Kurzvorstellung und Forschungsinteressen. Datenstrukturen, Algorithmen und Programmierung 2. Motivation. Überblick. Kapitel 1: Einführung.

Größe: px
Ab Seite anzeigen:

Download "Kurzvorstellung und Forschungsinteressen. Datenstrukturen, Algorithmen und Programmierung 2. Motivation. Überblick. Kapitel 1: Einführung."

Transkript

1 Datestrukture, Algorithme ud Programmierug 2 Professor Dr. Lehrstuhl für Algorithm Egieerig, LS11 Fakultät für Iformatik, TU Dortmud 1. VO SS April 2008 Kurzvorstellug ud Forschugsiteresse Algorithme ud Datestrukture Graphealgorithme Kombiatorische Optimierug Algorithm Egieerig Desig, theoretische Aalyse, awedugs- Implemetierug, ud orietiert experimetelle Evaluatio vo Algorithme ud Datestrukture 2 Algorithmik Motivatio Algorithmetheorie Abstrakte Modelle Etwurf Aalyse Leistugsgaratie Implemetierug Aweduge Warum soll ich i DAP2 gehe? MERKE: DAP2 IST WICHTIG!!! Ich ka doch scho programmiere. ABER NICHT IMMER EFFIZIENT! Ud och ei Grud: DAP2 IST TEIL DER ENDNOTE! 3 4 Überblick Kapitel 1: Eiführug Eiführug 1.1 Grudbegriffe Orgaisatorisches zur Vorlesug Übug Praktikum 1.2 Beispiel: Sortierproblem 1.3 Aalyse vo Algorithme 5 6 1

2 Kokrete Formulierug abstrakter Algorithme, die sich auf bestimmte Darstelluge wie Datestrukture stütze = Summe aus Algorithme ud Datestrukture Algorithme, Algorithmus Datestrukture ud Programmierug Kokrete Formulierug abstrakter Algorithme, die sich auf bestimmte Darstelluge wie Datestrukture stütze = Summe aus Algorithme ud Datestrukture Algorithme, Algorithmus Datestrukture ud Programmierug Eigabe Rechevorschrift Berechug Ausgabe Schema zur Repräsetatio der durch eie Algorithmus behadelte Date Darstellug als Text (Deutsch, Eglisch, ) als Computerprogramm (Java, C++, ) als Hardwaredesig als Pseudocode DAP2 7 8 C / Java it tmp = i; i = j; j = tmp; Pseudocode Vereifachug real existiereder Programmiersprache for (it i=0;i<9;i++) { float f =A[i] } Pseudocode vertausche i mit j for i:=0,,8 { f = A[i] } 9 Beispiel: Sortierproblem Eigabe: Folge vo Zahle <a 1,a 2,,a > Ausgabe: Permutatio <a 1,a 2,,a > der Eigabefolge, so dass a 1 a 2 a Jede kokrete Zahlefolge ist eie Istaz des Sortierproblems, z.b.: <5,3,11,2,17> <2,3,5,11,17> Gesucht: Korrekter Algorithmus für Problem 10 Sortiere durch Eifüge Eigabe: zu sortierede Zahlefolge (key) Ausgabe: sortierte Zahlefolge Setze Idex k auf 2.-tes Elemet Setze Idex i auf (k 1).-tes Elemet Solage i 0 ud ( key(k) < key(i) ) Setze Idex i auf (i 1).-tes Elemet Platziere k-tes Elemet zwische i-tes ud (i+1).-tes Elemet IsertioSort(ref A) Eigabe/Ausgabe: Zahlefolge i Feld A[1..] (1) for k:=2,, { (2) key:=a[k] (3) i:=k (4) while i>1 ad A[i 1]>key { (5) A[i]:=A[i 1] (6) i:=i 1 (7) } (8) A[i]:=key (9) } Aalyse: Datestruktur: ARRAY oder LISTE?

3 Ablauf vo IsertioSort(ref A) Zahlefolge: k= i= Aalyse vo Algorithme JETZT AUFPASSEN: sehr sehr WICHTIG! Maße für die Effiziez eies Algorithmus: Laufzeit beötigter Speicherplatz Azahl der Vergleichsoperatioe Azahl der Datebeweguge u.s.w RAM-Maschiemodell Eigeschafte der Radom Access Machie : Es gibt geau eie Prozessor, der das Programm sequetiell abarbeitet Jede Zahl, die wir i userem Programm beutze paßt i eie Speichereiheit Alle Date liege i eiem direkt zugreifbare Speicher Alle Speicherzugriffe dauer gleich lag Alle primitive Operatioe beötige kostate Zeit 15 Primitive Operatioe Zuweisuge (a:=b) arithmetische Operatioe (Additio, Multiplikatio, Modulo-Op., Wurzel-Op.) logische Operatioe (ad, or, ot) Vergleichsoperatioe (,, ) Befehle zur Ablaufsteuerug (if-the) Die Laufzeit eies Algorithms ist die Azahl der bei eier Berechug durchgeführte primitive Operatioe. 16 Laufzeit eies Algorithmus Laufzeit als Fuktio der Eigabegröße z.b. für Sortierprobleme: Laufzeit abhägig vo spezieller Istaz, z.b. für Sortierprobleme: sortierte Eigabefolge evetuell scheller als für usortierte Folge Deswege: Best-Case, Worst-Case ud Average-Case Aalyse Aalyse vo IsertioSort(ref A) s k :Azahl der Durchführuge vo (4) (1) for k:=2,, { (2) key:=a[k] (3) i:=k (4) while i>1 ad A[i 1]>key { (5) A[i]:=A[i 1] (6) i:=i 1 (7) } (8) A[i]:=key (9) } Zeit Wie oft?

