Übungen zur Linearen Algebra 1

Größe: px
Ab Seite anzeigen:

Download "Übungen zur Linearen Algebra 1"

Transkript

1 Übuge zur Lieare Algebra 1 Lösuge Witersemester 009/010 Uiversität Heidelberg Mathematisches Istitut Lösuge Blatt 8 Dr D Vogel Michael Maier Aufgabe 33 Gehe wir aalog zu Algorithmus vor: v 1 M(4,K) A := v v 3 = v Nu wolle wir diese Matrix auf Zeilestufeform (ZSF) brige Erstes Ziel ist dabei i der erste Spalte, da diese icht 0 ist, de erste Eiheitsvektor zu erzeuge User erster Umformugsschritt ist vom Typ III mit λ = ud (i,j) = (1, ) Wir addiere also zur te Zeile -mal die erste Zeile Eie weitere Möglichkeit dies auszudrücke ist über die Multiplikatio mit der etsprechede Elemetarmatrix A,1 () Die letzte Möglichkeit die Trasformatio festzuhalte sieht wie folgt aus ud ist für de Afäger am beste geeiget: I dieser Notatio fahre wir fort, wobei Doppelpfeile Vertauschuge adeute Wird eie Zeile mit eiem Skalar multipliziert (welcher icht 0 sei darf), so schreibe wir diese direkt hiter die Zeile Wichtig ist darauf zu achte, dass die Umformuge immer acheiader ausgeführt werde! Beatworte wir zuerst die Frage für K = Q:

2 eie mögliche ZSF über Q Daraus ergibt sich, dass ((, 1, 6, 0, 1), (0, 3, 0,, 3), (0, 0, 6, 1, 0), (0, 0, 0, 1, 3)) eie Basis des vierdimesioale Utervektorraumes U ist Da (v 1,v,v 3,v 4 ) ei EZS vo U ist ud seie Dimesio der Azahl der Vektore etspricht, muss dies ach Folgerug 4 scho eie Basis sei Die geutzte elemetare Zeileumformuge sid i jedem Körper erlaubt - auch we zb die erste Umformug über F atürlich ichts ädert Vorsichtig muss ma ur bei Trasformatioe vom Typ I sei, de hat zb i Q ei multiplikatives Iverses, icht aber i F! Wir komme also für jedes F p bei obiger Form heraus Allerdigs ist dies icht i jedem Fall eie gültige ZSF Veräderuge trete da auf, we p eies der Pivotelemete teilt Für p, 3 ist Obiges wiederum eie ZSF ud aalog zu Q da sowohl ((, 1, 6, 0, 1), (0, 3, 0,, 3), (0, 0, 6, 1, 0), (0, 0, 0, 1, 3)) als auch (v 1,v,v 3,v 4 ) eie Basis des vierdimesioale Utervektorraumes U Für p = gilt: = Da dies eie mögliche ZSF über F ist, ergibt sich die Dimesio vo U zu 3 über die Basis ((0, 1, 0, 0, 1), (0, 0, 0, 1, 1), (0, 0, 0, 0, 1)) ud damit sid (v 1,v,v 3,v 4 ) da atürlich keie Basis Für p = 3 gilt: = Da dies eie mögliche ZSF über F 3 ist, ergibt sich die Dimesio vo U zu über die Basis ((, 1, 0, 0, ), (0, 0, 0,, 0)) ud damit sid (v 1,v,v 3,v 4 ) da atürlich keie Basis

3 Aufgabe 34 a) Da wir ach Satz 1 wisse, dass sich A durch elemetare Zeileumformuge auf ZSF brige lässt, reicht es die Aussage für die Umformuge vo Typ I, II (siehe Am ach 1) zu betrachte Typ II: Ist B durch Umformug vo Typ II, dh Additio der k-te Zeile auf die j-te, etstade, so gilt: b 1,i b j,i a j,i + a k,i b i = = b k,i a k,i b m,i a 1,i a m,i Daraus ergibt sich: 0 = λ λ i b i = λ i(a j,i + a k,i ) λ ia m,i λ i a 1,i = 0 ud ud P λi a k,i =0 λ i a j,i +λ i a k,i = 0 ud ud ud ud λ i a 1,i = 0 ud ud ud ud 0 = λ i a j,i = 0 ud ud λ λ i a i = λ ia j,i λ ia m,i λ i a k,i = 0 λ i a k,i = 0 3

4 Typ I: Ist B durch Umformug vo Typ I, dh Multiplikatio mit λ K i Zeile j, etstade, so gilt: b 1,i b i = b j,i = b m,i a 1,i λa j,i a m,i Daraus ergibt sich: 0 = λ λ i b i = λ iλa j,i λ ia m,i λ i a 1,i = 0 ud ud λ λ K λ i a 1,i = 0 ud ud 0 = λ i a j,i = 0 ud ud λ i a j,i = 0 ud ud λ λ i a i = λ ia j,i λ ia m,i b) Teil a) zeigt, dass eie Teilfamilie vo (v 1,,v ) geau da lu ist, we die zugehörige Spalte i der ZSF lu sid Eie maximale Teilfamilie dieser sid gerade die Spalte mit Pivotelemete Wege der Maximalität ergibt sich da eie Basis vo Li((v 1,,v )) Algorithmus: Eigabe: W = Li((v 1,,v )) K m Ausgabe: Eie Teilfamilie vo (v 1,,v ), die eie Basis vo W ist Durchführug: 1 Bilde aus v 1,,v eie Matrix A M(m,K), idem die Vektore i die Spalte geschriebe werde Brige A durch elemetare Zeileumformuge auf ZSF B, woraus sich die Spalte j 1,,j r mit Pivotelemete ergebe 3 (v j1,,v jr ) ist eie Basis vo W 4

