TEILPRÜFUNG ZUR BERUFSREIFEPRÜFUNG. Themenstellung für die schriftliche Berufsreifeprüfung. aus dem Fach MATHEMATIK und ANGEWANDTE MATHEMATIK

Größe: px
Ab Seite anzeigen:

Download "TEILPRÜFUNG ZUR BERUFSREIFEPRÜFUNG. Themenstellung für die schriftliche Berufsreifeprüfung. aus dem Fach MATHEMATIK und ANGEWANDTE MATHEMATIK"

Transkript

1 TEILPRÜFUNG ZUR BERUFSREIFEPRÜFUNG Theenstellung für die schriftliche Berufsreifeprüfung aus de Fach MATHEMATIK und ANGEWANDTE MATHEMATIK Terin: Soer 013 PrüferIn: Mag. Wolfgang BODISCH Mag. Wolfgang GALSTERER Dr. Maja LOPERT Mag. Stephan STRASSER Punkteverteilung/Gewichtung: Notenschlüssel: Beispiel 1) 8 Punkte Beispiel ) 6 Punkte Beispiel 3) 6 Punkte Beispiel ) 11 Punkte Beispiel 5) 1 Punkte Beispiel 6) 15 Punkte gesat 60 Punkte Punkte Sehr gut 8-55 Punkte Gut 38-7 Punkte Befriedigend Punkte Genügend 0-9 Punkte... Nicht genügend Seite 1

2 Aufgabe 1 Ein Grundstück hat die For eines unregeläßigen Vierecks ABCD. Da die eine Seite, nälich c, unzugänglich ist, sind nur die Seiten a, b und d essbar: AB a 35 BC b 3, AD d 0,7 < BAD 10, < ABC 111, 5 a) Berechnen Sie die Größe des Grundstücks. ( P.) b) Das Grundstück wird u zu Kauf angeboten. Ist das ein günstiger Preis, wenn der ortsübliche Preis 60 pro beträgt? (1 P.) c) Will an den Grund uzäunen, so benötigt an alle 3 Meter eine Zaunsäule und Zaun, der nur in Rollen zu 50 Metern erhältlich ist. Eine Zaunsäule kostet 1 und eine Zaunrolle 13. Wie viel würden die reinen Materialkosten für diesen Zaun ausachen? Aufgabe Frau Maier will ihre Fira verkaufen. Zwei Interessenten bieten (bei eine Zinssatz von i 8%): A: 10 Jahresraten zu je , jeweils a Beginn des Jahres. B: Millionen Euro sofort, 1,5 Millionen Euro nach zwei Jahren, weitere Euro nach sechs Jahren sowie Euro a Beginn des zehnten Jahres. a) Welcher der beiden Interessenten bietet ehr? An wen soll Frau Maier ihre Fira verkaufen? b) Wie viel üsste ein dritter Anbieter, C, über 10 Jahre hinweg a Ende jeden Quartals zahlen, u ein zuindest gleichwertiges Angebot zu liefern? Seite

3 Aufgabe 3 Ein Feinschecker bestellt in eine Restaurant eine Schale it Kaviar. (6 P.) Auf der Speisekarte steht neben de Preis auch eine Mengenangabe, nälich 10 cl (was 100 c³ entspricht). Als der Gast seine Bestellung bekot, bezweifelt er allerdings, dass es sich tatsächlich u die in der Speiskarte angegebene Menge handelt und öchte deswegen nachrechnen: Der Gast beerkt, dass die Querschnittsfläche des Gefäßes, in de sich der Kaviar befindet, zielich genau die For einer Parabel aufweist (siehe Graphik unten). I Boden ( AB ) beträgt der Durchesser des Gefäßes c und a oberen Rand ( DC ) beträgt er 6 c, das Gefäß ist insgesat 5 c hoch. Die Füllenge in de Gefäß ist allerdings nur c hoch. Wie viel c³ Kaviar sind also tatsächlich in der Schale drinnen? Aufgabe Ein Gewehr hat eine Trefferwahrscheinlichkeit von 35%. a) Wie groß ist die Wahrscheinlichkeit, bei 5 Schüssen i) genau Treffer, ii) indestens einen Treffer zu erzielen? b) Wie oft uss an schießen, dait die Wahrscheinlichkeit, zuindest einal zu treffen, 95% überschreitet? c) Wie groß ist die Wahrscheinlichkeit, bei 1000 Schüssen indestens 310 Treffer zu erzielen? ( P.) d) Wie groß ist die Wahrscheinlichkeit, bei 1000 Schüssen zuindest 30 und höchstens 360 Treffer zu erzielen? Seite 3

