11 Divide-and-Conquer und Rekursionsgleichungen

Größe: px
Ab Seite anzeigen:

Download "11 Divide-and-Conquer und Rekursionsgleichungen"

Transkript

1 DIVIDE-AND-CONQUER UND REKURSIONSGLEICHUNGEN 11 Divide-ad-Coquer ud Rekursiosgleichuge Divide-ad-Coquer Problem aufteile i Teilprobleme Teilproblem (rekursiv) löse Lösuge der Teilprobleme zusammesetze Typische Beispiele: Biäre Suche, Meregesort, Quicksort Mergesort Mergesort(A[1,, ]){ 1 if (==1) oder (==0) retur A; B 1 = Mergesort (A[1,, ]); 3 B = Mergesort (A[ +1,, ]); // + 3 divide-schritte retur "Mischug vo B 1 ud B " //Mischug bilde, coquer-schritt } Aufrufbaum bei = Zweierpotez A[1,, ] A[1,, ] A[ + 1,, ] A[1,, ] A[ + 1,, ] A[+1,, 3] A[3 + 1,, ] A[1,] A[1] A[]

2 161 Tiefe: geau log Laufzeit: Blätter: O() Aufteile: beim m Elemete O(m) Zusammesetze vo -mal Damit isgesamt: Elemete: O(m) (Aufteile) O() O() (Mische) O( ) O( ) O( ) O( ) O(1) O(1) Für die Blätter: O(1) = O() Für das Aufteile: c + c + c + + c 1 + c + Wo soll das ede? Wir addiere i eier adere Reihefolge: 1 c +c + c 3 +c ( ) +c ( log +c ( ) }{{} -mal = log c = O( log) Ebeso für das Mische: O( log) Isgesamt O( log) + O() = O( log) Wichtig: Richtige Reihefolge beim Zusammeaddiere Bei Bäume oft stufeweise!

3 16 11 DIVIDE-AND-CONQUER UND REKURSIONSGLEICHUNGEN Die eigetliche Arbeit beim divide-ad-coquer geschieht im Aufteile ud im Zusammefüge Der Rest ist rekusiv Mergesort eifach bottom-up ohe Rekursio, da starrer Aufrufbaum A[1, ],A[3, ],,A[ 1,] Sortiere A[1,,],A[5,,8], Sortiere Auch O( log) Ebefalls Heapsort sortiert i O( log) Bubblesort, Isertio Sort, Selectio Sort O( ) 111 Algorithmus: Quicksort Eigabe: array A[1,, ] of geordeter Datetyp 1 if ( == m) retur a = ei A[i]; 3 Lösche A[i] aus A for j=1 to { 5 if (A[j] a){ A[j] als ächstes Elemet zu B 1 ; break; } 6 if (A[j] > a){ A[j] zu B } } 7 A = B 1 a B 8 if (B 1 Ø) Quicksort (B 1 ) // B 1 als Teil vo A 9 if (B Ø) Quicksort (B ) // B als Teil vo A Beachte: Die Prozedur Partitio aus dem 1 Semester erlaubt es, mit dem array A alleie auszukomme

4 111 Algorithmus: Quicksort 163 Prozedurbäume: O() O(1) O( ) O(1) 1 1 Hier O( log): O() + O( ) + O( ) + + O(1) + O() }{{} Blätter Aber auch: Hier kei Aufruf, we liks vo a ichts ist, B 1 = Ø O() -1 O( 1) - O( ) -3 O(1) 1 Laufzeit: ( 1) = = O( ) (Aufteile) = O() (Zusammesetze) Also: O( ) ud auch Ω( )

5 16 11 DIVIDE-AND-CONQUER UND REKURSIONSGLEICHUNGEN Wieso Quicksort trotzdem i der Praxis häufig? I der Regel tritt ei gutartiger Baum auf, ud wir habe O( log) Vergleiche immer mit festem a, a i eiem Register = schelleres Vergleiche Dagege sid beim Mische vo Mergesort öfter beide Elemete des Vergleiches eu Aufrufbaum vo Quicksort vorher icht zu erkee Keie icht-rekursive Implemetierug wie bei Mergesort Nur mit Hilfe eies (Rekursios-) Kellers Noch eimal zu Mergesort Wir betrachte de Fall, dass eie Zweierpotez ist, da,,,1 = 0 ebefalls Sei T() = worst-case-zeit bei A[1,,] Da gilt für ei geeigetes c: T() c + T( ) T(1) c Eimaliges Teile O() Mische O() Aufrufverwaltug hier O() Betrachte u T() = c + T( ) T(1) = c Da durch Abwickel der rekursive Gleichug: T() = c + T( ) = c + c + T( ) = c + c + c + T( 8 ) = c log + T(1) = c log + c = O(c log) = O( log) Schließlich och ei streger Iduktiosbeweis, dass (T() = O( log) Iduktiosafag: T(1) = O(1 log1) = 0! stimmt so icht Also fage wir bei T() a T() d für ei d geht

6 111 Algorithmus: Quicksort 165 Iduktiosschluss: T() = c + T( ) c + d c + d (log 1) = c + d log d d log geht, we c d gewählt ist Wie sieht das bei Quicksort aus? T() = worst-case-zeit vo Quicksort auf A[1,, ] Da T() c + T( 1) T() c + T(1) + T( ) T() c + T() + T( 3) T() c + T( ) + T(1) T() c + T( 1) Also T(1) c T() c + max({t( 1)} {T(i) + T( i 1) 1 i 1}) Da T() d für d geeiget Iduktiosafag: Idukstiosschluss: T() c + Max({d( 1) a } {d i + d( i 1) 1 i 1}) }{{} i+ i 1 1 c + d( 1) d für d c Aufgabe: Stelle Sie die Rekursiosgleichug für eie rekursive Versio der biäre Suche auf ud schätze sie diese bestmöglich ab

