Graphen quadratischer Funktionen und deren Nullstellen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Graphen quadratischer Funktionen und deren Nullstellen"

Transkript

1 Binomische Formeln Mithilfe der drei binomischen Formeln kann man Funktionen bzw. Gleichungen vereinfachen. 1. Binomische Formel ( Plusformel ) a a b+ b 2 = (a+ b) 2 Herleitung: (a+ b) 2 = (a+ b) (a+ b) = a 2 + ab+ ba+ b 2 = a 2 + 2a b+ b 2 Beispiel 1: = (3+ 4) 2 = 7 2 = 49 Beispiel 2: x x = ( x+ 3) 2 2. Binomische Formel ( Minusformel ) a 2 2ab+ b 2 = (a b) 2 Herleitung: (a b) 2 = (a b) (a b) = a 2 ab ba+ b 2 = a 2 2 a b+ b 2 Beispiel 1: = (8 6) 2 = 2 2 = 4 Beispiel 2: x 2 2 x = (x 7) 2 3. Binomische Formel ( Plusminusformel ) a 2 b 2 = (a+ b) (a b) Herleitung: (a+ b) (a b) = a 2 ab+ ba b 2 = a 2 b 2 Beispiel 1: (4+ 2) (4 2) = = 16 4 = 12 Beispiel 2: (x+ 3) (x 3) = x = x 2 9 Seite 1 von 11

2 Parabeln als Graphen quadratischer Funktionen Die Funktion f (x) = x 2 beschreibt den Graph einer Normalparabel. Eine Normalparabel hat folgende Eigenschaften: symmetrisch zur y Achse Schnittpunkt S (0 0) ist der tiefste Punkt Gleichung y=x 2 Öffnungsfaktor a: Definition: Der Koeffizient a bestimmt die Öffnung der Parabel und wird Öffnungsfaktor genannt. Die Gleichung y=ax 2 (mit a R ; a 0 ) entsteht wie folgt aus der Normalparabel: a> 1 enger als Normalparabel alle y Werte der Normalparabel werden mit den Faktor a multipliziert und damit vergrößert 0< a< 1 weiter als die Normalparabel alle y Werte der Normalparabel werden mit dem Faktor a multipliziert und damit verkleinert a Veränderung der Parabel zunächst gemäß dem Öffnungsfaktor a danach: Spiegelung an der x Achse Parabel nach unten geöffnet Scheitel höchster Punkt Alle Parabel mit den Öffnungsfaktor a=1 oder a= 1 können mithilfe der Parabelschablone gezeichnet werden. Seite 2 von 11

3 Die Gleichung y=a( x d ) 2 + e mit a,d,e R ; a 0 beschreibt eine Parabel, die aus der Gleichung y=ax 2 durch Verschiebung um d in x-richtung und um e in y Richtung entsteht. Aus der Gleichung kann man folgende Eigenschaften ablesen: Die Symmetrieachse x=d und den Scheitel S (d /e) Außerdem wird sie Scheitelpunktform der Parabelgleichung genannt. Aus den Koeffizienten a und e kann man die Wertemenge als auch die Anzahl der Schnittpunkte der Parabel mit der x-achse erkennen. Beispiel 1: Eigenschaften: f (x): y = 4(x 3) Verschiebung um 3 nach rechts Verschiebung um 2 nach oben a = + 4 a > 0 nach oben geöffnet S ( 3 2 ) W = [ 2 ; [ Beispiel 2: Eigenschaften: f (x): y = 1 3 ( x+ 2)2 3 2 nach links 3 nach unten a = 1 3 a < 0 nach unten geöffnet S ( 2 3 ) W = [ 3 ; [ Seite 3 von 11

4 Quadratische Ergänzung: Das quadratische Ergänzen, ist ein Verfahren, mit dem man die allgemeine Form der Parabelgleichung y = a x 2 + b x + c in die Scheitelpunktform y = a ( x d ) 2 + e umwandeln kann. Der Term x 2 ± b x wird zu einem vollständigen Quadrat (x ± b 2 ) 2 ergänzt. Beispiel 1: y = x 2 2x + 3 (allgemeine Form) 1. Den Term x 2 2x zu einem vollständigen Quadrat (x 1) 2 ergänzen: (a b) 2 y = ( x 2 2 x ) +3 y = (a 2 2 a b + b 2 b 2 ) aus der Klammer ziehen und zu 3 addieren. y = ( x 1) y = ( x 1) Beispiel 2: y = 6x x + 60 (allgemeine Form) 1. Den Öffnungsfaktor 6 ausklammern: y = 6 ( x 2 + 5x) Den Term x 2 + 5x zu einem vollständigen Quadrat (x + 2,5) 2 ergänzen: (a+ b) 2 y = 6 ( x x 2,5 + 2,5 2 2,5 2 ) + 60 y = (a a b + b 2 b 2 ) 3. 2,5 2 aus der Klammer ziehen, mit 6 multiplizieren und zu 60 addieren. y = 6 ( x + 2,5) 2 2, y = 6 ( x + 2,5) ,5 Seite 4 von 11

5 Lösen quadratischer Gleichungen Definition: Eine quadratische Gleichung ist eine Gleichung mit reellen Koeffizienten, die in die Form ax 2 + bx + c = 0 durch Äquivalenzumformungen gebracht werden kann. Die Lösungen einer quadratischen Gleichung lassen sich als Nullstelle der zugehörigen quadratischen Funktion interpretieren. Deshalb kann eine quadratische Gleichung zwei, eine oder auch keine Lösung besitzen. Die Lösungen können durch Näherungswerte aus dem Graphen abgelesen werden. Rechnerisches Lösen: Zuerst gründlich überlegen, ob man die Gleichung auch durch inhaltliche Überlegungen einfacher lösen kann! Beispiele: 1) b = 0 2x 2 6 = 0 x 2 = 3 / 2 = ± 3 2) binomische Formel bereits vollständig x x + 4 = 0 (x+ 2) 2 = 0 x = 2 3) c = 0 x 2 x = 0 x(x 1) = 0 = 0 x 2 = 1 Seite 5 von 11

