DEFINITION Unter einer mxn-matrix versteht man ein rechteckiges Zahlenschema aus m Zeilen und n Spalten k k k Μ Μ Μ Μ Μ Μ Ο Μ

Größe: px
Ab Seite anzeigen:

Download "DEFINITION Unter einer mxn-matrix versteht man ein rechteckiges Zahlenschema aus m Zeilen und n Spalten k k k Μ Μ Μ Μ Μ Μ Ο Μ"

Transkript

1 3 Matrize, Vektore ud Determiate 3. Matrix DEFINIION Uter eier mx-matrix versteht ma ei rechteckiges Zahleschema aus m Zeile ud Spalte. a a a Λ a 2 k a a a Λ a 22 2k 2 a a a Λ a k 3 Μ Μ Μ Μ Μ a a a Λ a m m 2 mk m Die a ik R heiße Elemete der Matrix, wobei i Zeile ud k Spalte darstellt. esodere rte vo Matrize 3.. Nullmatrix Es gilt für alle a ik 0 0 Λ 0 Μ Ο Μ 0 Λ Quadratische Matrix Es gilt: Zeileazahl Spalteazahl 3..3 Diagoale Matrix Quadratische Matrix, bei der bis auf die Diagoale ur Nulle stehe Eiheitsmatrix Diagoale Matrix, bei der ur auf der Diagoale stehe (z.. E 4 Eiheitsmatrix mit vier Zeile ud vier Spalte) E raspoierte Matrix Etsteht durch Vertausche vo Zeile ud Spalte raspositio Durch zweimaliges traspoiere erhält ma die Ursprugsmatrix: ( ) 3..6 Symmetrische Matrix Quadratische Matrix, für die gilt Christia Leiter ud Jürge Meisel Seite 7 vo 55

2 Recheoperatioe mit Matrize 3.2. dditio/subtraktio Zwei Matrize gleiche yps werde addiert bzw. subtrahiert, idem ma die eizele Elemete addiert bzw. subtrahiert. a c b e + d g f a + e b + f h c + g d + h Multiplikatio eier Matrix mit eiem Skalar ( reelle Zahl) Jedes Elemet der Matrix wir mit dem Skalar multipliziert. a t c b ta d tc tb td Multiplikatio vo zwei Matrize Voraussetzug: Spalteazahl der. Matrix muss gleich der Zeileazahl der 2. Matrix sei. Es gilt im allgemeie icht das Kommutativgesetz ( ). merkug zum Kommutativgesetz Uter dem Kommutativgesetz i der Mathematik versteht ma die atsache, dass die Reihefolge der Recheoperatore beliebig vertauschbar ist. So ist die dditio kommutativ ( + + ); die Multiplikatio im Regelfall aber icht. Vergleichbar ist dieses Gesetz auch mit alltägliche Situatioe im Straßeverkehr: So ist es uterschiedlich zu bewerte, d. h. das Ergebis wird variiere, we ma direkt vor eier Polizeistreife über die rote mpel fährt oder ob ma dies hiter dem Polizeiwage tut. De es gilt: Christia Leiter ud Jürge Meisel Seite 8 vo 55

3 Da es zu verschiedee Ergebisse führt ist die Reihefolge icht vertauschbar - also gilt das Kommutativgesetz icht g i k h j l ei der Multiplikatio eier Eiheitsmatrix mit eier 2. Matrix ist das Ergebis gleich der zweite Matrix. Es gilt das Kommutativgesetz (E E) E a b c ag+bi+ck ah+bj+cl d e f dg+ei+fk dh+ej+fl Ivertierug vo Matrize Zur Lösug vo Matrizegleichuge zum Vergleich: Lieare Gleichug 2x x x 2 4 x 2 Matrizegleichug 0 X X E X X Christia Leiter ud Jürge Meisel Seite 9 vo 55

4 Ermittlug der Iverse Erlaubte Recheoperatioe mit de Zeile der Matrix (Elemetare Zeileumformug):. dditio/subtraktio eier Zeile mit dem Vielfache eier adere Zeile 2. Multiplikatio eier Zeile mit eier Zahl c R 2 3 I. II II 2I I+ 2II II( ) Idee: E E - - E Das Kommuikativgesetz gilt für die Multiplikatio eier Matrix mit ihrer Iverse ( - - E). E E E lterative: det(a) adj() + det det + det 2 adj() det 2 + det 22 det + det det + det Vektor - Soderform der Matrix DEFINIION esteht eie Matrix aus Zeile oder eier Spalte, da bezeichet ma diese als Vektor. (m )-Matrix Spaltevektor ( m )-Matrix Zeilevektor Zudem gilt: ( ) erechug der Läge eies Vektors l a² + b² Matrizegleichuge Erlaubt sid folgede Recheoperatioe dditio (kommutativ!) Subtraktio Multiplikatio Die Lösug erfolgt wie bei lieare Gleichuge Gleichugstype 2 X I. X 2 X 2 E Christia Leiter ud Jürge Meisel Seite 20 vo 55

5 II. III. X X + E / X ( + E ) X ( + E ) X (X C) + 2 X X 2 X C 2 ( 2)X C 2E ( 2) X ( 2) ( C 2E ) 3.5 Determiate DEFINIION bbildug eier Matrix auf eie reelle Zahl C ach eier bestimmte bbildugsvorschrift. (Nur mit quadratische Matrize möglich) Det: C 3.5. erechug vo Determiate 3.5..x2-Matrix 3 4 Det() ( 2) 0 2 Det() x3-Matrix hier: Etwicklug ach der. Spalte Det() ( 2) + ( 3) 0 ( 2 0) ( 2) (2 2 3) + ( 3) (2 0 3) lterative erechug bei 3x3 Matrize (Sarrus Regel) ( 3) + 3 ( 2) ( 3) 3 0 ( 2) Christia Leiter ud Jürge Meisel Seite 2 vo 55

