Algorithmen und Programmierung III

Größe: px
Ab Seite anzeigen:

Download "Algorithmen und Programmierung III"

Transkript

1 Musterlösug zum 13. Aufgabeblatt zur Vorlesug WS 006 Algorithme ud Programmierug III Aufgabe 1 Rekursios Gleichuge (Autor: Christia Grümme 10 Pukte (a Zuächst führe ich ei paar Rekursioe durch: T ( = 4T ( + = 4 (4T ( = 4 T ( = 4 (4T ( = 4 3 T ( Nu vermute ich folgede Regelmäßigkeit beim k. Rekursiosschritt: k 1 T ( = 4 k T ( k + Das bestätige ich u Iduktiv: k 1 T ( = 4 k (4T ( (k k 1 = 4 k+1 T ( (k k + = 4 k+1 T ( (k k Führe die Rekursioe bis zum Rekursiosaker T (0 fort (Aahme: ist grade: 1 ( T ( = 4 T + = 4 1 T (0 + Geometrische Reihe = ( 4 T ( = T (

2 Der eideutig domiate Summad ist 4 =. T ( Θ ( {k k N} Da wir o.b.d.a. aehme köe, dass T ( mooto wächst, gilt k N: Θ ( T (k T (k + 1 T ( (k + 1 Θ ( T ( Θ ( N (b Ich vermute folgede Regelmäßigkeit beim k. Rekursiosschritt: ( T ( = T + log Das bestätige ich u Iduktiv: T ( = = T ( k 1 = T + log k i ( ( k 1 T + log k+1 + log k i ( k+1 + k log i Führe die Rekursioe bis zum Rekursiosaker T (1 fort (Aahme: ist Zweierpotez: T ( = T ( = T + ( log ( 1 + log log i log ( 1 = T (1 + (log (log = T (1 + (log ( log log i log ( 1 log ( 1 (i ( log i Gauß sche Summe = T (1 + (log log ( (log ( 1 = T (1 + 1 (log + 1 log Der eideutig domiate Summad ist (log ud ka ich jetzt aalog zu obe N sage: T ( Θ ( (log

3 (c Zuächst führe ich wieder ei paar Rekursioe durch: ( T ( = T + ( 4 ( ( = T ( ( = T ( ( ( = (T ( ( ( = 3 T Ich vermute folgede Regelmäßigkeit beim k. Rekursiosschritt: Das bestätige ich u Iduktiv: ( k 1 T ( = k T + i 4 k 4 i T ( = k (T = k+1 T = k+1 T = k+1 T ( k 1 = k T + i 4 k 4i ( k 1 = k T + 4 k 3i ( ( k k+1 4 k 3i ( + k 4 k k 1 k 3i ( + k 4 k+1 + k 1 4k 3i ( 4 k+1 + Führe die Rekursioe bis zum Rekursiosaker T (1 fort (Aahme: ist Viererpotez: k 3i ( T ( = log 4 ( T + 4 log 4 ( = log 4 T log 4 ( 1 ( log 4 ( 1 + Die Summe etspricht de Afagsglieder der geometrische Reihe, welche durch beschräkt ist. Sei u log 4 ( 1 i = d <. ( 1 8 T ( = T (1 + d ( 1 8 3i i

4 Der eideutig domiate Summad ist ud u ka ich wieder aalog zu obe N sage: T ( Θ ( Aufgabe Geerische Schittstelle Hashtabelle (Autor: Olufemi Rosawo 10 Pukte Beschreibt eie Datetype mit eier Hashfuktio, die ei Ergebis vom Typ K liefert. Dies macht keie Aussage darüber auf welchem Typ der Hashwert berechet wird, soder ur, wie das Ergebis vo hash aussieht. Häufige Fehler: hash(k key ist uötig, da der Hashwert auf dem Objekt selbst berechet werde soll. Eie hash-methode mit eiem Argumet legt eie static Methode ah, die aber im iterface icht ausgedrückt werde ka. 1 public iterface Hashable <K> { public K hash (; 3 } iterface Hashtable Beispiel-Implemetatio eies Datetyps, desse Hashfuktio float Werte zurückgibt. Ma beachte, dass icht der Typ (=Schlüssel im HashTable selbst Float sei muss, soder ur das Ergebis vo hash. class FloatHashable 1 class FloatHashable implemets Hashable < Float > { 3 Strig value ; 4 5 public Float hash ( { 6 float ret = 0; 7 float factor = 1.1 f; 8 for ( char c: value. tochararray ( { 9 ret += c *1.1 f; 10 factor += 0.1 f; 11 } 1 retur ret ; 13 } 14 } HashTable fuer Schlüssel/Wert Paare Die Schlüssel müsse icht vom gleiche Typ sei, soder ur Utertype vo Hashable sei. Ma beachte, dass zwar ei gemeisamer ge. Typ K für alle Schlüssel agegebe wird, durch die wildcard i de Methode-Sigature ka aber bei jedem Aufruf auch ei Utertyp vo K beutzt werde. Häufige Fehler: HashTable< > exteds Hashable< > sagt aus, dass der HashTable selbst Hashable ist, was weig Si ergibt. HashTable<K exteds Hashable<K>, V> ist zwar soweit richtig, schräkt aber uötigerweise alle Schlüssel auf eie Type ei.

