gramlich

Größe: px
Ab Seite anzeigen:

Download "http://www.mathematik.uni-kl.de/ gramlich"

Transkript

1 Vorwort MATLAB ist inzwischen in vielen Hochschulen, Universitäten und Fachhochschulen gleichermaßen ein etabliertes Programmsystem, das sowohl im Fach Mathematik selbst als auch in noch stärkerem Maße in Anwendungsdisziplinen, etwa der Regelungstechnik, eingesetzt wird. Das vorliegende Buch soll einem Studierenden oder Anwender dazu dienen, die Einsatzmöglichkeiten von MATLAB rasch zu lernen. Die wichtigsten Syntaxelemente von MATLAB werden dargestellt, und zahlreiche Beispiele erläutern, wie man ein mathematisches Problem mit Hilfe von MATLAB löst. Das Ziel dieses Buches ist es, dem Leser ein neues, überaus mächtiges und nützliches Werkzeug für den Naturwissenschaftler, Ingenieur und Mathematiker nahezubringen; wenn dies gelingt, so hat es sein Ziel erreicht. Studenten können MATLAB-Lizenzen günstig erwerben. Was ist also naheliegender, als den eigenen Personal Computer auch für das Erlernen von numerischer Mathematik zu nutzen? Sie können sich somit von Anfang an mit den neuen Möglichkeiten vertraut machen, (numerische) Mathematik zu lernen: learning by doing! Nicht zuletzt soll der neue, experimentelle Charakter der Mathematik die Freude an der Beschäftigung mit Mathematik wieder beleben. Der Leser hat die Möglichkeit, numerische Fragestellungen am Computer nachzuvollziehen. Dadurch wird die behandelte Mathematik sofort greifbar und bekommt zusätzlich noch eine spielerische Komponente. Am Schluß solcher Aktivitäten aber soll der Versuch stehen, die Hintergründe zu durchdringen und zu verstehen. Nur dann kann man dieses neue Werkzeug wirklich nutzbringend einsetzen. Die Voraussetzungen des Lesers zum Verständnis dieses Buches sind gering. Im Kapitel 3 wiederholen wir wichtige Begriffe aus der linearen Algebra und Analysis. Diese Wiederholung ersetzt jedoch keinesfalls ein gründliches Studium der linearen Algebra und Analysis, das für das numerische Rechnen grundlegend ist. Hierzu gibt es viele schöne Darstellungen, die wir im Literaturverzeichnis aufgenommen haben. Am Ende eines Kapitels haben wir viele Übungsaufgaben mit unterschiedlichem Schwierigkeitsgrad angegeben. Es ist zwar hilfreich, wenn der Leser bereits Programmierkenntnisse in einer höheren Programmiersprache wie C oder FORTRAN besitzt, jedoch keineswegs Voraussetzung. Jeder, der die hier ausgeführten Beispiele nachvollzieht und analysiert, wird bald in der Lage sein, immer schwierigere Aufgaben selbständig mit MATLAB anzugehen. Am Anfang mag sich ein in der Programmierung unerfahrener Leser damit begnügen, die verwendeten MATLAB-Zeilen oder -Programme einfach zu reproduzieren. Im Laufe der Zeit sollte das Verständnis für die MATLAB-Programmierung durch Hinterfragen der dargestellten MATLAB-Programme wachsen. Der Leser sollte sich nicht scheuen, Änderungen an den Programmen durchzuführen und damit herumzuexperimentieren; am Ende des Buches

2 vi Vorwort angelangt, sollte ein bemühter Leser selbst in der Lage sein, einfache MATLAB-Programme zu schreiben. Das vorliegende Buch wurde vollständig in LATEX mit dem Dokumentstil book erstellt. Die Literaturhinweise wurden mit BIBTEX und der Index mit MakeIndex erzeugt. Bilder aus MATLAB wurden als ENCAPSULATED POSTSCRIPT (EPS-Files) abgespeichert und in das LATEX-Dokument eingebunden. Manche Abbildungen wurden mit Hilfe von PSTricks erstellt. Ohne diese schönen Tools wäre dies alles schwieriger gewesen. Die im Zusammenhang mit diesem Buch entstandenen MATLAB-Files (sogenannte m- Files) sind alle auf der beiliegenden CD enthalten. Auf dieser CD befindet sich ein readme-file, der weitere Einzelheiten über den Inhalt der CD beschreibt. Updates und Erweiterungen findet der Leser auf der Homepage gramlich Dort ist auch eine Datei zugänglich, die die im Buch entstandenen Fehler dokumentiert. Für jede Anregung, nützlichen Hinweis oder Verbesserungsvorschlag sind die Autoren dankbar und können über Post oder bzw. zugesendet werden. Die Autoren hoffen, daß sich die Arbeit gelohnt hat und der Leser Erfolg und Freude beim numerischen Rechnen mit MATLAB hat, so wie wir es haben. Vor allem möge er in die Lage versetzt werden, Grenzen und Möglichkeiten der verschiedenen Algorithmen richtig einzuschätzen, MATLAB effektiv einzusetzen und Programme gegebenenfalls anzupassen, zu modifizieren oder zu ergänzen, wenn abweichende Aufgabenstellungen dies erfordern. Bei der Abfassung eines so umfangreichen Textes sind die Autoren auf vielfältige Unterstützung angewiesen. Die Autoren danken dem dpunkt.verlag und vor allem der Lektorin, Frau CHRISTA PREISENDANZ, für die vielfältige Unterstützung und die Geduld während des Entstehens dieses Buches sowie Frau URSULA ZIMPFER, die so manchen Fehler und etliche stilistische Mängel des Manuskripts ausgeräumt hat. Ganz besonders möchten wir uns bei unseren Familien bedanken: SABINE, ANNA, CHRISTOPH(1), ANITA, CHRISTOPH(2) und MATTHIAS haben viel Verständnis für diese Arbeit aufgebracht. Kaiserslautern, Künzelsau Januar 2000 Günter Gramlich Wilhelm Werner