6 Lösen mit der quadratischen Ergänzung: Beispiel 1: 3x 2 6x 9 = 0 x 2 2x 3 = 0 x 2 2x = 0 (x 1) 2 4 = 0 (x 1) 2 = 4 : 3 Zwei Lösungen x 1 = ± 4 = = 2+1 x 2 = 4 +1 = 2+1 = 3 ; x 2 = 1 Beispiel 2: x 2 2x+1 = 0 x 2 2x = 0 ( x 1) 2 = 0 (x 1) = 0 x = 1 Eine Lösung Beispiel 3: x 2 + 4x+ 6 = 0 x x = 0 ( x+ 2) 2 + (( 2 2 )+ 6) = 0 ( x+ 2) = 0 ( x+ 2) 2 = 2 Keine Lösung Wurzel aus 2 ist nicht definiert! Seite 6 von 11

7 Lösen der quadratischen Gleichung mit der Lösungsformel Quadratische Gleichung: ax 2 +bx+c = 0 (a 0) Die quadratische Ergänzung ergibt: / 2 = b ± b2 4 a c 2a = b ± D 2a Betrachtung der Diskriminanten D D = b 2 4 a c Daraus ergeben sich 3 Möglichkeiten! 1. Möglichkeit: D = 0 Gleichung hat eine Lösung Berechnung der Nullstelle: x = b 2a 2. Möglichkeit: D < 0 Gleichung hat keine Lösung 3. Möglichkeit: D > 0 Gleichung hat zwei Lösungen Berechnung der Nullstellen: / 2 Beispiele: = b ± D 2a 1) 0,25 x 2 0,5 x 0,75 = 0 D=( 0,5) 2 4 0,25 ( 0,75) = 1 / 2 = 0,5± 1 2 0,25 = 0,5±1 0,5 = 0,5 0,5 = 1 ; x = 1,5 2 0,5 = 3 zwei Lösungen 2) 0,5 x 2 0,6 x 0,18 = 0 D = ( 0,6) 2 4 ( 0,5) ( 0,18) = 0 x = 0,6 2 ( 0,5) = 0,6 eine Lösung 3) 2x 2 +3x 1,5 = 0 D = ( 2) ( 1,5) = 3 < 0 keine Lösung Seite 7 von 11

8 BMT Aufgaben Aufgabe 1: (nach BMT 2008) Geben Sie einen möglichen Funktionsterm für die Funktion f bzw. g an, die die jeweils angegebene Eigenschaft haben soll. Eine Definitionsmenge braucht nicht angegeben zu werden; es wird die für den jeweiligen Term maximal mögliche voraussetzt. Die Funktion f hat genau zwei Nullstellen 0 und 5: z.b. f(x) = x (x -5 ) = x² 5x ( Das ist eine Parabel) Aufgabe 2: (nach BMT 2010) Eine Parabel ist gegeben durch die Gleichung y = 0,5x² x 4. Carolin hat mit Hilfe der Lösungsformel für quadratische Gleichungen berechnet, dass die Parabel bei = 2 und x 2 = 4 die x Achse schneidet. a) Bestätigen Sie Carolins Ergebnisse durch ausführliches Rechnen. y = 0,5 x 2 x 4 D = b 2 4a c = ( 1) 2 4 0,5 ( 4) = 9 / 2 = b ± D 2a = ( 1) ± 9 2 0,5 = 1 ± 3 1 = 4 1 = 4 x 2 = 2 1 = 2 b) Carolin beginnt nun, den x Wert des Scheitels der Parabel durch quadratische Ergänzung zu bestimmen. Ergänzen Sie sinnvoll, was ihr ältere Bruder dazu sagen könnte. Das geht hier einfacher. Wegen der Symmetrie der Parabel liegt der x Wert des Scheitels in der Mitte zwischen den Nullstellen, also bei x = 1. Leider lässt sich dieses Verfahren bei den Parabeln, die die x Achse nicht schneiden, nicht anwenden. Seite 8 von 11

9 Aufgabe 3: (nach BMT 2011) Marie möchte ihren Pool mit einer Brücke überspannen, deren Auflagepunkte 6 m voneinander entfernt sind. Dazu fertigt sie eine Graphik an, die den Brückenbogen vereinfacht darstellt. Der Brückenbogen wird durch eine Funktionsgleichung der Form I, II, III mit a IR 0 beschrieben. I y = a ( x 2 9) II y = a x (x 3) III y = a x (x 6) a) Begründen Sie, dass weder eine Gleichung der Form I noch eine der Form II zur Beschreibung des Brückenbogens infrage kommt. I : Scheitel bei x = 0 (Normalparabel um 9 nach unten verschoben) II: Nullstelle bei 0 und 3 b) Der Brückenbogen wird also durch eine Funktionsgleichung der Form III beschrieben. Berechne Sie mithilfe der Graphik den passenden Wert von a. y = a x ( x 6) Punkt einsetzen z.b. Scheitel S ( 3 1 ) 1 = a 3 (3 6) 1 = a 3 ( 3) 1 = a ( 9) : ( - 9) a = 1 9 Seite 9 von 11

10 Aufgabe 4: (nach BMT 2012) Eine Parabel ist gegeben durch die Gleichung f (x) = 1 2 x 2 3x + 4 a) Geben Sie die Koordinaten des Schnittpunkts der Parabel mit der y Achse an. f (0) = = =4 Sy ( 0 4 ) b) Berechnen Sie die Koordinaten der Schnittpunkte der Parabel mit der x Achse. x (1 /2 ) = b± b2 4 a c 2 a = ( 3)± ( 3) = 3± = 3± 1 1 = 3±1 1 = 4 1 = 4 x 2 = 2 1 = 2 S = (4 / 0) S x 2 = (0 / 2) Aufgabe 5: (nach BMT 2014) Berechnen Sie jeweils alle Lösungen der Gleichung über der Grundmenge IR, ohne die Lösungsformel für quadratische Gleichungen zu verwenden. a) (x 2) 2 = 12 (x 2) 2 = 9.. x 2 = ± x = ±3 + 2 = 5 x 2 = 1 Seite 10 von 11