5 iterface HashTable 1 public iterface HashTable <K, V> { 3 public void isert ( Hashable <? exteds K> key, V value ; 4 public void remove ( Hashable <? exteds K> key ; 5 public V search ( Hashable <? exteds K> key ; 6 } Alterative Lösug, da die Aufgabestellug wohl etwas schwammig war. Hierbei ist der Rückgabewert der Hashfuktio stets it, daher stellt sich die Frage ach der Kompatibilität icht. 1 public iterface Hashable { public it hash (; 3 } class Hashable A dieser Stelle stößt der simple Asatz a seie Greze, da ma icht mehr typsicher ausdrücke ka, dass es sich um eie Implemetatio für float Werte hadelt. Vo der Klasse Float zu erbe wäre hier zwar die richtige Idee, fuktioiert aber icht, da Float eie fial Klasse ist. class FloatHashable 1 class FloatHashable implemets Hashable { Float value ; 3 public it hash ( { 4 retur Float. floattoitbits ( value ; 5 } 6 } Alterativer Hashtable class HashTable 1 public iterface HashTable <V> { 3 public void isert ( Hashable key, V value ; 4 public void remove ( Hashable key ; 5 public V search ( Hashable key ; 6 } Aufgabe 3 Geordete Wörterbücher (Autor: Alexader Pepper 10 Pukte Zähle sie vier Datestrukture für das geordete Wörterbuchproblem ud die asymptotische Laufzeit der dafür relevate Operatioe auf. Erkläre sie jeweils grob, i höchstes zwei Sätze, wie die Wörterbuchdate i der etsprechede Struktur orgaisiert sid. Lösug: Geordete Wörterbücher zeiche sich dadurch aus, dass sie icht ur wie ormale Wörterbücher, eie Wert uter eie Schlüssel ablege ud wieder abrufbar mache, soder dass sie auch Vorgäger ud Nachfolger eies Wertes (z.b. lexikographisch ausgebe köe.

6 Wichtige Fuktioe: void isert (K key, V value; void delete (K key; V lookup (K key; oder V search (K key; K ext (K key; //Nachfolgeschlüssel zu key K prev (K key; //Vorgägerschlüssel zu key Beispielaweisuge: 1 isert (" home ", " Zuhause "; isert (" star ", " Ster "; 3 isert (" light ", " Licht "; sert (" music ", " Musik "; 5 lookup (" light "; // retur : " Licht " 6 ext (" light "; // retur : " music " 7 prev (" light "; // retur : " home " Beispiel: Geordetes Wörterbuch Laufzeite (AC = Average Case, WC = Worst Case: isert delete search ext prev Liste O( O( O( O( O( Array O( O( O(log O(log O(log [bi. Suche] [bi. Suche] [bi. Suche] Biärbaum AV: O(log AV: O(log AV: O(log AV: O(log AV: O(log WC: O( WC: O( WC: O( WC: O( WC: O( -4 Baum O(log O(log O(log O(log O(log Rot-Schwarz O(log O(log O(log O(log O(log Baum Array AC: O(1 AC: O(1 AC: O(1 Θ( Θ( mit Hash WC: O( WC: O( WC: O( Die Strukture im Eizele: Doppelt Verkette Liste Jeder Datesatz (Key ud Value werde i eiem Objekt gespeichert, was eie Zeiger auf Vorgäger ud de Nachfolger habe. Der Zeiger auf de Nachfolger zeigt da immer auf de ächste Datesatz desse Key größer ist als der Key des aktuelle Datesatzes. Dyamisch wachsedes/schrumpfedes Array Der Datesatz wird sortiert i eiem Arrayfeld gespeichert. Falls mehr Datesätze als Arrayfelder vorhade sid, wird das Array vergrößert ud die alte Datesätze umkopiert. Biärer Suchbaum Jeder Datesatz ist ei Kote i eiem biäre Baum, desse likes Kid immer eie kleiere Key hat, als er Vater-Kote ud desse rechtes Kid aalog immer größer ist. Dieser Baum ka ubalaciert sei ud somit eie Worst-Case-Laufzeit vo O( habe. -4 Baum Balacierter Baum, der pro Kote bis zu drei Datesätze geordet speichert ud

7 zwei bis vier Kider hat (jeweils geordet. Im Vergleich zu Biäre Suchbäume ist dieser Baum immer balaciert ud hat deshalb eie Laufzeit vo O(log. Rot-Schwarz Baum Jeder Kote ist etweder Schwarz oder Rot. Wurzel ud jedes Blatt ist schwarz. Niemals dürfe zwei Kote hitereiader Rot sei. Wie der -4 Baum balaciert ud hat deshalb eie Laufzeite vo O(log. Array mit Hash-Fuktio Zu jedem Key wird mit eier Hash-Fuktio ei Hash-Wert errechet, der eiem Idex im Array eispricht. A dieser Stelle wird da der Datesatz gespeichert. Falls mehr als ei Datesatz i eiem Arrayfeld liegt (Kollisio, werde sie i eier (usortierte eifach-verkettete Liste gespeichert. Diese Datestruktur wird eigetlich für ormale Wörterbücher gebraucht. Adere Datetype, die aber für das geordete Wörterbuch ugeeiget sid: Warteschlage (Queue Gibt ur das Elemet aus, was am Lägste i der Warteschlage ist (removehead. Prioritätswarteschlage Biär-Heap Biomial-Heap Gibt ur das Elemet mit der iedrigste Priorität (getmi aus. Stack Gibt ur das Elemet aus (pop, was als letztes hizugefügt (push wurde. Aufgabe 4 Biäre Suchbäume (Autor: Max Neuma 10 Pukte Aufgabe: Biäre Suchbäume Im Allgemeie ist das Vereiige vo zwei biäre Suchbäume B 1, B zu eiem eizige icht effizieter möglich, als alle Kote eies Baumes i de adere eizufüge. Was wäre die Laufzeit dieses Vorgehes? Etwerfe Sie eie Algorithmus, der de spezielle Fall, dass alle Kote vo B eie größere Wert habe, als alle vo B 1, effiziet erket ud aschließed möglichst effiziet B 1 ud B zu eiem biärem Suchbaum vereiigt. Aalysiere Sie die asymptotische Laufzeit Ihres Algorithmus i Abhägigkeit vo der Baumhöhe. Hiweis: Der Algorithmus darf B 1 ud B zerstöre, d.h. ach dem Algorithmus müsse B 1, B icht mehr i ihrer ursprügliche Struktur erhalte sei. Lösug: Das Zusammemische zweier biärer Suchbäume zu eiem ist i O( möglich. Im schlimmste Fall beihaltet jeder Baum Elemete ud ist etartet. Somit muss mal i eie Tiefe vo midestes eigefügt werde, was i O( liegt. Nu soll der Spezialfall erkat werde, i dem alle Elemete aus B größer sid als die Elemete aus B 1. Wie i Abb. zu sehe ist ka i O(h Zeit das kleiste ud größte Elemet der beide Bäume bestimmt werde idem ma sich immer rechts

8 Abbildug 1: Suchbäume vor dem Zusammefüge (liks hält bis es icht mehr weiter geht. Ist u biggest i T1 immer och kleier als smallest i T, so wisse wir, dass auch alle adere Kote im eie Baum kleier als alle Kote des adere Baumes sid. Abbildug : Suchbäume ach dem Zusammefüge Um die beide Bäume zu vereiige wird, wie i Abb. zu sehe ist, der kleiste Kote aus B gelöscht ud als eue Wurzel eigesetzt, mit B 1 als like ud B als rechte Soh. Die beötigte Zeit hägt ur vo der Zeit ab, die ma beötigt um de kleiste Kote aus dem Baum zu etfere. Das Fide geschieht i O(h Schritte ud für das Umhäge der Zeiger beötige wir kostate Zeit. Die Gesamtzeit liegt also i O(h.