3 Inhaltsverzeichnis 1 Einleitung 1 2 MATLAB-Grundlagen Was ist MATLAB? Startenundbeenden Arbeiten im interaktiven Modus Grundlegende mathematische Funktionen Grundlegende Eigenschaften Matrizen Matrixoperationen Programmierenmitm-Files:ScriptsundFunktionen Datentypen (Klassen) in MATLAB VergleichsoperatorenundVergleichsfunktionen LogischeOperatorenundlogischeFunktionen Steuerstrukturen WiemaneffizientereProgrammeschreibenkann WiemandieEffizienzvonProgrammenvergleichenkann Dateien lesen und schreiben Visualisieren in MATLAB Dünn besetzte Matrizen MATLAB-HilfesystemeundweitereInformationen Polynome in MATLAB Einfache Datenanalyse mit MATLAB Weitere Bemerkungen und Hinweise Übungsaufgaben Grundbegriffe und Notationen aus der linearen Algebra und Analysis VektorenundMatrizen Die vier Fundamentalräume einer Matrix Lineare Gleichungssysteme Vektornormen Matrixnormen Singuläre Werte und die Singulärwertzerlegung Gradient, HESSE- und JACOBI-Matrix

4 viii Inhaltsverzeichnis 3.8 Der Satz von TAYLOR Zur Komplexität numerischer Algorithmen Weitere Bemerkungen und Notationen Übungsaufgaben Grundlegende Konzepte numerischen Rechnens AllgemeineLösungsstrategien ApproximationenundFehlerquellen Computerarithmetik Zur Komplexität numerischer Algorithmen Elementare Matrixrechnungen Weitere Bemerkungen und Hinweise Übungsaufgaben Lineare Gleichungssysteme Zur Lösbarkeit linearer Gleichungssysteme WielöstmanlineareSysteme? LineareSystememitDreiecksmatrizen Eliminationsmatrizen GAUSS-Elimination und LU-Zerlegung GAUSS Elimination ohne Zeilenvertauschungen GAUSS Elimination mit Zeilenvertauschungen LU-Zerlegung in MATLAB Zur Realisierung des GAUSS-Verfahrens Wie komplex ist das Lösen linearer Gleichungssysteme? Wie berechnet man die Inverse einer Matrix? Normen, Fehler und Konditionszahlen ZurGenauigkeitderLösung Spezielle lineare Gleichungssysteme Iterative Lösungsmethoden für lineare Gleichungssysteme Weitere Bemerkungen und Hinweise Übungsaufgaben Lineare Ausgleichsrechnung DieallgemeineProblemstellung Überbestimmte lineare Gleichungssysteme ZurLösbarkeitlinearerAusgleichsaufgaben Normalgleichungsmethoden Orthogonalisierungsmethoden Unterbestimmte lineare Gleichungssysteme Rangdefekte Probleme Nocheinmal: Der MATLAB-Operator\ Weitere Bemerkungen und Hinweise Übungsaufgaben

5 Inhaltsverzeichnis ix 7 Eigenwertprobleme EigenwerteundEigenvektoren Methoden, um alle Eigenwerte zu berechnen Methoden, um ausgewählte Eigenwerte zu berechnen VerallgemeinerteEigenwertprobleme Eigenwertaufgaben mit MATLAB Weitere Bemerkungen und Hinweise Übungsaufgaben Interpolation Interpolation durch Polynome LAGRANGE-Interpolation HERMITE-Interpolation InterpolationdurchSpline-Funktionen Weitere Bemerkungen und Hinweise Übungsaufgaben Nichtlineare Gleichungen Nichtlineare Gleichungen in einer Variablen Nichtlineare Gleichungen in mehreren Variablen Weitere Bemerkungen und Hinweise Übungsaufgaben Nichtlineare Ausgleichsrechnung Die GAUSS-NEWTON-Methode Nichtlineare Ausgleichsrechnung in MATLAB Weitere Bemerkungen und Hinweise Übungsaufgaben A Symbolisches Rechnen mit MATLAB 389 A.1 Analysis A.2 Die Funktionen funtool und taylortool A.3 VariableRechengenauigkeit A.4 Vereinfachungen A.5 Substituieren A.6 LineareAlgebra A.7 Algebraische Gleichungen A.8 Gewöhnliche Differentialgleichungen A.9 Funktionen der Symbolic Math Toolbox A.10 Wie man MAPLE-Funktionenverwendet A.11 Weitere Bemerkungen und Hinweise

6 x Inhaltsverzeichnis B Matrixfaktorisierungen 417 B.1 DieLU-Faktorisierung B.2 Die CHOLESKY-Faktorisierung B.3 DieQR-Faktorisierung B.4 Die Singulärwertzerlegung B.5 Die Spektralzerlegung B.6 Die (reelle) SCHUR-Faktorisierung B.7 Die SCHUR-Faktorisierung B.8 Die HESSENBERG-Faktorisierung B.9 Die JORDAN-Normalform C Mathematische Software 429 C.1 Suchsysteme C.2 Allgemeine Informationen, Vereinigungen, Verbände und Gesellschaften C.3 Homepages C.4 Newsgroups C.5 Newsletters C.6 Fachzeitschriften C.7 InteraktiveSysteme C.8 NumerischeProgrammbibliotheken C.9 PublicDomainSoftware D Weitere MATLAB-Funktionen 437 E Das GRIECHISCHE Alphabet 439 F Tabelle mathematischer Symbole 441 Literaturverzeichnis 443 Index 449