6 Höherwertige Matrize hier: Etwicklug ach eier beliebige Spalte oder Zeile ach eiem sich stetig fortsetzede Vorzeicheschema + + Λ + Λ + + Λ + Λ + + Λ + Λ Μ Μ Μ Ο Mit Hilfe der Determiate läßt sich prüfe, ob die Matrix ivertierbar ist Det() 0 ist ivertierbar Det() 0 ist icht ivertierbar 3.6 Ökoomische wedug zu Matrize 3.6. Verbrauchsrechug: Rohstoffe Zwischeprodukte Edprodukte Matrixform des Verbrauchs R R2 R3 R-Z-Matrix Z-E-Matrix Z Z 2 Z 3 E E 2 R Z 6 5 R Z R Z 3 R Z Z2 Wieviel Eiheite des jeweilige Rohstoffes sid zur Herstellug der Edprodukte erforderlich? E E Die Ergebismatrix gibt de edarf a R E : 00 Stück; E : 200 Stück ; E E2 R für je eie ME vo E bzw. E a Gesamtbedarf Christia Leiter ud Jürge Meisel Seite 22 vo 55

7 3.6.2 Verbrauchsrechug: Rohstoffe gehe auch direkt i das Edprodukt ei E Z Z2 Z3 E2 R R2 Rohstoff-Matrix Z-E-Matrix Z Z 2 Z 3 E E 2 E E 2 R Z 5 5 R Z Z ahme: vo E werde 00 Stück ud vo E 2 50 Stück gefertigt: Lösug E 00 E 2 50 Z 5E + 5E 2 Z 2 4E + 3E 2 Z 3 0E 2 R 2Z + 3Z 2 + 4Z 3 + 2E R 2 3Z + 7Z 2 + 2Z 3 Lösug durch Eisetze: R.250; R Christia Leiter ud Jürge Meisel Seite 23 vo 55

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n.

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n. Reeller Vektorraum Kapitel Vektorräume Die Mege aller Vektore x mit Kompoete bezeiche wir mit x R =. : x i R, i x ud wird als -dimesioaler (reeller) Vektorraum bezeichet. Defiitio Ei Vektorraum V ist eie

Mehr

Logik. Wahrheitstafeln - für verschiedene Belegungen der logischen Variable wird der Wahrheitswert logischer Ausdrücke angegeben

Logik. Wahrheitstafeln - für verschiedene Belegungen der logischen Variable wird der Wahrheitswert logischer Ausdrücke angegeben . Eiführug Logik Defiitio: Uter eier ussage versteht ma die gedakliche Widerspiegelug eies Sachverhaltes der objektive Realität, bei dem eideutig etschiede werde ka, ob er wahr oder falsch ist. Operatioe

Mehr

9. ENDLICH ERZEUGTE MODULN UND GANZHEIT

9. ENDLICH ERZEUGTE MODULN UND GANZHEIT Algebra 2 Daiel Plauma Techische Uiversität Dortmud Sommersemester 2017 9. ENDLICH ERZEUGTE MODULN UND GANZHEIT Arbeitsblatt: Der Satz vo Cayley-Hamilto ud Aweduge Lese Sie de Text sorgfältig ud löse Sie

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übuge zur Lieare Algebra 1 Lösuge Witersemester 009/010 Uiversität Heidelberg Mathematisches Istitut Lösuge Blatt 8 Dr D Vogel Michael Maier Aufgabe 33 Gehe wir aalog zu Algorithmus vor: v 1 M(4,K) A :=

Mehr

r heißt Nullvektor, wenn bzw. r heißt Einsvektor, wenn

r heißt Nullvektor, wenn bzw. r heißt Einsvektor, wenn 2 SPEZIELLE MATRIZEN 2.1 NULLMATRIZEN UND EINSMATRIZEN Defiitioe: R heißt Nullmatrix ud m r heißt Nullvektor, we m1 0 1,..., ; 1,..., bzw. r 0 i 1,..., m r i m j Für R bzw. r schreibt ma 0 0 O 0 0 bzw.

Mehr

Universität Stuttgart Fachbereich Mathematik. 1 Lineare Abbildungen und Matrizen. 1.1 Um was geht es?

Universität Stuttgart Fachbereich Mathematik. 1 Lineare Abbildungen und Matrizen. 1.1 Um was geht es? Uiversität Stuttgart Fachbereich Mathematik Prof Dr C Hesse PD Dr P H Lesky Dipl Math D Zimmerma Msc J Köller FAQ 4 Höhere Mathematik 724 el, kyb, mecha, phys Lieare Abbilduge ud Matrize Um was geht es?

Mehr

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares 4 6 Fachgebiet Regelugstechik Leiter: Prof. Dr.-Ig. Joha Reger Kleies Matrix-ABC 1 Eleetares Eie ( )-Matrix ist eie rechteckige Aordug vo reelle oder koplexe Zahle a ij (auch Skalare geat) ud besteht aus

Mehr

Marcel Dettling. Grundlagen der Mathematik II Lineare Algebra und Statistik FS 2018 Woche 01. ETH Zürich, 21. Februar 2018

Marcel Dettling. Grundlagen der Mathematik II Lineare Algebra und Statistik FS 2018 Woche 01. ETH Zürich, 21. Februar 2018 FS 2018 Woche 01 Marcel Dettlig Istitute für Dateaalyse ud Prozessdesig Zürcher Hochschule für gewadte Wisseschafte marcel.dettlig@zhaw.ch https://www.zhaw.ch/de/ueber-us/perso/dtli ETH Zürich, 21. Februar

Mehr

Determinante und Resultante Azadeh Pasandi

Determinante und Resultante Azadeh Pasandi Determiate ud Resultate 07.01.2009 Azadeh Pasadi Defiitio ud Grudeigeschafte: sei U, V, W ud Vektor-Raum über Körper F ud beachte eie Abbildug f ( u,v ) vo kartesische Produkt: f: U x V W Diese Abbildug

Mehr

Für eine n n-matrix A müssen wir die Gleichung. lösen. Falls (A λi) invertierbar ist, dann ist. Dann ist aber λ kein Eigenwert.