4 Aufgabe 5 a) Der Sauerstoffgehalt eines Sees beträgt an der Wasseroberfläche 8,1 g/l. In einer Wassertiefe von 0 Metern werden 5,9 g/l geessen. Legen Sie zunächst eine lineare Abnahe des Sauerstoffgehalts zugrunde und geben Sie eine Forel an, die den O -Gehalt als Funktion der Wassertiefe berechnet. Was konkret gibt in diese Fall die Steigung k an? b) Welcher O -Gehalt sollte nach de linearen Modell in 30 Wassertiefe bestehen? In welcher Wassertiefe gibt es nach de linearen Modell gar keinen Sauerstoff ehr? ( P.) c) Legen Sie nunehr - it den Angaben aus Punkt a) - eine eponentielle Abnahe des Sauerstoffgehaltes zugrunde. Stellen Sie das entsprechende Gesetz, das den funktionalen Zusaenhang zwischen den O -Gehalt und der Wassertiefe angibt, auf. Wie groß ist die Abnahe pro Meter Tiefe in Prozent? d) Welcher Sauerstoffgehalt besteht nach de eponentiellen Modell in 30 Wassertiefe? U wie viel Prozent geht der Sauerstoffgehalt auf die folgenden 0 Tiefe zurück? Welches Modell (das lineare oder das eponentielle) erscheint Ihnen realistischer, den Sachverhalt zu beschreiben Geben Sie eine genaue Begründung. e) Ma ist begeisterter Taucher und startet zusaen it 9 Freunden (also zu zehnt) ein neues Tauchforu i Internet. Die Anzahl der Mitglieder nach t Monaten lässt sich durch die Forel N t 000 ( ) bestien. 0, t e 5 Wie viele Mitglieder hat das Foru nach eine halben Jahr? Wann kann an das 500. Mitglied willkoen heißen? Seite

5 Aufgabe 6 Ein Unterneher stellt Spielwaren her und öchte, basierend auf den Inforationen, die er über den Kostenverlauf eines seiner Produkte hat, eine Funktionsgleichung für die Betriebskostenfunktion aufstellen. Ih liegen folgende Inforationen zugrunde: Er kennt die Grenzkostenfunktion K () 0,018² 1,8 50 und er weiß außerde, dass die Stückkosten a niedrigsten sind, wenn er 10 Stück produzieren lässt. a) Wie lautet die Betriebskostenfunktion und an welcher Stelle liegt die Kostenkehre? Wie hoch sind die inialen Stückkosten? (6 P.) (Achtung: K()... sollte das Ergebnis Ihrer Überlegungen sein!) b) Was den Verkauf dieses Produktes betrifft, rechnet der Hersteller it einer linear fallenden Nachfragefunktion, wobei der Höchstpreis bei 380 liegt und die Sättigungsenge bei 760 Stück. Zeige, dass es sich in diese Fall u die Nachfragefunktion p ( ) 0,5 380 handelt. ( P.) c) Bei wie viel Stück produzierter und verkaufter Ware kann der Unterneher unter diesen Voraussetzungen it eine aialen Gewinn rechnen und wie viele Euro würde dieser konkret betragen, wenn der Hersteller folgende Kostenfunktion K( ) 0,006 ³ 0,9 ² annit? (6 P.) d) U wie viel Euro üsste an das Produkt schließlich verkaufen, u den aial öglichen Gewinn auch tatsächlich erzielen zu können? (1 P.) Seite 5

6 Lösungen: Aufgabe 1: a) Seite 6

7 Seite ,9 950,3 sin 695,6 sin 69,,3 sin sin 59,1 cos A A A b A d a A d ad d a > ψ α ϕ β ψ ϕ α ϕ α b) ungünstig ist Angebot das > ,9 165 c) : Pr ,9 cos eis Zaun Rollen und Säulen daher benötigt Man d c b a u b b c ψ

8 Aufgabe : a) ( 1 i) n 1 A : Bv R ( 1 i) ,1 i B : ,08 1,08 1,08 A bietet ehr b) i B n ( 1 i) 1 1 ( 1 i) R ,1 R i 0, n ( 1 i ) R ,95 i 0 Aufgabe 3: ( ) it g ( ) 0 und g ( ) g a c a 1; c g y y ( ) ² ( ) V π dy π y dy π 75, c³ 7,5cl c Seite 8