7 Abbildungsverzeichnis 2.1 Das Kommandofenster unter Windows DerPathBrowserunterWindows DerWorkspaceBrowserunterWindows Stückweise zusammengesetzte Funktion Abkühlung einer Flüssigkeit DreiSinusfunktionenineinerFigur Zykloide Kreisdiagramm Graph der Funktion 1 x 2 y mit mesh FotografiedreierPionieredernumerischenMathematik Das helpwin-hilfefenster Das helpdesk-hilfesystem Zeichnen eines Polynoms als Anwendung der Polynomauswertung UnterschiedlicheVarianzen Zufallszahlen Punktwolken Die vier Fundamentalräume einer m n-matrix A Die Dreiecksungleichung VektorenderLänge1fürverschiedeneNormen Zum Satz von TAYLOR Blackbox-Situation Zur Kondition eines Problems SchematischesDiagrammzurRückwärtsanalyse Stabiler Algorithmus Beispiel eines normalisierten Gleitpunktsystems GrafischeDarstellungderKomplexitäten Quadratisches lineares Gleichungssystem Unterbestimmtes lineares Gleichungssystem Überbestimmtes lineares Gleichungssystem Zeilenbild im Fall n Spaltenbild im Fall n

8 xii Abbildungsverzeichnis 5.6 Die zehn singulären Werte der HILBERT-Matrix H Zur Kondition eines linearen Gleichungssystems BeispieleinerDatenapproximation FalschemathematischeModelle Überbestimmtes System: Keine Lösung von Ax b Überbestimmtes System: Genau eine Lösung von Ax b Überbestimmtes System: Unendlich viele Lösungen von Ax b ZurLösbarkeitüberbestimmterSysteme KleinsteQuadratelösungfüreinüberbestimmtesSystem Ausgleichslösung im Ê Ausgleichslösung im Ê HOUSEHOLDER-Matrix H mal Vektor x Zeilenraumdarstellung für m 2 und n 3;LösungkleinsterLänge Unterbestimmtes System mit unendlich vielen Lösungen LösungkleinsterLänge Nullstellen von p λµ und p λµ 2 23 λ 19 nach WILKINSON Zur Geometrie der Eigenwertaufgabe Verschiedene interpolierende kubische Splines Interpolation einer geschlossenen Kurve durch Splines Nichtlineare Gleichungen Lösungen nichtlinearer Gleichungen MehrfacheNullstellen Die Bisektionsmethode Nach6Iterationen NEWTON-Methode zur Lösung nichtlinearer Gleichungen Lösungen nichtlinearer Gleichungssysteme Datenapproximation A.1 Graph der Funktion f xµ 1 5 4cos xµ A.2 Die Funktion funtool A.3 Die Funktion taylortool A.4 Lösung u e t xµ2 e t xµ2 der eindimensionalen Wellengleichung A.5 MATLAB-Demos B.1 QR-Zerlegung für m n im Fall Rang Aµ n B.2 Reduzierte QR-Zerlegung für m n im Fall Rang Aµ n B.3 QR-Zerlegung für m n im Fall Rang Aµ k B.4 QR-Zerlegung für m n im Fall Rang Aµ m B.5 Singulärwertzerlegung für m n B.6 Reduzierte Singulärwertzerlegung für m n

9 Tabellenverzeichnis 2.1 Arithmetische Operationen zwischen Skalaren in MATLAB Kommandozeilen editieren Workspaceverwalten DenDatenträgerverwalten Systeminformationen Trigonometrische Funktionen in MATLAB Exponential- und Logarithmusfunktionen in MATLAB Potenzfunktionen in MATLAB SpezielleVariablenundKonstanten Zahlenausgabe in MATLAB Zahlendarstellung bezüglich anderer Basen Rechnen mit komplexen Zahlen in MATLAB Spezielle Matrizen in MATLAB MATLAB-FunktionenundOperatorenzurMatrizenmanipulation Grundlegende Informationen über Matrizen Matrixoperationen in MATLAB ElementweiseOperationen FunktionenfürScript-Files Datentypen Vergleichsoperatoren Vergleichsfunktionen LogischeOperatoren LogischeFunktionen Steuerstrukturen und weitere Anweisungen Dateien lesen und schreiben Abkühlung einer Flüssigkeit Markierungen von Punkten Gestaltungsvarianten für Linien Farben Bezeichnungen und Gitter WeitereGrafikfunktionen Das help-kommando Das helpwin-kommando Das helpdesk-system... 86

10 xiv Tabellenverzeichnis 2.35 Polynome in MATLAB Datenanalyse in MATLAB Vektorprodukte Vektornormen Matrixnormen Singulärwertzerlegungen SignifikanteStellen Charakteristische Größen für ein Gleitpunktsystem Gleitpunktdarstellung verschiedener Dezimalzahlen Verschiedene Gleitpunktsysteme Kennzeichnende Größen für das MATLAB-Gleitpunktsystem Rechenzeit in Abhängigkeit der Ordnung Anzahl der flops von Vektor- und Matrixverknüpfungen Anzahl der Gleitpunktoperationen Zeilenweisespeichern Spaltenweisespeichern ZurLösbarkeitlinearerSysteme ZurLösbarkeit Kondition einer Matrix ZurLösbarkeitüberbestimmterlinearerSysteme ZurLösbarkeitunterbestimmterlinearerSysteme Zusammenfassung: Überbestimmte Systeme Zusammenfassung: Unterbestimmte Systeme Relevante Funktionen für dieses Kapitel EigenschaftenvonMatrizen Ähnlichkeitstransformationen Nullstellen von p λµ 2 23 λ 19 nach WILKINSON MatrizenunddazugehörigeEigenwerte Potenzmethoden EigenwerteundEigenvektoren Charakteristisches Polynom und Nullstellen LineareKonvergenz Superlineare Konvergenz QuadratischeKonvergenz Vergleich von Konvergenzgeschwindigkeiten Intervallhalbierungsmethode für x 2 4sin xµ NEWTON-Methode für x 2 4sin xµ Änderung der Konvergenzgeschwindigkeit Sekantenmethode für x 2 4sin xµ