4 Aalyse vo IsertioSort(ref A) s k :Azahl der Durchführuge vo (4) abhägig vo s k Zeit Wie oft? 19 Best-Case Aalyse Kürzeste mögliche Laufzeit über alle mögliche Eigabe-Istaze bei vorgegebeer Eigabegröße. Sortierte Folge: s k =1 T()=Lieare Fuktio i mit Kostate a ud b Zeit 20 Wie oft? Worst-Case Aalyse Lägste mögliche Laufzeit über alle mögliche Eigabe-Istaze bei vorgegebeer Eigabegröße. Umgekehrt sortierte Folge: s k =k T()=Quadratische Fuktio i mit Kostate a, b ud c Zeit Wie oft? Average-Case Aalyse Durchschittliche Laufzeit über alle mögliche Eigabe-Istaze bei vorgegebeer Eigabegröße. Problem: Was ist eie durchschittliche Eigabe Hier: s k =k/2 T()=Quadratische Fuktio i mit Kostate a, b ud c Laufzeit-Aalyse Geaue Laufzeitberechug ist sehr aufwädig, deswege Vereifachug Wir betrachte ur die Ordug der Laufzeit, wobei als beliebig groß ageomme wird Wir sage: f()=a+b ist i Θ() ud g()=a 2 +b+c ist i Θ( 2 ) Wir sage: f() wächst liear für große ud g() wächst quadratisch für große Formale Defiitio vo Θ: Doerstag 23 Orgaisatorisches zur Vorlesug Ihalte der Vorlesug Literatur zur Vorlesug Orgaisatorisches zur Vorlesug, Klausur, Übug ud Praktikum 24 4

5 Ihalte der Vorlesug 1. Eiführug / Algorithme-Aalyse (O-Notatio) 2. Abstrakte Datetype ud Datestrukture 3. Sortieralgorithme 4. Suchalgorithme (Biärsuche, B- ud AVL- Bäume, Skipliste) 5. Hashig 6. Graphealgorithme (BFS, DFS, Zshgskomp, MST, kürzeste Wege) 7. Optimierug (Heuristike, B&B, Dy. Prog.) 8. Geometrische Algorithme 25 Literatur zur Vorlesug VO-Folie auf Web: ls11- Skript auf Web (ab April) Bücher: R. Sedgewick: Algorithme, Pearso Studium 2002, 2. Auflage (oder: Algorithme i C++) T.H. Corme, C.E. Leiserso, R.L. Rivest, C. Stei: Algorithme eie Eiführug, Ausgabe März 2007, Oldebourg-Verlag T. Ottma ud P. Widmayr: Algorithme ud Datestrukture, Spektrum Akademischer Verlag 2002, 4. Auflage A. Levitio: Itroductio to the Desig ad Aalysis of Algorithms, 2. Auflage, Addiso Wesley Orgaisatorisches zu Modul DAP2: Vorlesug DAP2, 4 SWS Di 12:15-14:00 im Audimax ud Do 14:15-16:00 im HS 1, HG II Übug zu DAP2, 2 SWS Übugstests 16 kleie Übugsgruppe eie Globalübug viel Zeit eiplae Praktikum zu DAP2, 2 SWS kleie Übugsgruppe, C++ Modulprüfug ud Studieleistuge Klausur: Klausurtermi: Freitag, 25. Juli 2008 Nebetermi: Motag, 6. Oktober Mi., Ihalte der Vorlesug, Übug hilfreich! Voraussetzuge für Klausurteilahme: Erfolgreiche Teilahme a der Übug zu DAP2 Weitere Studieleistuge: Erfolgreiche Teilahme am Praktikum zu DAP Übug zu DAP2 Ablauf: Lerräume: GB IV R Übugsblätter: Abgabe doerstags 13 Uhr (Briefkäste Campus Süd), Ausgabe ab Do Übugsgruppe, ab Ameldug: heute i VO Globalübug freitags 12:15-14 Uhr i OH14 E23 2 Übugstests (am ud i der VO) Erfolgreiche Teilahme: Regelmäßige Teilahme a Übugsgruppe 1 bestadeer Übugstest Midestes 60% aller Übugspukte (ikl. Übugstests) 29 Praktikum zu DAP2 Ablauf: Praktikumsblätter alle 2 Woche: Abgabe i de Praktikumsgruppe, ab 9.4., Ausgabe 0.-tes Blatt: heute Ameldug: heute i VO Eiführug i C++ am statt Globalübug freitags 12:15-14 Uhr i OH14 E23 Challege ab ca. Jui (freiwillig) Erfolgreiche Teilahme: Midestes 60% aller Praktikumspukte 30 5

6 Weitere Iformatioe Veratwortlicher für Übug ud Praktikum: Carste Gutweger, LS11 Carste. Gutweger <at> cs. tu-dortmud. de Sprechstude vo : Di 14:15 Uhr i OH14, R. 231 Aktuelle Iformatioe: ls

Datenstrukturen, Algorithmen und Programmierung 2

Datenstrukturen, Algorithmen und Programmierung 2 Datenstrukturen, Algorithmen und Programmierung 2 Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 1. VO SS 2009 14. April 2009 Petra Mutzel Kurzvorstellung

Mehr

Datenstrukturen, Algorithmen und Programmierung 2

Datenstrukturen, Algorithmen und Programmierung 2 Datenstrukturen, Algorithmen und Programmierung 2 Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 1. VO SS 2008 8. April 2008 Petra Mutzel Kurzvorstellung

Mehr

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität Datestrukture ud Algorithme Christia Sohler FG Algorithme & Komplexität Orgaisatorisches Vorlesug: Mo 11:15-12:45 Fr 11:15-12:45 Zetralübug: Mo 13:00 13:45 Begi: Heute (2. Teil der Vorlesug) Übuge: Begi:

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (01 Einleitung) Prof. Dr. Susanne Albers

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (01 Einleitung) Prof. Dr. Susanne Albers Vorlesug Iformatik Algorithme ud Datestrukture (01 Eileitug) Prof. Dr. Susae Albers Orgaisatorisches Vorlesug: Mo 14.00 16.00 Uhr, HS 00-06, Geb.101 Do 11.00 13.00 Uhr, HS 00-06, Geb.101 Übuge: Ameldug