11 b) 3 x 2 6x = 0 3x 2 6 x = 0 3 x (x 2) = 0 3x = 0 = 0 x 2 = 0 x 2 = 2 Aufgabe 6: (nach BMT 2015) Die Abbildung zeigt eine zur Normalparabel kongruente Parabel mit der Gleichung y = f(x). Geben Sie einen passenden Term f(x) an. f (x) = 3 x 2 Die Normalparabel ist um 3 nach oben verschoben und nach unten geöffnet. Seite 11 von 11

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1 III. Funktionen und Gleichungen ================================================================== 3.1. Lineare Funktionen Eine Funktion mit der Zuordnungvorschrift f : x y = mx + t und m, t R heißt lineare

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel:

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel: 1. Zahlenmengen Wissensgrundlage Aufgabenbeispiele Gib die jeweils kleinstmögliche Zahlenmenge an, welche die Zahl enthält? R Q Q oder All diejenigen Zahlen, die sich nicht mehr durch Brüche darstellen

Mehr

Übungsaufgaben zu quadratischen Gleichungen und Parabeln

Übungsaufgaben zu quadratischen Gleichungen und Parabeln Übungsaufgaben zu quadratischen Gleichungen und Parabeln Binomische Formeln:. binomische Formel: ( a + b) = a + ab + b. binomische Formel:. binomische Formel: ( a b) = a ab + b ( a + b)(a b) = a b Lösungsformel

Mehr

Wertetabelle : x 0 0,5 1 2 3 4 0,5 1. y = f(x) = x 2 0 0,25 1 4 9 16 0,25 1. Graph der Funktion :

Wertetabelle : x 0 0,5 1 2 3 4 0,5 1. y = f(x) = x 2 0 0,25 1 4 9 16 0,25 1. Graph der Funktion : Quadratische Funktionen ================================================================= 1. Die Normalparabel Die Funktion f : x y = x, D = R, heißt Quadratfunktion. Wertetabelle : x 0 0,5 1 3 4 0,5 1

Mehr

Expertenpuzzle Quadratische Funktionen

Expertenpuzzle Quadratische Funktionen Phase 1 Lösung für die Expertengruppe I Im Folgenden sollen die in IR definierten Funktionen a : x x, b : x x 0,5, c : x x und d: x x 3 untersucht werden. Die Abbildung zeigt den Graphen G a von a, also

Mehr

F u n k t i o n e n Quadratische Funktionen

F u n k t i o n e n Quadratische Funktionen F u n k t i o n e n Quadratische Funktionen Eine Parabolantenne bündelt Radio- und Mikrowellen in einem Brennpunkt. Dort wird die Strahlung detektiert. Die Form einer Parabolantenne entsteht durch die

Mehr

Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen

Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen Thema: Quadratische Funktionen quadratische Gleichungen Normalform einer linearen Funktion Normalform einer quadratischen Funktion Handelt es sich um quadratische Funktionen??? Ja, denn a = 3, b = 0, c

Mehr

1. Gegeben sind die Scheitelpunkte von Parabeln. Gib die Funktionsgleichungen an. a) S(-3/5) b) S(-1/-8) c) S(1/-0,5) d) S(0,5/0,2)

1. Gegeben sind die Scheitelpunkte von Parabeln. Gib die Funktionsgleichungen an. a) S(-3/5) b) S(-1/-8) c) S(1/-0,5) d) S(0,5/0,2) Vermischte Übungen (1) Verschiebung der Normalparabel 1. Gegeben sind die Scheitelpunkte von Parabeln. Gib die Funktionsgleichungen an. a) S(-3/5) b) S(-1/-8) c) S(1/-0,5) d) S(0,5/0,). In der Abbildung

Mehr

x 0 0,5 1 2 3 4 0,5 1 2. Die Quadratfunktion ist für x 0 streng monoton fallend und für x 0 streng monoton steigend.

x 0 0,5 1 2 3 4 0,5 1 2. Die Quadratfunktion ist für x 0 streng monoton fallend und für x 0 streng monoton steigend. Quadratische Funktionen ================================================================= 1. Die Normalparabel Die Funktion f : x y = x 2, D = R, heißt Quadratfunktion. Ihr Graph heißt Normalparabel. Wertetabelle

Mehr

Repetitionsaufgaben: quadratische Funktionen

Repetitionsaufgaben: quadratische Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: quadratische Funktionen Zusammengestellt von Bruno Wyrsch und Erich Huber, KS Seetal Inhaltsverzeichnis 1. Einführungsbeispiel.... Allgemeine Form der

Mehr

Expertenpuzzle Quadratische Funktionen

Expertenpuzzle Quadratische Funktionen Phase Aufgaben für die Expertengruppe I Im Folgenden sollen die in IR definierten Funktionen a : x x, b : x,5x, und d: x x untersucht werden. Die Abbildung zeigt den Graphen G a von a. Zeichnet die Graphen

Mehr

Parabeln. x y Um die Beziehung von x und y aufzudecken, teilen wir die y-werte durch 5.

Parabeln. x y Um die Beziehung von x und y aufzudecken, teilen wir die y-werte durch 5. c) = (x a) Parabeln Wir stellen uns vor, einen Stein von einem hohen Gebäude fallen zu lassen und interessieren uns für den Zusammenhang von verstrichener Zeit x (in Sekunden) und zurückgelegter Fallstrecke

Mehr

Aufstellen der Funktionsgleichung aus gegebenen Bedingungen

Aufstellen der Funktionsgleichung aus gegebenen Bedingungen R. Brinkmann http://brinkmann-du.de Seite.0.0 Aufstellen der Funktionsgleichung aus gegebenen Bedingungen Drei unterschiedliche Punkte, die alle auf einer Parabel liegen sollen sind gegeben. Daraus soll

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

Formelsammlung Mathematik 9

Formelsammlung Mathematik 9 I Lineare Funktionen... 9.) Funktionen... 9.) Proportionale Funktionen... 9.) Lineare Funktionen... 9.4) Bestimmung von linearen Funktionen:... II) Systeme linearer Gleichungen... 9.5) Lineare Gleichungen