11 Tabellenverzeichnis xv 9.9 MATLAB-Funktionen zum Lösen nichtlinearer Gleichungen A.1 Differenzieren A.2 Integrieren A.3 Grenzwerteberechnen A.4 Symbolische Matrixoperationen A.5 Symbolische Matrixfunktionen A.6 Differentialgleichungen symbolisch lösen A.7 Analysis A.8 LineareAlgebra A.9 Vereinfachungen A.10 Lösen von Gleichungen A.11 Variable Genauigkeitsarithmetik A.12 Arithmetische Operationen A.13SpezielleFunktionen A.14 MAPLE-Zugriffe A.15 Pädagogische und grafische Anwendungen A.16 Konvertierungen A.17 Grundlegende Operationen A.18 Integraltransformationen B.1 Matrixfaktorisierungen in MATLAB...417

Numerische Mathematik mit MATLAB

Numerische Mathematik mit MATLAB GÜNTER GRAMLICH UND WILHELM WERNER Numerische Mathematik mit MATLAB Erschienen 2000 im dpunkt.verlag Eine Einführung Kaiserslautern, Künzelsau im Januar 2000 2 Vorwort MATLAB 1 ist inzwischen in vielen

Mehr

Mathematische Probleme lösen mit Maple

Mathematische Probleme lösen mit Maple Mathematische Probleme lösen mit Maple Ein Kurzeinstieg Bearbeitet von Thomas Westermann überarbeitet 2008. Buch. XII, 169 S. ISBN 978 3 540 77720 5 Format (B x L): 15,5 x 23,5 cm Weitere Fachgebiete >

Mehr

Brückenkurs Mathematik Mathe: Das 1x1 der Ingenieurwissenschaften

Brückenkurs Mathematik Mathe: Das 1x1 der Ingenieurwissenschaften Brückenkurs Mathematik Mathe: Das x der Ingenieurwissenschaften Gewöhnliche Differentialgleichungen, lineare Algebra oder Integralrechnung vertiefte Kenntnisse der Mathematik sind Voraussetzung für den

Mehr

Dirk Hachenberger Mathematik für Informatiker

Dirk Hachenberger Mathematik für Informatiker Dirk Hachenberger Mathematik für Informatiker ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam Inhaltsverzeichnis Vorwort

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Einführung in die Numerik mit VBA

Einführung in die Numerik mit VBA Stefan Kolling Einführung in die Numerik mit VBA 2005 Fachhochschulverlag DER VERLAG FÜR ANGEWANDTE WISSENSCHAFTEN Inhaltsverzeichnis 1 Einführung 1 1.1 Einige Grundbegriffe aus der EDV 2 1.1.1 Darstellung

Mehr

Vorwort. Günter M. Gramlich. Lineare Algebra. Eine Einführung ISBN: 978-3-446-43035-8. Weitere Informationen oder Bestellungen unter

Vorwort. Günter M. Gramlich. Lineare Algebra. Eine Einführung ISBN: 978-3-446-43035-8. Weitere Informationen oder Bestellungen unter Vorwort Günter M. Gramlich Lineare Algebra Eine Einführung ISBN: 978-3-446-43035-8 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-43035-8 sowie im Buchhandel. Carl Hanser

Mehr

Ingenieurmathematik mit MATLAB

Ingenieurmathematik mit MATLAB Dieter Schott Ingenieurmathematik mit MATLAB Algebra und Analysis für Ingenieure Mit 179 Abbildungen, zahlreichen Beispielen, Übungsaufgaben und Lernkontrollen Fachbuchverlag Leipzig im Carl Hanser Verlag

Mehr

Höhere Mathematik für Naturwissenschaftler und Ingenieure

Höhere Mathematik für Naturwissenschaftler und Ingenieure Günter Bärwolff Höhere Mathematik für Naturwissenschaftler und Ingenieure unter Mitarbeit von Gottfried Seifert ELSEVIER SPEKTRUM AKADEMISCHER VERLAG Spekt rum K-/1. AKADEMISCHER VERLAG AKADEMISC Inhaltsverzeichnis

Mehr

Inhaltsverzeichnis. TEIL I: Einführung in EXCEL

Inhaltsverzeichnis. TEIL I: Einführung in EXCEL Inhaltsverzeichnis TEIL I: Einführung in EXCEL 1 Das Tabellenkalkulationsprogramm EXCEL... 1 1.1 Tabellenkalkulation... 1 1.2 Anwendungsgebiete... 1 1.3 Hilfefunktionen... 2 2 Benutzeroberflächen der Versionen

Mehr

Wolfgang Kohn Riza Öztürk. Mathematik für Ökonomen. Ökonomische Anwendungen der linearen. Algebra und Analysis mit Scilab

Wolfgang Kohn Riza Öztürk. Mathematik für Ökonomen. Ökonomische Anwendungen der linearen. Algebra und Analysis mit Scilab Wolfgang Kohn Riza Öztürk Mathematik für Ökonomen Ökonomische Anwendungen der linearen Algebra und Analysis mit Scilab 3., erweiterte und überarbeitete Auflage ^ Springer Gabler Inhaltsverzeichnis Teil

Mehr

1 ALLGEMEINE HINWEISE Das Fach Mathematik für Wirtschaftswissenschaftler Bisheriger Aufbau der Klausur...

1 ALLGEMEINE HINWEISE Das Fach Mathematik für Wirtschaftswissenschaftler Bisheriger Aufbau der Klausur... Grundlagen Mathe V Inhaltsverzeichnis 1 ALLGEMEINE HINWEISE... 1-1 1.1 Das Fach Mathematik für Wirtschaftswissenschaftler... 1-1 1.2 Bisheriger Aufbau der Klausur... 1-1 1.3 Zugelassene Hilfsmittel und

Mehr

EXCEL in der Wirtschaftsmathematik

EXCEL in der Wirtschaftsmathematik Hans Benker EXCEL in der Wirtschaftsmathematik Anwendung von Tabellenkalkulationsprogrammen für Studenten, Dozenten und Praktiker Springer Vieweg Inhaltsverzeichnis TEIL I: Einführung in EXCEL 1 Das Tabellenkalkulationsprogramm

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Optimierung. Florian Jarre Josef Stoer. Springer