5 Aufgabe 3 a) (0) N F ud für (a ) N, (b ) N F ud λ R gilt: λ(a ) N + (b ) N = (λa + b ) N F, de λa + + b + = λ(a +1 + a ) + b +1 + b = (λa +1 + b +1 ) + (λa + b ) Also ist F ei Utervektorraum Wir defiiere folgede zwei reelle Folge (b ) N, (c ) N rekursiv mit b 1 = 1,b = 0 ud b + := b +1 + b für N bzw c 1 = 0,c = 1 ud c + := c +1 + c für N Damit folgt atürlich (b ) N, (c ) N F Wir wolle u zeige, dass ((b ) N, (c ) N ) eie Basis ist Gilt λ(b ) N + µ(c ) N = 0 R N = (0) N für λ,µ R, so folgt λb 1 + µc 1 = λ = 0 ud λb + µc = µ = 0, woraus sich direkt die lieare Uabhägigkeit ergibt Ist (a ) N eie beliebige reelle Folge i F, so gilt atürlich a 1 = a 1 b 1 + a c 1 ud a = a 1 b + a c Für N ergibt sich da iduktiv a + = a +1 +a IV = a 1 b +1 +a c +1 +a 1 b +a c = a 1 (b +1 +b )+a (c +1 +c ) = a 1 b + +a c + ud damit gilt a 1 (b ) N + a (c ) N = (a ) N ((b ) N, (c ) N ) ist also auch ei Erzeugedesystem ud damit eie Basis F ist also -dimesioal b) Beh: (r ) N F r = r + 1 oder r = 0 Ist (r ) N F ud r R, da gilt r 3 = r + r 1 ud die Behauptug ergibt sich idem ma durch r teilt Adersrum gilt für N, dass r + = r r = (r + 1) r = r +1 + r (für r = 0 habe wir die Aussage obe scho gesehe) r = 0 liefert die Nullfolge, das Nullelemet des Vektorraumes, ud damit keie Vektor, der i eier Basis auftrete sollte Bestimme wir die Nullstelle vo t t 1 R[t], so ergibt sich ϕ = 1+ ud 1 ϕ Wir wolle u zeige, dass ((ϕ ) N, ((1 ϕ) ) N ) liear uabhägig ist Sei λ,µ R mit λ(ϕ ) N + µ((1 ϕ) ) N = (0) N = 0 R N Da gilt λϕ + µ(1 ϕ) = 0 ud λϕ + µ(1 ϕ) = 0 Multipliziert ma die erste Gleichug mit ϕ ud zieht diese vo der zweite ab, erhält ma so 0 = µ(1 ϕ) µ(1 ϕ)ϕ = µ(1 3ϕ+ϕ ) = µ (3 ϕ) µ = 0 λ = 0 }{{} 0 Beh, de F ist zweidimesioal

6 c) Aus Teil b) wisse wir, dass ((ϕ ) N, ((1 ϕ) ) N ) eie Basis vo F ist Also lässt sich jede Folge (a ) N F (eideutig) als Liearkombiatio dieser beide icht rekursiv defiierte Folge darstelle, dh es gibt λ,µ R, so dass (a ) N = λ(ϕ ) N + µ((1 ϕ) ) N Mit diesem Wisse erhalte wir das -te Folgeglied durch: a = λϕ + µ(1 ϕ) Aus 1 = λϕ + µ(1 ϕ) ud 1 = λϕ + µ(1 ϕ) ergibt sich, wie obe: 1 ϕ = µ(1 ϕ) µ(1 ϕ)ϕ = µ(3 ϕ) µ = (3 ϕ) 1 }{{} = 1 (+ϕ) (1 ϕ) = λ = (µ(1 ϕ) 1) ϕ 1 = ( Also gilt: a = (ϕ (1 ϕ) ) = (1 ϕ) 1)(ϕ 1) = 1 ( ϕ)(ϕ 1) = (( 1 + ) ( 1 ) ) 1 (1 ϕ) = Aufgabe 36 a) Zz: Für uterschiedliche Vertreter derselbe Äquivalezklasse ergibt sich dieselbe Summe Oder sid v,v,w,w V mit [v] = [v ] ud [w] = [w ], so ist [v + w] = [v + w ] [v] = [v ] v v u 1 := v v U ud aalog u := w w U Da gilt v + w = v + u 1 + w + u = v + w + u 1 + u }{{} also v + w = v + w ud U damit [v + w] = [v + w ] Zz: Für uterschiedliche Vertreter derselbe Äquivalezklasse ergibt sich dasselbe skalare Vielfache Sei v,v V mit v v ud λ K, so gilt: λv = λ(v + v v ) = λv + λ(v v ) λv λv }{{} U Also sid beide Verküpfuge wohldefiiert b) (a) zz: (V/U, +) ist abelsche Gruppe Sei x,y,z V/U, da gibt es u,v,w V mit x = [u],y = [v],z = [w] Damit ergibt sich: x + (y + z) = [u] + ([v] + [w]) = [u] + [v + w] = [u + (v + w)] = [(u + v) + w] = [u + v] + [w] = ([u] + [v]) + [w] = (x + y+) + z assoziativ 6

7 Neutrales Elemet: 0 V/U := [0 V ] V/U, de x + 0 V/U = [u] + [0 V ] = [u + 0 V ] = [u] = x (Rest: Kommutativität) Iverses zu x = [u]: x := [ u] V/U, de x + ( x) = [u] + [ u] = [u + ( u)] = [0 V ] = 0 V/U (Rest: Kom) Kommutativität: x+y = [u]+[v] = [u+v] = [v+u] = [v]+[u] = y+x (b) Sei λ,µ K, x = [u],y = [v] V/U, da gilt: (λ + µ) x = [(λ + µ) u] = [λu + µu] = [λu] + [µu] = λx + µx λ (x + y) = λ[u + v] = [λ(u + v)] = [λu + λv] = [λu] + [λv] = λx + λy 1 K x = [1 K u] = x λ (µ x) = λ[µ u] = [λ(µu)] = [(λµ)u] = (λµ)x Die Übugsblätter sowie weitere Iformatioe zur Vorlesug Lieare Algebra 1 fide Sie uter folgedem Lik 7

Mathematik III. Vorlesung 81. Eigenschaften des Dachprodukts. Die folgende Aussage beschreibt die universelle Eigenschaft des Dachproduktes.