Für eine n n-matrix A müssen wir die Gleichung. lösen. Falls (A λi) invertierbar ist, dann ist. Dann ist aber λ kein Eigenwert. Geschlossees Leotief-Modell Ei Leotief-Modell für eie Volkswirtschaft heißt geschlosse, we der Kosum gleich der Produktio ist, d.h. we Kapitel 5 Eigewerte V x = x Es hadelt sich dabei um eie Spezialfall

Mehr

Eigenwertproblem 1. Das Eigenwertproblem

Eigenwertproblem 1. Das Eigenwertproblem Eigewertproblem Das Eigewertproblem L Germa, R Grisch, N Ghielmetti, D Graata 504007 Eigewertproblem Eigewerte Eie Zahl heisst Eigewert der Matrix, falls es eie Vektor x 0 gibt, so dass x x Die Matrix

Mehr

Proseminar Lineare Algebra WS 2016/17

Proseminar Lineare Algebra WS 2016/17 Prosemiar Lieare Algebra WS 2016/17 Bachelorstudium Lehramt Sekudarstufe (Allgemeibildug) Lehramtsstudium Uterrichtsfach Mathematik Kapitel 0: Grudlage 1. Wie sid die Begriffe Vereiigug, Durchschitt ud

Mehr

Marcel Dettling. Grundlagen der Mathematik II Lineare Algebra und Statistik FS 2019 Einführung. ETH Zürich, 20. Februar 2019

Marcel Dettling. Grundlagen der Mathematik II Lineare Algebra und Statistik FS 2019 Einführung. ETH Zürich, 20. Februar 2019 FS 2019 Eiführug Marcel Dettlig Istitute für Dateaalyse ud Prozessdesig Zürcher Hochschule für gewadte Wisseschafte marcel.dettlig@zhaw.ch https://www.zhaw.ch/de/ueber-us/perso/dtli ETH Zürich, 20. Februar

Mehr

heißt kommutativ (oder auch abelsch), falls für die Verknüpfung das Kommutativgesetz gilt: (G 5) Für alle ab, Ggilt a b

heißt kommutativ (oder auch abelsch), falls für die Verknüpfung das Kommutativgesetz gilt: (G 5) Für alle ab, Ggilt a b r M J auer Algebraische trukture 7 Kapitel : Gruppe Gruppe: efiitio, Beispiele efiitio (Gruppe) Eie Mege G (G ) zusamme mit eier Verküpfug heißt eie Gruppe, we folgede Eigeschafte erfüllt sid: (G ) G ist

Mehr

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen.

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen. Wurzelgesetze Gesetzmäßigkeite Grudlage Das Wurzelziehe (oder Radiziere) ist die Umkehrug des Potezieres. Daher sid die Wurzelgesetze de Potezgesetze sehr ählich. Die Wurzel aus eier positive Zahl ergibt

Mehr

Lineare Abbildungen und Matrizen

Lineare Abbildungen und Matrizen Kapitel 6 Lieare Abbilduge ud Matrize I diese Kapitel werde wir lieare Abbilduge ittels sogeater Matrize beschreibe. Das Matrizekalkül wurde i Wesetliche vo C.F. Gauß, J.J. Sylvester ud A. Cayley i 19.

Mehr

4. Vektorräume mit Skalarprodukt

4. Vektorräume mit Skalarprodukt 4. Vektorräume mit Skalarprodukt Wiederholug: V=R x, y R: x= x x i x, y= y y, :R R R Skalarprodukt Stadardskalarprodukt lieare Abbildug mit 2 Argumete 4. Eigeschafte vo Skalarprodukte Def.: Es sei V ei

Mehr

Die Wurzel einer Zahl a ist die Zahl, die mit sich selbst malgenommen wieder a ergibt.

Die Wurzel einer Zahl a ist die Zahl, die mit sich selbst malgenommen wieder a ergibt. Wurzel Wurzelexpoet Radikad oder auch Basis Die Wurzel eier Zahl a ist die Zahl, die mit sich selbst malgeomme wieder a ergibt. Die -te Wurzel et ma auch Quadratwurzel, dabei lässt ma die (als Wurzelexpoet)

Mehr

Numerische Lineare Algebra - Theorie-Blatt 2

Numerische Lineare Algebra - Theorie-Blatt 2 Prof Dr Stefa Fuke Uiversität Ulm MSc Adreas Batle Istitut für Numerische Mathematik Dipl-Math oec Klaus Stolle Witersemester 04/05 Numerische Lieare Algebra - Theorie-Blatt Lösug (Abgabe am 04 vor der

Mehr

Mathematik III. Vorlesung 81. Eigenschaften des Dachprodukts. Die folgende Aussage beschreibt die universelle Eigenschaft des Dachproduktes.

Mathematik III. Vorlesung 81. Eigenschaften des Dachprodukts. Die folgende Aussage beschreibt die universelle Eigenschaft des Dachproduktes. Prof. Dr. H. Breer Osabrück S 2010/2011 Mathematik III Vorlesug 81 Eigeschafte des Dachprodukts Die folgede Aussage beschreibt die uiverselle Eigeschaft des Dachproduktes. Satz 81.1. Es sei K ei Körper,

Mehr

0.1 E: Der Haupsatz der Mineralogie

0.1 E: Der Haupsatz der Mineralogie 0. E: Der Haupsatz der Mieralogie Satz: I eiem Kristall gibt es ur,,3,4 ud 6-zählige Symmetrie. Defiitio: Seie u, v 0 zwei Vektore, die icht auf eier Gerade liege. Die Mege heißt Gitter. Satz: Die Vektore

Mehr

Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe Analysis und Integraltransformationen

Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe Analysis und Integraltransformationen UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz Dr P C Kustma Dipl-Math M Uhl Sommersemester 009 Höhere Mathematik II für die Fachrichtuge Elektroigeieurwese Physik ud Geodäsie iklusive Komplexe Aalysis

Mehr

4.6 Berechnung von Eigenwerten

4.6 Berechnung von Eigenwerten 4.6 Berechug vo Eigewerte 4.6 Berechug vo Eigewerte I diesem Abschitt befasse wir us mit dem Eigewertproblem: zu gegebeer Matrix A R sid die Eigewerte (ud gegebeefalls Eigevektore) gesucht. Wir erier a

Mehr

Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Lineare Gleichungen. Sommersemester 2009.

Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Lineare Gleichungen. Sommersemester 2009. Uterlage zur Vorlesug Algebra ud Geometrie i der Schule: Grudwisse über Lieare Gleichuge Sommersemester 2009 Fraz Pauer INSTITUT FÜR MATHEMATIK, UNIVERSITÄT INNSBRUCK, TECHNIKERSTRASSE 25, 6020 INNSBRUCK,

Mehr

Algebra. (R1) Die Summe zweier Endomorphismen ist punktweise definiert, daher ist es leicht einzusehen, daß End(A) eine abelsche Gruppe bildet.

Algebra. (R1) Die Summe zweier Endomorphismen ist punktweise definiert, daher ist es leicht einzusehen, daß End(A) eine abelsche Gruppe bildet. Fachbereich Mathemati Prof. Dr. Nils Scheithauer Walter Reußwig TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/09 14. Otober 2008 Algebra 1. Übug mit Lösugshiweise Aufgabe 1 Es seie R,S Rige ud ϕ : R S ei Righomomorphismus.

Mehr

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS vo Rolf Waldi 1 Kapitel I. Elemetare Zahletheorie 1 Grudlegede Regel ud Prizipie Es wird vorausgesetzt, daß der Leser mit gaze Zahle reche ka ud

Mehr

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2014

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2014 Herzlich Willkomme zur Vorlesug Aalysis I SoSe 2014 Prof. Dr. Berd Dreseler Lebediges Lere: Aufgabe Ich Wir 2 Reelle Zahle 2.1 Körperstruktur vo (K1) Additio ud Multiplikatio kommutativ: a b b a, ab ba.

Mehr

Gleichungen und Ungleichungen. Mathematische Grundlagen. Beispiel. Beispiel. Lösung einer quadratischen Gleichung:

Gleichungen und Ungleichungen. Mathematische Grundlagen. Beispiel. Beispiel. Lösung einer quadratischen Gleichung: Gleichuge ud Ugleichuge Mathematische Grudlage Das Hadout ist Bestadteil der Vortragsfolie zur Höhere Mathemati; siehe die Hiweise auf der Iteretseite wwwimgui-stuttgartde/lstnumgeomod/vhm/ für Erläuteruge

Mehr

AT AB., so bezeichnet man dies als innere Teilung von

AT AB., so bezeichnet man dies als innere Teilung von Teilverhältisse Aus der Geometrie der Dreiecke ket ma die Aussage, dass der Schwerpukt T eies Dreiecks die Seitehalbierede im Verhältis : teilt. Für die Strecke AT ud TM gilt gemäß der Abbildug AT : TM

Mehr

Kapitel VII: Der Körper der komplexen Zahlen

Kapitel VII: Der Körper der komplexen Zahlen Lieare Algebra II SS 011 - Prof Dr Mafred Leit 3 Der Körper der komplexe Zahle 3 Der Körper der komplexe Zahle A Die Mege der komplexe Zahle B Grudrechearte im Bereich der komplexe Zahle C Realteil Imagiärteil

Mehr

Dr. K. Jechlitschka AUFGABENSAMMLUNG. zur. Vorlesung Mathematik

Dr. K. Jechlitschka AUFGABENSAMMLUNG. zur. Vorlesung Mathematik Humboldt - Uiversität zu Berli Ladwirtschatlich-Gärterische Fakultät Fachgebiet Agrarpolitik Pro. Dr. Dr. h.c. Dieter Kirschke Dr. K. Jechlitschka AUFGABENSAMMLUNG zur Vorlesug Mathematik Humboldt-Uiversität

Mehr

Aufgabe G 1.1. [Vollständige Induktion, Teleskopsumme] n k 3 = n N : k(k + 1) = 1 1

Aufgabe G 1.1. [Vollständige Induktion, Teleskopsumme] n k 3 = n N : k(k + 1) = 1 1 Istitut für Aalysis ud Algebra Mathematik I für Studierede der E-Techik Prof Dr Volker Bach WiSe 06/7 M Sc Birgit Komader M Sc Christoph Brauer Theme: Groe Übug - Lösuge Vollstädige Iduktio - Teleskopsumme

Mehr

Übungen zur Analysis II SS 2006

Übungen zur Analysis II SS 2006 Mathematisches Istitut der Uiversität Heidelberg Prof. Dr. R. Weissauer/Dr. U. Weselma http://www.mathi.ui-heidelberg.de/ weselma.uebuge.html Übuge zur Aalysis II SS 26 Lösugshiweise Blatt 3 Aufgabe 8*

Mehr

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD.

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD. ZAHLENFOLGEN Eiführede Beispiele Arithmetische Folge Datei Nr. 400 SW Das komplette Mauskript befidet sich auf der Mathematik - CD Friedrich Buckel Februar 00 Iteratsgymasium Schloß Torgelow Ihalt Eiführede

Mehr

= 1 für alle n 1. = f hinzu, erhält man das Gleichungssystem

= 1 für alle n 1. = f hinzu, erhält man das Gleichungssystem Formel o Biet (Beweis mit Liearer Algebra) Die Folge der Fiboacci-Zahle ( ) wird rekursi deiiert durch + + mit, ür alle Fügt ma zu dieser Formel die Gleichug hizu, erhält ma das Gleichugssstem + +, das

Mehr

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen Thema Fit i Mathe Musterlösuge 1 April Klassestufe 10 Wurzelfuktioe Uter der -te Wurzel eier icht-egative Zahl (i Zeiche: ) versteht ma die icht-egative Zahl, die mal mit sich selber multipliziert, die

Mehr

Positiv denken! Lösungen

Positiv denken! Lösungen Schülerzirkel Mathematik Fakultät für Mathematik. Uiversität Regesburg Positiv deke! Lösuge Aufgabe 1 (GMAMQM (ur für die Klasse 7/8) [ Pukte]). Seie a, b reelle Zahle. 1. Sei a 0 ud b 0. Zeige, dass a