9 Algorithmus 1 : MergeBiSearchTree(T1, T #temporäre Variable iitialisiere biggestt1 T1 smallestt T #größtes ud kleistes Elemet bestimme while (biggestt1.right leer biggestt1 biggestt1.right while (smallestt.left leer smallestt smallestt.left #prüfe ob B 1 < B if (biggestt1 smallestt mergenormal(t1, T #Neue Wurzel eihäge else smallestt.father.left smallestt.right smallest.left T1 smallest.right T #Rückgabe des eue Wurzelkotes retur smallestt

Lösung: Datenstrukturen und Algorithmen SS17 Lösung - Klausur

Lösung: Datenstrukturen und Algorithmen SS17 Lösung - Klausur Prof. aa Dr. Ir. G. Woegiger T. Hartma, D. Korzeiewski, B. Tauer Aufgabe (O-Notatio): Trage Sie i (a) (e) jeweils das Symbol o oder Θ oder ω (i Worte: klei-o oder groß-theta oder klei- Omega) i die durch

Mehr

Musterlösung. Testklausur Vorkurs Informatik, Testklausur Vorkurs Informatik Musterlösung. Seite 1 von 10

Musterlösung. Testklausur Vorkurs Informatik, Testklausur Vorkurs Informatik Musterlösung. Seite 1 von 10 Musterlösug Name, Vorame, Matrikelummer Agabe sid freiwillig) Bitte ubedigt leserlich ausfülle Testklausur Vorkurs Iformatik, 27.09.20 Testklausur Vorkurs Iformatik 27.09.20 Musterlösug eite vo 0 Musterlösug

Mehr

11 Divide-and-Conquer und Rekursionsgleichungen

11 Divide-and-Conquer und Rekursionsgleichungen 160 11 DIVIDE-AND-CONQUER UND REKURSIONSGLEICHUNGEN 11 Divide-ad-Coquer ud Rekursiosgleichuge Divide-ad-Coquer Problem aufteile i Teilprobleme Teilproblem (rekursiv) löse Lösuge der Teilprobleme zusammesetze

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (02 Funktionenklassen) Prof. Dr. Susanne Albers

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (02 Funktionenklassen) Prof. Dr. Susanne Albers Vorlesug Iformatik 2 Algorithme ud Datestrukture (2 Fuktioeklasse) Prof. Dr. Susae Albers Beschreibug ud Aalyse vo Algorithme Mathematisches Istrumetarium zur Messug der Komplexität (des Zeitud Platzbedarfs

Mehr

3 T (d 1, l 2. ) + (6 + 2) falls d > 0 7 sonst. n 2. 4T ( n 2 ) + log 2 (n), falls n > 1 1, sonst

3 T (d 1, l 2. ) + (6 + 2) falls d > 0 7 sonst. n 2. 4T ( n 2 ) + log 2 (n), falls n > 1 1, sonst für Iformatik Modellierug ud Verifikatio vo Software Prof. aa Dr. Ir. Joost-Pieter Katoe Datestrukture ud Algorithme SS5 Lösug - Übug 3 Christia Dehert, Friedrich Gretz, Bejami Kamiski, Thomas Ströder

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

Übersicht. Datenstrukturen und Algorithmen. Rekursionsgleichungen. Übersicht. Vorlesung 6: Mastertheorem (K4) Joost-Pieter Katoen

Übersicht. Datenstrukturen und Algorithmen. Rekursionsgleichungen. Übersicht. Vorlesung 6: Mastertheorem (K4) Joost-Pieter Katoen Übersicht Datestrukture ud Algorithme Vorlesug 6: (K) Joost-Pieter Katoe Lehrstuhl für Iformatik 2 Software Modelig ad Verificatio Group 1 Substitutiosmethode Rekursiosbäume http://moves.rwth-aache.de/teachig/ss-15/dsal/

Mehr

Tutoraufgabe 1 (Rekursionsgleichungen):

Tutoraufgabe 1 (Rekursionsgleichungen): Prof. aa Dr. E. Ábrahám Datestrukture ud Algorithme SS4 Lösug - Übug F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe (Rekursiosgleichuge): Gebe Sie die Rekursiosgleichuge für die Laufzeit der folgede

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Techische Uiversität Müche Fakultät für Iformatik Lehrstuhl für Effiziete Algorithme Dr. Hajo Täubig Tobias Lieber Sommersemester 2011 Übugsblatt 1 13. Mai 2011 Grudlage: Algorithme ud Datestrukture Abgabetermi:

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

1 Randomisierte Bestimmung des Medians

1 Randomisierte Bestimmung des Medians Praktikum Diskrete Optimierug (Teil 0) 0.07.006 Radomisierte Bestimmug des Medias. Problemstellug ud Ziel I diesem Abschitt stelle wir eie radomisierte Algorithmus zur Bestimmug des Medias vor, der besser

Mehr

Der Groß-O-Kalkül. Additionsregel. Zunächst ein paar einfache "Rechen"-Regeln: " ": Sei. Lemma, Teil 2: Für beliebige Funktionen f und g gilt:

Der Groß-O-Kalkül. Additionsregel. Zunächst ein paar einfache Rechen-Regeln:  : Sei. Lemma, Teil 2: Für beliebige Funktionen f und g gilt: Der Groß-O-Kalkül Additiosregel Zuächst ei paar eifache "Reche"-Regel: Lemma, Teil 1: Für beliebige Fuktioe f g gilt: Zu beweise: ur das rechte "=" Zu beweise: jede der beide Mege ist jeweils i der adere

Mehr

n 2(a + bx i y i ) = 0 und i=1 n 2(a + bx i y i )x i = 0 i=1 gilt. Aus diesen beiden Gleichungen erhalten wir nach wenigen einfachen Umformungen

n 2(a + bx i y i ) = 0 und i=1 n 2(a + bx i y i )x i = 0 i=1 gilt. Aus diesen beiden Gleichungen erhalten wir nach wenigen einfachen Umformungen Regressio Dieser Text rekapituliert die i der Aalsis ud Statistik wohlbekate Methode der kleiste Quadrate, auch Regressio geat, zur Bestimmug vo Ausgleichsgerade Regressiosgerade ud allgemei Ausgleichpolome.