Mathematik III. Vorlesung 81. Eigenschaften des Dachprodukts. Die folgende Aussage beschreibt die universelle Eigenschaft des Dachproduktes. Prof. Dr. H. Breer Osabrück S 2010/2011 Mathematik III Vorlesug 81 Eigeschafte des Dachprodukts Die folgede Aussage beschreibt die uiverselle Eigeschaft des Dachproduktes. Satz 81.1. Es sei K ei Körper,

Mehr

Proseminar Lineare Algebra WS 2016/17

Proseminar Lineare Algebra WS 2016/17 Prosemiar Lieare Algebra WS 2016/17 Bachelorstudium Lehramt Sekudarstufe (Allgemeibildug) Lehramtsstudium Uterrichtsfach Mathematik Kapitel 0: Grudlage 1. Wie sid die Begriffe Vereiigug, Durchschitt ud

Mehr

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n.

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n. Reeller Vektorraum Kapitel Vektorräume Die Mege aller Vektore x mit Kompoete bezeiche wir mit x R =. : x i R, i x ud wird als -dimesioaler (reeller) Vektorraum bezeichet. Defiitio Ei Vektorraum V ist eie

Mehr

Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe Analysis und Integraltransformationen

Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe Analysis und Integraltransformationen UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz Dr P C Kustma Dipl-Math M Uhl Sommersemester 009 Höhere Mathematik II für die Fachrichtuge Elektroigeieurwese Physik ud Geodäsie iklusive Komplexe Aalysis

Mehr

Aufgabe G 1.1. [Vollständige Induktion, Teleskopsumme] n k 3 = n N : k(k + 1) = 1 1

Aufgabe G 1.1. [Vollständige Induktion, Teleskopsumme] n k 3 = n N : k(k + 1) = 1 1 Istitut für Aalysis ud Algebra Mathematik I für Studierede der E-Techik Prof Dr Volker Bach WiSe 06/7 M Sc Birgit Komader M Sc Christoph Brauer Theme: Groe Übug - Lösuge Vollstädige Iduktio - Teleskopsumme

Mehr

heißt kommutativ (oder auch abelsch), falls für die Verknüpfung das Kommutativgesetz gilt: (G 5) Für alle ab, Ggilt a b

heißt kommutativ (oder auch abelsch), falls für die Verknüpfung das Kommutativgesetz gilt: (G 5) Für alle ab, Ggilt a b r M J auer Algebraische trukture 7 Kapitel : Gruppe Gruppe: efiitio, Beispiele efiitio (Gruppe) Eie Mege G (G ) zusamme mit eier Verküpfug heißt eie Gruppe, we folgede Eigeschafte erfüllt sid: (G ) G ist

Mehr

Universität Stuttgart Fachbereich Mathematik. 1 Lineare Abbildungen und Matrizen. 1.1 Um was geht es?

Universität Stuttgart Fachbereich Mathematik. 1 Lineare Abbildungen und Matrizen. 1.1 Um was geht es? Uiversität Stuttgart Fachbereich Mathematik Prof Dr C Hesse PD Dr P H Lesky Dipl Math D Zimmerma Msc J Köller FAQ 4 Höhere Mathematik 724 el, kyb, mecha, phys Lieare Abbilduge ud Matrize Um was geht es?

Mehr

4 Konvergenz von Folgen

4 Konvergenz von Folgen 4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder

Mehr

DEFINITION Unter einer mxn-matrix versteht man ein rechteckiges Zahlenschema aus m Zeilen und n Spalten k k k Μ Μ Μ Μ Μ Μ Ο Μ

DEFINITION Unter einer mxn-matrix versteht man ein rechteckiges Zahlenschema aus m Zeilen und n Spalten k k k Μ Μ Μ Μ Μ Μ Ο Μ 3 Matrize, Vektore ud Determiate 3. Matrix DEFINIION Uter eier mx-matrix versteht ma ei rechteckiges Zahleschema aus m Zeile ud Spalte. a a a Λ a 2 k a a a Λ a 22 2k 2 a a a Λ a 3 32 3k 3 Μ Μ Μ Μ Μ a a

Mehr

1 Das Skalarprodukt und das Kreuzprodukt

1 Das Skalarprodukt und das Kreuzprodukt Das Skalarprodukt ud das Kreuzprodukt Wir betrachte zu x = de Ausdruck y t x : = x Grud: Die rechte Seite der Gleichug ist: y t x = (y tx +... + (y ty { t x } y +... + x y x + x y (x y +... + x y x x t

Mehr

so spricht man von einer kommutativen Gruppe oder auch abelschen Gruppe.

so spricht man von einer kommutativen Gruppe oder auch abelschen Gruppe. Defiitioe ud Aussage zu ruppe Michael ortma Eie ruppe ist ei geordetes Paar (, ). Dabei ist eie icht-leere Mege, ist eie Verküpfug (Abbildug), wobei ma i.a. a b oder gar ur ab statt ( a, b) schreibt. Es

Mehr

Übungen zur Funktionentheorie

Übungen zur Funktionentheorie Mathematisches Istitut SS 2009 Uiversität Müche Prof. Dr. M. Schotteloher C. Paleai M. Schwigeheuer A. Stadelmaier Übuge zur Fuktioetheorie Übugsblatt. (a) Sei α: C C x y x + iy y x da ist α offesichtlich

Mehr

Normierte Vektorräume

Normierte Vektorräume Normierte Vektorräume Wir betrachte im Folgede ur Vektorräume über R 1. Sei also V ei Vektorraum. Wir möchte Metrike auf V betrachte, die im folgede Sie mit der Vektorraumstruktur verträglich sid:, y,

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Techische Uiversität Müche Fakultät für Iformatik Lehrstuhl für Effiziete Algorithme Dr. Hajo Täubig Tobias Lieber Sommersemester 2011 Übugsblatt 1 13. Mai 2011 Grudlage: Algorithme ud Datestrukture Abgabetermi:

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 2008/09 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum 4. Übugsblatt

Mehr

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk,

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk, Musterlo suge zu Blatt 0 Kleigruppe zur Service-Verastaltug Mathematik I fu r Igeieure bei Prof. Dr. G. Herbort im WS/3 Dipl.-Math. T. Pawlaschyk, 9.. Theme: Kovergez vo Folge Aufgabe P (i) Sei a : k kk.