Mehr

Aufgabenblatt: Binomische Formeln

Aufgabenblatt: Binomische Formeln Aufgabenblatt: Binomische Formeln Aufgabe : a) (c + t) b) (x + ) c) ( + z) d) (g m) e) ( a ) f) (a b) g) (b a) h) (k m) i) (m k) Aufgabe : a) (p + q)(p q) b) (c + d)(c d) c) (x + )( x) d) (u + )( u ) e)

Mehr

Repetitionsaufgaben: Quadratische Funktionen

Repetitionsaufgaben: Quadratische Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Quadratische Funktionen Zusammengestellt von Felix Huber, KSR Lernziele: - Sie wissen, dass der Graph einer quadratischen Funktion eine Parabel ist

Mehr

2. Die Satzgruppe des Pythagoras

2. Die Satzgruppe des Pythagoras Grundwissen Mathematik 9. Klasse Seite von 17 1.4 Rechnen mit reellen Zahlen a) Multiplizieren und Dividieren von reellen Zahlen + Es gilt: a b = a b mit ab R, 0 Beispiele: 18 = 36 = 6 14 14 7 = = a a

Mehr

Expertenpuzzle Quadratische Funktionen

Expertenpuzzle Quadratische Funktionen Phase 1 Aufgaben für die Expertengruppe I Im Folgenden sollen die in IR definierten Funktionen a : x x, b : x x 0,5, c : x x und d: x x 3 untersucht werden. Die Abbildung zeigt den Graphen G a von a, also

Mehr

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Berufsbildende Schule 11 der Region Hannover Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Das folgende Material soll Ihnen helfen sich einen Überblick

Mehr

Lösungen: Quadratische Funktionen Kompetenzorientiertes Üben 1

Lösungen: Quadratische Funktionen Kompetenzorientiertes Üben 1 Lösungen: Quadratische Funktionen Kompetenzorientiertes Üben 1 Aufgabe 1.: 6,0 5,0,0 3,0,0 1,0 0,0 1,0,0 3,0,0 5,0 6,0 7,0 f() 31,0,5 15,0 8,5 3,0 1,5 5,0 7,5 9,0 9,5 9,0 7,5 5,0 1,5 g(),0 9,0 18,0 9,0,0

Mehr

Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-10

Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-10 Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-0 Aufgaben Richtig Themengebiet : Terme /. Vereinfache: (9x ) + 3x xy + x ( 3xy) (x + 3) (x ) + (x + 3)² abc 5x 0 3yx x +. Kürze: a) b) c) d) 5a² b 5

Mehr

Basistext Funktionen. Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu.

Basistext Funktionen. Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu. Basistext Funktionen Definition Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu. Man schreibt: f: x -> y mit y = f(x) Die Wertemenge einer Funktion f besteht aus

Mehr

Expertenpuzzle Quadratische Funktionen

Expertenpuzzle Quadratische Funktionen Epertenpuzzle Quadratische Funktionen Phase Lösung für die Epertengruppe I Im Folgenden sollen die in IR definierten Funktionen a :, b :,, und d: untersucht werden. Die Abbildung zeigt den Graphen G a

Mehr

Quadratische Funktion Aufgaben und Lösungen

Quadratische Funktion Aufgaben und Lösungen Quadratische Funktion Aufgaben und Lösungen http://www.fersch.de Klemens Fersch 9. August 0 Inhaltsverzeichnis Graph und Eigenschaften. y = a x + b x + c...............................................

Mehr

Gleichungsarten. Quadratische Gleichungen

Gleichungsarten. Quadratische Gleichungen Gleichungsarten Quadratische Gleichungen Normalform: Dividiert man die allgemeine Form einer quadratischen Gleichung durch a, erhält man die Normalform der quadratischen Gleichung. x 2 +px+q=0 Lösungsformel:

Mehr

3 Lineare und quadratische Funktionen

3 Lineare und quadratische Funktionen 3 Lineare und quadratische Funktionen 31 Lineare Funktion Eine Funktion der Art f : mx + t, sind reelle Zahlen) x D heißt lineare Funktion (m und t Man kann die Funktionsgleichung auf zwei verschiedene

Mehr

Diese Funktion ist mein Typ!

Diese Funktion ist mein Typ! Diese Funktion ist mein Typ! Überblick über die wichtigsten Funktionstypen der 10.Jgst.: Lineare Funktionen Quadratische Funktionen Ganzrationale Funktionen Gebrochen-rationale Funktionen Trigonometrische

Mehr

BOS - MATHEMATIK. Hilfe vor den Eintritt und zur einfacheren Verständnis im Fach Mathematik der Berufsoberschule.

BOS - MATHEMATIK.  Hilfe vor den Eintritt und zur einfacheren Verständnis im Fach Mathematik der Berufsoberschule. BOS - MATHEMATIK Eine Zusammenfassung über die Grundlegenden Themen im Fach Mathematik für die Vorbereitung zur Berufsoberschule (Klasse 12). Hilfe vor den Eintritt und zur einfacheren Verständnis im Fach

Mehr

4.2. Aufgaben zu quadratischen Funktionen

4.2. Aufgaben zu quadratischen Funktionen .. Aufgaben zu quadratischen Funktionen Aufgabe : Stauchung und Streckung der Normalparabel a) Zeichne die Schaubilder der folgenden Funktionen in das Koordinatensstem. b) Vervollständige die darunter

Mehr

4.2. Quadratische Funktionen

4.2. Quadratische Funktionen Definition: Normalform der Parabelgleichung.. Quadratische Funktionen Eine Funktion mit der Gleichung f() = a + b + c mit a R* und b,c R heißt quadratische Funktion oder ganzrationale Funktion. Grades

Mehr

Funktionen (linear, quadratisch)

Funktionen (linear, quadratisch) Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)

Mehr

1 Analysis Kurvendiskussion

1 Analysis Kurvendiskussion 1 Analysis Kurvendiskussion 1.1 Allgemeingültige Betrachtungen Die folgenden aufgezeigten Betrachtungen und Rechenschritte gelten für alle Arten von Funktionen. Funktion (z.b. Polynom n-ten Grades) Schreibweise