Mehr

24 Komplexe Vektoren und Matrizen

24 Komplexe Vektoren und Matrizen Lieare Algebra II SS 011 - Prof Dr afred Leit apitel VII: Der örper der komplexe Zahle 4: omplexe Vektore ud atrie 4 omplexe Vektore ud atrie A Der komplexe Vektorraum B Der ormierte Raum C Der Skalarproduktraum

Mehr

Arten von Gleichungen. (C) Gleichungen vom Grad n 3. (D) Exponentiale Gleichungen. ax² + bx + c = d [mit a 0]

Arten von Gleichungen. (C) Gleichungen vom Grad n 3. (D) Exponentiale Gleichungen. ax² + bx + c = d [mit a 0] Eiführug. GLEICHUNGEN UND GLEICHUNGSSYSTEME Arte vo Gleichuge (A) lieare Gleichuge/ Gleichugssysteme (LGS) (B) quadratische Gleichuge (C) Gleichuge vom Grad (D) Epoetiale Gleichuge (E) Wurzelgleichuge

Mehr

A 2 Die Cramersche Regel

A 2 Die Cramersche Regel Die Crmersche egel Mtrixschreibweise eies liere Gleichugssystems Die Crmersche egel 5 Wir gehe vo der llgemei Gestlt eies liere Gleichugssystems us : Gegebe seie m (reelle oder komplexe) Zhle ik (i,,,

Mehr

Tutorium Mathematik ITB1(B), WI1(B)

Tutorium Mathematik ITB1(B), WI1(B) Tutorium Mathematik ITB(B), WI(B) Aufgabeblatt F Aufgabe zum Kapitel Fuktioe Prof Dr Peter Plappert Fachbereich Grudlage Aufgabe : Bestimme Sie jeweils de maimal mögliche Defiitiosbereich D ma a) f ( =

Mehr

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Lieare lebra - 3 Vorlesu - Prof Dr Daiel Roekamp & Falko Gauß Probeklausur: Samsta, 5 Uhr, 6 meldu i de Übusruppe 5 Matrize ud Lieare Gleichussysteme Matrize: effiziete eschreibu vo lieare bbildue zwische

Mehr

E C v u B. 10. Die Ebene. 1. Parameterform. X (X ist beliebiger Punkt auf E) A A

E C v u B. 10. Die Ebene. 1. Parameterform. X (X ist beliebiger Punkt auf E) A A Gemetrie Oberstufe Seite 4 0. Die Ebee. Parameterfrm E C v u B O Um eie Ebee festzulege, beötigt ma de Ortsvektr des ufhägepukts ud zwei liear uabhägige Richtugsvektre u ud v Gleichug i Parameterfrm: E:

Mehr

Lösungen zu Übungsblatt 2 Signale, Codes und Chiffren II Sommersemester 2009 Übung vom 26. Mai 2009

Lösungen zu Übungsblatt 2 Signale, Codes und Chiffren II Sommersemester 2009 Übung vom 26. Mai 2009 Uiversität Karlsruhe TH Istitut für Kryptographie ud Sicherheit Willi Geiselma Vorlesug Marius Hillebrad Übug Lösuge zu Übugsblatt 2 Sigale, Codes ud Chiffre II Sommersemester 2009 Übug vom 26. Mai 2009

Mehr

5.3 Wachstum von Folgen

5.3 Wachstum von Folgen 53 Wachstum vo Folge I diesem Abschitt betrachte wir (rekursiv oder aders defiierte) Folge {a } = ud wolle vergleiche, wie schell sie awachse, we wächst Wir orietiere us dabei a W Hochstättler: Algorithmische

Mehr

Übungsaufgaben mit Lösungen. Mathematik I

Übungsaufgaben mit Lösungen. Mathematik I Fachhochschule Pforzheim - Eletrotechi / Iformatiostechi - Übugsaufgabe mit Lösuge zur Vorlesug Mathemati I Prof. Dr. Mazura ud Prof. Dr. Gohout) für Studete der Fachrichtuge Eletrotechi / Techische Iformati

Mehr

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig.

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. 1.3 Fuktioe Seie M ud N Mege f : M N x M : 1 y N : y fx et ma Fuktio oder Abbildug. Beachte: Zuordug ist eideutig. Bezeichuge: M : Defiitiosbereich N : Bildbereich Zielmege vo f Der Graph eier Fuktio:

Mehr

Wiederholung: Linearer Ausgleich 1. Linearer Ausgleich. Vorlesung April. Aufgabe Gegeben Naturgesetz

Wiederholung: Linearer Ausgleich 1. Linearer Ausgleich. Vorlesung April. Aufgabe Gegeben Naturgesetz Vorlesug 4 6 + 9 April Bei w,, w m, v R ; (w,, w m =: A R (,m ud ieres Produkt = euklidisches Produkt schrieb sich das Approximatiosproblem so: Fide w = Wiederholug: m ζ k w k mit w v w v w spa{w,, w m

Mehr

( ), der genau auf der Geraden ( ) 2 ( ) #( ) 8. Lineare Regression. = f i. Nach der Summe der kleinsten. mx i

( ), der genau auf der Geraden ( ) 2 ( ) #( ) 8. Lineare Regression. = f i. Nach der Summe der kleinsten. mx i 8. Lieare Regressio 8.1. Die Methode der kleiste Quadrate Regressiosgerade bzw. Ausgleichsgerade sid eie Auswertug vo statistische Messdate. Ziel dieses Verfahres ist es, Beziehuge zwische zwei Merkmale

Mehr

Binomialkoeffizienten und Binomischer Satz 1 Der binomische Lehrsatz

Binomialkoeffizienten und Binomischer Satz 1 Der binomische Lehrsatz Ihaltsverzeichis Biomialoeffiziete ud Biomischer Satz 1 Der biomische Lehrsatz wird als eie gaze Zahl vorausgesetzt, für die gilt: 0. a ud b werde als reelle Zahle vorausgesetzt, die icht Null sid. Bemerug:

Mehr

Kovarianz und Korrelation

Kovarianz und Korrelation Kapitel 2 Kovariaz ud Korrelatio Josef Leydold c 2006 Mathematische Methode II Kovariaz ud Korrelatio 1 / 41 Lerziele Mathematische ud statistische Grudlage der Portfoliotheorie Kovariaz ud Korrelatio