Mehr

Dritter Zirkelbrief: Ungleichungen

Dritter Zirkelbrief: Ungleichungen Matheschülerzirkel Uiversität Augsburg Schuljahr 014/015 Dritter Zirkelbrief: Ugleichuge Ihaltsverzeichis 1 Grudlage vo Ugleichuge 1 Löse vo Ugleichuge 3 3 Mittel 4 4 Mittelugleichuge 5 5 Umordugsugleichug

Mehr

1. Übungsblatt zu Algorithmen II im WS 2016/2017

1. Übungsblatt zu Algorithmen II im WS 2016/2017 Karlsruher Istitut für Techologie Istitut für Theoretische Iformatik Prof. Dr. Peter Saders Dr. Christia Schulz, Dr. Simo Gog Michael Atma. Übugsblatt zu Algorithme II im WS 06/07 http://algo.iti.kit.edu/algorithmeii

Mehr

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen Thema Fit i Mathe Musterlösuge 1 April Klassestufe 10 Wurzelfuktioe Uter der -te Wurzel eier icht-egative Zahl (i Zeiche: ) versteht ma die icht-egative Zahl, die mal mit sich selber multipliziert, die

Mehr

Wörterbuchmethoden und Lempel-Ziv-Codierung

Wörterbuchmethoden und Lempel-Ziv-Codierung Kapitel 3 Wörterbuchmethode ud Lempel-Ziv-Codierug I diesem Abschitt lere wir allgemei Wörterbuchmethode zur Kompressio ud isbesodere die Lempel-Ziv (LZ))-Codierug kee. Wörterbuchmethode sid ei eifaches

Mehr

Analysis ZAHLENFOLGEN Teil 4 : Monotonie

Analysis ZAHLENFOLGEN Teil 4 : Monotonie Aalysis ZAHLENFOLGEN Teil 4 : Mootoie Datei Nr. 40051 Friedrich Buckel Juli 005 Iteretbibliothek für Schulmathematik Ihalt 1 Eiführugsbeispiele 1 Mootoie bei arithmetische Folge Defiitioe 3 3 Welche Beweistechik

Mehr

II. Grundlagen der Programmierung. Variable: Literale (Konstanten) Operatoren & Ausdrücke. Variablendeklaration:

II. Grundlagen der Programmierung. Variable: Literale (Konstanten) Operatoren & Ausdrücke. Variablendeklaration: Techische Iformatik für Igeieure (TIfI) WS 20052006, Vorlesug 2 II. Grudlage der Programmierug Ekkart Kidler Überblick Sytaxdefiitio Variable ud Ausdrücke Aweisuge Literale (Kostate) Variable Out.pritl("Das

Mehr

Info2 Übungsstunde 5. Agenda. Lösungen U4. Java... more insights. Tipps zur Übung 5

Info2 Übungsstunde 5. Agenda. Lösungen U4. Java... more insights. Tipps zur Übung 5 Ifo2 Übugsstude 5 Ageda Lösuge U4 Java... more isights Tipps zur Übug 5 1 L4.A1 Stack Neeswertes Zwei Members: buffer ud size capacity := buffer.legth empty := size == 0 elemet idex := size void push(it

Mehr

Asymptotische Notationen

Asymptotische Notationen Foliesatz 2 Michael Brikmeier Techische Uiversität Ilmeau Istitut für Theoretische Iformatik Sommersemester 29 TU Ilmeau Seite 1 / 42 Asymptotische Notatioe TU Ilmeau Seite 2 / 42 Zielsetzug Igoriere vo

Mehr

Handout 2. Divide et impera Veni, vidi, vici Julius Caesar

Handout 2. Divide et impera Veni, vidi, vici Julius Caesar Datestruture & Algorithme 9 März 2016 Sebastia Millius, Sadro Feuz, Daiel Graf Hadout 2 Thema: Divide & Coquer (Mergesort, Biäre Suche), Hashig Divide et impera Vei, vidi, vici Julius Caesar Divide & Coquer

Mehr

Kapitel 10. Rekursion

Kapitel 10. Rekursion Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 1/14 1 Kapitel 10 Rekursio Rekursio Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 1/14 Ziele Das Prizip der rekursive

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen LGÖ Ks VMa Schuljahr 6/7 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Eperte 8 Polyomgleichuge ud -ugleichuge

Mehr

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden Folge ud Reihe Folge Eie Folge ist eie Abbildug der atürliche Zahle N = {0, 1,,...} i die Mege der (zumidest i de meiste Fälle) reelle Zahle R. I diesem Fall ka ma sich eie Folge als Pukte i eiem Koordiatesystem

Mehr

LGÖ Ks VMa 12 Schuljahr 2017/2018

LGÖ Ks VMa 12 Schuljahr 2017/2018 LGÖ Ks VMa Schuljahr 7/8 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Experte 8 Polyomgleichuge ud -ugleichuge

Mehr

HEUTE. Beispiele. O-Notation neue Einführung Ideen und Eigenschaften Aufgaben 47 und 52

HEUTE. Beispiele. O-Notation neue Einführung Ideen und Eigenschaften Aufgaben 47 und 52 11.02.04 1 HEUTE 11.02.04 3 Beispiele 2, 2 2, 2 +, 1 2 2 log habe asymptotisch gleiches Wachstum: O-Notatio eue Eiführug Idee ud Eigeschafte Aufgabe 47 ud 2 Aufteilugs- ud Beschleuigugssatz Idee ud Awedug

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik für Iformatiker -- 9 Folge -- 6.1.215 1 Folge: Defiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reihefolge wichtig,