9 Aufgabe : a) p 0,35 q 0, i) P( X ) 0,35 0,65 0, ii) P( X 1) 1 P( X 0) 1 0,35 0 0, ,1160 0,88 b) 1 0,65 n > 0,95 0,65 n > 0,05 0,65 n < 0,05 n > 6,95 > n 7 c) µ n p , σ n p q 15,1 P( X ) 1 Φ 1 Φ(,65) 1 0,00 0,996 15,1 d) P ( 30 X 360) Φ(0,66) Φ( 1,99) 0,753 0,033 0,71 Seite 9

10 Aufgabe 5: a) N( t) k t N N 0 8,1 0 N(0) k 0 N0 5,9 k 0,11 N( t) 0,11 t 8,1 k-0,11 g/ gibt die Abnahe des O -Gehaltes pro an. b) N (30) 0, ,1,8 g l N( t) 0,11 t 8,1 0 t 73, 6 c) d) t N( t) N a N e λ N 0 8,1 t (0) 0 5, 9 0, ,57% N N a a i a 1 λ ln( a ) N (30) 30 8,1 0, g l (70) 70 8,1 0,9879,67 g l N,67 5, % 6,93% 5,035 e) 000 N(6) 0, e N( t) 0,5 t 1 199e 500 t 8,39 Monate Seite 10

11 Aufgabe 6: a) K( ) K ( ) d F 0,006 ³ 0,9 ² 50 F K( ) F K( ) 0,006 ² 0,9 50 F K ( ) 0,01 0,9 ² K (10) 0 F 7776 K( ) 0,006 ³ 0,9 ² K(10) 93, K ( ) 0 Kostenkehre 50 b) p(0) 380 p(760) 0 p() 0,5 380 c) G( ) E( ) K( ) E( ) p( ) G( ) 0,006 ³ 0, ² G ( ) 0,01 ² 0, ,3 159 Stück Stückzahl für aialen Gewinn G( ) 30688,79 Höhe des aialen Gewinns a a d) a p( ) 300,8 Verkauf u 300,8, u aialen Gewinn zu erzielen Seite 11

TEILPRÜFUNG ZUR BERUFSREIFEPRÜFUNG. Themenstellung für die schriftliche Berufsreifeprüfung. aus dem Fach Mathematik und angewandte Mathematik

TEILPRÜFUNG ZUR BERUFSREIFEPRÜFUNG. Themenstellung für die schriftliche Berufsreifeprüfung. aus dem Fach Mathematik und angewandte Mathematik TEILPRÜFUNG ZUR BERUFSREIFEPRÜFUNG Themenstellung für die schriftliche Berufsreifeprüfung aus dem Fach Mathematik und angewandte Mathematik Termin: Herbst 2016 Prüfer: Mag. Wolfgang BODISCH Mag. Wolfgang

Mehr

TEILPRÜFUNG ZUR BERUFSREIFEPRÜFUNG. Themenstellung für die schriftliche Berufsreifeprüfung. aus dem Fach Mathematik und angewandte Mathematik

TEILPRÜFUNG ZUR BERUFSREIFEPRÜFUNG. Themenstellung für die schriftliche Berufsreifeprüfung. aus dem Fach Mathematik und angewandte Mathematik TEILPRÜFUNG ZUR BERUFSREIFEPRÜFUNG Themenstellung für die schriftliche Berufsreifeprüfung aus dem Fach Mathematik und angewandte Mathematik Termin: Sommer 2016 Prüfer: Mag. Wolfgang BODISCH Mag. Wolfgang

Mehr

Kostenrechnung. Mengenangaben (Betriebsoptimum, gewinnmaximierende Menge) sind immer auf ganze ME zu runden.

Kostenrechnung. Mengenangaben (Betriebsoptimum, gewinnmaximierende Menge) sind immer auf ganze ME zu runden. Mengenangaben (Betriebsoptimum, gewinnmaximierende Menge) sind immer auf ganze ME zu runden. 1. Berechnen Sie die Gleichung der linearen Betriebskostenfunktion! a. Die Fixkosten betragen 300 GE, die variablen

Mehr

Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Februartermin 2014

Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Februartermin 2014 BRP Mathematik VHS Floridsdorf Gruppe A / 15.02.2014 Seite 1/7 Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Februartermin 2014 Notenschlüssel:

Mehr

TEILPRÜFUNG ZUR BERUFSREIFEPRÜFUNG. Themenstellung für die schriftliche Berufsreifeprüfung. aus dem Fach Mathematik und angewandte Mathematik

TEILPRÜFUNG ZUR BERUFSREIFEPRÜFUNG. Themenstellung für die schriftliche Berufsreifeprüfung. aus dem Fach Mathematik und angewandte Mathematik TEILPRÜFUNG ZUR BERUFSREIFEPRÜFUNG Themenstellung für die schriftliche Berufsreifeprüfung aus dem Fach Mathematik und angewandte Mathematik Termin: Sommer 2017 Prüfer: Mag. Wolfgang GALSTERER Punkteverteilung/Gewichtung:

Mehr

Berufsreifprüfung Mathematik

Berufsreifprüfung Mathematik BRP Mathematik VHS Floridsdorf 08.10.2011 Seite 1/3 Berufsreifprüfung Mathematik Volkshochschule Floridsdorf / Herbsttermin 2011 1. Ein Brückenbogen besteht aus zwei Parabeln zweiter Ordnung (siehe Skizze).

Mehr

Probematura Jänner/Februar 2016 Seite 1 / 7

Probematura Jänner/Februar 2016 Seite 1 / 7 Probematura Jänner/Februar 2016 Seite 1 / 7 1. Im Casino (20 Punkte) (a) Bei einem Glücksrad beträgt die Gewinnwahrscheinlichkeit 0,3. (3 P) i. Geben Sie eine Formel an, mit der man die Wahrscheinlichkeit

Mehr

Probematura VHS Favoriten Jänner 2017 Seite 1 / Formel 1 (15 Punkte)

Probematura VHS Favoriten Jänner 2017 Seite 1 / Formel 1 (15 Punkte) Probematura VHS Favoriten Jänner 2017 Seite 1 / 5 1. Formel 1 (15 Punkte) Die Formel-1-Saison 2015 begann am 15..2015 wie auch die letzten Jahre auf dem 5,0 km langen Albert Park Circuit von Melbourne,

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 VERMESSUNGSAUFGABEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 VERMESSUNGSAUFGABEN Mathematik Mag. Schmid Wolfgang Arbeitsblatt 4 3. Semester ARBEITSBLATT 4 VERMESSUNGSAUFGABEN Nun wollen wir unser Wissen über recht- und schiefwinkelige Aufgaben an einigen Aufgaben beweisen Beispiel

Mehr

Kodieranweisung (1) 2. Welcher Term besitzt den Wert 25? (1) 3 Dreiecke müssen gefärbt sein (1)

Kodieranweisung (1) 2. Welcher Term besitzt den Wert 25? (1) 3 Dreiecke müssen gefärbt sein (1) Teil 1 Kurzform Kodieranweisung Zu erreichende Punktzahl: 4 1. Mit welcher Zahl geht die Zahlenreihe...5, 4, 8, 7, 14 weiter? 1 8 15 9. Welcher Term besitzt den Wert 5? 50 5 50 + 5 17 8 5 + 50. Färbe 10

Mehr

! Naturwissenschaftliches ORG! Gymnasium! Musisches ORG! andere:

! Naturwissenschaftliches ORG! Gymnasium! Musisches ORG! andere: Ein Evaluations-Projekt des Schülerfragebogen Familienname: Vorname: Alter: Geschlecht: M W Schule: Schulform: Realgymnasium Naturwissenschaftliches ORG Gymnasium Musisches ORG andere: Klasse: 5 6 7 8

Mehr

Technische Berufsmaturitätsprüfung Baselland 2009 Mathematik Teil 2 (Mit Hilfsmitteln) Lösungen

Technische Berufsmaturitätsprüfung Baselland 2009 Mathematik Teil 2 (Mit Hilfsmitteln) Lösungen Technische Berufsmaturitätsprüfung Baselland 009 Mathematik Teil (Mit Hilfsmitteln) Aufgabe Es sei ein Rechteck mit Umfang in einem Halbkreis einbeschrieben. [ Punkte] Berechnen Sie die Seitenlängen des

Mehr

Aufgaben zu den Themen: Rechtwinkliges Dreieck und Sinus, Cosinus und Tangens im Einheitskreis

Aufgaben zu den Themen: Rechtwinkliges Dreieck und Sinus, Cosinus und Tangens im Einheitskreis Aufgaben zu den Themen: Rechtwinkliges Dreieck und Sinus, Cosinus und Tangens im Einheitskreis 1. Eine Rampe hat eine Steigung von 5%. Wie groß ist der Steigungswinkel? 2. Gegeben ist ein rechtwinkliges