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Techische Uiversität Müche Fakultät für Iformatik Lehrstuhl für Effiziete Algorithme Dr. Hajo Täubig Tobias Lieber Sommersemester 2011 Übugsblatt 1 13. Mai 2011 Grudlage: Algorithme ud Datestrukture Abgabetermi:

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (02 Funktionenklassen) Prof. Dr. Susanne Albers

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (02 Funktionenklassen) Prof. Dr. Susanne Albers Vorlesug Iformatik 2 Algorithme ud Datestrukture (2 Fuktioeklasse) Prof. Dr. Susae Albers Beschreibug ud Aalyse vo Algorithme Mathematisches Istrumetarium zur Messug der Komplexität (des Zeitud Platzbedarfs

Mehr

3. Inkrementelle Algorithmen

3. Inkrementelle Algorithmen 3. Ikremetelle Algorithme Defiitio 3.1: Bei eiem ikremetelle Algorithmus wird sukzessive die Teillösug für die erste i Objekte aus der bereits bekate Teillösug für die erste i-1 Objekte berechet, i=1,,.

Mehr

Algorithmentheorie Randomisierung

Algorithmentheorie Randomisierung Algorithmetheorie 03 - Radomisierug Prof. Dr. S. Albers Prof. Dr. Th. Ottma Radomisierug Klasse vo radomisierte Algorithme Radomisierter Quicksort Radomisierter Primzahltest Kryptographie 2 1. Klasse vo

Mehr

Kapitel 10. Rekursion

Kapitel 10. Rekursion Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 1/14 1 Kapitel 10 Rekursio Rekursio Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 1/14 Ziele Das Prizip der rekursive

Mehr

Dynamische Programmierung Matrixkettenprodukt

Dynamische Programmierung Matrixkettenprodukt Dyamische Programmierug Matrixketteprodukt Das Optimalitätsprizip Typische Awedug für dyamisches Programmiere: Optimierugsprobleme Eie optimale Lösug für das Ausgagsproblem setzt sich aus optimale Lösuge

Mehr

Asymptotische Notationen

Asymptotische Notationen Foliesatz 2 Michael Brikmeier Techische Uiversität Ilmeau Istitut für Theoretische Iformatik Sommersemester 29 TU Ilmeau Seite 1 / 42 Asymptotische Notatioe TU Ilmeau Seite 2 / 42 Zielsetzug Igoriere vo

Mehr

Kapitel 11. Rekursion

Kapitel 11. Rekursion Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Kapitel 11 Rekursio Rekursio 1 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Ziele Das Prizip der rekursive

Mehr

Kapitel 11. Rekursion

Kapitel 11. Rekursion Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 17/18 Kapitel 11 Rekursio Rekursio 1 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 17/18 Ziele Das Prizip der rekursive

Mehr

Recur : Falls Problem elementar : löse dieses mit spezieller Methode Falls Problem nicht elementar : wende Divide rekursiv an

Recur : Falls Problem elementar : löse dieses mit spezieller Methode Falls Problem nicht elementar : wende Divide rekursiv an Divide-ad-Coquer-Algorithme Fudametales Prizip des Problemlöses Divide : Zerlege das zu lösede Problem i (ei oder) mehrere kleiere Teilprobleme gleiche Typs Recur : Falls Problem elemetar : löse dieses

Mehr

1 Randomisierte Bestimmung des Medians

1 Randomisierte Bestimmung des Medians Praktikum Diskrete Optimierug (Teil 0) 0.07.006 Radomisierte Bestimmug des Medias. Problemstellug ud Ziel I diesem Abschitt stelle wir eie radomisierte Algorithmus zur Bestimmug des Medias vor, der besser

Mehr

Beispiel für Analyse von Verfahren und gleichzeitig eine Art, Datenmengen zu verwalten.

Beispiel für Analyse von Verfahren und gleichzeitig eine Art, Datenmengen zu verwalten. 3. Sortiere Beispiel für Aalyse vo Verfahre ud gleichzeitig eie Art, Datemege zu verwalte. Sortiere: eie Folge so permutiere, dass sie aufsteiged geordet ist. 3,7, 7,,3 Motivatio: 5% aller Recherzeit wird

Mehr

Algorithmen und Datenstrukturen"

Algorithmen und Datenstrukturen Lehrstuhl für Medieiformatik Uiversität Siege Fakultät IV 10 Aufwad vo Algorithme Versio: WS 14/15 Fachgruppe Medieiformatik 10.1 10 Aufwad vo Algorithme... Motivatio: I der Regel gibt es viele mögliche

Mehr

2 Asymptotische Schranken

2 Asymptotische Schranken Asymptotische Schrake Sowohl die Laufzeit T () als auch der Speicherbedarf S() werde meist durch asymptotische Schrake agegebe. Die Kostate c i, welche i der Eiführug deiert wurde, sid direkt vo der Implemetatio

Mehr

2. Übung Algorithmen II

2. Übung Algorithmen II Johaes Sigler, Prof. Saders 1 Johaes Sigler: KIT Uiversität des Lades Bade-Württemberg ud atioales Forschugszetrum i der Helmholtz-Gemeischaft Istitut für Theoretische www.kit.edu Iformatik Orgaisatorisches

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Agewadte Mathematik ud Programmierug Eiführug i das Kozept der objektorietierte Aweduge zu wisseschaftliche Reches mit C++ ud Matlab SS03 Orgaisatorisches Dozete Gruppe: Ago (.50), Ludger Buchma(.50) Webseite:

Mehr

Nicht-Anwendbarkeit des Master- Theorems

Nicht-Anwendbarkeit des Master- Theorems Nicht-Awedbarkeit des Master- Theorems Beispiel: Betrachte die Rekursiosgleichug T () = 2T ( 2 ) + log. Es gilt sicherlich f () = Ω( log b a ) = Ω(), aber icht f () = Ω( log b a+ɛ ). Ma beachte, dass f

Mehr

186.813 Algorithmen und Datenstrukturen 1 VU 6.0 1. Übungstest SS 2012 26. April 2012

186.813 Algorithmen und Datenstrukturen 1 VU 6.0 1. Übungstest SS 2012 26. April 2012 Techische Uiversität Wie Istitut für Computergraphik ud Algorithme Arbeitsbereich für Algorithme ud Datestrukture 186.813 Algorithme ud Datestrukture 1 VU 6.0 1. Übugstest SS 2012 26. April 2012 Mache