Mehr

Positiv denken! Lösungen

Positiv denken! Lösungen Schülerzirkel Mathematik Fakultät für Mathematik. Uiversität Regesburg Positiv deke! Lösuge Aufgabe 1 (GMAMQM (ur für die Klasse 7/8) [ Pukte]). Seie a, b reelle Zahle. 1. Sei a 0 ud b 0. Zeige, dass a

Mehr

3 T (d 1, l 2. ) + (6 + 2) falls d > 0 7 sonst. n 2. 4T ( n 2 ) + log 2 (n), falls n > 1 1, sonst

3 T (d 1, l 2. ) + (6 + 2) falls d > 0 7 sonst. n 2. 4T ( n 2 ) + log 2 (n), falls n > 1 1, sonst Prof. aa Dr. Ir. Joost-Pieter Katoe Datestrukture ud Algorithme SS5 Tutoriumslösug - Übug 3 (Abgabe 3.05.05 Christia Dehert, Friedrich Gretz, Bejami Kamiski, Thomas Ströder Tutoraufgabe (Rekursiosgleichuge:

Mehr

3 Grenzwerte. 3.1 Grenzwerte von Folgen

3 Grenzwerte. 3.1 Grenzwerte von Folgen 03-grezwerte.cdf 3 Grezwerte 3. Grezwerte vo Folge Kovergez Mache Folge zeige ei spezielles Verhalte, we der Idex sehr groß wird. Sie äher sich eier bestimmte Zahl. Betrachte wir zum Beispiel die Folge

Mehr

Lösungsskizzen Mathematik für Informatiker 6. Aufl. Kapitel 4 Peter Hartmann

Lösungsskizzen Mathematik für Informatiker 6. Aufl. Kapitel 4 Peter Hartmann Lösugssizze Mathemati für Iformatier 6. Aufl. Kapitel 4 Peter Hartma Verstädisfrage 1. We Sie die Berechug des Biomialoeffiziete mit Hilfe vo Satz 4.5 i eiem Programm durchführe wolle stoße Sie schell

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud -ugleichuge 6 Für Eperte 9 Polyomgleichuge ud -ugleichuge Defiitio: Ei Term

Mehr

Algorithmentheorie Randomisierung

Algorithmentheorie Randomisierung Algorithmetheorie 03 - Radomisierug Prof. Dr. S. Albers Prof. Dr. Th. Ottma Radomisierug Klasse vo radomisierte Algorithme Radomisierter Quicksort Radomisierter Primzahltest Kryptographie 2 1. Klasse vo

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8 Mathematisches Istitut der Uiversität Müche Prof Dr Peter Otte WiSe 203/4 Lösug 8 032203 Übuge zur Aalysis für Iformatiker ud Statistiker Lösug zu Blatt 8 Aufgabe 8 [8 Pukte] (a) Für alle N sei = (+) Wir

Mehr

10 Aussagen mit Quantoren und

10 Aussagen mit Quantoren und 0 Aussage mit Quatore ud 0.6. Eisatz vo (bereits bekater) Eistezaussage Bisher hatte wir Eistezbeweise geführt, idem wir ei passedes Objekt agegebe habe ( Setze... ). Stattdesse ka ma auch auf bereits

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004) Aufgabe 7. Ubeschräktes

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Sebastia Schwarz WS 04/05 0..04 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 4. Übugsblatt

Mehr

Probeklausur. (b) Was geschieht, wenn man ein Quantenbit in einem solchen Zustand misst?

Probeklausur. (b) Was geschieht, wenn man ein Quantenbit in einem solchen Zustand misst? Quaterecher Witersemester 5/6 Theoretische Iformatik Uiversität Haover Dr. Matthias Homeister Dipl.-Math. Heig Schoor Probeklausur Hiweis: Diese Probeklausur ist kürzer als die tatsächliche Klausur.. a

Mehr

Lösungsskizzen Mathematik für Informatiker 5. Aufl. Kapitel 3 Peter Hartmann

Lösungsskizzen Mathematik für Informatiker 5. Aufl. Kapitel 3 Peter Hartmann Lösugsskizze Mathematik für Iformatiker 5. Aufl. Kapitel 3 Peter Hartma Verstädisfrage. Ka ma ei Axiom beweise? Nei!. Ka ei Beweis eier Aussage richtig sei, we im Iduktiosschluss die Iduktiosaahme icht

Mehr

1 Einführende Worte 2

1 Einführende Worte 2 Sara Adams Semiarvortrag Rekursive Fuktioe - WS 2004/05 1 Sara Adams Semiarvortrag Rekursive Fuktioe - WS 2004/05 2 1 Eiführede Worte Semiar Grudlegede Algorithme Auflösug vo Rekursioe 1.1 Beispiele Bevor

Mehr

Rekursion und Dateioperationen

Rekursion und Dateioperationen Lerziele: Rekursio ud Dateioperatioe Vertiefe der Ketisse über die die Verwedug vo rekursive Fuktioe ud Dateioperatioe. Aufgabe 1: Mergesort (Beispiel für die Verwedug rekursiver Fuktiosaufrufe) Ei effizietes

Mehr

Aufgaben zur Übung und Vertiefung

Aufgaben zur Übung und Vertiefung Aufgabe zur Übug ud Vertiefug ARITHMETISCHE ZAHLENFOLGEN Berufliches Gymasium / Uterstufe () Stelle Sie fest, welche der gegebee Folge arithmetisch sid: Bestimme Sie zuächst die erste füf Folgeglieder,

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

Übung 2 (für Pharma/Geo/Bio) Uni Basel. Besprechung der Lösungen: 1. Oktober 2018 in den Übungsstunden

Übung 2 (für Pharma/Geo/Bio) Uni Basel. Besprechung der Lösungen: 1. Oktober 2018 in den Übungsstunden Mathematik I für Naturwisseschafte Dr. Christie Zehrt 7.09.18 Übug (für Pharma/Geo/Bio) Ui Basel Besprechug der Lösuge: 1. Oktober 018 i de Übugsstude Aufgabe 1 Sid die folgede Abbilduge f : X Y umkehrbar?