Optimierung. Florian Jarre Josef Stoer. Springer 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Florian Jarre Josef Stoer Optimierung Springer Inhaltsverzeichnis

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2016 Lineare Gleichungssysteme Schwerpunkte: Interpretation und Verständnis der Gleichungen Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik unter

Mehr

Mathematik für Ingenieure 1

Mathematik für Ingenieure 1 A. Hoff mann B. Marx W. Vogt Mathematik für Ingenieure 1 Lineare Algebra, Analysis Theorie und Numerik PEARSON btudiurn. ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don

Mehr

Anwendungen der Linearen Algebra

Anwendungen der Linearen Algebra Anwendungen der Linearen Algebra mit MATLAB Bearbeitet von Günter M. Gramlich 1. Auflage 4. Buch. 179 S. Hardcover ISBN 978 3 446 22655 5 Format (B x L): 14,5 x 21 cm Gewicht: 265 g Weitere Fachgebiete

Mehr

Mathematik für Ingenieure mit Maple

Mathematik für Ingenieure mit Maple Thomas Westermann Mathematik für Ingenieure mit Maple Bandl: Differential- und Integralrechnung für Funktionen einer Variablen, Vektor- und Matrizenrechnung, Komplexe Zahlen, Funktionenreihen 4., neu bearbeitete

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Mathematica kompakt. Einführung-Funktionsumfang-Praxisbeispiele von Dipl.-Math.Christian H.Weiß. Oldenbourg Verlag München

Mathematica kompakt. Einführung-Funktionsumfang-Praxisbeispiele von Dipl.-Math.Christian H.Weiß. Oldenbourg Verlag München Mathematica kompakt Einführung-Funktionsumfang-Praxisbeispiele von Dipl.-Math.Christian H.Weiß Oldenbourg Verlag München Inhaltsverzeichnis Vorwort Tabellenverzeichnis VII XVII 1 Einleitung 1 1 Grundlagen

Mehr

7. Numerik mit MATLAB

7. Numerik mit MATLAB Start Inhalt Numerik mit MATLAB 1(24) 7. Numerik mit MATLAB 7.1 Lineare Algebra Normen. Matrixzerlegungen. Gleichungssysteme. 7.2 Lineare Ausgleichsrechnung qr, svd, pinv, \. 7.3 Interpolation interp1,

Mehr

Günter M. Gramlich. Mathematik-Studienhilfen. Eine Einführung. Lineare Algebra. 2., aktualisierte Auflage

Günter M. Gramlich. Mathematik-Studienhilfen. Eine Einführung. Lineare Algebra. 2., aktualisierte Auflage Günter M. Gramlich Mathematik-Studienhilfen Lineare Algebra Eine Einführung 2., aktualisierte Auflage Günter M. Gramlich Lineare Algebra Mathematik - Studienhilfen Herausgegeben von Prof. Dr. Bernd Engelmann

Mehr

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte und erweiterte Auflage Knut Sydsaeter Peter Hammond mit Arne Strom Übersetzt und fach lektoriert durch Dr. Fred Böker

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Rheinland-Pfalz Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Vorwort Vorwort Erfolg von Anfang an Dieses Übungsbuch ist auf die

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen Das komplette Material finden Sie hier: School-Scout.de Thema: Lineare Algebra:

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

Numerische Behandlung des Eigenwertproblems

Numerische Behandlung des Eigenwertproblems Numerische Behandlung des Eigenwertproblems Zusammenfassung Das Ziel dieses Vortrages ist, zwei gute Methoden für die numerische Bestimmung der Eigenwerte zu zeigen und wie man diese mit Matlab anwenden

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Numerische Mathematik für Ingenieure und Physiker

Numerische Mathematik für Ingenieure und Physiker Willi Törnig Peter Spellucci Numerische Mathematik für Ingenieure und Physiker Band 1: Numerische Methoden der Algebra Zweite, überarbeitete und ergänzte Auflage Mit 15 Abbildungen > Springer-Verlag Berlin

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme Beispiel.5: Funktion von Runge (V) Beispiel Martin-Luther-Universität Halle-Wittenberg, NWF III, Institut für Mathematik Martin Arnold: Grundkurs Numerische Mathematik (WiS 27/8) Abbildung.3: Interpolation

Mehr

Maple-Skripte. A.1 Einleitung. A.2 Explizite Zweischritt-Runge-Kutta-Verfahren. Bei der Ausführung

Maple-Skripte. A.1 Einleitung. A.2 Explizite Zweischritt-Runge-Kutta-Verfahren. Bei der Ausführung A Maple-Skripte A.1 Einleitung Bei der Ausführung mechanischer Rechnungen können Computeralgebra-Programme sehr nützlich werden. Wenn man genau weiß, was eingesetzt, umgeformt, zusammengefaßt oder entwickelt

Mehr

Eine Kurzanleitung zu Mathematica

Eine Kurzanleitung zu Mathematica MOSES Projekt, GL, Juni 2003 Eine Kurzanleitung zu Mathematica Wir geben im Folgenden eine sehr kurze Einführung in die Möglichkeiten, die das Computer Algebra System Mathematica bietet. Diese Datei selbst

Mehr

Vorwort Abbildungsverzeichnis Teil I Mathematik 1

Vorwort Abbildungsverzeichnis Teil I Mathematik 1 Inhaltsverzeichnis Vorwort Abbildungsverzeichnis V XIII Teil I Mathematik 1 1 Elementare Grundlagen 3 1.1 Grundzüge der Mengenlehre... 3 1.1.1 Darstellungsmöglichkeiten von Mengen... 4 1.1.2 Mengenverknüpfungen...