7 DIVIDE-AND-CONQUER UND REKURSIONSGLEICHUNGEN 11 Multiplikatio großer Zahle Im Folgede behadel wir das Problem der Multiplikatio großer Zahle Bisher habe wir ageomme: Zahle i ei Speicherwort = arithmetische Ausdrücke i O(1) Ma spricht vom uiforme Kostemaß Bei größere Zahle kommt es auf de Multiplikatiosalgorithmus a Ma misst die Laufzeit i Abhägigkeit vo der # Bits, die der Recher verarbeite muss Das ist bei eier Zahl etwa log (geauer für 1 log + 1) Ma misst icht i der Zahl selbst! Die ormale Methode, zwei Zahle zu addiere, lässt sich i O() Bitoperatioe implemetiere bei Zahle der Läge : a 1 a + b 1 b a + b Multiplikatio i O( ): (a 1 a ) (b 1 b ) = (a 1 a ) b 1 O() (a 1 a ) b O() (a 1 a ) b O() Summebildug 1 Additioe mit Zahle der Läge = O( )! Mit divide-ad-coquer geht es besser! Nehme wir zuächst eimal a, ist eie Zweierpotez Da a:= a 1 a = b 1 b b:= a := a 1 a = b 1 b b := a a := 1 a b 1 b b := Nu ist

8 11 Multiplikatio großer Zahle 167 a b = (a + a ) b + b a= = }{{} a }{{} b + }{{} a }{{} b + a b + a b b= Mit de Produkte rekursiv weiter Das Programm sieht i etwa so aus: Mult(a, b, ){ //a=a 1, a, b=b 1,, b } 1 if ( == 1) retur a b // Zweierpotez a, a, b, b wie obe // Divide 3 m 1 := Mult(a, b, /); m := Mult(a, b, /); 5 m 3 := Mult(a, b, /); 6 m := Mult(a, b, /); 7 retur (m 1 + (m +m 3 ) + m ) //Coquer Aufrufbaum, = : 1 1 Tiefe log Laufzeit? Bei Mult(a,b,) braucht der divide-schritt ud die Zeit für die Aufrufe selbst zusamme O() Der coquer-schritt erfolgt auch i O() Zähle wir wieder pro Stufe: 1 Stufe d (vo O()) Stufe d 3 Stufe d log te Stufe log 1 log d Blätter: log d

9 DIVIDE-AND-CONQUER UND REKURSIONSGLEICHUNGEN Das gibt: T() log i=0 = d i d i log i=0 i = d log k = O( ) mit x i = xk+1 1 x 1 i=0 für alle x 1 (x>0, x<0 egal!), geometrische Reihe Betrachte wir die iduzierte Rekursiosgleichug Aahme: = Zweierpotez (Beachte: log log +1, dh zwische ud existiert eie Zweierpotez) T(1) = d T() = d + T( ) Versuche T() = O( ) durch Iduktio zu zeige 1 Versuch: T() d Iduktiosafag: Iduktiosschluss: T() = d + T( ) d + d > d Iduktio geht icht! Müsse irgedwie das d uterbrige Versuch T() d gibt ei Iduktiosschluss T() d + d > d 3 Versuch T() d d Iduktiosafag: T(1) d d = d

10 11 Multiplikatio großer Zahle 169 Iduktiosschluss: T() = d + T( ) d + (d( d ) = d + d d = d d Vergleiche auch Seite 16, wo log = log 1 wichtig ist Nächstes Ziel: Verbesserug der Multiplikatio durch ur och drei rekursive Aufrufe mit jeweils viele Bits Aalysiere wir zuächst die Laufzeit = O() O() 1 Stufe = = = Stufe log divide-ad-coquer-schritte + Zeit a Blätter 1 Stufe d, Stufe 3 d, 3 Stufe 3 3 d,, log te Stufe Blätter 3 log d 1

11 DIVIDE-AND-CONQUER UND REKURSIONSGLEICHUNGEN Da ist T() = log i=0 3 i d i = d ( 3 )i = d (3 )log }{{} = 1 d 3 (3 )log = 3 d log ( 3 ) log <1 {}}{ log ( 3 = 3 d ) = 3 d log 3 = O( 159 ) Also tatsächlich besser als O( ) Fasse wir zusamme: Aufrufe mit, liearer Zusatzaufwad T() = d log i i=0 }{{} i =1 = O( log) (Auf jeder Stufe, dh Aufrufe, halbe Größe) 3 Aufrufe T() = d ( 3 )i = O(d log 3 ) (3 Aufrufe, halbe Größe) Aufrufe T() = d ( )i = d = O( ) ( Aufrufe, halbe Größe) Aufgabe: Stelle Sie für de Fall der drei Aufrufe die Rekursiosgleichuge auf ud beweise Sie T() = O( log 3 ) duch eie ordugsgemäße Iduktio

12 11 Multiplikatio großer Zahle 171 Zurück zur Multiplikatio a:= a 1 a = b:= b 1 b = a := a 1 a b := b 1 b a := a +1 a b := b +1 b Wie köe wir eie Aufruf eispare? Erlaube us zusätzliche Additioe: Wir beobachte zuächst allgemei: (x y) (u v) = x(u v) + y (u v) = x u x v + y u y v (eie explizite ud implizite Multiplikatioe (aber i Summe)) Wir versuche jetzt a b + a b auf eie Schlag zu ermittel: (a a ) (b b ) = a b a b + a b + a b Ud: a b,a b brauche wir sowieso ud a b + a b = (a a ) (b b ) + a b + a b Das Programm: m 1 = Mult(a, b, ) m 3 = Mult(a, b, ) if (a - a < 0, b -b < 0) m = Mult(a -a, b -b, )// a a, b b < 1 if (a - a 0, b -b < 0) retur (m 1 + (m + m 1 + m 3 ) + m 3 Zeit O( ) Damit für die Zeit T(1) d T() d + 3 T( ) O(log 3 ) Also Additio liear, icht bekat für Multiplikatio Wir gehe jetzt wieder davo aus, dass die Basisoperatioe i O(1) Zeit durchzuführe sid Erier wir us a die Matrizemultiplikatio: quadratische Matrize