Mehr

Algebra. (R1) Die Summe zweier Endomorphismen ist punktweise definiert, daher ist es leicht einzusehen, daß End(A) eine abelsche Gruppe bildet.

Algebra. (R1) Die Summe zweier Endomorphismen ist punktweise definiert, daher ist es leicht einzusehen, daß End(A) eine abelsche Gruppe bildet. Fachbereich Mathemati Prof. Dr. Nils Scheithauer Walter Reußwig TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/09 14. Otober 2008 Algebra 1. Übug mit Lösugshiweise Aufgabe 1 Es seie R,S Rige ud ϕ : R S ei Righomomorphismus.

Mehr

Numerische Lineare Algebra - Theorie-Blatt 2

Numerische Lineare Algebra - Theorie-Blatt 2 Prof Dr Stefa Fuke Uiversität Ulm MSc Adreas Batle Istitut für Numerische Mathematik Dipl-Math oec Klaus Stolle Witersemester 04/05 Numerische Lieare Algebra - Theorie-Blatt Lösug (Abgabe am 04 vor der

Mehr

9. ENDLICH ERZEUGTE MODULN UND GANZHEIT

9. ENDLICH ERZEUGTE MODULN UND GANZHEIT Algebra 2 Daiel Plauma Techische Uiversität Dortmud Sommersemester 2017 9. ENDLICH ERZEUGTE MODULN UND GANZHEIT Arbeitsblatt: Der Satz vo Cayley-Hamilto ud Aweduge Lese Sie de Text sorgfältig ud löse Sie

Mehr

Besprechung: S. 1/1

Besprechung: S. 1/1 Übug 8 Aufgabe 8.1 Sei P R ei Polytop mit P Z =vert(p ). Zeige Sie, dass vert(p ) 2. Aufgabe 8.2 Sei P V ei ratioales Polyeder. Zeige Sie, dass P ebefalls ei ratioales Polyeder ist. Aufgabe 8.3 Sei u 1,...,u

Mehr

Stochastik im SoSe 2018 Übungsblatt 2

Stochastik im SoSe 2018 Übungsblatt 2 Stochasti im SoSe 2018 Übugsblatt 2 K. Paagiotou/ L. Ramzews / S. Reisser Lösuge zu de Aufgabe. Aufgabe 1 Eie Ure ethält B blaue, R rote ud G grüe Bälle. Wir ziehe eie Teilmege mit geau Bälle aus der Ure,

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen Thema Fit i Mathe Musterlösuge 1 April Klassestufe 10 Wurzelfuktioe Uter der -te Wurzel eier icht-egative Zahl (i Zeiche: ) versteht ma die icht-egative Zahl, die mal mit sich selber multipliziert, die

Mehr

Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Lineare Gleichungen. Sommersemester 2009.

Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Lineare Gleichungen. Sommersemester 2009. Uterlage zur Vorlesug Algebra ud Geometrie i der Schule: Grudwisse über Lieare Gleichuge Sommersemester 2009 Fraz Pauer INSTITUT FÜR MATHEMATIK, UNIVERSITÄT INNSBRUCK, TECHNIKERSTRASSE 25, 6020 INNSBRUCK,

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8 Mathematisches Istitut der Uiversität Müche Prof Dr Peter Otte WiSe 203/4 Lösug 8 032203 Übuge zur Aalysis für Iformatiker ud Statistiker Lösug zu Blatt 8 Aufgabe 8 [8 Pukte] (a) Für alle N sei = (+) Wir

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004) Aufgabe 7. Ubeschräktes

Mehr

Elemente der Mathematik - Winter 2016/2017

Elemente der Mathematik - Winter 2016/2017 4 Elemete der Mathemati - Witer 201/2017 Prof. Dr. Peter Koepe, Regula Krapf Übugsblatt 8 Aufgabe 33 ( Pute). Beweise Sie folgede Idetitäte durch vollstädige Idutio: (a) 0 2 (1)(21), N. (b) 2 (1 1 ) 1

Mehr

Determinante und Resultante Azadeh Pasandi

Determinante und Resultante Azadeh Pasandi Determiate ud Resultate 07.01.2009 Azadeh Pasadi Defiitio ud Grudeigeschafte: sei U, V, W ud Vektor-Raum über Körper F ud beachte eie Abbildug f ( u,v ) vo kartesische Produkt: f: U x V W Diese Abbildug

Mehr

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w Prof. Dr. Moritz Kaßma Fakultät für Mathematik Witersemester 04/05 Uiversität Bielefeld Übugsaufgabe zu Aalysis Lösuge vo Blatt XII vom 5.0.5 Aufgabe XII. 3 Pukte) Beweise Sie, dass für alle R ud N die

Mehr

Übungen zur Analysis I WS 2008/2009

Übungen zur Analysis I WS 2008/2009 Mathematisches Istitut der Uiversität Heidelberg Prof. Dr. E. Freitag /Thorste Heidersdorf Übuge zur Aalysis I WS 008/009 Blatt 3, Lösugshiweise Die folgede Hiweise sollte auf keie Fall als Musterlösuge

Mehr

Gleichungen und Ungleichungen. Mathematische Grundlagen. Beispiel. Beispiel. Lösung einer quadratischen Gleichung:

Gleichungen und Ungleichungen. Mathematische Grundlagen. Beispiel. Beispiel. Lösung einer quadratischen Gleichung: Gleichuge ud Ugleichuge Mathematische Grudlage Das Hadout ist Bestadteil der Vortragsfolie zur Höhere Mathemati; siehe die Hiweise auf der Iteretseite wwwimgui-stuttgartde/lstnumgeomod/vhm/ für Erläuteruge

Mehr

Übung zur Vorlesung Einführung in die Algebra Prof. Dr. J. H. Bruinier Stephan Ehlen

Übung zur Vorlesung Einführung in die Algebra Prof. Dr. J. H. Bruinier Stephan Ehlen Übug zur Vorlesug Eiführug i die Algebra Prof. Dr. J. H. Bruiier Stepha Ehle Sommersemester 2009 Lösugshiweise zu Übugsblatt 3 Aufgabe G3.1 Automorphisme vo Das ist im Prizip lieare Algebra: Sei f Aut(

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Istitut für Aalysis Dr A Müller-Rettkowski Dr T Gauss WS 00/ Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum

Mehr

Reelle Folgen. Definition. Eine reelle Folge ist eine Abbildung f : N R. liefert ( 7 9, 37

Reelle Folgen. Definition. Eine reelle Folge ist eine Abbildung f : N R. liefert ( 7 9, 37 Reelle Folge Der Begriff der Folge ist ei grudlegeder Baustei der Aalysis, weil damit u.a. Grezprozesse defiiert werde köe. Er beschreibt de Sachverhalt eier Abfolge vo Elemete, wobei die Reihefolge bzw.

Mehr

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Ordnung. Definition 2.1 Man nennt eine Ordnung für K, wenn. 1. für alle a K gilt a a (Reflexivität),

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Ordnung. Definition 2.1 Man nennt eine Ordnung für K, wenn. 1. für alle a K gilt a a (Reflexivität), Aalysis 1, Woche 2 Reelle Zahle A1 2.1 Ordug Defiitio 2.1 Ma et eie Ordug für K, we 1. für alle a K gilt a a (Reflexivität), 2. für alle a, b K mit a b ud b a gilt a = b (Atisymmetrie), 3. für alle a,

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

Lineare Abbildungen und Matrizen

Lineare Abbildungen und Matrizen Kapitel 6 Lieare Abbilduge ud Matrize I diese Kapitel werde wir lieare Abbilduge ittels sogeater Matrize beschreibe. Das Matrizekalkül wurde i Wesetliche vo C.F. Gauß, J.J. Sylvester ud A. Cayley i 19.

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 3..05 Höhere Mathemati für die Fachrichtug Physi Lösugsvorschläge zum 3. Übugsblatt Vorbemerug

Mehr

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2014

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2014 Herzlich Willkomme zur Vorlesug Aalysis I SoSe 2014 Prof. Dr. Berd Dreseler Lebediges Lere: Aufgabe Ich Wir 2 Reelle Zahle 2.1 Körperstruktur vo (K1) Additio ud Multiplikatio kommutativ: a b b a, ab ba.

Mehr

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2013

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2013 Herzlich Willkomme zur Vorlesug Aalysis I SoSe 2013 Prof. Dr. Berd Dreseler Lebediges Lere: Aufgabe Ich Wir Überblick Mittelwertsatz Differetialrechug Natürliche Zahle Iduktiosprizip Kombiatorik Körper

Mehr

2 Äquivalenzrelationen 7. 6 Lineare Unabhängigkeit Die Dimension eines Vektorraums Matrizen und lineare Gleichungssysteme 30

2 Äquivalenzrelationen 7. 6 Lineare Unabhängigkeit Die Dimension eines Vektorraums Matrizen und lineare Gleichungssysteme 30 Hadout Lieare Algebra Dirk Lorez Ihaltsverzeichis Vorbemerkug 3 Mege 5 2 Äquivalezrelatioe 7 3 Abbilduge 8 4 Körper 5 Vektorräume 5 6 Lieare Uabhägigkeit 9 7 Base 23 8 Die Dimesio eies Vektorraums 26 9

Mehr

i=0 a it i das erzeugende Polynome von (a 0,..., a j ).

i=0 a it i das erzeugende Polynome von (a 0,..., a j ). 4 Erzeugede Fuktioe ud Polyome Defiitio 4 Sei a = (a 0, a, eie Folge vo atürliche Zahle, da heißt die formale Potezreihe f a (t := i 0 a it i die erzeugede Fuktio vo a Gilt a i = 0 für i > j, so heißt

Mehr

Skript zur Vorlesung. Lineare Algebra I. bei Professor Pahlings. Wintersemester 1999/2000. RWTH Aachen. verfaßt von.

Skript zur Vorlesung. Lineare Algebra I. bei Professor Pahlings. Wintersemester 1999/2000. RWTH Aachen. verfaßt von. Skript zur Vorlesug Lieare Algebra I bei Professor Pahligs Witersemester 1999/2000 RWTH Aache verfaßt vo Sadip Sar-Dessai Dieses Dokumet wurde erstellt mit LYX Versio 1.1.6fix1 ud ethält die Vorlesugsihalte

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 5. April 2018 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Kapitel VII: Der Körper der komplexen Zahlen

Kapitel VII: Der Körper der komplexen Zahlen Lieare Algebra II SS 011 - Prof Dr Mafred Leit 3 Der Körper der komplexe Zahle 3 Der Körper der komplexe Zahle A Die Mege der komplexe Zahle B Grudrechearte im Bereich der komplexe Zahle C Realteil Imagiärteil

Mehr

Lineare Algebra I. Def. Äquivalenzrelation: Eine Relation mit den Eigenschaften: Reflexivität, Symmetrie, Transitivität