Mehr

Springer Studium Mathematik Bachelor

Springer Studium Mathematik Bachelor Springer Studium Mathematik Bachelor Herausgegeben von M. Aigner, Freie Universität Berlin, Berlin, Germany H. Faßbender, Technische Universität Braunschweig, Braunschweig, Germany B. Gentz, Universität

Mehr

Mathematisch-algorithmische Grundlagen für Big Data

Mathematisch-algorithmische Grundlagen für Big Data Mathematisch-algorithmische Grundlagen für Big Data Numerische Algorithmen für Datenanalyse und Optimierung Prof. Dr. Peter Becker Fachbereich Informatik Hochschule Bonn-Rhein-Sieg Sommersemester 2016

Mehr

Schulinternes Curriculum. Mathematik

Schulinternes Curriculum. Mathematik Gymnasium Zitadelle Schulinternes Curriculum (G 8) Stand: Schuljahr 2012/13 Gymnasium Zitadelle Schulinternes Curriculum Seite 1 EF Eingeführtes Lehrbuch: Lambacher Schweizer 10 Einführungsphase Funktionen

Mehr

Computerorientiertes Problemlösen

Computerorientiertes Problemlösen 1 / 13 Computerorientiertes Problemlösen 22. 26. September 2014 Steffen Basting WS 2014-2015 2 / 13 Organisatorisches 22.09. 26.09. Zeit Mo Di Mi Do Fr 11:00 bis 13:00 13:00 bis 15:30 15:30 bis 18:00 Vorlesung:

Mehr

Ergänzungsseminar zu "Rechenmethoden für Studierende der Chemie"

Ergänzungsseminar zu Rechenmethoden für Studierende der Chemie Ergänzungsseminar zu "Rechenmethoden für Studierende der Chemie" VAK 02-03-2-RM-3 Johannes Ranke Ergänzungsseminar zu "Rechenmethoden für Studierende der Chemie" p.1/13 Programm 18.4. Überblick über Software

Mehr

Basiswissen Mathematik, Statistik. und Operations Research für. Wirtschaftswissenschaftler. von. Prof. Dr. Gert Heinrich DHBW Villingen-Schwenningen

Basiswissen Mathematik, Statistik. und Operations Research für. Wirtschaftswissenschaftler. von. Prof. Dr. Gert Heinrich DHBW Villingen-Schwenningen Basiswissen Mathematik, Statistik und Operations Research für Wirtschaftswissenschaftler von Prof. Dr. Gert Heinrich DHBW Villingen-Schwenningen 5., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Vektoranalysis Funktionen mehrerer Variabler Wir untersuchen allgemein vektorwertige Funktionen von vektoriellen Argumenten, wobei zunächst nur reelle Vektoren zugelassen seien. Speziell betrachten wir:

Mehr

Kevin Caldwell. 18.April 2012

Kevin Caldwell. 18.April 2012 im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig

Mehr

Mathematik für Techniker

Mathematik für Techniker Mathematik für Techniker 5. Auflage mit 468 Bildern, 531 Beispielen und 577 Aufgaben mit Lösungen rs Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis 1 Rechenoperationen 15 1.1 Grundbegriffe

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

6 Lösungsverfahren für lineare Gleichungssysteme

6 Lösungsverfahren für lineare Gleichungssysteme 6 Lösungsverfahren für lineare Gleichungssysteme Jörn Loviscach Versionsstand:. März 04, :07 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.jl7h.de/videos.html

Mehr

Inhalt. Übersicht über das Gerät 6. Die Hauptanwendung "Main" 7. Das Interaktivmenü 10. Variablen und Funktionen 15

Inhalt. Übersicht über das Gerät 6. Die Hauptanwendung Main 7. Das Interaktivmenü 10. Variablen und Funktionen 15 3 Inhalt Übersicht über das Gerät 6 Die Hauptanwendung "Main" 7 Das Edit-Menü 8 Die Software-Tastatur 8 Kopieren und Einfügen 10 Das Interaktivmenü 10 Der Gleichlösungs-Befehl "solve" 11 Umformungen 12

Mehr

Mathematik für Ökonomen

Mathematik für Ökonomen Springer-Lehrbuch Mathematik für Ökonomen Ökonomische Anwendungen der linearen Algebra und Analysis mit Scilab Bearbeitet von Wolfgang Kohn, Riza Öztürk 1. Auflage 2012. Taschenbuch. xv, 377 S. Paperback

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung.

Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung. Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung. Die heutige Sitzung dient dem ersten Kennenlernen von MATLAB. Wir wollen MATLAB zuerst

Mehr

CARL HANSER VERLAG. Wolfgang Eichholz, Eberhard Vilkner. Taschenbuch der Wirtschaftsmathematik

CARL HANSER VERLAG. Wolfgang Eichholz, Eberhard Vilkner. Taschenbuch der Wirtschaftsmathematik CARL HANSER VERLAG Wolfgang Eichholz, Eberhard Vilkner Taschenbuch der Wirtschaftsmathematik 3-446-22080-1 www.hanser.de Inhaltsverzeichnis 1 Grundlagen... 11 1.1 Mengen... 11 1.2 Aussagenlogik... 13 1.3

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

Einführung. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009

Einführung. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009 Einführung Vita Rutka Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009 Was ist FEM? Die Finite-Elemente-Methode (FEM) ist ein numerisches Verfahren zur näherungsweisen Lösung,

Mehr

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.3 Algebra Gleichungen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn 055-654 1 87 Ausgabe: Februar 009

Mehr

Großes Lehrbuch der Mathematik für Ökonomen

Großes Lehrbuch der Mathematik für Ökonomen Großes Lehrbuch der Mathematik für Ökonomen Von Professor Dr. Karl Bosch o. Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim und Professor Dr. Uwe Jensen R. Oldenbourg

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen

Mehr

Lösung des Kleinste-Quadrate-Problems

Lösung des Kleinste-Quadrate-Problems Lösung des Kleinste-Quadrate-Problems Computergestützte Statistik Lisakowski, Christof 15.05.2009 Lisakowski, Christof ()Lösung des Kleinste-Quadrate-Problems 15.05.2009 1 / 34 Themen 1 Problemstellung