Mehr

Taylor-Reihen 1-E1. Ma 2 Lubov Vassilevskaya

Taylor-Reihen 1-E1. Ma 2 Lubov Vassilevskaya Taylor-Reihe -E -E Brook Taylor (685-73) Brook Taylor war britischer Mathematiker. Nach ihm sid die Taylorreihe ud die Taylorsche Formel beat mit der ma stetig dierezierbare Fuktioe als Potezreihe darstelle

Mehr

Dritter Zirkelbrief: Ungleichungen

Dritter Zirkelbrief: Ungleichungen Matheschülerzirkel Uiversität Augsburg Schuljahr 014/015 Dritter Zirkelbrief: Ugleichuge Ihaltsverzeichis 1 Grudlage vo Ugleichuge 1 Löse vo Ugleichuge 3 3 Mittel 4 4 Mittelugleichuge 5 5 Umordugsugleichug

Mehr

Aufgaben zu Kapitel 2

Aufgaben zu Kapitel 2 2 Sei a R ud seie a ud a Iverse vo a Da ist a = a = a ( aa ) = ( a a)a = a = a 22 Wege Aufgabe 4 bleibt lediglich (R2) ud (R3) zu zeige (R2): Die Multipliatio ist offebar assoziativ Das Eiselemet ist die

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

Mathematik 1 für Informatik

Mathematik 1 für Informatik Guter Ochs. Juli 203 Mathematik für Iformatik Probeklausur Lösugshiweise. a Bestimme Sie per NewtoIterpolatio ei Polyom px mit möglichst kleiem Grad, so dass p = p0 = p = sowie p2 = 7. i x i y i d i,i

Mehr

Kombinatorik. Systematisches Abzählen und Anordnen einer endlichen Menge von Objekten unter Beachtung vorgegebener Regeln.

Kombinatorik. Systematisches Abzählen und Anordnen einer endlichen Menge von Objekten unter Beachtung vorgegebener Regeln. Systematisches Abzähle ud Aorde eier edliche Mege vo Objekte uter Beachtug vorgegebeer Regel Permutatioe Variatioe Kombiatioe Permutatioe: Eie eieideutige (bijektive) Abbildug eier edliche Mege i sich

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Universität Basel Wirtschaftswissenschaftliches Zentrum Vektoren und Matrizen Dr. Thomas Zehrt Inhalt: 1. Vektoren (a) Einführung (b) Linearkombinationen (c) Länge eines Vektors (d) Skalarprodukt (e) Geraden

Mehr

Übungen zur Funktionentheorie

Übungen zur Funktionentheorie Mathematisches Istitut SS 2009 Uiversität Müche Prof. Dr. M. Schotteloher C. Paleai M. Schwigeheuer A. Stadelmaier Übuge zur Fuktioetheorie Übugsblatt. (a) Sei α: C C x y x + iy y x da ist α offesichtlich

Mehr

Anwendungen der Wahrscheinlichkeit II. Markovketten

Anwendungen der Wahrscheinlichkeit II. Markovketten Aweduge der Wahrscheilichkeit II 1. Fragestelluge Markovkette Markovkette sid ei häufig verwedetes Modell zur Beschreibug vo Systeme, dere Verhalte durch eie zufällige Übergag vo eiem Systemzustad zu eiem

Mehr

Was hat die lineare Algebra mit der Forstwissenschaft zu tun?

Was hat die lineare Algebra mit der Forstwissenschaft zu tun? KAPITEL : LINEARE ALGEBRA Dieses Kapitel beschäftigt sich mit der Vektor- ud der Matrizerechug, dere Bedeutug auch i de weitere Kapitel ochmals deutlich werde wird. Awedugsbeispiele sid die Lösug liearer

Mehr

Aufgabe 1-1: Aufgabe 1-2: Aufgabe 1-3: Aufgabe 1-4:

Aufgabe 1-1: Aufgabe 1-2: Aufgabe 1-3: Aufgabe 1-4: 1. Übug zur Höhere Mathematik 1 Abgabe: KW 4 Aufgabe 1-1: Es seie a,b mit a 0, b 0. Beweise Sie ab a b a b a b Aufgabe 1-: Beweise Sie durch vollstädig Iduktio k 1 (k 1) k 0 0 k 1!, 0, 0? 1,? d), 0, 0?

Mehr

Mathematik Funktionen Grundwissen und Übungen

Mathematik Funktionen Grundwissen und Übungen Mathematik Fuktioe Grudwisse ud Übuge Potezfuktio Hyperbel Epoetialfuktio Umkehrfuktio Stefa Gärter 004 Gr Mathematik Fuktioe Seite Grudwisse Potezfuktio Defiitio Durch die Zuordugsvorschrift f: Æ mit

Mehr

. Mit dem Unit Hydrograph (U) und gegebenen Niederschlägen (P) kann der Direktabfluss für jeden Zeitpunkt n berechnet werden. Dies erfolgt nach:

. Mit dem Unit Hydrograph (U) und gegebenen Niederschlägen (P) kann der Direktabfluss für jeden Zeitpunkt n berechnet werden. Dies erfolgt nach: Kursuterlage zum BSc Studiegag Geographie, FSU Jea, Modul 4 Die Eiheitsgagliie, Uit Hydrograph Eiheitsgagliie (Uit Hydrograph) Defiitio der Eiheitsgagliie Die Eiheitsgagliie (egl. uit hydrograph, Sherma

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Methode der kleiste Quadrate KAPITEL 5: REGRESSIONSRECHNUNG Die Methode der kleiste Quadrate (MklQ) ist ei Verfahre zur Apassug eier Fuktio a eie Puktwolke. Agewadt wird sie beispielsweise, um eie Gesetzmäßigkeit

Mehr

Langrange-Multiplikators und Hinreichende Bedingungen

Langrange-Multiplikators und Hinreichende Bedingungen Albert Ludwigs Uiversität Freiburg Abteilug Empirische Forschug ud Ökoometrie Mathematik für Wirtschaftswisseschaftler Dr. Sevtap Kestel Witer 008 10. November 008 14.-4 Lagrage-Multiplikators ud Hireichede

Mehr

Abschätzung des Betrages einer Determinante. Von. A. BLOCH und G. PôLYA. AIs Manuskript eingegangen am 18. Januar 1933.