Mehr

TEILPRÜFUNG ZUR BERUFSREIFEPRÜFUNG. Themenstellung für die schriftliche Berufsreifeprüfung. aus dem Fach Mathematik und angewandte Mathematik

TEILPRÜFUNG ZUR BERUFSREIFEPRÜFUNG. Themenstellung für die schriftliche Berufsreifeprüfung. aus dem Fach Mathematik und angewandte Mathematik TEILPRÜFUNG ZUR BERUFSREIFEPRÜFUNG Themenstellung für die schriftliche Berufsreifeprüfung aus dem Fach Mathematik und angewandte Mathematik Termin: Frühjahr 2017 Prüfer: Andreas Aschbacher Nikolaus Ettel

Mehr

Berufsreifeprüfung Mathematik

Berufsreifeprüfung Mathematik BRP Mathematik VHS Favoriten 13.02.2016 Seite 1 / 8 Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Favoriten Frühjahrstermin 2016 Notenschlüssel: Note

Mehr

HAK, HUM, HLSF, BAKIP (HTL1) Geogebra

HAK, HUM, HLSF, BAKIP (HTL1) Geogebra Finale Vorbereitung auf die srdp 2016 HAK, HUM, HLSF, BAKIP (HTL1) Geogebra Lösung der Bewegungsaufgabe a) Ansicht: Algebra und Grafik Eingabefenster : s(t)= Funktion[- x^3/180+x^2/2,0,100] ENTER 0der

Mehr

Muster für den Schultest. Muster Nr. 1

Muster für den Schultest. Muster Nr. 1 GRUNDELEMENTE DER MATHEMATIK Boris Girnat Wintersemester 2005/06 Technische Universität Braunschweig Institut für Elementarmathematik und Didaktik der Mathematik Muster für den Schultest Dieser Blatt enthält

Mehr

Hauptprüfung Fachhochschulreife Baden-Württemberg

Hauptprüfung Fachhochschulreife Baden-Württemberg Hauptprüfung Fachhochschulreife 2016 Baden-Württemberg Aufgabe 7 Mathematik in der Praxis Hilfsmittel: grafikfähiger Taschenrechner Berufskolleg Alexander Schwarz www.mathe-aufgaben.com Juni 2016 1 Die

Mehr

Aufgabe 1 Beschriften Sie in der folgenden Darstellung die einzelnen Funktionen und geben Sie die Bedeutung der Punkte A H an.

Aufgabe 1 Beschriften Sie in der folgenden Darstellung die einzelnen Funktionen und geben Sie die Bedeutung der Punkte A H an. Kosten-Preis-Theorie Aufgabe 1 Beschriften Sie in der folgenden Darstellung die einzelnen Funktionen und geben Sie die Bedeutung der Punkte A H an. Aufgabe 2 Von einer ertragsgesetzlichen Kostenfunktion

Mehr

Klasse 9: Lösungen. Der Term ist ein Quotient. Der Dividend ist eine Differenz mit dem Minuenden

Klasse 9: Lösungen. Der Term ist ein Quotient. Der Dividend ist eine Differenz mit dem Minuenden . Beschreibe den Ter : unter Verwendung der atheatischen Fachbegriffe. Berechne den Terwert nachvollziehbar ohne Taschenrechner und erkläre dabei, was an unter Erweitern und Kürzen eines Bruches versteht.

Mehr

Normalverteilung Approximation der Binomialverteilung

Normalverteilung Approximation der Binomialverteilung Noralverteilung Approiation der Binoialverteilung Für großes n ist der rechnerische Aufwand zur Bestiung von (Bernoulli-) Wahrscheinlichkeiten, dass eine binoialverteilte Zufallsfunktion die Funktionswerte

Mehr

T4p: Thermodynamik und Statistische Physik Prof. Dr. H. Ruhl Übungsblatt 1

T4p: Thermodynamik und Statistische Physik Prof. Dr. H. Ruhl Übungsblatt 1 T4p: Therodynaik und Statistische Physik Prof. Dr. H. Ruhl Übungsblatt Lösungsvorschlag. Noral-Verteilung Die Noral-Verteilung ist definiert als w() Ce ( ) /σ. a) Bestien Sie die Konstante C sodass w()

Mehr

Kaufmännische Berufsmatura 2014

Kaufmännische Berufsmatura 2014 Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden nicht berücksichtigt

