperatur-Messung - Thermometer Anwendungsbereiche von Temperatur-Sensoren oder -Sonden in der Robotik: Messung der Umgebungstemperatur Kompensation temperaturbedingter Drift bei Sensoren Detektion warmer

Mehr

2 Metallische Werkstoffe

2 Metallische Werkstoffe Metallische Werkstoffe Mehr als drei Viertel aller Elemente liegen bei Raumtemperatur im metallischen Zustand vor. Metalle und metallische Legierungen zeichnen sich durch eine Reihe von günstigen Eigenschaften

Mehr

LCR-Schwingkreise. Aufgabenstellung. Geräteliste. Hinweise. Bsp. Nr. 7: Parallelschwingkreis Version 25.09.2014 Karl-Franzens Universität Graz

LCR-Schwingkreise. Aufgabenstellung. Geräteliste. Hinweise. Bsp. Nr. 7: Parallelschwingkreis Version 25.09.2014 Karl-Franzens Universität Graz LCR-Schwingkreise Schwingkreise sind Schaltungen, die Induktivitäten und Kapazitäten enthalten. Das besondere physikalische Verhalten dieser Schaltungen rührt daher, dass sie zwei Energiespeicher enthalten,

Mehr

Semesterarbeit für das didaktische Vertiefungsseminar Physikalische Kühlverfahren am Beispiel der CPU-Kühlung

Semesterarbeit für das didaktische Vertiefungsseminar Physikalische Kühlverfahren am Beispiel der CPU-Kühlung WWU Münster WS 2001/2002 Semesterarbeit für das didaktische Vertiefungsseminar Physikalische Kühlverfahren am Beispiel der CPU-Kühlung Dennis Pongs http://go.to/lordmight Kurzfassung Die Erwärmung der

Mehr

Die Klein-Gordon Gleichung

Die Klein-Gordon Gleichung Kapitel 5 Die Klein-Gordon Gleichung 5.1 Einleitung Die Gleichung für die Rutherford-Streuung ist ein sehr nützlicher Ansatz, um die Streuung von geladenen Teilchen zu studieren. Viele Aspekte sind aber

Mehr

Microsoft Excel Schnellkurs Physik Übungen für Mediziner. Maurizio Musso, Günter Moser, Kristjan Plätzer

Microsoft Excel Schnellkurs Physik Übungen für Mediziner. Maurizio Musso, Günter Moser, Kristjan Plätzer Microsoft Excel Schnellkurs Physik Übungen für Mediziner Maurizio Musso, Günter Moser, Kristjan Plätzer Vorwort Die folgenden Folien enthalten eine Kurzanleitung zu Microsoft Excel. Zur Erstellung wurde

Mehr

W11. Energieumwandlung ( )

W11. Energieumwandlung ( ) W11 Energieumandlung Ziel dieses Versuches ist der experimentelle Nacheis der Äquivalenz von mechanischer und elektrischer Energie. Dazu erden beide Energieformen in die gleiche Wärmeenergie umgeandelt.

Mehr

Versuch 22. Luftfeuchtigkeit

Versuch 22. Luftfeuchtigkeit Versuch 22 Luftfeuchtigkeit 1 1 Grundlagen Infolge der Verdunstung an der freien Wasseroberfläche der Erde hat die Atmosphäre immer einen gewissen Feuchtigkeitsgehalt. Diese Feuchtigkeit wird gemessen

Mehr

Physik-Praktikum. für Studierende des Studiengangs Fach-Bachelor Chemie Teil 1. Versuch 4: Gleichspannungen, Gleichströme, Widerstände

Physik-Praktikum. für Studierende des Studiengangs Fach-Bachelor Chemie Teil 1. Versuch 4: Gleichspannungen, Gleichströme, Widerstände Physik-Praktikum für Studierende des Studiengangs Fach-Bachelor Chemie Teil 1 Versuch 4: Gleichspannungen, Gleichströme, Widerstände Wintersemester 2015/16 Carl von Ossietzky Universität Oldenburg Institut