Mehr

Finite Differenzen und Elemente

Finite Differenzen und Elemente Dietrich Marsal Finite Differenzen und Elemente Numerische Lösung von Variationsproblemen und partiellen Differentialgleichungen Mit 64 Abbildungen Springer-Verlag Berlin Heidelberg NewYork London Paris

Mehr

Karl-Heinz Zimmermann. Diskrete Mathematik. Books on Demand

Karl-Heinz Zimmermann. Diskrete Mathematik. Books on Demand Diskrete Mathematik Karl-Heinz Zimmermann Diskrete Mathematik Books on Demand Prof. Dr. Karl-Heinz Zimmermann TU Hamburg-Harburg 21071 Hamburg Germany Bibliografische Information der Deutschen Bibliothek

Mehr

Einführung in die Mathematik für Volks- und Betriebswirte

Einführung in die Mathematik für Volks- und Betriebswirte Einführung in die Mathematik für Volks- und Betriebswirte Von Prof. Dr. Heinrich Bader und Prof. Dr. Siegbert Fröhlich Mit 45 A bbildungen 8. A uflage R. Oldenbourg Verlag München Wien INHALTSVERZEICHNIS

Mehr

Einführung 17. Teil I Zu den Grundlagen der linearen Algebra 21. Kapitel 1 Schnelleinstieg in die lineare Algebra 23

Einführung 17. Teil I Zu den Grundlagen der linearen Algebra 21. Kapitel 1 Schnelleinstieg in die lineare Algebra 23 Inhaltsverzeichnis Einführung 17 Zu diesem Buch 17 Konventionen in diesem Buch 17 Törichte Annahmen über den Leser 17 Wie dieses Buch aufgebaut ist 18 Teil I: Zu den Grundlagen der linearen Algebra 18

Mehr

Schulcurriculum des Faches Mathematik. für die Klassenstufen 5 10

Schulcurriculum des Faches Mathematik. für die Klassenstufen 5 10 Schulcurriculum des Faches Mathematik für die Klassenstufen 5 10 Mathematik - Klasse 5 Ganze Zahlen Potenzen und Zweiersystem /das unendlich Große in der Mathematik Messen und Rechnen mit Größen Messungen

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

Mathematik kompakt. ^ Springer. Y. Stry R. Schwenkert. für Ingenieure und Informatiker. Zweite, bearbeitete Auflage

Mathematik kompakt. ^ Springer. Y. Stry R. Schwenkert. für Ingenieure und Informatiker. Zweite, bearbeitete Auflage Y. Stry R. Schwenkert Mathematik kompakt für Ingenieure und Informatiker Zweite, bearbeitete Auflage Mit 156 Abbildungen und 10 Tabellen ^ Springer Inhaltsverzeichnis 1 Mathematische Grundbegriffe 1 1.1

Mehr

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten:

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten: KAPITEL 4 Lineare Ausgleichsrechnung Beispiel 41 Das Ohmsche Gesetz: Eine Meßreihe von Daten: U = RI (U i, I i ) (Spannung, Stromstärke), i = 1,, m Aufgabe: man bestimme aus diesen Meßdaten den Widerstand

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Mathematik IT 2 (Lineare Algebra)

Mathematik IT 2 (Lineare Algebra) Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof Dr L Cromme Mathematik IT (Lineare Algebra für die Studiengänge Informatik, IMT und ebusiness im Sommersemester 3 Lineare Gleichungssysteme

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Überbestimmte Gleichungssysteme, Regression

Überbestimmte Gleichungssysteme, Regression Überbestimmte Gleichungssysteme, Regression 8. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas MUL 16. Mai 2013 C. Brand, E. Hausenblas 8. Vorlesung 1 / 19 Gliederung 1 Überbestimmte

Mehr

Übungsbuch zur Mathematik für Wirtschaftswissenschaftler

Übungsbuch zur Mathematik für Wirtschaftswissenschaftler Übungsbuch zur Mathematik für Wirtschaftswissenschaftler 450 Klausur- und Übungsaufgaben mit ausführlichen Lösungen von Prof. Dr. Michael Merz 1. Auflage Übungsbuch zur Mathematik für Wirtschaftswissenschaftler

Mehr

EigenMath Howto. Beispiele: Was erhält man, wenn man 100 mal die Zahl 2 mit sich multipliziert? Antwort 1267650600228229401496703205376

EigenMath Howto. Beispiele: Was erhält man, wenn man 100 mal die Zahl 2 mit sich multipliziert? Antwort 1267650600228229401496703205376 EigenMath Howto EigenMath ist ein kleines Programm, das als 'Taschenrechner' für die Mathematik der Oberstufe verwendet werden kann. Es ist viel weniger mächtig als die großen Brüder Sage, Maxima, Axiom

Mehr

Ingenieurmathematik kompakt Problemlösungen mit MATLAB

Ingenieurmathematik kompakt Problemlösungen mit MATLAB Ingenieurmathematik kompakt Problemlösungen mit MATLAB Einstieg und Nachschlagewerk für Ingenieure und Naturwissenschaftler Bearbeitet von Hans Benker 1. Auflage 2010. Taschenbuch. 273 S. Paperback ISBN

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

Passerellen Prüfungen 2009 Mathematik

Passerellen Prüfungen 2009 Mathematik Passerellen Prüfungen 2009 Mathematik 1. Analysis: Polynom und Potenzfunktionen Gegeben sind die beiden Funktionen 21 und 32. a) Bestimmen Sie die Null, Extremal und Wendepunkte der beiden Funktionen.

Mehr

18.2 Implizit definierte Funktionen

18.2 Implizit definierte Funktionen 18.2 Implizit definierte Funktionen Ziel: Untersuche Lösungsmengen von nichtlinearen Gleichungssystemen g(x) = 0 mit g : D R m, D R n, d.h. betrachte m Gleichungen für n Unbekannte mit m < n, d.h. wir

Mehr

Berechnung von Eigenwerten und Eigenvektoren

Berechnung von Eigenwerten und Eigenvektoren Kapitel 5 Berechnung von Eigenwerten und Eigenvektoren 5.1 Einführung Bemerkung 5.1 Aufgabenstellung. Diese Kapitel behandelt numerische Verfahren zur Lösung des Eigenwertproblems. Gegeben sei A R n n.