Mehr

Neue Aufgaben, Februar 2007

Neue Aufgaben, Februar 2007 1. Der Fußball-Globus Neue Aufgaben, Februar 007 Ein begehbarer Fußball-Globus machte bis zur Fußball-Weltmeisterschaft 006 eine Reise durch alle zwölf Austragungsorte der Weltmeisterschaft. In diesem

Mehr

Skript Mathematik Klasse 10 Realschule

Skript Mathematik Klasse 10 Realschule Skript Mathematik Klasse 0 Realschule Das vorliegende Skript wurde erstellt durch: Marco Johannes Türk marco.tuerk@googlemail.com Die aktuellste Version dieses Skriptes ist online auf www.marco-tuerk.de

Mehr

Quadratische Funktionen (Parabeln)

Quadratische Funktionen (Parabeln) Quadratische Funktionen (Parabeln) Aufgabe: Gegeben ist die quadratische Funktion = () x. Berechne mit Hilfe einer Wertetabelle die Funktionswerte von bis + im Abstand 0,. Zeichne anschließend die Punkte

Mehr

Lösungen ==================================================================

Lösungen ================================================================== Lösungen ================================================================== Aufgabe Bestimme f '(x) a) f(x) = e x f '(x) = e x ( ) = 4 e c x b) f(x) = x e x f '(x) = e x ( ) = + e x c) f(x) = 3 e (x+)

Mehr

Die gleiche Lösung erhält man durch Äquivalenzumformung:

Die gleiche Lösung erhält man durch Äquivalenzumformung: R. Brinkmann http://brinkmann-du.de Seite 3..0 Quadratische Gleichungen Reinquadratische Gleichung Lösen Sie die Gleichung x = 5 Durch probieren erhält man die Lösung: x = 5 oder x = 5 Denn x = 5 = 5 oder

Mehr

+ 2. Bruchgleichungen

+ 2. Bruchgleichungen Bruchgleichungen Gleichungen mit einer Lösungsvariablen im Nenner eines Bruchs heißen Bruchgleichungen. Definitionsmenge: Nenner 0 Lösungsweg: 1. Multiplikation mit dem Hauptnenner 2. Äquivalenzumformungen

Mehr

Verschiebung/Streckung von Funktionsgraphen. Verwenden von Schablonen zum Zeichnen von Funktionsgraphen. Idee der Koordinatentransformation

Verschiebung/Streckung von Funktionsgraphen. Verwenden von Schablonen zum Zeichnen von Funktionsgraphen. Idee der Koordinatentransformation Verschiebung/Streckung von Funktionsgraphen Verwenden von Schablonen zum Zeichnen von Funktionsgraphen Idee der Koordinatentransformation Rahmenlehrplan Berlin P4 9/10: Situationen mit n und Potenzfunktionen

Mehr

Rechnen mit rationalen Zahlen

Rechnen mit rationalen Zahlen Rechnen mit rationalen Zahlen a ist die Gegenzahl von a und ( a) a Subtraktionsregel: Statt eine rationale Zahl zu subtrahieren, addiert man ihre Gegenzahl. ( 8) ( ) ( 8) + ( + ) 8 + 7, (,6) 7, + ( +,6)

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe .0 Berechne folgende Terme:.. x + 4 = x =. (y x) (x + y) =.0 Schreibe ohne Klammern und vereinfache soweit wie möglich:. (x + ) (x 4) =. (0,4x + y) (0,4x y) + (y) =. Ermittle den Extremwert durch Termumformung.

Mehr

Fördermappe. Quadratische Funktionen

Fördermappe. Quadratische Funktionen Fördermappe Quadratische Funktionen Vorwort In dieser Mappe findest du Übungsmaterial zu quadratischen Funktionen. Nach der Bearbeitung dieser Mappe solltest du folgendes können: Graphen (=Parabeln) zu

Mehr

= 26 60 (Hauptnenner) 15x 12x + 10x = 26 60 zusammenfassen 13x = 26 60 :13 (Variable isolieren) x =

= 26 60 (Hauptnenner) 15x 12x + 10x = 26 60 zusammenfassen 13x = 26 60 :13 (Variable isolieren) x = WERRATALSCHULE HERINGEN KOMPENSATION MATHEMATIK JG. 11 1 Lineare Gleichungen Das Lösen linearer Gleichungen ist eine wichtige Rechenfertigkeit, die immer wieder gefordert wird und für den Mathematikunterricht

Mehr

Funktionsgleichung in ABC-Form Funktionsgleichung in Scheitelform Funktionsgleichung in Nullstellenform. y 2 x 2x 3 2 ausklammern. Binom.

Funktionsgleichung in ABC-Form Funktionsgleichung in Scheitelform Funktionsgleichung in Nullstellenform. y 2 x 2x 3 2 ausklammern. Binom. Parabel zeichnen Parabel zeichnen Schritt für Schrittanleitungen unter www.fraengg.ch Klasse, GeoGebra) Funktionsgleichung in ABC-Form Funktionsgleichung in Scheitelform Funktionsgleichung in Nullstellenform

Mehr

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema Quadratische Funktionen 1 1.) Zeige, dass die Funktion in der Form f() = a 2 + b +c geschrieben werden kann und gebe a, b und c an. a) f() = ( -5) ( +7) b) f() = ( -1) ( +1) c) f() = 3 ( - 4) 2.) Wie heißen

Mehr

Aus meiner Skriptenreihe: "Keine Angst vor "

Aus meiner Skriptenreihe: Keine Angst vor Dipl.-Kaufm. Wolfgang Schmitt Aus meiner Skriptenreihe: "Keine Angst vor " Verfahren der Nullstellenberechnung der Funktionen n n 1 n 2 n i 1 f x ax a x a x... ax... a x 0 1 2 3 i n für n > 1 http://www.nf-lernen.de

Mehr

Grundwissen Mathematik JS 11

Grundwissen Mathematik JS 11 GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math-naturw u neusprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 957 PEGNITZ FERNRUF 94/48 FAX 94/564 Grundwissen Mathematik JS Was versteht man allgemein unter einer

Mehr

Aufgabensammlung Klasse 8

Aufgabensammlung Klasse 8 Aufgabensammlung Klasse 8 Inhaltsverzeichnis 1 Potenzen mit natürlichen Hochzahlen 3 1.1 Rechenregeln für das Rechnen mit Potenzen..................... 3 1.1.1 Addition und Subtraktion von Potenzen...................