Abschätzung des Betrages einer Determinante. Von. A. BLOCH und G. PôLYA. AIs Manuskript eingegangen am 18. Januar 1933. Abschätzug des Betrages eier Determiate. Vo A. BLOCH ud G. PôLYA. AIs Mauskript eigegage am 18. Jauar 1933. I. Bezeichet D die zeilige Determiate mit de reelle Elemete aik, so ist (1) 1 D 1< 11 2 i=1 Der

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004) Aufgabe 7. Ubeschräktes

Mehr

Ungleichungen werden mit Äquivalenzumformungen gelöst. Hierzu werden die sogenannten Monotoniegesetze angegeben.

Ungleichungen werden mit Äquivalenzumformungen gelöst. Hierzu werden die sogenannten Monotoniegesetze angegeben. Floria Häusler Ugleichuge. Grudsätzliches I folgede ist ur vo reelle Zahle die Rede, ohe daß dies im eizele betot wird. Es seie A, B, C,... Terme reeller Zahle, u. U. auch mit Variable. Für Ugleichuge

Mehr

Matrixalgebra (I) Matrixalgebra (II)

Matrixalgebra (I) Matrixalgebra (II) Matrixalgebra (I) Defiitio: N Matrix: Aordug vo Zahle i m Zeile ud Spalte N allgemeie m -Matrix: a 11 a 1 A =(a ij )= a m1 a m, a ij c i, j Matrix ist quadratisch für m = N spezielle Matrize: Eiheitsmatrix

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

MATRIZENRECHNUNG A = Matrix: m Zeilen, n Spalten. Allgemein: A = heißt Komponente der Matrix (Element der Matrix) aij:

MATRIZENRECHNUNG A = Matrix: m Zeilen, n Spalten. Allgemein: A = heißt Komponente der Matrix (Element der Matrix) aij: MATRIZENRECHNUNG Mtri: 3 5 4 5 A = 3 5 5 7 8 3 8 Allgeei: A = 3 3 3 Zeile, Splte ij: heißt Kopoete der Mtri (Eleet der Mtri) ij ist Kopoete der i-te Zeile, j-te Splte Mtri der Ordug, ( -Mtri): A(,) oder

Mehr

Blatt 07.5: Matrizen II: Inverse, Basistransformation

Blatt 07.5: Matrizen II: Inverse, Basistransformation Fakultät für Physik R: Rechemethode für Physiker, WiSe 015/16 Dozet: Ja vo Delft Übuge: Beedikt Bruogolo, Deis Schimmel, Frauke Schwarz, Lukas Weidiger http://homepages.physik.ui-mueche.de/~vodelft/lehre/15r/

Mehr

Berechnung von Abständen zu Geraden und Ebenen. Einfache Darstellung der Grundlagen: Die wichtigsten Aufgabenstellungen und Methoden- Datei Nr.

Berechnung von Abständen zu Geraden und Ebenen. Einfache Darstellung der Grundlagen: Die wichtigsten Aufgabenstellungen und Methoden- Datei Nr. Vektorgeometrie gaz eifach Teil 6 Abstäde Berechug vo Abstäde zu Gerade ud Ebee Eifache Darstellug der Grudlage: Die wichtigste Aufgabestelluge ud Methode- Datei Nr. 640 Stad 28. Dezember 205 Demo-Text

Mehr

Der Zusammenhang zwischen linearen Abbildungen und Matrizen

Der Zusammenhang zwischen linearen Abbildungen und Matrizen KAPITEL 8 Der Zusaehag zwische lieare Abbilduge ud Matrize 1. Faktorräue DEFINITION 8.1. Sei V ei Vektorrau über de Körper K, ud sei U ei Uterrau vo V, ud sei w V. Da defiiere wir w U wuu U ud V /U v U

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Euklidische Geometrie. Sommersemester 2007.

Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Euklidische Geometrie. Sommersemester 2007. Uterlage zur Vorlesug Algebra ud Geometrie i der Schule: Grudwisse über Euklidische Geometrie Sommersemester 2007 Fraz Pauer INSTITUT FÜR MATHEMATIK, UNIVERSITÄT INNSBRUCK, TECHNIKERSTRASSE 25, 6020 INNSBRUCK,

Mehr

Übungsblatt 6 Musterlösung

Übungsblatt 6 Musterlösung NumLiAlg WS56 Übugsblatt 6 Musterlösug Lösug 22 (QR-Zerlegug ud Vergleich mit der LU-Zerlegug) a) fuctio [Q, R] = my_qr_house(a) 2 % [Q,R] = qr_house(a) berechet die QR Zerlegug eier 3 % quadratische Matrix

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

Lineare Algebra I. Prof. Dr. Daniel Roggenkamp Vorlesung -

Lineare Algebra I. Prof. Dr. Daniel Roggenkamp Vorlesung - Lieare lebra Pro Dr iel Roekap - 4Vorlu - Deiitio 5 () Eie - Eitra e i K ei cki Schea Zeile (K Körper) us letzte Vorlu ud Spalte ud Eitra e i K a a a a a a (a ) aij K - ij i j, a a a {d bilde Eitra e aij

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brikma http://brikma-du.de Seite 1.0.014 Lösuge zur Biomialverteilug I Ergebisse: E1 E E E4 E E E7 Ergebis Ei Beroulli-Experimet ist ei Zufallsexperimet, das ur zwei Ergebisse hat. Die Ergebisse werde

Mehr

Verschiedenes, S. 2. (Das Element x wird mit a b bezeichnet. Gilt a = 0, so schreibt man kurz b.)