Lineare Algebra I. Def. Äquivalenzrelation: Eine Relation mit den Eigenschaften: Reflexivität, Symmetrie, Transitivität www.schlurcher.de.vu Eileitug Kurze Megelehre (vgl. Aalysis) Lieare Algebra I Def. Relatio: Eie Relatio ist eie Teilmege vo A x A. Mögliche Eigeschafte Def. Äquivalezrelatio: Eie Relatio mit de Eigeschafte:

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Sebastia Schwarz WS 04/05 0..04 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 4. Übugsblatt

Mehr

Höhere Mathematik I (Analysis) für die Fachrichtung Informatik

Höhere Mathematik I (Analysis) für die Fachrichtung Informatik Karlsruher Istitut für Techologie (KIT) Istitut für Aalysis Priv.-Doz. Dr. Gerd Herzog M. Sc. Adreas Hirsch WS 204/5 24.0.204 Höhere Mathematik I (Aalysis) für die Fachrichtug Iformatik Lösugsvorschlag

Mehr

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares 4 6 Fachgebiet Regelugstechik Leiter: Prof. Dr.-Ig. Joha Reger Kleies Matrix-ABC 1 Eleetares Eie ( )-Matrix ist eie rechteckige Aordug vo reelle oder koplexe Zahle a ij (auch Skalare geat) ud besteht aus

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 5. (1 + x) n 1 + nx

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 5. (1 + x) n 1 + nx D-MATH, D-PHYS, D-CHAB Aalysis I HS 2017 Prof. Mafred Eisiedler Übugsblatt 5 1. Die Beroullische Ugleichug besagt, dass für N 0 ud x R mit x 1 stets 1 + x 1 + x gilt. Wir wolle u aaloge Ugleichuge für

Mehr

Analysis I für M, LaG/M, Ph 4.Übungsblatt

Analysis I für M, LaG/M, Ph 4.Übungsblatt Aalysis I für M, LaG/M, Ph 4.Übugsblatt Fachbereich Mathematik Sommersemester 200 Dr. Robert Haller-Ditelma 05.05.200 David Bücher Christia Bradeburg Gruppeübug Aufgabe G (Kovergez vo Folge) Beweise Sie:

Mehr

Aufgaben zu Kapitel 2

Aufgaben zu Kapitel 2 2 Sei a R ud seie a ud a Iverse vo a Da ist a = a = a ( aa ) = ( a a)a = a = a 22 Wege Aufgabe 4 bleibt lediglich (R2) ud (R3) zu zeige (R2): Die Multipliatio ist offebar assoziativ Das Eiselemet ist die

Mehr

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig.

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. 1.3 Fuktioe Seie M ud N Mege f : M N x M : 1 y N : y fx et ma Fuktio oder Abbildug. Beachte: Zuordug ist eideutig. Bezeichuge: M : Defiitiosbereich N : Bildbereich Zielmege vo f Der Graph eier Fuktio:

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum. Übugsblatt

Mehr

HA-Lösung TA-Lösung Diskrete Strukturen Tutoraufgabenblatt 13. Besprechung in KW05/2018

HA-Lösung TA-Lösung Diskrete Strukturen Tutoraufgabenblatt 13. Besprechung in KW05/2018 Techische Uiversität Müche Witer 2017/18 Prof. J. Esparza / Dr. M. Lutteberger, S. Sickert 2018/02/08 HA-Lösug TA-Lösug Diskrete Strukture Tutoraufgabeblatt 13 Besprechug i KW05/2018 Beachte Sie: Soweit

Mehr

24 Komplexe Vektoren und Matrizen

24 Komplexe Vektoren und Matrizen Lieare Algebra II SS 011 - Prof Dr afred Leit apitel VII: Der örper der komplexe Zahle 4: omplexe Vektore ud atrie 4 omplexe Vektore ud atrie A Der komplexe Vektorraum B Der ormierte Raum C Der Skalarproduktraum

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr

Indizieren Sie die folgenden Summen und Produkte gemäß der Vorgabe um und schreiben Sie sie einmal explizit aus: 5

Indizieren Sie die folgenden Summen und Produkte gemäß der Vorgabe um und schreiben Sie sie einmal explizit aus: 5 FU Berli: WiSe 13-14 (Aalysis 1 - Lehr.) Übugsaufgabe Zettel 9 Aufgabe 37 Idiziere Sie die folgede Summe ud Produte gemäß der Vorgabe um ud schreibe Sie sie eimal explizit aus: 5 (a) + 1) 0( Lösug. Die

Mehr

Positiv denken! Lösungen

Positiv denken! Lösungen Schülerzirkel Mathematik Fakultät für Mathematik. Uiversität Regesburg Positiv deke! Lösuge Aufgabe 1 (GMAMQM (ur für die Klasse 7/8) [ Pukte]). Seie a, b reelle Zahle. 1. Sei a 0 ud b 0. Zeige, dass a

Mehr

Wir weisen die Gültigkeit der 4Axiome der sigma-algebra für die Potenzmenge einer endlichen Menge A nach!

Wir weisen die Gültigkeit der 4Axiome der sigma-algebra für die Potenzmenge einer endlichen Menge A nach! Lösug zu Übug 4 Prof. Dr. B.Grabowski E-Post: grabowski@htw-saarlad.de Zu Aufgabe ) Wir weise die Gültigkeit der 4Axiome der sigma-algebra für die Potezmege eier edliche Mege A ach! ) Die leere Mege ud

Mehr

Aufgrund der Körperaxiome ist jedoch

Aufgrund der Körperaxiome ist jedoch Hiweise: Der Doppelstrich // steht für eie Kommetarzeile. Tipp- ud Rechtschreibfehler köe trotz mehrfacher Kotrolle icht hudertprozetig vermiede werde. Die selbst erstellte Lösugsasätze orietiere sich

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Vorkurs Mathematik für Informatiker Potenzen und Polynome --