Mehr

A.12 Nullstellen / Gleichungen lösen

A.12 Nullstellen / Gleichungen lösen A12 Nullstellen 1 A.12 Nullstellen / Gleichungen lösen Es gibt nur eine Hand voll Standardverfahren, nach denen man vorgehen kann, um Gleichungen zu lösen. Man sollte in der Gleichung keine Brüche haben.

Mehr

Lösen einer Gleichung

Lösen einer Gleichung Zum Lösen von Gleichungen benötigen wir: mindestens einen Term eine Definition der in Frage kommenden Lösungen (Grundmenge) Die Grundmenge G enthält all jene Zahlen, die als Lösung für eine Gleichung in

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. ausmultiplizieren. Anwenden von Potenzgesetzen, Wurzelgesetzen, Logarithmengesetzen

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. ausmultiplizieren. Anwenden von Potenzgesetzen, Wurzelgesetzen, Logarithmengesetzen 3. Algebraische Grundlagen 3.1. Termumformungen Begriff Term: mathematischer Ausdruck, der aus Zahlen, Variablen, Rechenzeichen oder Klammern besteht Termumformungen dienen der Vereinfachung von komplexen

Mehr

Mathematik. FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli Kontakt und weitere Infos:

Mathematik. FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli Kontakt und weitere Infos: FOS Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23 Juli 2004 Kontakt und weitere Infos: wwwschulebarmetlerde FOS, Jahrgangsstufe (technisch) Inhaltsverzeichnis Wiederholung 5 Bruchrechnen

Mehr

AUFFRISCHERKURS 2. Kreuze für jede der Zahlen bzw. Rechenausdrücke an, zu welchen der angegebenen Zahlenmengen sie gehören!

AUFFRISCHERKURS 2. Kreuze für jede der Zahlen bzw. Rechenausdrücke an, zu welchen der angegebenen Zahlenmengen sie gehören! AUFFRISCHERKURS 2 AUFGABE 1 Kreuze für jede der Zahlen bzw. Rechenausdrücke an, zu welchen der angegebenen Zahlenmengen sie gehören! Zahl keine davon ( ) AUFGABE 2 Löse alle vorhandenen Klammern auf und

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen Grundlage für das Lösen von Quadratischen Gleichungen ist die Lösungsformel, auch als p-q-formel bekannt. Diese Formel bezieht sich auf die Quadratische Gleichung in Normalform:

Mehr

Berufliches Gymnasium Gelnhausen

Berufliches Gymnasium Gelnhausen Berufliches Gymnasium Gelnhausen Fachbereich Mathematik Die inhaltlichen Anforderungen für das Fach Mathematik für Schülerinnen und Schüler, die in die Einführungsphase (E) des Beruflichen Gymnasiums eintreten

Mehr

9. Klasse TOP 10 Grundwissen 9 Lösen von Gleichungen 1

9. Klasse TOP 10 Grundwissen 9 Lösen von Gleichungen 1 Lösen von Gleichungen 1 Allgemein: Klammern auflösen, wenn sinnvoll (z. B. nicht sinnvoll, wenn im Nenner eines Bruchs bereits ein Produkt steht). Gleichartige Terme zusammenfassen (z. B. x bzw. x ausklammern).

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

Urs Wyder, 4057 Basel Funktionen. f x x x x 2

Urs Wyder, 4057 Basel Funktionen. f x x x x 2 Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4

Mehr

Eingangstest quadratische Funktionen und quadratische Gleichungen

Eingangstest quadratische Funktionen und quadratische Gleichungen Eingangstest quadratische Funktionen und quadratische Gleichungen Graphen erkennen Welche Graphen können zu einer quadratischen Funktion gehören? II I, II I 6 6 IV III Graphen zeichnen a) Zeichne den Graphen

Mehr

Vorbereitungskurs Mathematik

Vorbereitungskurs Mathematik Vorbereitungskurs Mathematik Grundlagen für das Unterrichtsfach Mathematik für die Fachhochschulreifeprüfung Zweijährige Höhere Berufsfachschule Berufsoberschule I Duale Berufsoberschule Inhalt 0. Vorwort...

Mehr

Eingangstest im Fach Mathematik Aufgaben zur Wiederholung und Vertiefung

Eingangstest im Fach Mathematik Aufgaben zur Wiederholung und Vertiefung Eingangstest im Fach Mathematik Aufgaben zur Wiederholung und Vertiefung Hinweise: Liebe Schülerinnen und Schüler, der Eingangstest ist überstanden. Wenn Sie alle Aufgaben lösen konnten, so bringen Sie

Mehr

Aufgaben. zu Inhalten der 5. Klasse

Aufgaben. zu Inhalten der 5. Klasse Aufgaben zu Inhalten der 5. Klasse Universität Klagenfurt, Institut für Didaktik der Mathematik (AECC-M) September 2010 Zahlbereiche Es gibt Gleichungen, die (1) in Z, nicht aber in N, (2) in Q, nicht

Mehr

min km/h

min km/h Proportionalität 1. Gegeben sind die folgenden Zuordnungen: 1) x - 3-1 0 0,5 4 y 9 3 0-1,5-6 -1 y : x - 3-3 ) km/h 30 45 60 70 85 100 min 45 30,5 13,5 min km/h 1350 1350 1350 3) s -,5 3,3 7, 8 9,1 4) t

Mehr

Aufgaben zu den ganzrationalen Funktionen

Aufgaben zu den ganzrationalen Funktionen Aufgaben zu den ganzrationalen Funktionen. Bestimmen Sie die Nullstellen folgender ganzrationaler Funktionen. a) y x + x 6 b) y x x + x c) y (x + )(x + x ) d) y x 5x + e) y x + x x + 0 f) y x x 5x +50x