Verschiedenes, S. 2. (Das Element x wird mit a b bezeichnet. Gilt a = 0, so schreibt man kurz b.) Verschiedees Oktober 00 Das Kapitel Verschiedees des Skripts ethält Themegebiete, die sich schlecht eiorde lasse Die folgede Folie behadel Etwas elemetare Mathematik Edliche Summe ud Produkte Vollstädige

Mehr

8.4. Prüfungsaufgaben zur komplexen Zahlenebene

8.4. Prüfungsaufgaben zur komplexen Zahlenebene 8.4. Prüfugsaufgabe ur komplexe Zahleebee Aufgabe : Rechegesete a) Nee ud erkläre die Kommutativ- Assoiativ- ud Distributivgeset für Additio ud Multiplikatio reeller Zahle. b) Warum gelte diese Rechegesete

Mehr

Proseminar: Mathematisches Problemlösen. Ungleichungen 2. Pierre Schmidt. Vortragstermin: 19. Juni Fakultät für Mathematik

Proseminar: Mathematisches Problemlösen. Ungleichungen 2. Pierre Schmidt. Vortragstermin: 19. Juni Fakultät für Mathematik Prosemiar: Mathematisches Problemlöse Ugleichuge Pierre Schmidt Vortragstermi: 19. Jui 015 Übugsleiteri: Dr. Natalia Griberg Fakultät für Mathematik Karlsruher Istitut für Techologie Ihaltsverzeichis 1

Mehr

1 Das Skalarprodukt und das Kreuzprodukt

1 Das Skalarprodukt und das Kreuzprodukt Das Skalarprodukt ud das Kreuzprodukt Wir betrachte zu x = de Ausdruck y t x : = x Grud: Die rechte Seite der Gleichug ist: y t x = (y tx +... + (y ty { t x } y +... + x y x + x y (x y +... + x y x x t

Mehr

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2013

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2013 Herzlich Willkomme zur Vorlesug Aalysis I SoSe 2013 Prof. Dr. Berd Dreseler Lebediges Lere: Aufgabe Ich Wir Überblick Mittelwertsatz Differetialrechug Natürliche Zahle Iduktiosprizip Kombiatorik Körper

Mehr

Informatik II Dynamische Programmierung

Informatik II Dynamische Programmierung lausthal Iformatik II Dyamische Programmierug. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Zweite Techik für de Algorithmeetwurf Zum Name: "Dyamische " hat ichts mit "Dyamik" zu tu, soder mit

Mehr

Christoph Hindermann. Vorkurs Mathematik Wichtige Rechenoperationen

Christoph Hindermann. Vorkurs Mathematik Wichtige Rechenoperationen Kapitel 2 Christoph Hiderma 1 2.1 Wiederholug: Die gebräuchlichste Zahlebegriffe Natürliche Zahle: N bzw. N 0 N ={1,2,3,...} N 0 ={0,1,2,3,...} Gaze Zahle: Z, Erweiterug der atürliche Zahle um die egative

Mehr

Innerbetriebliche Leistungsverrechnung

Innerbetriebliche Leistungsverrechnung Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der

Mehr

Komplexe Zahlen. Gauss (1831) stellte eine strenge Theorie zur Begründung der komplexen Zahlen auf.

Komplexe Zahlen. Gauss (1831) stellte eine strenge Theorie zur Begründung der komplexen Zahlen auf. Komplexe Zahle Problem: x 2 + 1 = 0 ist i R icht lösbar. Zur Geschichte: Cardao 1501-1576: Auflösug quadratischer ud kubischer Gleichuge. Empfehlug: Reche z.b. mit 1 wie mit gewöhliche Zahle. Descartes

Mehr

mit (a 1 ) (0,0,,0). Dann ist die Menge,,a n,a 2 eine endliche Menge und besitzt ein grösstes Element ggt(a 1

mit (a 1 ) (0,0,,0). Dann ist die Menge,,a n,a 2 eine endliche Menge und besitzt ein grösstes Element ggt(a 1 Kapitel 1: Reste, Teiler, Vielfache Defiitio Es sei a 0. Die Zahl b 0 ist ei Teiler vo a, we es ei u 0 gibt, sodass ub= a. Ist b ei Teiler vo a, so ist a ei Vielfaches vo b. Bezeichug b a für b ist Teiler

Mehr

Lineare Algebra 1. Ein Skriptum zur Vorlesung im Wintersemester 2017/18. Franz Pauer. 10. Auflage

Lineare Algebra 1. Ein Skriptum zur Vorlesung im Wintersemester 2017/18. Franz Pauer. 10. Auflage Lieare Algebra 1 Ei Skriptum zur Vorlesug im Witersemester 217/18 Fraz Pauer 1. Auflage c 217 FRANZ PAUER INNSBRUCK, ÖSTERREICH Vorwort Das vorliegede Skriptum soll de Hörerie ud Hörer der Vorlesug Lieare

Mehr

Einige Beispiele für Mengen im R n.

Einige Beispiele für Mengen im R n. Eiige Beispiele für Mege im R. Itervalle i R. Seie a, b R mit a < b. [a, b] : {x a x b} abgeschlossees Itervall (a, b : {x a < x < b} offees Itervall [a, b : {x a x < b} halboffees Itervall (a, b] : {x

Mehr

Besprechung: S. 1/1

Besprechung: S. 1/1 Übug 8 Aufgabe 8.1 Sei P R ei Polytop mit P Z =vert(p ). Zeige Sie, dass vert(p ) 2. Aufgabe 8.2 Sei P V ei ratioales Polyeder. Zeige Sie, dass P ebefalls ei ratioales Polyeder ist. Aufgabe 8.3 Sei u 1,...,u

Mehr

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und Bevor wir zum ächste Kapitel übergehe, werde wir de Begri eier Fuktio i mehrere Variable eiführe. Eie Fuktio vo Variable ist eie Vorschrift, die jedem Pukt (x 1,x,...,x ) eier Teilmege D des IR eie bestimmte

Mehr

Normierte Vektorräume

Normierte Vektorräume Normierte Vektorräume Wir betrachte im Folgede ur Vektorräume über R 1. Sei also V ei Vektorraum. Wir möchte Metrike auf V betrachte, die im folgede Sie mit der Vektorraumstruktur verträglich sid:, y,

Mehr