Mehr

Kapitel 11. Rekursion

Kapitel 11. Rekursion Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Kapitel 11 Rekursio Rekursio 1 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Ziele Das Prizip der rekursive

Mehr

+ a 3 cos (3ωt) + b 3 sin (3ωt)

+ a 3 cos (3ωt) + b 3 sin (3ωt) Fourier-Reihe Wir gehe aus vo eier gegebee periodische Fuktio f (t). Die Fuktio hat die Fudametalperiode ( Schwigugsdauer ) ud damit die Grud-Kreisfrequez ω = π. Zeit t Periode Die Fuktio f (t) soll zerlegt

Mehr

Übungen zur Analysis I WS 2008/2009

Übungen zur Analysis I WS 2008/2009 Mathematisches Istitut der Uiversität Heidelberg Prof. Dr. E. Freitag /Thorste Heidersdorf Übuge zur Aalysis I WS 008/009 Blatt 3, Lösugshiweise Die folgede Hiweise sollte auf keie Fall als Musterlösuge

Mehr

Basisfall Vergleichsbasiertes Sortieren Programmieraufgabe Algorithm Engineering

Basisfall Vergleichsbasiertes Sortieren Programmieraufgabe Algorithm Engineering Basisfall Vergleichsbasiertes Sortiere Programmieraufgabe Algorithm Egieerig Deis Felsig 013-0-07 1 Eileitug I dieser Programmieraufgabe sollte Basisfälle für vergleichsbasiertes Sortiere utersucht werde.

Mehr

Software Engineering I. Musterlösungen zur Hauptklausur vom Aufgabe 1

Software Engineering I. Musterlösungen zur Hauptklausur vom Aufgabe 1 1 Software Egieerig I Musterlösuge zur Hauptklausur vom 05.08.2000 Aufgabe 1 a) Abb. 1.1 zeigt ei ER-Diagramm, das zur Beatwortug der Afrage i der Aufgabestellug ausreicht: Perso E-Mail-Adresse KotoNr

Mehr

Tutorium Mathematik I, M Lösungen

Tutorium Mathematik I, M Lösungen Tutorium Mathematik I, M Lösuge 16. November 2012 *Aufgabe 1. Ma utersuche die folgede Reihe auf Kovergez (a) ( 1) (1 ) (b) ( ) 2 +1 (c) (!) 3 10 (3)! (d) (e) (f) 2 +3 3 2 +1 3 ( 2 +1) 2 + 3 ( 2 +3) (g)

Mehr

( ), der genau auf der Geraden ( ) 2 ( ) #( ) 8. Lineare Regression. = f i. Nach der Summe der kleinsten. mx i

( ), der genau auf der Geraden ( ) 2 ( ) #( ) 8. Lineare Regression. = f i. Nach der Summe der kleinsten. mx i 8. Lieare Regressio 8.1. Die Methode der kleiste Quadrate Regressiosgerade bzw. Ausgleichsgerade sid eie Auswertug vo statistische Messdate. Ziel dieses Verfahres ist es, Beziehuge zwische zwei Merkmale

Mehr

Teil VII : Zeitkomplexität von Algorithmen

Teil VII : Zeitkomplexität von Algorithmen Teil VII : Zeitkomplexität vo Algorithme 1. Algorithme ud ihr Berechugsaufwad. Aufwadsabschätzug Wachstum vo Fuktioe 3. Aufwad vo Suchalgorithme K. Murma, H. Neuma, Fakultät für Iformatik, Uiversität Ulm,

Mehr

Teil VII : Zeitkomplexität von Algorithmen

Teil VII : Zeitkomplexität von Algorithmen Teil VII : Zeitkomplexität vo Algorithme. Algorithme ud ihr Berechugsaufwad. Aufwadsabschätzug Wachstum vo Fuktioe. Aufwad vo Suchalgorithme K. Murma, H. Neuma, Fakultät für Iformatik, Uiversität Ulm,

Mehr

Dynamisches Programmieren Stand

Dynamisches Programmieren Stand Dyamisches Programmiere Stad Stad der Dige: Dyamische Programmierug vermeidet Mehrfachberechug vo Zwischeergebisse Bei Rekursio eisetzbar Häufig eifache bottom-up Implemetierug möglich Das Subset Sum Problem:

Mehr

HA-Lösung TA-Lösung Diskrete Strukturen Tutoraufgabenblatt 13. Besprechung in KW05/2018

HA-Lösung TA-Lösung Diskrete Strukturen Tutoraufgabenblatt 13. Besprechung in KW05/2018 Techische Uiversität Müche Witer 2017/18 Prof. J. Esparza / Dr. M. Lutteberger, S. Sickert 2018/02/08 HA-Lösug TA-Lösug Diskrete Strukture Tutoraufgabeblatt 13 Besprechug i KW05/2018 Beachte Sie: Soweit

Mehr

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD.

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD. ZAHLENFOLGEN Eiführede Beispiele Arithmetische Folge Datei Nr. 400 SW Das komplette Mauskript befidet sich auf der Mathematik - CD Friedrich Buckel Februar 00 Iteratsgymasium Schloß Torgelow Ihalt Eiführede

Mehr

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man: Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes

Mehr

Kapitel 11. Rekursion

Kapitel 11. Rekursion Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 17/18 Kapitel 11 Rekursio Rekursio 1 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 17/18 Ziele Das Prizip der rekursive

Mehr

( 1) n a n. a n 10. n=1 a n konvergiert, dann gilt lim a n = 0. ( 1) n+1

( 1) n a n. a n 10. n=1 a n konvergiert, dann gilt lim a n = 0. ( 1) n+1 Kapitel 8 Aufgabe Verstädisfrage Aufgabe 8. Ist es möglich, eie divergete Reihe der Form a zu kostruiere, wobei alle a > 0 sid ud a 0 gilt. Beispiel oder Gegebeweis agebe. Aufgabe 8. Gegebe ist eie Folge

Mehr

Klausur 1 über Folgen

Klausur 1 über Folgen www.mathe-aufgabe.com Klausur über Folge Hiweis: Der GTR darf für alle Aufgabe eigesetzt werde. Aufgabe : Bestimme eie explizite ud eie rekursive Darstellug! a) für eie arithmetische Folge mit a = 6, ;