Mehr

Der Groß-O-Kalkül. Additionsregel. Zunächst ein paar einfache "Rechen"-Regeln: " ": Sei. Lemma, Teil 2: Für beliebige Funktionen f und g gilt:

Der Groß-O-Kalkül. Additionsregel. Zunächst ein paar einfache Rechen-Regeln:  : Sei. Lemma, Teil 2: Für beliebige Funktionen f und g gilt: Der Groß-O-Kalkül Additiosregel Zuächst ei paar eifache "Reche"-Regel: Lemma, Teil 1: Für beliebige Fuktioe f g gilt: Zu beweise: ur das rechte "=" Zu beweise: jede der beide Mege ist jeweils i der adere

Mehr

Lösung: Datenstrukturen und Algorithmen SS17 Lösung - Klausur

Lösung: Datenstrukturen und Algorithmen SS17 Lösung - Klausur Prof. aa Dr. Ir. G. Woegiger T. Hartma, D. Korzeiewski, B. Tauer Aufgabe (O-Notatio): Trage Sie i (a) (e) jeweils das Symbol o oder Θ oder ω (i Worte: klei-o oder groß-theta oder klei- Omega) i die durch

Mehr

Übersicht. Datenstrukturen und Algorithmen. Rekursionsgleichungen. Übersicht. Vorlesung 6: Mastertheorem (K4) Joost-Pieter Katoen

Übersicht. Datenstrukturen und Algorithmen. Rekursionsgleichungen. Übersicht. Vorlesung 6: Mastertheorem (K4) Joost-Pieter Katoen Übersicht Datestrukture ud Algorithme Vorlesug 6: (K) Joost-Pieter Katoe Lehrstuhl für Iformatik 2 Software Modelig ad Verificatio Group 1 Substitutiosmethode Rekursiosbäume http://moves.rwth-aache.de/teachig/ss-15/dsal/

Mehr

5 Aufwandsbetrachtungen am Beispiel des Sortierens. 5.2 Entwicklung eines Sortieralgorithmus. 5.3 Untere Schranke fürs Sortieren

5 Aufwandsbetrachtungen am Beispiel des Sortierens. 5.2 Entwicklung eines Sortieralgorithmus. 5.3 Untere Schranke fürs Sortieren 5 Aufwadsbetrachtuge am Beispiel des Sortieres 5.1 Praktische Komplexität 5. Etwicklug eies Sortieralgorithmus 5.3 Utere Schrake fürs Sortiere 5.4 Digitales Sortiere 5.5 O-Arithmetik 5.6 Gewiug vo Sortierverfahre

Mehr

unibasel VORLESUNG PROGRAMMIER- PARADIGMEN departement mathematik & informatik informatik.unibas.ch/lehre/fs16/prog#thorsten.

unibasel VORLESUNG PROGRAMMIER- PARADIGMEN departement mathematik & informatik informatik.unibas.ch/lehre/fs16/prog#thorsten. uibasel VORLESUNG PROGRAMMIER- PARADIGMEN departemet mathematik & iformatik iformatik.uibas.ch/lehre/fs16/prog#thorste.moeller 2 Team Dozet: Dr. Thorste Möller thorste.moeller@uibas.ch Chief Techical Officer

Mehr

Vorkurs Mathematik für Informatiker Potenzen und Polynome --

Vorkurs Mathematik für Informatiker Potenzen und Polynome -- Vorkurs Mathematik für Iformatiker -- Poteze ud Polyome -- Thomas Huckle Stefa Zimmer (Stuttgart) 6.0.06 Vorwort Es solle Arbeitstechike vermittelt werde für das Iformatikstudium Der wesetliche Teil ist

Mehr

Frank Heitmann 2/56. Satz. 3 f (n) Θ(g(n)) lim n. 5 f (n) ω(g(n)) lim n

Frank Heitmann 2/56. Satz. 3 f (n) Θ(g(n)) lim n. 5 f (n) ω(g(n)) lim n Algorithme ud Datestrukture Kapitel 2: ud Laufzeitaalyse rekursiver Algorithme (mittels ) Frak Heitma heitma@iformatik.ui-hamburg.de Algorithmeaalyse Um Algorithme zu bewerte beschäftige wir us isb. mit

Mehr

11 Divide-and-Conquer und Rekursionsgleichungen

11 Divide-and-Conquer und Rekursionsgleichungen 160 11 DIVIDE-AND-CONQUER UND REKURSIONSGLEICHUNGEN 11 Divide-ad-Coquer ud Rekursiosgleichuge Divide-ad-Coquer Problem aufteile i Teilprobleme Teilproblem (rekursiv) löse Lösuge der Teilprobleme zusammesetze

Mehr

HEUTE. Beispiele. O-Notation neue Einführung Ideen und Eigenschaften Aufgaben 47 und 52

HEUTE. Beispiele. O-Notation neue Einführung Ideen und Eigenschaften Aufgaben 47 und 52 11.02.04 1 HEUTE 11.02.04 3 Beispiele 2, 2 2, 2 +, 1 2 2 log habe asymptotisch gleiches Wachstum: O-Notatio eue Eiführug Idee ud Eigeschafte Aufgabe 47 ud 2 Aufteilugs- ud Beschleuigugssatz Idee ud Awedug

Mehr

3 T (d 1, l 2. ) + (6 + 2) falls d > 0 7 sonst. n 2. 4T ( n 2 ) + log 2 (n), falls n > 1 1, sonst

3 T (d 1, l 2. ) + (6 + 2) falls d > 0 7 sonst. n 2. 4T ( n 2 ) + log 2 (n), falls n > 1 1, sonst für Iformatik Modellierug ud Verifikatio vo Software Prof. aa Dr. Ir. Joost-Pieter Katoe Datestrukture ud Algorithme SS5 Lösug - Übug 3 Christia Dehert, Friedrich Gretz, Bejami Kamiski, Thomas Ströder