Vorkurs Mathematik für Informatiker Potenzen und Polynome -- Vorkurs Mathematik für Iformatiker -- Poteze ud Polyome -- Thomas Huckle Stefa Zimmer (Stuttgart) 6.0.06 Vorwort Es solle Arbeitstechike vermittelt werde für das Iformatikstudium Der wesetliche Teil ist

Mehr

x = a + b α + β. b) Wir erweitern den Bruch geeignet (Standardtrick: z z ist reell, daher ergibt 1/z = 1/z z/ z = z/(z z) einen reellen Nenner):

x = a + b α + β. b) Wir erweitern den Bruch geeignet (Standardtrick: z z ist reell, daher ergibt 1/z = 1/z z/ z = z/(z z) einen reellen Nenner): Karlsruher Istitut für Techologie (KIT) Istitut für Aalysis Priv-Doz Dr P C Kustma Dr D Frey WS 0/ Höhere Mathematik I für die Fachrichtug Physik Lösugsvorschläge zum 3 Übugsblatt Aufgabe Zuächst zum Supremum:

Mehr

2 Konvergenz von Folgen

2 Konvergenz von Folgen Kovergez vo Folge. Eifache Eigeschafte Defiitio.. Eie Abbildug A : N C heißt Folge. Ma schreibt a statt A) für N ud a ) oder a ) statt A. We a R N, so heißt a ) reelle Folge. Defiitio.. Seie a ) eie Folge

Mehr

38 Normen und Neumannsche Reihe

38 Normen und Neumannsche Reihe 168 V. Lieare Algebra 38 Norme ud Neumasche Reihe Wir erier zuächst a (vgl. 15.6) 38.1 Normierte Räume. Es sei E ei Vektorraum über K = R oder K = C. Eie Abbildug : E [0, ) heißt Norm auf E, falls gilt

Mehr

Dritter Zirkelbrief: Ungleichungen

Dritter Zirkelbrief: Ungleichungen Matheschülerzirkel Uiversität Augsburg Schuljahr 014/015 Dritter Zirkelbrief: Ugleichuge Ihaltsverzeichis 1 Grudlage vo Ugleichuge 1 Löse vo Ugleichuge 3 3 Mittel 4 4 Mittelugleichuge 5 5 Umordugsugleichug

Mehr

10 Aussagen mit Quantoren und

10 Aussagen mit Quantoren und 0 Aussage mit Quatore ud 0.6. Eisatz vo (bereits bekater) Eistezaussage Bisher hatte wir Eistezbeweise geführt, idem wir ei passedes Objekt agegebe habe ( Setze... ). Stattdesse ka ma auch auf bereits

Mehr

r heißt Nullvektor, wenn bzw. r heißt Einsvektor, wenn

r heißt Nullvektor, wenn bzw. r heißt Einsvektor, wenn 2 SPEZIELLE MATRIZEN 2.1 NULLMATRIZEN UND EINSMATRIZEN Defiitioe: R heißt Nullmatrix ud m r heißt Nullvektor, we m1 0 1,..., ; 1,..., bzw. r 0 i 1,..., m r i m j Für R bzw. r schreibt ma 0 0 O 0 0 bzw.

Mehr

Leitfaden Bielefeld SS 2007 III-4

Leitfaden Bielefeld SS 2007 III-4 Leitfade Bielefeld SS 2007 III-4 8.2. Der allgemeie Fall. Satz. Sei N 1, sei ω eie primitive -te Eiheitswurzel ud K = Q[ω ]. Da gilt: (a) [K : Q] = φ(), (b) Φ ist irreduzibel, (c) O K = Z[ω ]. (d) Eie

Mehr

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Ordnung. Definition 2.1 Man nennt eine Ordnung für K, wenn. 1. für alle a K gilt a a (Reflexivität),

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Ordnung. Definition 2.1 Man nennt eine Ordnung für K, wenn. 1. für alle a K gilt a a (Reflexivität), Aalysis, Woche 2 Reelle Zahle A 2. Ordug Defiitio 2. Ma et eie Ordug für K, we. für alle a K gilt a a (Reflexivität), 2. für alle a, b K mit a b ud b a gilt a = b (Atisymmetrie), 3. für alle a, b, c K

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 04..05 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 6. Übugsblatt Aufgabe

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Sebastia Schwarz WS 04/05 5..04 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 9. Übugsblatt

Mehr

Übungen zum Ferienkurs Analysis 1, Vorlesung 2

Übungen zum Ferienkurs Analysis 1, Vorlesung 2 F. Hafer, T. Baldauf c Techische Uiversität Müche Übuge zum Feriekurs Aalysis, Vorlesug Witersemester 06/07. Richtig oder Falsch? Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

Lösungen der Übungsaufgaben von Kapitel 2

Lösungen der Übungsaufgaben von Kapitel 2 Aalysis I Ei Lerbuch für de safte Wechsel vo der Schule zur Ui Lösuge der Übugsaufgabe vo Kapitel zu... Ma zeige: Jede Teilfolge eier Umordug eier Folge ka als Umordug eier Teilfolge geschriebe werde.

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion KAPITEL 3 Empirische Verteilugsfuktio 3.1. Empirische Verteilugsfuktio Seie X 1,..., X uabhägige ud idetisch verteilte Zufallsvariable mit theoretischer Verteilugsfuktio F (t) = P[X i t]. Es sei (x 1,...,

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik für Iformatiker -- 9 Folge -- 6.1.215 1 Folge: Defiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reihefolge wichtig,

Mehr

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id,

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id, Kreisabbilduge Im Folgede sehe wir us eie gaz spezielle Klasse vo dyamische Systeme a: Abbilduge auf dem Kreis. Diese sid eifach geug, so dass wir sie och recht leicht aalysiere köe, habe aber adererseits

Mehr

Vorkurs Grundlagen für das Mathematikstudium Lösungen 2: Binomialreihen, Exponential- und Logarithmusfunktion