13 17 11 DIVIDE-AND-CONQUER UND REKURSIONSGLEICHUNGEN ( a11 a 1 a 1 a ) ( b11 b 1 b 1 b ) ( a11 b = 11 + a 1 b 1 a 11 b 1 + a 1 b a 1 b 11 + a b 1 a 1 b 1 + a b ) ud allgemei habe wir bei -Matrize: a 11 a 1 b 11 b 1 a 1 a b 1 b = i=1 a 1ib i1 i=1 a 1ib i i=1 a ib i1 i=1 a 1ib i i=1 a ib i Laufzeit ist, pro Eitrag des Ergebisses: Multiplikatioe, 1 Additioe, also O() Bei Eiträge O( 3 )(= O( ) 3 ) Überrasched war seierzeit, dass es besser geht mit divide-ad-coquer Wie köte ei divide-ad-coquer-asatz fuktioiere? Teile wir die Matrize eimal auf: a 11 a 1 a 1 a = ( A11 A 1 A 1 A ) a 1 a A i,j sid - Matrize (wir ehme wieder a, -er-potez) b 11 b 1 b 1 b = ( B11 B 1 B 1 B ) i=1 a 1ib i1 i=1 a ib i1 i=1 a 1ib i i=1 a ib i = ( C11 C 1 C 1 C ) Es ist

14 11 Multiplikatio großer Zahle 173 C 1 1 = i=1 a 1ib i1 i=1 a i b i1 i=1 a 1ib i i=1 a i b i Es ist A 11 B 11 = i=1 a 1ib i1 i=1 a i b i1 i=1 a 1ib i i=1 a i b i

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Techische Uiversität Müche Fakultät für Iformatik Lehrstuhl für Effiziete Algorithme Dr. Hajo Täubig Tobias Lieber Sommersemester 2011 Übugsblatt 1 13. Mai 2011 Grudlage: Algorithme ud Datestrukture Abgabetermi:

Mehr

Tutoraufgabe 1 (Rekursionsgleichungen):

Tutoraufgabe 1 (Rekursionsgleichungen): Prof. aa Dr. E. Ábrahám Datestrukture ud Algorithme SS4 Lösug - Übug F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe (Rekursiosgleichuge): Gebe Sie die Rekursiosgleichuge für die Laufzeit der folgede

Mehr

3. Inkrementelle Algorithmen

3. Inkrementelle Algorithmen 3. Ikremetelle Algorithme Defiitio 3.1: Bei eiem ikremetelle Algorithmus wird sukzessive die Teillösug für die erste i Objekte aus der bereits bekate Teillösug für die erste i-1 Objekte berechet, i=1,,.

Mehr

Lösungsskizzen Mathematik für Informatiker 5. Aufl. Kapitel 3 Peter Hartmann

Lösungsskizzen Mathematik für Informatiker 5. Aufl. Kapitel 3 Peter Hartmann Lösugsskizze Mathematik für Iformatiker 5. Aufl. Kapitel 3 Peter Hartma Verstädisfrage. Ka ma ei Axiom beweise? Nei!. Ka ei Beweis eier Aussage richtig sei, we im Iduktiosschluss die Iduktiosaahme icht

Mehr

Lösung: Datenstrukturen und Algorithmen SS17 Lösung - Klausur

Lösung: Datenstrukturen und Algorithmen SS17 Lösung - Klausur Prof. aa Dr. Ir. G. Woegiger T. Hartma, D. Korzeiewski, B. Tauer Aufgabe (O-Notatio): Trage Sie i (a) (e) jeweils das Symbol o oder Θ oder ω (i Worte: klei-o oder groß-theta oder klei- Omega) i die durch

Mehr

Lösungen 4 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren

Lösungen 4 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren Lösuge 4 zum Mathematik-Brückekurs für alle, die sich für Mathematik iteressiere µfsr, TU Dresde Versio vom 26. September 2016, Fehler ud Verbesserugsvorschläge bitte a beedikt.bartsch@myfsr.de Aufgabe

Mehr

1 Randomisierte Bestimmung des Medians

1 Randomisierte Bestimmung des Medians Praktikum Diskrete Optimierug (Teil 0) 0.07.006 Radomisierte Bestimmug des Medias. Problemstellug ud Ziel I diesem Abschitt stelle wir eie radomisierte Algorithmus zur Bestimmug des Medias vor, der besser

Mehr

Übersicht. Datenstrukturen und Algorithmen. Rekursionsgleichungen. Übersicht. Vorlesung 6: Mastertheorem (K4) Joost-Pieter Katoen

Übersicht. Datenstrukturen und Algorithmen. Rekursionsgleichungen. Übersicht. Vorlesung 6: Mastertheorem (K4) Joost-Pieter Katoen Übersicht Datestrukture ud Algorithme Vorlesug 6: (K) Joost-Pieter Katoe Lehrstuhl für Iformatik 2 Software Modelig ad Verificatio Group 1 Substitutiosmethode Rekursiosbäume http://moves.rwth-aache.de/teachig/ss-15/dsal/

Mehr

3 T (d 1, l 2. ) + (6 + 2) falls d > 0 7 sonst. n 2. 4T ( n 2 ) + log 2 (n), falls n > 1 1, sonst

3 T (d 1, l 2. ) + (6 + 2) falls d > 0 7 sonst. n 2. 4T ( n 2 ) + log 2 (n), falls n > 1 1, sonst für Iformatik Modellierug ud Verifikatio vo Software Prof. aa Dr. Ir. Joost-Pieter Katoe Datestrukture ud Algorithme SS5 Lösug - Übug 3 Christia Dehert, Friedrich Gretz, Bejami Kamiski, Thomas Ströder

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Die vollständige Induktion - Lösungen 1. Aufgabe: Sind die folgenden Aussageformen in N allgemeingültig?