Mehr

FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK

FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK Sommersemester 006 Zahl der Blätter: 5 Blatt 1 s. unten Hilfsmittel: Literatur, Manuskript, keine Taschenrechner und sonstige elektronische Rechner Zeit:

Mehr

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Artur Trzewik sw562@uni-essen.de v1., 26.3.1998 korrigiert 16. Februar 2 Zusammenfassung Warnung: für die Richtigkeit der Definitionnen

Mehr

Gleichungen - Aufgabenstellung und Lösungsstrategien

Gleichungen - Aufgabenstellung und Lösungsstrategien Gleichungen - Aufgabenstellung und Lösungsstrategien Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at 18. Juli 2006 1 Einleitung

Mehr

1. Mathematik-Schularbeit 6. Klasse AHS

1. Mathematik-Schularbeit 6. Klasse AHS . Mathematik-Schularbeit 6. Klasse AHS Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: (Un-)Gleichungen und Gleichungssysteme: AG. Einfache Terme und Formeln aufstellen, umformen und

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11.

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11. ETH EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE ZÜRICH Analysis mit dem Computer-Algebra-System des TI-92 Anhang 2: Gedanken zum Lehrplan Beat Eicke und Edmund Holzherr 11. November 1997 Eidgenössische Technische

Mehr

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte.

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte. Lineare Gleichungssysteme. Einleitung Lineare Gleichungssysteme sind in der Theorie und in den Anwendungen ein wichtiges Thema. Theoretisch werden sie in der Linearen Algebra untersucht. Die Numerische

Mehr

LEHRPLAN FÜR DAS ERGÄNZUNGSFACH ANWENDUNGEN DER MATHEMATIK

LEHRPLAN FÜR DAS ERGÄNZUNGSFACH ANWENDUNGEN DER MATHEMATIK LEHRPLAN FÜR DAS ERGÄNZUNGSFACH ANWENDUNGEN DER MATHEMATIK A. Stundendotation Klasse 1. 2. 3. 4. Wochenstunden 4 (1) Beitrag des Faches zur gymnasialen Bildung Der Unterricht im Ergänzungsfach Anwendungen

Mehr

LINEARE GLEICHUNGSSYSTEME. Wir besprechen hier, wie MathematikerInnen an das Lösen linearer Gleichungssysteme wie. x + y + z = 1

LINEARE GLEICHUNGSSYSTEME. Wir besprechen hier, wie MathematikerInnen an das Lösen linearer Gleichungssysteme wie. x + y + z = 1 LINEARE GLEICHUNGSSYSTEME 1. Ein kurzes Vorwort Wir besprechen hier, wie MathematikerInnen an das Lösen linearer Gleichungssysteme wie 2 x 1 + 2 x 2 = 3 6 a + 4 b = 3 (a) (b) 4 x 1 + 3 x 2 = 8 3 a + 2

Mehr

4) Lösen linearer Gleichungssysteme mit zwei oder drei Unbekannten

4) Lösen linearer Gleichungssysteme mit zwei oder drei Unbekannten 1) Wechsel der Darstellung Taschenrechner CASIO fx-991 ES Denn es ist eines ausgezeichneten Mannes nicht würdig, wertvolle Stunden wie ein Sklave im Keller der einfachen Berechnungen zu verbringen. Gottfried

Mehr

Grundlagen der Mathematik, der Statistik und des Operations Research für Wirtschaftswissenschaftler

Grundlagen der Mathematik, der Statistik und des Operations Research für Wirtschaftswissenschaftler Grundlagen der Mathematik, der Statistik und des Operations Research für Wirtschaftswissenschaftler Von Professor Dr. Gert Heinrich 3., durchgesehene Auflage R.Oldenbourg Verlag München Wien T Inhaltsverzeichnis

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis. Vorwort zur 7. Auflage 5

Inhaltsverzeichnis. Inhaltsverzeichnis. Vorwort zur 7. Auflage 5 Inhaltsverzeichnis Vorwort zur 7. Auflage 5 1 Potenzrechnung 11 1.1 Darstellung 11 1.1.1 Begriff 11 1.1.2 Vorzeichenregel 11 1.1.3 Addition und Subtraktion von Potenzen 12 1.1.4 Multiplikation von Potenzen

Mehr

Modulteilprüfung Lineare Algebra L2M-GL/L5M-GL

Modulteilprüfung Lineare Algebra L2M-GL/L5M-GL Modulteilprüfung Lineare Algebra L2M-GL/L5M-GL Sommersemester 2015 Universität Frankfurt FB 12, Institut für Mathematik 13.07.2015 Dr. Andreas Maurischat Dauer: 90 Minuten Hilfsmittel: Stifte und ein zweiseitig

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Gefesselte Masse. Jörg J. Buchholz 23. März 2014

Gefesselte Masse. Jörg J. Buchholz 23. März 2014 Gefesselte Masse Jörg J. Buchholz 23. März 204 Einleitung In Abbildung ist eine Punktmasse m dargestellt, die sich, von einem masselosen starren tab der Länge l gefesselt, auf einer Kreisbahn bewegt. Dabei

Mehr

Untersuchungen zum korrelationsbasierten Transitionsmodell in ANSYS CFD

Untersuchungen zum korrelationsbasierten Transitionsmodell in ANSYS CFD Masterarbeit Studiendepartment Fahrzeugtechnik und Flugzeugbau Untersuchungen zum korrelationsbasierten Transitionsmodell in ANSYS CFD Michael Fehrs 04. Oktober 2011 VI Inhaltsverzeichnis Kurzreferat Aufgabenstellung

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Typische Prüfungsfragen Die folgenden Fragen dienen lediglich der Orientierung und müssen nicht den tatsächlichen Prüfungsfragen entsprechen. Auch Erkenntnisse aus den

Mehr