Mehr

3 T (d 1, l 2. ) + (6 + 2) falls d > 0 7 sonst. n 2. 4T ( n 2 ) + log 2 (n), falls n > 1 1, sonst

3 T (d 1, l 2. ) + (6 + 2) falls d > 0 7 sonst. n 2. 4T ( n 2 ) + log 2 (n), falls n > 1 1, sonst Prof. aa Dr. Ir. Joost-Pieter Katoe Datestrukture ud Algorithme SS5 Tutoriumslösug - Übug 3 (Abgabe 3.05.05 Christia Dehert, Friedrich Gretz, Bejami Kamiski, Thomas Ströder Tutoraufgabe (Rekursiosgleichuge:

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Algorithmen und Datenstrukturen 1

Algorithmen und Datenstrukturen 1 Algorithme ud Datestrukture. Vorlesug Peter F. Stadler Uiversität Leipzig Istitut für Iformatik studla@bioif.ui-leipzig.de aufbaued auf de Kurse der letzte Jahre vo E. Rahm, G. Heyer, G. Brewka,Uwe Quasthoff,

Mehr

Übung 1 Algorithmen II

Übung 1 Algorithmen II Yaroslav Akhremtsev, Demia Hespe yaroslav.akhremtsev@kit.edu, hespe@kit.edu Mit Folie vo Michael Axtma (teilweise) http://algo2.iti.kit.edu/algorithmeii_ws17.php - 0 Akhremtsev, Hespe: KIT Uiversität des

Mehr

Dynamisches Programmieren Stand

Dynamisches Programmieren Stand Dyamisches Programmiere Stad Stad der Dige: Dyamische Programmierug vermeidet Mehrfachberechug vo Zwischeergebisse Bei Rekursio eisetzbar Häufig eifache bottom-up Implemetierug möglich Das Subset Sum Problem:

Mehr

Teil VII : Zeitkomplexität von Algorithmen

Teil VII : Zeitkomplexität von Algorithmen Teil VII : Zeitkomplexität vo Algorithme 1. Algorithme ud ihr Berechugsaufwad. Aufwadsabschätzug Wachstum vo Fuktioe 3. Aufwad vo Suchalgorithme K. Murma, H. Neuma, Fakultät für Iformatik, Uiversität Ulm,

Mehr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr ZAHLENFOLGEN Teil 2 Arithmetische ud geometrische Folge Die wichtigste Theorieteile ud gaz ausführliches Traiig Datei Nr. 4002 Neu Überarbeitet Stad: 7. Juli 206 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Teil VII : Zeitkomplexität von Algorithmen

Teil VII : Zeitkomplexität von Algorithmen Teil VII : Zeitkomplexität vo Algorithme. Algorithme ud ihr Berechugsaufwad. Aufwadsabschätzug Wachstum vo Fuktioe. Aufwad vo Suchalgorithme K. Murma, H. Neuma, Fakultät für Iformatik, Uiversität Ulm,

Mehr

Lösungsskizzen Mathematik für Informatiker 6. Aufl. Kapitel 4 Peter Hartmann

Lösungsskizzen Mathematik für Informatiker 6. Aufl. Kapitel 4 Peter Hartmann Lösugssizze Mathemati für Iformatier 6. Aufl. Kapitel 4 Peter Hartma Verstädisfrage 1. We Sie die Berechug des Biomialoeffiziete mit Hilfe vo Satz 4.5 i eiem Programm durchführe wolle stoße Sie schell

Mehr

Positiv denken! Lösungen

Positiv denken! Lösungen Schülerzirkel Mathematik Fakultät für Mathematik. Uiversität Regesburg Positiv deke! Lösuge Aufgabe 1 (GMAMQM (ur für die Klasse 7/8) [ Pukte]). Seie a, b reelle Zahle. 1. Sei a 0 ud b 0. Zeige, dass a

Mehr

FormelnfürdieAnzahlmöglicherQuadrateaufn*nSpielfeldern

FormelnfürdieAnzahlmöglicherQuadrateaufn*nSpielfeldern Modrago Formel Herleitug, Azahl Quadrate ud Differeze 01.doc 1 FormelfürdieAzahlmöglicherQuadrateauf*Spielfelder Mit Erläuteruge zur Ableitug der Formel vo Dr. Volker Bagert Berli, 11.03.010 Ihaltsverzeichis

Mehr

5.3 Wachstum von Folgen

5.3 Wachstum von Folgen 53 Wachstum vo Folge I diesem Abschitt betrachte wir (rekursiv oder aders defiierte) Folge {a } = ud wolle vergleiche, wie schell sie awachse, we wächst Wir orietiere us dabei a W Hochstättler: Algorithmische

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik für Iformatiker -- 9 Folge -- 6.1.215 1 Folge: Defiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reihefolge wichtig,

Mehr

Lösungen 4 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren

Lösungen 4 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren Lösuge 4 zum Mathematik-Brückekurs für alle, die sich für Mathematik iteressiere µfsr, TU Dresde Versio vom 26. September 2016, Fehler ud Verbesserugsvorschläge bitte a beedikt.bartsch@myfsr.de Aufgabe

Mehr

Demo-Text für INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. ANALYSIS Vollständige Induktion FRIEDRICH W.

Demo-Text für   INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.   ANALYSIS Vollständige Induktion FRIEDRICH W. ANALYSIS Vollstädige Iduktio Datei Nr. 40080 Stad 14. März 018 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 40080 Beweismethode: Vollstädige Iduktio Vorwort Die Methode der vollstädige Iduktio

Mehr

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $ Mathematik für Iformatiker B, SS 202 Doerstag 4.6 $Id: reihe.tex,v.9 202/06/4 3:59:06 hk Exp $ 7 Reihe 7.4 Kovergezkriterie für Reihe 7.4. Alterierede Reihe Wir hatte gesehe das die harmoische Reihe divergiert,

Mehr

Probeklausur. (b) Was geschieht, wenn man ein Quantenbit in einem solchen Zustand misst?