Die vollständige Induktion - Lösungen 1. Aufgabe: Sind die folgenden Aussageformen in N allgemeingültig? Start Mathematik Lektioe i Aalysis Aufgabe zur vollstädige Iduktio Die vollstädige Iduktio - Lösuge. Aufgabe: Sid die folgede Aussageforme i N allgemeigültig? a) We ei Vielfaches vo ist, da ist eie gerade

Mehr

Dritter Zirkelbrief: Ungleichungen

Dritter Zirkelbrief: Ungleichungen Matheschülerzirkel Uiversität Augsburg Schuljahr 014/015 Dritter Zirkelbrief: Ugleichuge Ihaltsverzeichis 1 Grudlage vo Ugleichuge 1 Löse vo Ugleichuge 3 3 Mittel 4 4 Mittelugleichuge 5 5 Umordugsugleichug

Mehr

Dynamisches Programmieren Stand

Dynamisches Programmieren Stand Dyamisches Programmiere Stad Stad der Dige: Dyamische Programmierug vermeidet Mehrfachberechug vo Zwischeergebisse Bei Rekursio eisetzbar Häufig eifache bottom-up Implemetierug möglich Das Subset Sum Problem:

Mehr

Nicht-Anwendbarkeit des Master- Theorems

Nicht-Anwendbarkeit des Master- Theorems Nicht-Awedbarkeit des Master- Theorems Beispiel: Betrachte die Rekursiosgleichug T () = 2T ( 2 ) + log. Es gilt sicherlich f () = Ω( log b a ) = Ω(), aber icht f () = Ω( log b a+ɛ ). Ma beachte, dass f

Mehr

Basisfall Vergleichsbasiertes Sortieren Programmieraufgabe Algorithm Engineering

Basisfall Vergleichsbasiertes Sortieren Programmieraufgabe Algorithm Engineering Basisfall Vergleichsbasiertes Sortiere Programmieraufgabe Algorithm Egieerig Deis Felsig 013-0-07 1 Eileitug I dieser Programmieraufgabe sollte Basisfälle für vergleichsbasiertes Sortiere utersucht werde.

Mehr

Aufgabe G 1.1. [Vollständige Induktion, Teleskopsumme] n k 3 = n N : k(k + 1) = 1 1

Aufgabe G 1.1. [Vollständige Induktion, Teleskopsumme] n k 3 = n N : k(k + 1) = 1 1 Istitut für Aalysis ud Algebra Mathematik I für Studierede der E-Techik Prof Dr Volker Bach WiSe 06/7 M Sc Birgit Komader M Sc Christoph Brauer Theme: Groe Übug - Lösuge Vollstädige Iduktio - Teleskopsumme

Mehr

Numerische Lineare Algebra - Theorie-Blatt 2

Numerische Lineare Algebra - Theorie-Blatt 2 Prof Dr Stefa Fuke Uiversität Ulm MSc Adreas Batle Istitut für Numerische Mathematik Dipl-Math oec Klaus Stolle Witersemester 04/05 Numerische Lieare Algebra - Theorie-Blatt Lösug (Abgabe am 04 vor der

Mehr

Recur : Falls Problem elementar : löse dieses mit spezieller Methode Falls Problem nicht elementar : wende Divide rekursiv an

Recur : Falls Problem elementar : löse dieses mit spezieller Methode Falls Problem nicht elementar : wende Divide rekursiv an Divide-ad-Coquer-Algorithme Fudametales Prizip des Problemlöses Divide : Zerlege das zu lösede Problem i (ei oder) mehrere kleiere Teilprobleme gleiche Typs Recur : Falls Problem elemetar : löse dieses

Mehr

Ney: Datenstrukturen und Algorithmen, SS 2004

Ney: Datenstrukturen und Algorithmen, SS 2004 1.4 Etwurfsmethode Für de gute Etwurf ka ma kaum strege Regel agebe, aber es gibt eiige Prizipie, die ma je ach Zielsetzug eisetze ka ud die uterschiedliche Vorzüge habe. Wir werde folgede typische Methode

Mehr

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS vo Rolf Waldi 1 Kapitel I. Elemetare Zahletheorie 1 Grudlegede Regel ud Prizipie Es wird vorausgesetzt, daß der Leser mit gaze Zahle reche ka ud

Mehr

5. Übungsblatt Aufgaben mit Lösungen

5. Übungsblatt Aufgaben mit Lösungen 5. Übugsblatt Aufgabe mit Lösuge Aufgabe 2: Bestimme Sie alle Häufugspukte der komplexe) Folge mit de Glieder a) a = ) 5 + 7 + 2 ) b) b = i Lösug 2: a) Die Folge a ) zerfällt vollstädig i die beide Teilfolge

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr R Köig Dr M Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Mathematik für Physiker (Aalysis ) MA90 Witersem 07/8 Lösugsblatt 4 http://www-m5matumde/allgemeies/ma90 07W (007)

Mehr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr ZAHLENFOLGEN Teil 2 Arithmetische ud geometrische Folge Die wichtigste Theorieteile ud gaz ausführliches Traiig Datei Nr. 4002 Neu Überarbeitet Stad: 7. Juli 206 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Asymptotische Notationen

Asymptotische Notationen Foliesatz 2 Michael Brikmeier Techische Uiversität Ilmeau Istitut für Theoretische Iformatik Sommersemester 29 TU Ilmeau Seite 1 / 42 Asymptotische Notatioe TU Ilmeau Seite 2 / 42 Zielsetzug Igoriere vo

Mehr

Der Groß-O-Kalkül. Additionsregel. Zunächst ein paar einfache "Rechen"-Regeln: " ": Sei. Lemma, Teil 2: Für beliebige Funktionen f und g gilt:

Der Groß-O-Kalkül. Additionsregel. Zunächst ein paar einfache Rechen-Regeln:  : Sei. Lemma, Teil 2: Für beliebige Funktionen f und g gilt: Der Groß-O-Kalkül Additiosregel Zuächst ei paar eifache "Reche"-Regel: Lemma, Teil 1: Für beliebige Fuktioe f g gilt: Zu beweise: ur das rechte "=" Zu beweise: jede der beide Mege ist jeweils i der adere

Mehr

Mathematische Rekursion. Rekursion. Rekursion in C++ Mathematische Rekursion. Definition. 1, falls n 1. n! = n (n-1)!, falls n > 1

Mathematische Rekursion. Rekursion. Rekursion in C++ Mathematische Rekursion. Definition. 1, falls n 1. n! = n (n-1)!, falls n > 1 Mathematische Rekursio Rekursio o Viele mathematische Fuktioe sid sehr atürlich rekursiv defiierbar, d.h. o die Fuktio erscheit i ihrer eigee Defiitio. Mathematische Rekursio o Viele mathematische Fuktioe