Mehr

Die quadratische Gleichung und die quadratische Funktion

Die quadratische Gleichung und die quadratische Funktion Die quadratische Gleichung und die quadratische Funktion 1. Lösen einer quadratischen Gleichung Quadratische Gleichungen heißen alle Gleichungen der Form a x x c = 0, woei a,, c als Parameter elieige reelle

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen TEIL 1: Die Quadratische Funktion und die Quadratische Gleichung Bei linearen Funktionen kommt nur in der 1. Potenz vor. Bei quadratischen Funktion kommt in der. Potenz vor. Daneben

Mehr

Quadratische Funktionen und ihre Graphen

Quadratische Funktionen und ihre Graphen mathe online Skripten http://www.mathe-online.at/skripten/ Quadratische Funktionen und ihre Graphen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at WWW:

Mehr

Realschule Abschlussprüfung

Realschule Abschlussprüfung Realschule Abschlussprüfung Annegret Sonntag 4. Januar 2010 Inhaltsverzeichnis 1 Strategie zur Berechnung von ebenen Figuren (Trigonometrie) 3 1.1 Skizze.................................................

Mehr

Jedem x - Wert aus dem Definitionsbereich ID wird genau ein y - Wert aus dem Wertebereich W zugeordnet.

Jedem x - Wert aus dem Definitionsbereich ID wird genau ein y - Wert aus dem Wertebereich W zugeordnet. 8. Funktionen: Wird jeder reellen Zahl x aus einem Definitionsbereich ID durch eine eindeutige Zuordnungsvorschrift f eine reelle Zahl y = f(x) zugeordnet, dann heißt f eine reelle Funktion. x heißt die

Mehr

Inhaltsverzeichnis Mathematik

Inhaltsverzeichnis Mathematik 1. Mengenlehre 1.1 Begriff der Menge 1.2 Beziehungen zwischen Mengen 1.3 Verknüpfungen von Mengen (Mengenoperationen) 1.4 Übungen 1.5 Übungen (alte BM-Prüfungen) 1.6 Zahlenmengen 1.7 Grundmenge (Bezugsmenge)

Mehr

MATHEMATIK Grundkurs 11m /2011

MATHEMATIK Grundkurs 11m /2011 MATHEMATIK Grundkurs 11m 3 2010/2011 Städtisches Gymnasium Leichlingen Zusammenfassende Informationen zum Vertretungs-Unterricht durch Klaus-R. Löffler (http://www.mathemator.org) vom 29. Oktober bis zum

Mehr

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate Mathematik-Lexikon HM00 Abszisse Die x-koordinate eines Punktes -> Ordinate Aufstellen von Funktionstermen Gesucht: Ganzrationale Funktion n-ten Grades: ƒ(x) = a n x n + a n-1 x n-1 + a n- x n- +... +

Mehr

3.1 Quadratische Funktionen

3.1 Quadratische Funktionen Quadratische Funktionen und Gleichungen 3.1 Quadratische Funktionen Quadratische Funktion Funktionen mit der Funktionsgleichung y = ax2 + bx + c heißen quadratische Funktionen (a, b, c e lr und a+0). Der

Mehr

Faktorisierung bei Brüchen und Bruchtermen

Faktorisierung bei Brüchen und Bruchtermen Faktorisierung bei Brüchen und Bruchtermen Rainer Hauser Mai 2016 1 Einleitung 1.1 Rationale Zahlen Teilt man einen Gegenstand in eine Anzahl gleich grosse Stücke, so bekommt man gebrochene Zahlen, die

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Inhaltliche Anforderungen für ein Mathematikstudium an der Pädagogischen Hochschule Karlsruhe

Inhaltliche Anforderungen für ein Mathematikstudium an der Pädagogischen Hochschule Karlsruhe Inhaltliche Anforderungen für ein Mathematikstudium an der Pädagogischen Hochschule Karlsruhe Liebe Studierende, wenn Sie Mathematik an der Pädagogischen Hochschule Karlsruhe erfolgreich studieren möchten,

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

Gegeben sind die Punkte A(6 7) und B(-5 3). Bestimme eine Funktion, deren Graph durch die beiden Punkte verläuft.

Gegeben sind die Punkte A(6 7) und B(-5 3). Bestimme eine Funktion, deren Graph durch die beiden Punkte verläuft. Blatt 1 Gegeben sind die Punkte A(6 7) und B(-5 3). Bestimme eine Funktion, deren Graph durch die beiden Punkte verläuft. Berechne: 1 n + x 1 x+ 1 C Formuliere den Höhensatz h A B Frau Huber zahlt am 21.01.2005

Mehr

Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben

Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben Fachbereich Mathematik Vorkurs Mathematik WS 2012/13 Dies ist eine Sammlung von Aufgaben, die hauptsächlich Mittelstufenstoff wiederholen. Dabei

Mehr

Funktionale Zusammenhänge

Funktionale Zusammenhänge Funktionale Zusammenhänge 5 Quadratische Funktionen und Gleichungen Will sehen, was ich weiß, vom Büblein auf dem Eis: Gefroren hat es heuer noch gar kein festes Eis. Das Büblein steht am Weiher und spricht

Mehr

4 Ganzrationale Funktionen

4 Ganzrationale Funktionen FOS, Jahrgangsstufe (technisch) 4 Ganzrationale Funktionen 4 Polynomfunktionen Eine Funktion, die man auf die Form f : x a n x n + a n x n + + a 2 x 2 + a x + a 0 mit x R bringen kann, heißt ganzrationale

Mehr

GRUNDKURS MATHEMATIK. Zahlenmengen. Natürliche Zahlen. Ganze Zahlen. Gebrochene Zahlen { } Rationale Zahlen { } Irrationale Zahlen { } Reelle Zahlen

GRUNDKURS MATHEMATIK. Zahlenmengen. Natürliche Zahlen. Ganze Zahlen. Gebrochene Zahlen { } Rationale Zahlen { } Irrationale Zahlen { } Reelle Zahlen GRUNDKURS MATHEMATIK Zahlenmengen Natürliche Zahlen Ganze Zahlen : 0, 1, 2, 3, Gebrochene Zahlen { } : 0, -1, 1, - Rationale Zahlen { } : 0,,, - Irrationale Zahlen { } : 0, -, Reelle Zahlen Addition und