Vorkurs Grundlagen für das Mathematikstudium Lösungen 2: Binomialreihen, Exponential- und Logarithmusfunktion Uiversität Zürich, 3. September 0 Vorurs Grudlage für das Mathematistudium Lösuge : Biomialreihe, Expoetial- ud Logarithmusfutio Lösug zu Aufgabe Seie x, y > 0 ud a > 0. Da gilt: a log a z z für alle z

Mehr

Aufgaben und Lösungen der Probeklausur zur Analysis I

Aufgaben und Lösungen der Probeklausur zur Analysis I Fachbereich Mathematik AG 5: Fuktioalaalysis Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahme Dipl.-Math. Stefa Wager ATECHNISCHE UNIVERSITÄT DARMSTADT SS 007 19. Jui 007 Aufgabe ud Lösuge der Probeklausur

Mehr

GNS-Konstruktion. 1 GNS-Konstruktion

GNS-Konstruktion. 1 GNS-Konstruktion Vortrag zum Semiar zur Fuktioalaalysis, 18.12.2008 Maximilia Brölsch Der Vortrag ist i zwei Teile gegliedert. Im erste Teil wird die eigeführt, ei Hilfsmittel um eie beliebige C -Algebra mit eier C -Uteralgebra

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Statistik ud Wahrscheilichkeitsrechug Übug 6 3.03.20 Ihalt der heutige Übug Aufgabe D.7: Reche mit Zufallsvariable Erwartugswert- ud Variazoperator Statistik ud Wahrscheilichkeitsrechug

Mehr

Für eine n n-matrix A müssen wir die Gleichung. lösen. Falls (A λi) invertierbar ist, dann ist. Dann ist aber λ kein Eigenwert.

Für eine n n-matrix A müssen wir die Gleichung. lösen. Falls (A λi) invertierbar ist, dann ist. Dann ist aber λ kein Eigenwert. Geschlossees Leotief-Modell Ei Leotief-Modell für eie Volkswirtschaft heißt geschlosse, we der Kosum gleich der Produktio ist, d.h. we Kapitel 5 Eigewerte V x = x Es hadelt sich dabei um eie Spezialfall

Mehr

4.6 Berechnung von Eigenwerten

4.6 Berechnung von Eigenwerten 4.6 Berechug vo Eigewerte 4.6 Berechug vo Eigewerte I diesem Abschitt befasse wir us mit dem Eigewertproblem: zu gegebeer Matrix A R sid die Eigewerte (ud gegebeefalls Eigevektore) gesucht. Wir erier a

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud -ugleichuge 6 Für Eperte 9 Polyomgleichuge ud -ugleichuge Defiitio: Ei Term

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Euklidische Geometrie. Sommersemester 2007.

Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Euklidische Geometrie. Sommersemester 2007. Uterlage zur Vorlesug Algebra ud Geometrie i der Schule: Grudwisse über Euklidische Geometrie Sommersemester 2007 Fraz Pauer INSTITUT FÜR MATHEMATIK, UNIVERSITÄT INNSBRUCK, TECHNIKERSTRASSE 25, 6020 INNSBRUCK,

Mehr

II.2 Mathematisches Handwerkszeug

II.2 Mathematisches Handwerkszeug II.2 Mathematisches Hadwerkszeug 2.1 Vektorraum der quadratitegrierbare Fuktioe Eie Fuktio f = f(x) heißt quadratitegrierbar, we das Itegral vo bis + eie edliche Wert hat: f(x) 2 dx < (1) Für ei eifache

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathemati PROF DRDR JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathemati für Iformatier I Witersemester 2003/2004 Aufgabeblatt 8 12 Dezember

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr R Köig Dr M Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Mathematik für Physiker (Aalysis ) MA90 Witersem 07/8 Lösugsblatt 4 http://www-m5matumde/allgemeies/ma90 07W (007)

Mehr

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS vo Rolf Waldi 1 Kapitel I. Elemetare Zahletheorie 1 Grudlegede Regel ud Prizipie Es wird vorausgesetzt, daß der Leser mit gaze Zahle reche ka ud

Mehr

Lösungen zu Übungsblatt 2 Signale, Codes und Chiffren II Sommersemester 2009 Übung vom 26. Mai 2009

Lösungen zu Übungsblatt 2 Signale, Codes und Chiffren II Sommersemester 2009 Übung vom 26. Mai 2009 Uiversität Karlsruhe TH Istitut für Kryptographie ud Sicherheit Willi Geiselma Vorlesug Marius Hillebrad Übug Lösuge zu Übugsblatt 2 Sigale, Codes ud Chiffre II Sommersemester 2009 Übug vom 26. Mai 2009

Mehr

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 4 LÖSUNGEN MAT/MAT3 ANALYSIS I HERBSTSEMESTER 00 PROF. DR. AMILLO DE LELLIS Aufgabe. Etscheide Sie für folgede Folge (wobei N \ {0}), ob diese koverget sid, ud bereche sie gegebeefalls ihre

Mehr

Übungsblatt 6 Musterlösung

Übungsblatt 6 Musterlösung NumLiAlg WS56 Übugsblatt 6 Musterlösug Lösug 22 (QR-Zerlegug ud Vergleich mit der LU-Zerlegug) a) fuctio [Q, R] = my_qr_house(a) 2 % [Q,R] = qr_house(a) berechet die QR Zerlegug eier 3 % quadratische Matrix

Mehr

1 Funktionen und Flächen

1 Funktionen und Flächen Fuktioe ud Fläche. Fläche Defiitio: Die Ebee R ist defiiert als Mege aller geordete Paare vo reelle Zahle: R = {(,, R} Der erste Eitrag heißt da auch Koordiate ud der zweite Koordiate. Für zwei Pukte (,,

Mehr

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n)

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n) Übugsaufgabe Aalysis I Aufgabe. Beweise oder widerlege Sie: a Jede i R kovergete Folge ist beschräkt. b Es gibt Cauchy-Folge im R, die icht kovergiere. c Beschräkte Folge sid koverget. d Folge mit eiem

Mehr