Mehr

2 Die natürlichen, ganzen und rationalen Zahlen

2 Die natürlichen, ganzen und rationalen Zahlen 2 Die atürliche, gaze ud ratioale Zahle 21 Aufgabe 21 Beweise Sie die folgede Aussage mittels vollstädiger Iduktio: (a) Für alle N gilt: Elemete köe auf 1 2 =! verschiedee Arte ageordet werde (b) Die Summe

Mehr

Analysis ZAHLENFOLGEN Teil 4 : Monotonie

Analysis ZAHLENFOLGEN Teil 4 : Monotonie Aalysis ZAHLENFOLGEN Teil 4 : Mootoie Datei Nr. 40051 Friedrich Buckel Juli 005 Iteretbibliothek für Schulmathematik Ihalt 1 Eiführugsbeispiele 1 Mootoie bei arithmetische Folge Defiitioe 3 3 Welche Beweistechik

Mehr

Algorithmentheorie Randomisierung

Algorithmentheorie Randomisierung Algorithmetheorie 03 - Radomisierug Prof. Dr. S. Albers Prof. Dr. Th. Ottma Radomisierug Klasse vo radomisierte Algorithme Radomisierter Quicksort Radomisierter Primzahltest Kryptographie 2 1. Klasse vo

Mehr

Handout 2. Divide et impera Veni, vidi, vici Julius Caesar

Handout 2. Divide et impera Veni, vidi, vici Julius Caesar Datestruture & Algorithme 9 März 2016 Sebastia Millius, Sadro Feuz, Daiel Graf Hadout 2 Thema: Divide & Coquer (Mergesort, Biäre Suche), Hashig Divide et impera Vei, vidi, vici Julius Caesar Divide & Coquer

Mehr

Positiv denken! Lösungen

Positiv denken! Lösungen Schülerzirkel Mathematik Fakultät für Mathematik. Uiversität Regesburg Positiv deke! Lösuge Aufgabe 1 (GMAMQM (ur für die Klasse 7/8) [ Pukte]). Seie a, b reelle Zahle. 1. Sei a 0 ud b 0. Zeige, dass a

Mehr

heißt kommutativ (oder auch abelsch), falls für die Verknüpfung das Kommutativgesetz gilt: (G 5) Für alle ab, Ggilt a b

heißt kommutativ (oder auch abelsch), falls für die Verknüpfung das Kommutativgesetz gilt: (G 5) Für alle ab, Ggilt a b r M J auer Algebraische trukture 7 Kapitel : Gruppe Gruppe: efiitio, Beispiele efiitio (Gruppe) Eie Mege G (G ) zusamme mit eier Verküpfug heißt eie Gruppe, we folgede Eigeschafte erfüllt sid: (G ) G ist

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

3 T (d 1, l 2. ) + (6 + 2) falls d > 0 7 sonst. n 2. 4T ( n 2 ) + log 2 (n), falls n > 1 1, sonst

3 T (d 1, l 2. ) + (6 + 2) falls d > 0 7 sonst. n 2. 4T ( n 2 ) + log 2 (n), falls n > 1 1, sonst Prof. aa Dr. Ir. Joost-Pieter Katoe Datestrukture ud Algorithme SS5 Tutoriumslösug - Übug 3 (Abgabe 3.05.05 Christia Dehert, Friedrich Gretz, Bejami Kamiski, Thomas Ströder Tutoraufgabe (Rekursiosgleichuge:

Mehr

Lösungsskizzen Mathematik für Informatiker 6. Aufl. Kapitel 4 Peter Hartmann

Lösungsskizzen Mathematik für Informatiker 6. Aufl. Kapitel 4 Peter Hartmann Lösugssizze Mathemati für Iformatier 6. Aufl. Kapitel 4 Peter Hartma Verstädisfrage 1. We Sie die Berechug des Biomialoeffiziete mit Hilfe vo Satz 4.5 i eiem Programm durchführe wolle stoße Sie schell

Mehr

Zusammenfassung: Mathe 1

Zusammenfassung: Mathe 1 Zusammefassug: Mathe 1 Beispiel zur Iduktio Behauptug: es gilt k 2 = 6 (+1) (2+1) Beweis: Iduktio über Iduktiosafag: = 1 k 2 + 1: für = 1: k 2 =1 2 =1 1 Aahme: Für ei N gilt Zu zeige: da muss auch gelte

Mehr

Musterlösung. Testklausur Vorkurs Informatik, Testklausur Vorkurs Informatik Musterlösung. Seite 1 von 10

Musterlösung. Testklausur Vorkurs Informatik, Testklausur Vorkurs Informatik Musterlösung. Seite 1 von 10 Musterlösug Name, Vorame, Matrikelummer Agabe sid freiwillig) Bitte ubedigt leserlich ausfülle Testklausur Vorkurs Iformatik, 27.09.20 Testklausur Vorkurs Iformatik 27.09.20 Musterlösug eite vo 0 Musterlösug

Mehr

$Id: komplex.tex,v /04/13 15:09:53 hk Exp $

$Id: komplex.tex,v /04/13 15:09:53 hk Exp $ Mathematik für Igeieure IV, SS 206 Mittwoch 3.4 $Id: komplex.tex,v.2 206/04/3 5:09:53 hk Exp $ Komplexe Zahle I diesem Kapitel wolle wir erst eimal zusammestelle was aus de vorige Semester über die komplexe

Mehr

Algorithmen und Programmierung III

Algorithmen und Programmierung III Musterlösug zum 13. Aufgabeblatt zur Vorlesug WS 006 Algorithme ud Programmierug III Aufgabe 1 Rekursios Gleichuge (Autor: Christia Grümme 10 Pukte (a Zuächst führe ich ei paar Rekursioe durch: T ( = 4T

Mehr

Beweistechniken Vollständige Induktion - Beispiele, Erweiterungen und Übungen

Beweistechniken Vollständige Induktion - Beispiele, Erweiterungen und Übungen Beweistechike Vollstädige Iduktio - Beispiele, Erweiteruge ud Übuge Alex Chmelitzki 15. März 005 1 Starke Iduktio Eie etwas abgewadelte Form der Iduktio ist die sogeate starke Iduktio. Bei dieser Spielart