Probeklausur. (b) Was geschieht, wenn man ein Quantenbit in einem solchen Zustand misst? Quaterecher Witersemester 5/6 Theoretische Iformatik Uiversität Haover Dr. Matthias Homeister Dipl.-Math. Heig Schoor Probeklausur Hiweis: Diese Probeklausur ist kürzer als die tatsächliche Klausur.. a

Mehr

Lösungen zu Übungsblatt 2 Signale, Codes und Chiffren II Sommersemester 2009 Übung vom 26. Mai 2009

Lösungen zu Übungsblatt 2 Signale, Codes und Chiffren II Sommersemester 2009 Übung vom 26. Mai 2009 Uiversität Karlsruhe TH Istitut für Kryptographie ud Sicherheit Willi Geiselma Vorlesug Marius Hillebrad Übug Lösuge zu Übugsblatt 2 Sigale, Codes ud Chiffre II Sommersemester 2009 Übug vom 26. Mai 2009

Mehr

Musterlösung. Testklausur Vorkurs Informatik, Testklausur Vorkurs Informatik Musterlösung. Seite 1 von 10

Musterlösung. Testklausur Vorkurs Informatik, Testklausur Vorkurs Informatik Musterlösung. Seite 1 von 10 Musterlösug Name, Vorame, Matrikelummer Agabe sid freiwillig) Bitte ubedigt leserlich ausfülle Testklausur Vorkurs Iformatik, 27.09.20 Testklausur Vorkurs Iformatik 27.09.20 Musterlösug eite vo 0 Musterlösug

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 5. (1 + x) n 1 + nx

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 5. (1 + x) n 1 + nx D-MATH, D-PHYS, D-CHAB Aalysis I HS 2017 Prof. Mafred Eisiedler Übugsblatt 5 1. Die Beroullische Ugleichug besagt, dass für N 0 ud x R mit x 1 stets 1 + x 1 + x gilt. Wir wolle u aaloge Ugleichuge für

Mehr

Ney: Datenstrukturen und Algorithmen, SS 2004

Ney: Datenstrukturen und Algorithmen, SS 2004 1.4 Etwurfsmethode Für de gute Etwurf ka ma kaum strege Regel agebe, aber es gibt eiige Prizipie, die ma je ach Zielsetzug eisetze ka ud die uterschiedliche Vorzüge habe. Wir werde folgede typische Methode

Mehr

3 Elemente der Komplexitätstheorie Definitionen und ein Beispiel Nichtdeterminismus und das P-NP-Problem... 57

3 Elemente der Komplexitätstheorie Definitionen und ein Beispiel Nichtdeterminismus und das P-NP-Problem... 57 Ihaltsverzeichis 1 Berechebarkeit ud Algorithme 7 1.1 Berechebarkeit................................. 7 1.1.1 LOOP/WHILE-Berechebarkeit................... 8 1.1.2 Turig-Maschie...........................

Mehr

Informatik II Dynamische Programmierung

Informatik II Dynamische Programmierung lausthal Iformatik II Dyamische Programmierug. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Zweite Techik für de Algorithmeetwurf Zum Name: "Dyamische " hat ichts mit "Dyamik" zu tu, soder mit

Mehr

Wirksamkeit, Effizienz. Beispiel: Effizienz. Mittlerer quadratischer Fehler (MSE) Konsistenz im quadratischen Mittel

Wirksamkeit, Effizienz. Beispiel: Effizienz. Mittlerer quadratischer Fehler (MSE) Konsistenz im quadratischen Mittel 3 arameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez 3 arameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Beispiel: Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische

Mehr

Sortieren DNA-Array oder DNA-Chip

Sortieren DNA-Array oder DNA-Chip Sortiere DNA-Array oder DNA-Chip Jeder Pukt des Feldes repräsetiert ei Ge g i des Mesche. Ei Ge ist der Baupla eies molekulare Bausteis useres Körpers. Mittels eies DNA-Chips ka ma gleichzeitig für viele

Mehr

Kapitel 2 - Sortieren

Kapitel 2 - Sortieren Lehrstuhl für Datebaksysteme ud Data Miig Prof. Dr. T. Seidl Kapitel 2 - Sortiere Elemetare Sortierverfahre SelectioSort IsertioSort BubbleSort Höhere Sortierverfahre MergeSort QuickSort HeapSort Utere

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

Wirksamkeit, Effizienz

Wirksamkeit, Effizienz 3 Parameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische Verteilugsaahme mit Parameterraum Θ. 1 Seie θ ud θ erwartugstreue

Mehr

Übersicht. Algorithmen und Datenstrukturen. Übersicht. Organisation. gic. Organisation. Einführung. Analyse von Algorithmen.

Übersicht. Algorithmen und Datenstrukturen. Übersicht. Organisation. gic. Organisation. Einführung. Analyse von Algorithmen. OLC mputatioal gic Algorithme ud Datestrukture Reé Thiema Istitute of Computer Sciece Uiversity of Isbruck SS 010 Übersicht Orgaisatio Eiführug Aalyse vo Algorithme Suche ud Sortiere Hashverfahre Optimierugs-Probleme

Mehr

Höhere Analysis. Lösungen zu Aufgabenblatt 6. Die Funktion f sei auf ( π, π] definiert durch f(x) = x und wird 2π-periodisch fortgesetzt.