Mehr

Musterlösung zu Übungsblatt 2

Musterlösung zu Übungsblatt 2 Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 2008/09 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum 4. Übugsblatt

Mehr

2 Asymptotische Schranken

2 Asymptotische Schranken Asymptotische Schrake Sowohl die Laufzeit T () als auch der Speicherbedarf S() werde meist durch asymptotische Schrake agegebe. Die Kostate c i, welche i der Eiführug deiert wurde, sid direkt vo der Implemetatio

Mehr

Nicht-Anwendbarkeit des Master- Theorems

Nicht-Anwendbarkeit des Master- Theorems Nicht-Awedbarkeit des Master- Theorems Beispiel: Betrachte die Rekursiosgleichug T () = 2T ( 2 ) + log. Es gilt sicherlich f () = Ω( log b a ) = Ω(), aber icht f () = Ω( log b a+ɛ ). Ma beachte, dass f

Mehr

Vorkurs Mathematik für Informatiker Potenzen und Polynome --

Vorkurs Mathematik für Informatiker Potenzen und Polynome -- Vorkurs Mathematik für Iformatiker -- Poteze ud Polyome -- Thomas Huckle Stefa Zimmer (Stuttgart) 6.0.06 Vorwort Es solle Arbeitstechike vermittelt werde für das Iformatikstudium Der wesetliche Teil ist

Mehr

Prüfungsaufgaben der Abschlussprüfung an Realschulen in Bayern! mit ausführlichen Musterlösungen. und Querverweise auf Theoriedateien der Mathe-CD

Prüfungsaufgaben der Abschlussprüfung an Realschulen in Bayern! mit ausführlichen Musterlösungen. und Querverweise auf Theoriedateien der Mathe-CD Vektor-Geometrie Koordiategeometrie Prüfugsaufgabe uter Verwedug vo Abbildugsgleichuge Prüfugsaufgabe der Abschlussprüfug a Realschule i Bayer! mit ausführliche Musterlösuge ud Querverweise auf Theoriedateie

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithme ud Datestrukture Übug c: Totale Korrektheit, Partielle Korrektheit, Hoare Kalkül, Assertios (Zusicheruge) Partielle Korrektheit Falls ei Programm termiiert ud die pezifikatio erfüllt, heißt

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

Aufgabe G 1.1. [Vollständige Induktion, Teleskopsumme] n k 3 = n N : k(k + 1) = 1 1

Aufgabe G 1.1. [Vollständige Induktion, Teleskopsumme] n k 3 = n N : k(k + 1) = 1 1 Istitut für Aalysis ud Algebra Mathematik I für Studierede der E-Techik Prof Dr Volker Bach WiSe 06/7 M Sc Birgit Komader M Sc Christoph Brauer Theme: Groe Übug - Lösuge Vollstädige Iduktio - Teleskopsumme

Mehr

Informatik II Übung 10

Informatik II Übung 10 Iformatik II Übug 10 Floria Scheidegger florsche@studet.ethz.ch Folie mit freudlicher Geehmigug adaptiert vo Gábor Sörös ud Simo Mayer gabor.soros@if.ethz.ch, simo.mayer@if.ethz.ch 9.5.2013 Iformatik II

Mehr

Demo-Text für INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. ANALYSIS Vollständige Induktion FRIEDRICH W.

Demo-Text für   INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.   ANALYSIS Vollständige Induktion FRIEDRICH W. ANALYSIS Vollstädige Iduktio Datei Nr. 40080 Stad 14. März 018 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 40080 Beweismethode: Vollstädige Iduktio Vorwort Die Methode der vollstädige Iduktio

Mehr

Lösungen 4 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren

Lösungen 4 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren Lösuge 4 zum Mathematik-Brückekurs für alle, die sich für Mathematik iteressiere µfsr, TU Dresde Versio vom 26. September 2016, Fehler ud Verbesserugsvorschläge bitte a beedikt.bartsch@myfsr.de Aufgabe

Mehr

Monotonie einer Folge

Monotonie einer Folge Mootoie eier Folge 1 E Mootoe Folge We jedes Folgeglied eier Folge größer oder gleich dem vorhergehede Folgeglied ist a 1 a ℕ so et ma die Folge mooto steiged (oder mooto wachsed). Die geometrische Folge

Mehr

Lösungen zur Präsenzübung 6

Lösungen zur Präsenzübung 6 Lösuge zur Präsezübug 6 Mirko Getzi Uiversität Bielefeld Fakultät für Mathematik. Dezember 203 Ich gebe keie Gewähr auf eie vollstädige Richtigkeit der Lösuge zu de Übugsaufgabe. Das Dokumet hat jedoch

Mehr

LV "Grundlagen der Informatik" Programmierung in C (Teil 2)

LV Grundlagen der Informatik Programmierung in C (Teil 2) Aufgabekomplex: Programmiere i C (Teil vo ) (Strukturierte Datetype: Felder, Strukture, Zeiger; Fuktioe mit Parameterübergabe; Dateiarbeit) Hiweis: Alle mit * gekezeichete Aufgabe sid zum zusätzliche Übe

Mehr

Fakultät und Binomialkoeffizient Ac

Fakultät und Binomialkoeffizient Ac Faultät ud Biomialoeffiziet Ac 2013-2016 Die Faultät (atürliche Zahl): Die Faultät Faultät ist so defiiert:! = 1 2 3... ( - 1) ; 0! = 1 Die reursive Defiitio ist: Falls = 0, da! = 1; sost! = ( - 1)! JAVA-Methode(iterativ):

Mehr

Prof. Dr. Wolfgang Konen Mathematik 1, WS Wozu InformatikerInnen Folgen brauchen

Prof. Dr. Wolfgang Konen Mathematik 1, WS Wozu InformatikerInnen Folgen brauchen Prof. Dr. Wolfgag Koe Mathematik WS0 0.0.0. Zahlefolge.. Wozu IformatikerIe Folge brauche Kovergez vo Folge ist die Grudlage der Aalysis (Differetial- ud Itegralrechug) Traszedete Gleichuge wie l x 50

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. R. Köig Dr. M. Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Z8.. Kriterie für strege Mootoie Mathematik für Physiker 2 (Aalysis ) MA9202 Witersem. 207/8 Lösugsblatt 8