Mehr

INSTITUT FÜR MIKROELEKTRONIK JOHANNES KEPLER UNIVERSITÄT LINZ. Praktikum Elektrotechnik SS 2006. Protokoll. Übung 1 : Oszilloskop

INSTITUT FÜR MIKROELEKTRONIK JOHANNES KEPLER UNIVERSITÄT LINZ. Praktikum Elektrotechnik SS 2006. Protokoll. Übung 1 : Oszilloskop INSTITUT FÜR MIKROELEKTRONIK JOHANNES KEPLER UNIVERSITÄT LINZ Praktikum Elektrotechnik SS 2006 Protokoll Übung 1 : Oszilloskop Gruppe: Protokollführer / Protokollführerin: Unterschrift: Mitarbeiter / Mitarbeiterin:

Mehr

Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II Experimente mit Elektronen

Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II Experimente mit Elektronen 1 Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II xperimente mit lektronen 1 1.1 U dient zum rwärmen der Glühkathode in der Vakuumröhre. Durch den glühelektrischen

Mehr

Grundlagen der Kinematik und Dynamik

Grundlagen der Kinematik und Dynamik INSTITUT FÜR UNFALLCHIRURGISCHE FORSCHUNG UND BIOMECHANIK Grundlagen der Biomechanik des Bewegungsapparates Grundlagen der Kinematik und Dynamik Dr.-Ing. Ulrich Simon Ulmer Zentrum für Wissenschaftliches

Mehr

Zusatzinfo LS11. Funktionsprinzipien elektrischer Messgeräte Version vom 26. Februar 2015

Zusatzinfo LS11. Funktionsprinzipien elektrischer Messgeräte Version vom 26. Februar 2015 Funktionsprinzipien elektrischer Messgeräte Version vom 26. Februar 2015 1.1 analoge Messgeräte Fließt durch einen Leiter, welcher sich in einem Magnetfeld B befindet ein Strom I, so wirkt auf diesen eine

Mehr

8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens

8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 1 8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 2 8.6.3 Beispiel: Orts- und Impuls-Erwartungswerte für

Mehr

Sonnenenergie: Photovoltaik. Physik und Technologie der Solarzelle

Sonnenenergie: Photovoltaik. Physik und Technologie der Solarzelle Sonnenenergie: Photovoltaik Physik und Technologie der Solarzelle Von Prof. Dr. rer. nat. Adolf Goetzberger Dipl.-Phys. Bernhard Voß und Dr. rer. nat. Joachim Knobloch Fraunhofer-Institut für Solare Energiesysteme

Mehr

Spannungsstabilisierung

Spannungsstabilisierung Spannungsstabilisierung 28. Januar 2007 Oliver Sieber siebero@phys.ethz.ch 1 Inhaltsverzeichnis 1 Zusammenfassung 4 2 Einführung 4 3 Bau der DC-Spannungsquelle 5 3.1 Halbwellengleichrichter........................

Mehr

Molekularfeldtheorie (MFT)

Molekularfeldtheorie (MFT) 29.06.2006 Motivation Anwendungen der MFT MFT-Herleitung mittels Variationsansatz und Anwendung Grenzen der Anwendung der MFT Motivation Meisten Probleme nur unter Berücksichtigung von Wechselwirkungen

Mehr

Zählstatistik. Peter Appel. 31. Januar 2005

Zählstatistik. Peter Appel. 31. Januar 2005 Zählstatistik Peter Appel 31. Januar 2005 1 Einleitung Bei der quantitativen Analyse im Bereich von Neben- und Spurenelementkonzentrationen ist es von Bedeutung, Kenntnis über die möglichen Fehler und

Mehr

Elektronen in Festkörpern

Elektronen in Festkörpern 6 Elektronen in Festkörpern Anhand des Modells des fast freien Elektronengases kann eine Anzahl wichtiger physikalischer Eigenschaften von Metallen erklärt werden. Nach diesem Modell bewegen sich die am

Mehr