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik für Iformatiker -- 9 Folge -- 6.1.215 1 Folge: Defiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reihefolge wichtig,

Mehr

MATHE-BRIEF. April 2016 Nr. 68. Wer fürchtet sich vor der vollständigen Induktion? Als ich als Mathematik-Student zum ersten Mal einen Beweis

MATHE-BRIEF. April 2016 Nr. 68. Wer fürchtet sich vor der vollständigen Induktion? Als ich als Mathematik-Student zum ersten Mal einen Beweis MATHE-BRIEF April 01 Nr. 8 Herausgegebe vo der Österreichische Mathematische Gesellschaft http: // www.oemg.ac.at / Mathe Brief mathe brief@oemg.ac.at Wer fürchtet sich vor der vollstädige Iduktio? Als

Mehr

Mathematik III. Vorlesung 81. Eigenschaften des Dachprodukts. Die folgende Aussage beschreibt die universelle Eigenschaft des Dachproduktes.

Mathematik III. Vorlesung 81. Eigenschaften des Dachprodukts. Die folgende Aussage beschreibt die universelle Eigenschaft des Dachproduktes. Prof. Dr. H. Breer Osabrück S 2010/2011 Mathematik III Vorlesug 81 Eigeschafte des Dachprodukts Die folgede Aussage beschreibt die uiverselle Eigeschaft des Dachproduktes. Satz 81.1. Es sei K ei Körper,

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

Kapitel 11. Rekursion

Kapitel 11. Rekursion Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Kapitel 11 Rekursio Rekursio 1 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Ziele Das Prizip der rekursive

Mehr

Demo-Text für INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. ANALYSIS Vollständige Induktion FRIEDRICH W.

Demo-Text für   INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.   ANALYSIS Vollständige Induktion FRIEDRICH W. ANALYSIS Vollstädige Iduktio Datei Nr. 40080 Stad 14. März 018 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 40080 Beweismethode: Vollstädige Iduktio Vorwort Die Methode der vollstädige Iduktio

Mehr

2 Asymptotische Schranken

2 Asymptotische Schranken Asymptotische Schrake Sowohl die Laufzeit T () als auch der Speicherbedarf S() werde meist durch asymptotische Schrake agegebe. Die Kostate c i, welche i der Eiführug deiert wurde, sid direkt vo der Implemetatio

Mehr

Dynamische Programmierung Matrixkettenprodukt

Dynamische Programmierung Matrixkettenprodukt Dyamische Programmierug Matrixketteprodukt Das Optimalitätsprizip Typische Awedug für dyamisches Programmiere: Optimierugsprobleme Eie optimale Lösug für das Ausgagsproblem setzt sich aus optimale Lösuge

Mehr

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n.

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n. Reeller Vektorraum Kapitel Vektorräume Die Mege aller Vektore x mit Kompoete bezeiche wir mit x R =. : x i R, i x ud wird als -dimesioaler (reeller) Vektorraum bezeichet. Defiitio Ei Vektorraum V ist eie

Mehr

Elemente der Mathematik - Winter 2016/2017

Elemente der Mathematik - Winter 2016/2017 4 Elemete der Mathemati - Witer 201/2017 Prof. Dr. Peter Koepe, Regula Krapf Übugsblatt 8 Aufgabe 33 ( Pute). Beweise Sie folgede Idetitäte durch vollstädige Idutio: (a) 0 2 (1)(21), N. (b) 2 (1 1 ) 1

Mehr

Wörterbuchmethoden und Lempel-Ziv-Codierung

Wörterbuchmethoden und Lempel-Ziv-Codierung Kapitel 3 Wörterbuchmethode ud Lempel-Ziv-Codierug I diesem Abschitt lere wir allgemei Wörterbuchmethode zur Kompressio ud isbesodere die Lempel-Ziv (LZ))-Codierug kee. Wörterbuchmethode sid ei eifaches

Mehr

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen Thema Fit i Mathe Musterlösuge 1 April Klassestufe 10 Wurzelfuktioe Uter der -te Wurzel eier icht-egative Zahl (i Zeiche: ) versteht ma die icht-egative Zahl, die mal mit sich selber multipliziert, die

Mehr

Probeklausur. (b) Was geschieht, wenn man ein Quantenbit in einem solchen Zustand misst?

Probeklausur. (b) Was geschieht, wenn man ein Quantenbit in einem solchen Zustand misst? Quaterecher Witersemester 5/6 Theoretische Iformatik Uiversität Haover Dr. Matthias Homeister Dipl.-Math. Heig Schoor Probeklausur Hiweis: Diese Probeklausur ist kürzer als die tatsächliche Klausur.. a

Mehr

x = a + b α + β. b) Wir erweitern den Bruch geeignet (Standardtrick: z z ist reell, daher ergibt 1/z = 1/z z/ z = z/(z z) einen reellen Nenner):

x = a + b α + β. b) Wir erweitern den Bruch geeignet (Standardtrick: z z ist reell, daher ergibt 1/z = 1/z z/ z = z/(z z) einen reellen Nenner): Karlsruher Istitut für Techologie (KIT) Istitut für Aalysis Priv-Doz Dr P C Kustma Dr D Frey WS 0/ Höhere Mathematik I für die Fachrichtug Physik Lösugsvorschläge zum 3 Übugsblatt Aufgabe Zuächst zum Supremum:

Mehr

Kapitel 11. Rekursion

Kapitel 11. Rekursion Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 17/18 Kapitel 11 Rekursio Rekursio 1 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 17/18 Ziele Das Prizip der rekursive

Mehr

b) Alle ganzen Zahlen die auf 0 enden sind durch 5 teilbar Spezialisierung: 120 endet auf ist durch 5 teilbar

b) Alle ganzen Zahlen die auf 0 enden sind durch 5 teilbar Spezialisierung: 120 endet auf ist durch 5 teilbar d) Die Beweismethode der vollstädige Iduktio Der Übergag vo allgemeie zu spezielle Aussage heisst Deduktio Beispiele: a) Allgemeie Aussage: Spezialisierug: Schluss: Alle Mesche sid sterblich Sokrates ist