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik ür Iormatiker -- 8 Folge -- 11.10.2015 1 Folge: Deiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reiheolge wichtig,

Mehr

Quantensuchalgorithmen

Quantensuchalgorithmen Freie Uiversität Berli Semiar über Algorithme für Quatecomputer Sommersemester 00 Quatesuchalgorithme Reihardt Karapke karapke@if.fu-berli.de Simo Rieche rieche@if.fu-berli.de Quatesuchalgorithme Ihaltsverzeichis

Mehr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr ZAHLENFOLGEN Teil 2 Arithmetische ud geometrische Folge Die wichtigste Theorieteile ud gaz ausführliches Traiig Datei Nr. 4002 Neu Überarbeitet Stad: 7. Juli 206 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Informatik II Dynamische Programmierung

Informatik II Dynamische Programmierung lausthal Iformatik II Dyamische Programmierug. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Zweite Techik für de Algorithmeetwurf Zum Name: "Dyamische " hat ichts mit "Dyamik" zu tu, soder mit

Mehr

x = a + b α + β. b) Wir erweitern den Bruch geeignet (Standardtrick: z z ist reell, daher ergibt 1/z = 1/z z/ z = z/(z z) einen reellen Nenner):

x = a + b α + β. b) Wir erweitern den Bruch geeignet (Standardtrick: z z ist reell, daher ergibt 1/z = 1/z z/ z = z/(z z) einen reellen Nenner): Karlsruher Istitut für Techologie (KIT) Istitut für Aalysis Priv-Doz Dr P C Kustma Dr D Frey WS 0/ Höhere Mathematik I für die Fachrichtug Physik Lösugsvorschläge zum 3 Übugsblatt Aufgabe Zuächst zum Supremum:

Mehr

Mathematik 1 für Informatik

Mathematik 1 für Informatik Guter Ochs. Juli 203 Mathematik für Iformatik Probeklausur Lösugshiweise. a Bestimme Sie per NewtoIterpolatio ei Polyom px mit möglichst kleiem Grad, so dass p = p0 = p = sowie p2 = 7. i x i y i d i,i

Mehr

Sortieren DNA-Array oder DNA-Chip

Sortieren DNA-Array oder DNA-Chip Sortiere DNA-Array oder DNA-Chip Jeder Pukt des Feldes repräsetiert ei Ge g i des Mesche. Ei Ge ist der Baupla eies molekulare Bausteis useres Körpers. Mittels eies DNA-Chips ka ma gleichzeitig für viele

Mehr

Nachtrag. Alternatives Buch zum Satz von Fermat 1999 bei amazon nur noch gebraucht

Nachtrag. Alternatives Buch zum Satz von Fermat 1999 bei amazon nur noch gebraucht Nachtrag Alteratives Buch zum Satz vo Fermat 1999 bei amazo ur och gebraucht 1 Uedliche (Zahle-) Mege 2 Wiederholug Steuer Bei eiem Eikomme vo ud eiem Steuersatz vo 33% müsse Sie Steuer zahle. Da werde

Mehr

Aufgaben zu Kapitel 8

Aufgaben zu Kapitel 8 Aufgabe zu Kapitel 8 Aufgabe zu Kapitel 8 Verstädisfrage Aufgabe 8. Ist es möglich, eie divergete Reihe der Form a zu kostruiere, wobei alle a > 0 sid ud a 0 gilt. Beispiel oder Gegebeweis agebe. Aufgabe

Mehr

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id,

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id, Kreisabbilduge Im Folgede sehe wir us eie gaz spezielle Klasse vo dyamische Systeme a: Abbilduge auf dem Kreis. Diese sid eifach geug, so dass wir sie och recht leicht aalysiere köe, habe aber adererseits

Mehr

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015 Lösuge zum Feriekurs Aalysis, Vorlesug Witersemester 04/05 Fabia Hafer, Thomas Baldauf I Richtig oder Falsch Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche Aussage. Gebe Sie

Mehr

186.813 Algorithmen und Datenstrukturen 1 VU 6.0 1. Übungstest SS 2012 26. April 2012

186.813 Algorithmen und Datenstrukturen 1 VU 6.0 1. Übungstest SS 2012 26. April 2012 Techische Uiversität Wie Istitut für Computergraphik ud Algorithme Arbeitsbereich für Algorithme ud Datestrukture 186.813 Algorithme ud Datestrukture 1 VU 6.0 1. Übugstest SS 2012 26. April 2012 Mache

Mehr

Mathematische Rekursion. Rekursion. Rekursion in C++ Mathematische Rekursion. Definition. 1, falls n 1. n! = n (n-1)!, falls n > 1

Mathematische Rekursion. Rekursion. Rekursion in C++ Mathematische Rekursion. Definition. 1, falls n 1. n! = n (n-1)!, falls n > 1 Mathematische Rekursio Rekursio o Viele mathematische Fuktioe sid sehr atürlich rekursiv defiierbar, d.h. o die Fuktio erscheit i ihrer eigee Defiitio. Mathematische Rekursio o Viele mathematische Fuktioe

Mehr

Für eine n n-matrix A müssen wir die Gleichung. lösen. Falls (A λi) invertierbar ist, dann ist. Dann ist aber λ kein Eigenwert.

Für eine n n-matrix A müssen wir die Gleichung. lösen. Falls (A λi) invertierbar ist, dann ist. Dann ist aber λ kein Eigenwert. Geschlossees Leotief-Modell Ei Leotief-Modell für eie Volkswirtschaft heißt geschlosse, we der Kosum gleich der Produktio ist, d.h. we Kapitel 5 Eigewerte V x = x Es hadelt sich dabei um eie Spezialfall

Mehr

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Ordnung. Definition 2.1 Man nennt eine Ordnung für K, wenn. 1. für alle a K gilt a a (Reflexivität),

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Ordnung. Definition 2.1 Man nennt eine Ordnung für K, wenn. 1. für alle a K gilt a a (Reflexivität), Aalysis 1, Woche 2 Reelle Zahle A1 2.1 Ordug Defiitio 2.1 Ma et eie Ordug für K, we 1. für alle a K gilt a a (Reflexivität), 2. für alle a, b K mit a b ud b a gilt a = b (Atisymmetrie), 3. für alle a,

Mehr