Mehr

Stoffübersicht Mathematik. 1. Grundlagen der Algebra. Zahlenmengen

Stoffübersicht Mathematik. 1. Grundlagen der Algebra. Zahlenmengen Stoffübersicht Mathematik Diese Stoffübersicht ist in drei Hauptteile gegliedert: 1. Grundlagen der Algebra (Zahlenmengen, Rechenarten, Rechengesetze); 2. Funktionen, Terme und Gleichungen; 3. Geometrie;

Mehr

Grundwissen 9 Bereich 1: Rechnen mit reellen Zahlen

Grundwissen 9 Bereich 1: Rechnen mit reellen Zahlen Bereich 1: Rechnen mit reellen Zahlen Rechenregeln Berechne jeweils: Teilweises Radizieren a) = b) = c) Nenner rational machen a) = b) = c) Bereich 2: Quadratische Funktionen und Gleichungen Scheitelpunktform

Mehr

Arbeitsblatt Mathematik

Arbeitsblatt Mathematik Teste dich! - (/6) Schreibe mithilfe von Potenzen. a) ( 5) ( 5) ( 5) ( 5) b) a a a a a a b b b c) r r r r 0 Cornelsen Verlag, Berlin. Alle Rechte vorbehalten. Berechne ohne Taschenrechner. a) 9 0 5 b)

Mehr

Die Inhalte haben Sie alle in den Klassen 5 10 gelernt.

Die Inhalte haben Sie alle in den Klassen 5 10 gelernt. Schüler Liebe künftige Schülerinnen und des Fachgymnasiums!!! Wir Mathematikkollegen der BBS bieten Ihnen hier auf diesen Seiten alle mathematischen Inhalte, die wir zur aktiven Teilnahme am Mathematikunterricht

Mehr

Lineare Gleichungen mit 2 Variablen

Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen sind sehr eng verwandt mit linearen Funktionen. Die Funktionsgleichung einer linearen Funktion f(x) = m x+q m: Steigung, q: y Achsenabschnitt

Mehr

F u n k t i o n e n Potenzfunktionen

F u n k t i o n e n Potenzfunktionen F u n k t i o n e n Potenzfunktionen Die Kathedrale von Brasilia steht in der brasilianischen Hauptstadt Brasilia wurde von Oscar Niemeyer (*907 in Rio de Janeiro). Die Kathedrale von Brasilia besteht

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Grundlagen der Integralrechnung: Übungsaufgaben zur Berechnung unbestimmter und bestimmter Integrale Das komplette Material finden

Mehr

UND MOSES SPRACH AUCH DIESE GEBOTE

UND MOSES SPRACH AUCH DIESE GEBOTE UND MOSES SPRACH AUCH DIESE GEBOTE 1. Gebot: Nur die DUMMEN kürzen SUMMEN! Und auch sonst läuft bei Summen und Differenzen nichts! 3x + y 3 darfst Du NICHT kürzen! x! y. Gebot: Vorsicht bei WURZELN und

Mehr

Informationen zum Gebrauch des Rechners TI 92

Informationen zum Gebrauch des Rechners TI 92 Kooperierende Fachgymnasien Wolfsburg Informationen zum Gebrauch des Rechners TI 92 Alle Besonderheiten und Möglichkeiten des TI 92 zu erkunden, wird uns in den nächsten zwei Jahren nicht gelingen. Zum

Mehr

Direkt und indirekt proportionale Größen

Direkt und indirekt proportionale Größen 8.1 Grundwissen Mathematik Algebra Klasse 8 Direkt und indirekt proportionale Größen Direkte Proportionalität x und y sind direkt proportional, wenn zum doppelten, dreifachen,, n-fachen Wert für x der

Mehr

Übungsbeispiel 1: Quadratische Modellierung

Übungsbeispiel 1: Quadratische Modellierung Übungsbeispiel 1: Quadratische Modellierung Ein Uhrenhersteller möchte den Preis für sein neues Modell festlegen und führt dazu eine Marktanalyse durch. Das Ergebnis lautet: Bei einem Preis von 60 ist

Mehr

Übungsaufgaben zum Aufstellen von ganzrationalen Funktionsgleichungen

Übungsaufgaben zum Aufstellen von ganzrationalen Funktionsgleichungen Übungsaufgaben zum Aufstellen von ganzrationalen Funktionsgleichungen Aufgabe : Eine zum Ursprung symmetrische ganzrationale Funktion.Ordnung hat im Ursprung die Tangente mit der Gleichung y = 7x und in

Mehr

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y 5. Die natürliche Exponentialfunktion und natürliche Logarithmusfunktion ================================================================== 5.1 Die natürliche Exponentialfunktion f : x 2 x f : x 1 2 x

Mehr

Zirkel Duden. Lies dir zunächst alle Aufgaben gründlich durch, und stelle sicher, dass du die Aufgabenstellung verstehst.

Zirkel Duden. Lies dir zunächst alle Aufgaben gründlich durch, und stelle sicher, dass du die Aufgabenstellung verstehst. Name Datum Anzahl Punkte Erreichte Punkte Fach Mathematik Note Erlaubte Hilfsmittel: Taschenrechner Formelsammlung Geodreieck Zirkel Duden Lies dir zunächst alle Aufgaben gründlich durch, und stelle sicher,

Mehr

Fachberatung Mathematik Hilde Zirkler Goethe-Gymnasium Bensheim Bensheim, im Juli 2015

Fachberatung Mathematik Hilde Zirkler Goethe-Gymnasium Bensheim Bensheim, im Juli 2015 Fachberatung Mathematik Hilde Zirkler Goethe-Gymnasium Bensheim Bensheim, im Juli 0 Übergang Klasse 0/E (G9) und Klasse 9/E (G8) Mathematik Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik a. Lineare

Mehr

Basistext: Gleichungen lösen

Basistext: Gleichungen lösen Basistext: Gleichungen lösen Was versteht man unter der Lösung einer Gleichung? Lösen einer linearen Gleichung Lösen einer quadratischen Gleichung Lösen einer Gleichung vom Grad 3 Andere Fälle Übungen

Mehr