Mehr

Kapitel 10. Rekursion

Kapitel 10. Rekursion Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 1/14 1 Kapitel 10 Rekursio Rekursio Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 1/14 Ziele Das Prizip der rekursive

Mehr

Kombinatorik und Polynommultiplikation

Kombinatorik und Polynommultiplikation Kombiatorik ud Polyommultiplikatio 3 Vorträge für Schüler SS 2004 W Pleske RWTH Aache, Lehrstuhl B für Mathematik 3 Eiige Zählprizipie ud Ausblicke Wir habe bislag gesehe, was die Multiomialkoeffiziete

Mehr

Rekursion und Dateioperationen

Rekursion und Dateioperationen Lerziele: Rekursio ud Dateioperatioe Vertiefe der Ketisse über die die Verwedug vo rekursive Fuktioe ud Dateioperatioe. Aufgabe 1: Mergesort (Beispiel für die Verwedug rekursiver Fuktiosaufrufe) Ei effizietes

Mehr

Dann ist die Zahl auf der linken Seite gerade und die auf der rechten Seite ungerade. Also sind sie nicht gleich.

Dann ist die Zahl auf der linken Seite gerade und die auf der rechten Seite ungerade. Also sind sie nicht gleich. Lösuge. Es gibt drei Lösuge.. Lösug: Ato ist traurig ud er trikt keie Likör. Bruo isst Torte ud ist besorgt. Christa ist icht übel ud sie macht Purzelbäume.. Lösug: Ato ist traurig ud trikt keie Likör.

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr DEMO für ZAHLENFOLGEN Teil 2 Arithmetische ud geometrische Folge Die wichtigste Theorieteile ud gz ausführliches Traiig Datei Nr. 40012 Neu geschriebe ud sehr erweitert Std: 4. Februar 2010 INTERNETBIBLIOTHEK

Mehr

4. Die Menge der Primzahlen. Bertrands Postulat

4. Die Menge der Primzahlen. Bertrands Postulat O. Forster: Eiführug i die Zahletheorie 4. Die Mege der Primzahle. Bertrads Postulat 4.1. Satz (Euklid. Es gibt uedlich viele Primzahle. Beweis. Wir zeige, dass es zu jeder edliche Mege p 1, p 2,..., p

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übuge zur Lieare Algebra 1 Lösuge Witersemester 009/010 Uiversität Heidelberg Mathematisches Istitut Lösuge Blatt 8 Dr D Vogel Michael Maier Aufgabe 33 Gehe wir aalog zu Algorithmus vor: v 1 M(4,K) A :=

Mehr

Vorkurs Mathematik für Informatiker Potenzen und Polynome --

Vorkurs Mathematik für Informatiker Potenzen und Polynome -- Vorkurs Mathematik für Iformatiker -- Poteze ud Polyome -- Thomas Huckle Stefa Zimmer (Stuttgart) 6.0.06 Vorwort Es solle Arbeitstechike vermittelt werde für das Iformatikstudium Der wesetliche Teil ist

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud -ugleichuge 6 Für Eperte 9 Polyomgleichuge ud -ugleichuge Defiitio: Ei Term

Mehr

Übungen zum Ferienkurs Analysis 1, Vorlesung 2

Übungen zum Ferienkurs Analysis 1, Vorlesung 2 F. Hafer, T. Baldauf c Techische Uiversität Müche Übuge zum Feriekurs Aalysis, Vorlesug Witersemester 06/07. Richtig oder Falsch? Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche

Mehr

0.1 E: Der Haupsatz der Mineralogie

0.1 E: Der Haupsatz der Mineralogie 0. E: Der Haupsatz der Mieralogie Satz: I eiem Kristall gibt es ur,,3,4 ud 6-zählige Symmetrie. Defiitio: Seie u, v 0 zwei Vektore, die icht auf eier Gerade liege. Die Mege heißt Gitter. Satz: Die Vektore

Mehr

4. Übungsblatt Aufgaben mit Lösungen

4. Übungsblatt Aufgaben mit Lösungen 4. Übugsblatt Aufgabe mit Lösuge Aufgabe 6: Bestimme Sie alle Häufugspukte der Folge mit de Folgeglieder a) a 2 + cosπ), b) b i) i j, ud gebe Sie jeweils eie Teilfolge a, die gege diese Häufugspukte kovergiert.

Mehr

4.3 Relationen [ Partee 27-30, 39-51, McCawley , Chierchia ]

4.3 Relationen [ Partee 27-30, 39-51, McCawley , Chierchia ] 4 Elemetare Megetheorie 43 Relatioe [ Partee 7-30, 39-5, McCawley 48-49, Chierchia 534-536 ] Relatioe köe als spezielle Mege verstade werde Hierfür muss zuächst der Begriff eies weitere megetheoretische

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. R. Köig Dr. M. Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Z8.. Kriterie für strege Mootoie Mathematik für Physiker 2 (Aalysis ) MA9202 Witersem. 207/8 Lösugsblatt 8

Mehr

Informatik II Dynamische Programmierung

Informatik II Dynamische Programmierung lausthal Iformatik II Dyamische Programmierug. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Zweite Techik für de Algorithmeetwurf Zum Name: "Dyamische " hat ichts mit "Dyamik" zu tu, soder mit

Mehr

( ), der genau auf der Geraden ( ) 2 ( ) #( ) 8. Lineare Regression. = f i. Nach der Summe der kleinsten. mx i

( ), der genau auf der Geraden ( ) 2 ( ) #( ) 8. Lineare Regression. = f i. Nach der Summe der kleinsten. mx i 8. Lieare Regressio 8.1. Die Methode der kleiste Quadrate Regressiosgerade bzw. Ausgleichsgerade sid eie Auswertug vo statistische Messdate. Ziel dieses Verfahres ist es, Beziehuge zwische zwei Merkmale

Mehr

LGÖ Ks VMa 12 Schuljahr 2017/2018

LGÖ Ks VMa 12 Schuljahr 2017/2018 LGÖ Ks VMa Schuljahr 7/8 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Experte 8 Polyomgleichuge ud -ugleichuge