Höhere Analysis. Lösungen zu Aufgabenblatt 6. Die Funktion f sei auf ( π, π] definiert durch f(x) = x und wird 2π-periodisch fortgesetzt. Fachbereich Iformatik Sommersemester 8 Prof. Dr. Peter Becker Höhere Aalysis Lösuge zu Aufgabeblatt 6 Aufgabe (Fourierreihe) 3+5 Pukte Die Fuktio f sei auf (, π] defiiert durch f(x) x ud wird π-periodisch

Mehr

Numerische Lineare Algebra - Theorie-Blatt 2

Numerische Lineare Algebra - Theorie-Blatt 2 Prof Dr Stefa Fuke Uiversität Ulm MSc Adreas Batle Istitut für Numerische Mathematik Dipl-Math oec Klaus Stolle Witersemester 04/05 Numerische Lieare Algebra - Theorie-Blatt Lösug (Abgabe am 04 vor der

Mehr

Aufgabe G 1.1. [Vollständige Induktion, Teleskopsumme] n k 3 = n N : k(k + 1) = 1 1

Aufgabe G 1.1. [Vollständige Induktion, Teleskopsumme] n k 3 = n N : k(k + 1) = 1 1 Istitut für Aalysis ud Algebra Mathematik I für Studierede der E-Techik Prof Dr Volker Bach WiSe 06/7 M Sc Birgit Komader M Sc Christoph Brauer Theme: Groe Übug - Lösuge Vollstädige Iduktio - Teleskopsumme

Mehr

Informatik II Übung 8

Informatik II Übung 8 Iformatik II Übug 8 Floria Scheidegger florsche@studet.ethz.ch Folie mit freudlicher Geehmigug adaptiert vo Gábor Sörös ud Simo Mayer gabor.soros@if.ethz.ch, simo.mayer@if.ethz.ch 25.4.2013 Iformatik II

Mehr

Seminar: Randomisierte Algorithmen Routenplanung in Netzwerken

Seminar: Randomisierte Algorithmen Routenplanung in Netzwerken Semiar: Radomisierte Algorithme Routeplaug i Netzwerke Marie Gotthardt 3. Oktober 008 Ihaltsverzeichis 1 Routeplaug i Netzwerke 1.1 Laufzeit eies determiistische Algorithmus'................ 1. Radomisierter

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Methode der kleiste Quadrate KAPITEL 5: REGRESSIONSRECHNUNG Die Methode der kleiste Quadrate (MklQ) ist ei Verfahre zur Apassug eier Fuktio a eie Puktwolke. Agewadt wird sie beispielsweise, um eie Gesetzmäßigkeit

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

Fibonacci-Heaps. Überblick. Literatur für diese VO. Leonardo von Pisa. Prioritätswarteschlangen. Leonardo von Pisa

Fibonacci-Heaps. Überblick. Literatur für diese VO. Leonardo von Pisa. Prioritätswarteschlangen. Leonardo von Pisa Fiboacci-Heaps Literatur für diese VO T. Ottma ud P. Widmayer: Algorithme ud Datestrukture, Spektrum Akademischer Verlag, 00 VO Algorithm Egieerig Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Egieerig,

Mehr

Kap. 3: Sortieren. Überblick. Unser Sortierproblem. Motivation. Laufzeitmessung. Warum soll ich hier bleiben? Sortierverfahren sind WICHTIG!!!

Kap. 3: Sortieren. Überblick. Unser Sortierproblem. Motivation. Laufzeitmessung. Warum soll ich hier bleiben? Sortierverfahren sind WICHTIG!!! Kap. 3: Sortieren Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund Überblick Einführung in das Sortierproblem Insertion-Sort Selection-Sort Merge-Sort 4. VO

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übuge zur Lieare Algebra 1 Lösuge Witersemester 009/010 Uiversität Heidelberg Mathematisches Istitut Lösuge Blatt 8 Dr D Vogel Michael Maier Aufgabe 33 Gehe wir aalog zu Algorithmus vor: v 1 M(4,K) A :=

Mehr

Kap. 3: Sortieren. 4. VO DAP2 SS April 2009

Kap. 3: Sortieren. 4. VO DAP2 SS April 2009 Kap. 3: Sortieren Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 4. VO DAP2 SS 2009 23. April 2009 1 Überblick Einführung in das Sortierproblem Insertion-Sort

Mehr

LV "Grundlagen der Informatik" Programmierung in C (Teil 2)

LV Grundlagen der Informatik Programmierung in C (Teil 2) Aufgabekomplex: Programmiere i C (Teil vo ) (Strukturierte Datetype: Felder, Strukture, Zeiger; Fuktioe mit Parameterübergabe; Dateiarbeit) Hiweis: Alle mit * gekezeichete Aufgabe sid zum zusätzliche Übe

Mehr

Basisfall Vergleichsbasiertes Sortieren Programmieraufgabe Algorithm Engineering

Basisfall Vergleichsbasiertes Sortieren Programmieraufgabe Algorithm Engineering Basisfall Vergleichsbasiertes Sortiere Programmieraufgabe Algorithm Egieerig Deis Felsig 013-0-07 1 Eileitug I dieser Programmieraufgabe sollte Basisfälle für vergleichsbasiertes Sortiere utersucht werde.

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithme ud Datestrukture Übug c: Totale Korrektheit, Partielle Korrektheit, Hoare Kalkül, Assertios (Zusicheruge) Partielle Korrektheit Falls ei Programm termiiert ud die pezifikatio erfüllt, heißt

Mehr

Quantensuchalgorithmen

Quantensuchalgorithmen Freie Uiversität Berli Semiar über Algorithme für Quatecomputer Sommersemester 00 Quatesuchalgorithme Reihardt Karapke karapke@if.fu-berli.de Simo Rieche rieche@if.fu-berli.de Quatesuchalgorithme Ihaltsverzeichis

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Sebastia Schwarz WS 04/05 0..04 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 4. Übugsblatt

Mehr

Modulplan: M. A. Englische Literaturen und Kulturen

Modulplan: M. A. Englische Literaturen und Kulturen 5 pla: M. A. Eglische Literature ud Kulture V = Vorlesug, S = Semiar, Ü = Übug 1. Studiejahr: Pflichtmodule prüfug AM1 Sprachpraxis I (Ü, Ü) AM Theorie ud Modelle der Literatur-, Kultur- ud Sprachwisseschaft

Mehr

i=0 a it i das erzeugende Polynome von (a 0,..., a j ).

i=0 a it i das erzeugende Polynome von (a 0,..., a j ). 4 Erzeugede Fuktioe ud Polyome Defiitio 4 Sei a = (a 0, a, eie Folge vo atürliche Zahle, da heißt die formale Potezreihe f a (t := i 0 a it i die erzeugede Fuktio vo a Gilt a i = 0 für i > j, so heißt