Mehr

Lösungen zur Präsenzübung 6

Lösungen zur Präsenzübung 6 Lösuge zur Präsezübug 6 Mirko Getzi Uiversität Bielefeld Fakultät für Mathematik. Dezember 203 Ich gebe keie Gewähr auf eie vollstädige Richtigkeit der Lösuge zu de Übugsaufgabe. Das Dokumet hat jedoch

Mehr

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel Zahlefolge Teil 3 Reihe Reihe Arithmetische Reihe Geometrische Reihe Datei Nr. 4003 (Neu bearbeitet ud erweitert) Jui 005 Friedrich W. Buckel Iteretbibliothek für Schulmathematik Ihalt Defiitio eier Reihe

Mehr

1. Zahlenfolgen und Reihen

1. Zahlenfolgen und Reihen . Zahlefolge ud Reihe We ma eie edliche Mege vo Zahle hat, ka ma diese i eier bestimmte Reihefolge durchummeriere: {a,a 2,...,a }. Ma spricht vo eier edliche Zahlefolge. Fügt ma immer mehr Zahle hizu,

Mehr

Aufgrund der Körperaxiome ist jedoch

Aufgrund der Körperaxiome ist jedoch Hiweise: Der Doppelstrich // steht für eie Kommetarzeile. Tipp- ud Rechtschreibfehler köe trotz mehrfacher Kotrolle icht hudertprozetig vermiede werde. Die selbst erstellte Lösugsasätze orietiere sich

Mehr

Denition 27: Die Fakultät ist eine Folge f : N N mit f(1) := 1 und f(n + 1) := (n + 1) f(n) für alle n N. Wir schreiben n! := f(n) für diese Folge.

Denition 27: Die Fakultät ist eine Folge f : N N mit f(1) := 1 und f(n + 1) := (n + 1) f(n) für alle n N. Wir schreiben n! := f(n) für diese Folge. Vorkurs Mathematik, PD Dr. K. Halupczok, WWU Müster Fachbereich Mathematik ud Iformatik 22.9.20 Ÿ3.2 Folge ud Summe (Fortsetzug) Eie wichtige Möglichkeit, wie ma Zahlefolge deiere ka, ist die über eie

Mehr

10 Aussagen mit Quantoren und

10 Aussagen mit Quantoren und 0 Aussage mit Quatore ud 0.6. Eisatz vo (bereits bekater) Eistezaussage Bisher hatte wir Eistezbeweise geführt, idem wir ei passedes Objekt agegebe habe ( Setze... ). Stattdesse ka ma auch auf bereits

Mehr

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09 Musterlösug zu Blatt 8 der Vorlesug Aalysis I WS08/09 Schriftliche Aufgabe Aufgabe. Voraussetzuge: Für alle N setze a : +2 ud b : ( 2. [Amerkug: I der Aufgabestellug heiÿe die Reihe beide gleich. Es steht

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 2008/09 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum 4. Übugsblatt

Mehr

Lösungsvorschlag zu den Hausaufgaben der 1. Übung

Lösungsvorschlag zu den Hausaufgaben der 1. Übung FAKULTÄT FÜR MATHEMATIK Prof. Dr. Patrizio Neff Christia Thiel 4.04.04 Lösugsvorschlag zu de Hausaufgabe der. Übug Aufgabe : (6 Pukte Bereche Sie für die Fuktio f : R R, f( : ep( a der Stelle 0 0 das Taylorpolyom

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen LGÖ Ks VMa Schuljahr 6/7 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Eperte 8 Polyomgleichuge ud -ugleichuge

Mehr

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 4 LÖSUNGEN MAT/MAT3 ANALYSIS I HERBSTSEMESTER 00 PROF. DR. AMILLO DE LELLIS Aufgabe. Etscheide Sie für folgede Folge (wobei N \ {0}), ob diese koverget sid, ud bereche sie gegebeefalls ihre

Mehr

Sortieren DNA-Array oder DNA-Chip

Sortieren DNA-Array oder DNA-Chip Sortiere DNA-Array oder DNA-Chip Jeder Pukt des Feldes repräsetiert ei Ge g i des Mesche. Ei Ge ist der Baupla eies molekulare Bausteis useres Körpers. Mittels eies DNA-Chips ka ma gleichzeitig für viele

Mehr

Wallis-Produkt, Gammafunktion und n-dimensionale Kugeln

Wallis-Produkt, Gammafunktion und n-dimensionale Kugeln Wallis-Produkt, Gammafuktio ud -dimesioale Kugel Thomas Peters Thomas Mathe-Seite www.mathe-seite.de 6. Oktober 3 Das Ziel dieses Artikels ist es, Formel für das Volume ud die Oberfläche vo -dimesioale

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

HEUTE. Beispiele. O-Notation neue Einführung Ideen und Eigenschaften Aufgaben 47 und 52

HEUTE. Beispiele. O-Notation neue Einführung Ideen und Eigenschaften Aufgaben 47 und 52 11.02.04 1 HEUTE 11.02.04 3 Beispiele 2, 2 2, 2 +, 1 2 2 log habe asymptotisch gleiches Wachstum: O-Notatio eue Eiführug Idee ud Eigeschafte Aufgabe 47 ud 2 Aufteilugs- ud Beschleuigugssatz Idee ud Awedug

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr

Aufgaben zu Kapitel 2

Aufgaben zu Kapitel 2 2 Sei a R ud seie a ud a Iverse vo a Da ist a = a = a ( aa ) = ( a a)a = a = a 22 Wege Aufgabe 4 bleibt lediglich (R2) ud (R3) zu zeige (R2): Die Multipliatio ist offebar assoziativ Das Eiselemet ist die

Mehr

KAPITEL 2. Zahlenfolgen

KAPITEL 2. Zahlenfolgen KAPITEL Zahlefolge. Kovergete Zahlefolge...................... 35. Grezwertbestimmug....................... 38.3 Grezwertbestimmug durch Abschätzug............. 4.4 Mootoe Folge..........................

Mehr

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id,

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id, Kreisabbilduge Im Folgede sehe wir us eie gaz spezielle Klasse vo dyamische Systeme a: Abbilduge auf dem Kreis. Diese sid eifach geug, so dass wir sie och recht leicht aalysiere köe, habe aber adererseits

Mehr