Mehr

1. Übungsblatt zu Algorithmen II im WS 2016/2017

1. Übungsblatt zu Algorithmen II im WS 2016/2017 Karlsruher Istitut für Techologie Istitut für Theoretische Iformatik Prof. Dr. Peter Saders Dr. Christia Schulz, Dr. Simo Gog Michael Atma. Übugsblatt zu Algorithme II im WS 06/07 http://algo.iti.kit.edu/algorithmeii

Mehr

Handout 2. Divide et impera Veni, vidi, vici Julius Caesar

Handout 2. Divide et impera Veni, vidi, vici Julius Caesar Datestruture & Algorithme 9 März 2016 Sebastia Millius, Sadro Feuz, Daiel Graf Hadout 2 Thema: Divide & Coquer (Mergesort, Biäre Suche), Hashig Divide et impera Vei, vidi, vici Julius Caesar Divide & Coquer

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgabe ud e Ausarbeitug der Übugsstude zur Vorlesug Aalysis I Witersemester 008/009 Übug am 8..008 Übug 5 Eileitug Zuerst soll auf de aktuelle Übugsblatt ud Stoff der Vorlesug eigegage werde. Dazu werde

Mehr

Mi, 21. Mai, ab 12:30 Uhr, in E23 (OH14) Dann ab 14:30 Uhr: Motivation: Gegeben: hier: später: Aufgabe:

Mi, 21. Mai, ab 12:30 Uhr, in E23 (OH14) Dann ab 14:30 Uhr: Motivation: Gegeben: hier: später: Aufgabe: Kap. 4: Suchen in Datenmengen Professor Dr. Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund 0. VO DAP2 SS 2008 5. Mai 2008 Ankündigung Mentoring Mi, 2. Mai, ab 2:30 Uhr, in

Mehr

Kapitel 6: Quadratisches Wachstum

Kapitel 6: Quadratisches Wachstum Kapitel 6: Quadratisches Wachstum Dr. Dakwart Vogel Ui Esse WS 009/10 1 Drei Beispiele Beispiel 1 Bremsweg eies PKW Bremsweg Auto.xls Ui Esse WS 009/10 Für user Modell des Bremsweges gilt a = a + d a =

Mehr

Tutoraufgabe 1 (Rekursionsgleichungen):

Tutoraufgabe 1 (Rekursionsgleichungen): Prof. aa Dr. E. Ábrahám Datestrukture ud Algorithme SS4 Lösug - Übug F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe (Rekursiosgleichuge): Gebe Sie die Rekursiosgleichuge für die Laufzeit der folgede

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

Denition 27: Die Fakultät ist eine Folge f : N N mit f(1) := 1 und f(n + 1) := (n + 1) f(n) für alle n N. Wir schreiben n! := f(n) für diese Folge.

Denition 27: Die Fakultät ist eine Folge f : N N mit f(1) := 1 und f(n + 1) := (n + 1) f(n) für alle n N. Wir schreiben n! := f(n) für diese Folge. Vorkurs Mathematik, PD Dr. K. Halupczok, WWU Müster Fachbereich Mathematik ud Iformatik 22.9.20 Ÿ3.2 Folge ud Summe (Fortsetzug) Eie wichtige Möglichkeit, wie ma Zahlefolge deiere ka, ist die über eie

Mehr

Reelle Folgen. Definition. Eine reelle Folge ist eine Abbildung f : N R. liefert ( 7 9, 37

Reelle Folgen. Definition. Eine reelle Folge ist eine Abbildung f : N R. liefert ( 7 9, 37 Reelle Folge Der Begriff der Folge ist ei grudlegeder Baustei der Aalysis, weil damit u.a. Grezprozesse defiiert werde köe. Er beschreibt de Sachverhalt eier Abfolge vo Elemete, wobei die Reihefolge bzw.

Mehr

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel Zahlefolge Teil 3 Reihe Reihe Arithmetische Reihe Geometrische Reihe Datei Nr. 4003 (Neu bearbeitet ud erweitert) Jui 005 Friedrich W. Buckel Iteretbibliothek für Schulmathematik Ihalt Defiitio eier Reihe

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

Wörterbuchmethoden und Lempel-Ziv-Codierung

Wörterbuchmethoden und Lempel-Ziv-Codierung Kapitel 3 Wörterbuchmethode ud Lempel-Ziv-Codierug I diesem Abschitt lere wir allgemei Wörterbuchmethode zur Kompressio ud isbesodere die Lempel-Ziv (LZ))-Codierug kee. Wörterbuchmethode sid ei eifaches

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 13. DAS NEWTONsche NÄHERUNGSVERFAHREN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 13. DAS NEWTONsche NÄHERUNGSVERFAHREN Mathematik: Mag. Schmi Wolgag Arbeitsblatt 3 6. Semester ARBEITSBLATT 3 DAS NEWTONsche NÄHERUNGSVERFAHREN Mit em Itervallschachtelugsverahre Siehe Arbeitsblatt habe wir bereits ei Verahre kee gelert, mit

Mehr

Kompaktheit und gleichgradige Stetigkeit. 1 Einführung in die Kompaktheit in C 0

Kompaktheit und gleichgradige Stetigkeit. 1 Einführung in die Kompaktheit in C 0 Kompaktheit ud gleichgradige Stetigkeit Vortrag zum Prosemiar zur Aalysis, 14.06.2010 Mao Wiescherma Matthias Klupsch Dieser Vortrag beschäftigt sich mit Kompaktheit vo Teilräume vom Raum der stetige Abbilduge

Mehr

6 Grenzwerte von Zahlenfolgen

6 Grenzwerte von Zahlenfolgen 6 Grezwerte vo Zahlefolge Ei zetraler Begriff der Aalysis ist der des Grezwertes. Wir begie mit der Betrachtug vo Grezwerte vo Zahlefolge. 6. Zahlefolge 6.. Grudbegriffe Defiitio 6... Eie Fuktio f : Z

Mehr