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 01 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 01 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Klasse WI06b MLAN2 zweite-klausur 13. Juni 2007

Klasse WI06b MLAN2 zweite-klausur 13. Juni 2007 Klasse WI6b MLAN zweite-klausur 3. Juni 7 Name: Aufgabe Gegeben sind die beiden harmonischen Schwingungen ( y = f (t) = +3 sin ωt + π ) (), ( 4 y = f (t) = 8 cos ωt + π ) (). 4 a) Bestimmen Sie mit Hilfe

Mehr

Kaufmännische Berufsmatura 2014

Kaufmännische Berufsmatura 2014 Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden nicht berücksichtigt

Mehr

a) Bestimmen Sie die Gleichung des Kreises in der Form x 2 +y 2 +ax+by+c = 0 und zeigen Sie, dass der Punkte A( 3 7) auf dem Kreis liegt.

a) Bestimmen Sie die Gleichung des Kreises in der Form x 2 +y 2 +ax+by+c = 0 und zeigen Sie, dass der Punkte A( 3 7) auf dem Kreis liegt. ETH-Aufnahmeprüfung Herbst 215 Mathematik II (Geometrie/Statistik) Aufgabe 1 Gegeben ist der Kreis mit Mittelpunkt M( 5 2) und Radius r = 85. a) Bestimmen Sie die Gleichung des Kreises in der Form x 2

Mehr

12.4 Berechnung und Darstellung betriebswirtschaftlicher Funktionen

12.4 Berechnung und Darstellung betriebswirtschaftlicher Funktionen . Berechnung und Darstellung betriebswirtschaftlicher Funktionen.. Kostenfunktion a) Vorgaben und Fragestellung Die Materialkosten für die Herstellung eines Stücks belaufen sich auf CHF.--. Die anteilmässigen

Mehr

Lineare Funktionen Kapitel 7

Lineare Funktionen Kapitel 7 . Bestimmen Sie für folgende Funktionen die fehlenden Koordinaten: a) ( x) x 3 f A 8 / y; B 6 / y f ( x) x C 4 / y; D x / 7 f 3( x) 4x E / y; F x / 4 f ( ) 4 x x 4 G / y; H x / 0,5 5x 0, K x /3,75; L x

Mehr

Angewandte Mathematik

Angewandte Mathematik Standardisierte kompetenzorientierte schriftliche Reife- und Diplomprüfung BHS 21. September 2015 Angewandte Mathematik Teil A + Teil B (Cluster 8) Korrekturheft Korrektur- und Beurteilungsanleitung zur

Mehr

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen a) Es ist < x, y > α + + β β ( + α) und y α + + β α + + ( + α) (α + α + ) 6 α + α, also α, ± 5 + ± 9 4 ± 3 Es gibt also Lösungen: α, β

Mehr

Aufgaben zur Wellenoptik

Aufgaben zur Wellenoptik Aufgaben zur Wellenoptik C Mehrfachspalte Aufgabe C 1: Zeigeraddition bei Doppelspalt Die Abbildung zeigt einen Doppelspalt, an dessen Spalten zwei gleichphasig schwingende Wellen starten. Die zu den Schwingungen

Mehr

2. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner

2. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner . Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: AG1.1 Wissen über die Zahlenmengen,,, verständig einsetzen können

Mehr

Studienberechtigungsprüfung Mathematik VHS Floridsdorf

Studienberechtigungsprüfung Mathematik VHS Floridsdorf Studienberechtigungsprüfung Mathematik VHS Floridsdorf von Dr. Manfred Gurtner Würl 0/ Teil für : ) Zahlenrechnen und Taschenrechner: a) Berechnen Sie: [( 6) ( ) (+)] [( 0)+(+)] (+5) + ( ) = 5 b) Berechnen

Mehr

5 Preise. Ziele dieses Kapitels

5 Preise. Ziele dieses Kapitels Preise EBDL Kostenrechnung 5 Preise Ziele dieses Kapitels Den Begriff Preispolitik erklären können. Die drei weiteren Marketing-Instruente neben der Preisgestaltung nennen und erläutern können. Den Marktechanisus

Mehr

Lösung 09 Klassische Theoretische Physik I WS 15/16. G(t t ) = Θ(t t )e α(t t ). (1)

Lösung 09 Klassische Theoretische Physik I WS 15/16. G(t t ) = Θ(t t )e α(t t ). (1) Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik www.tfp.kit.edu Lösung 09 Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön 0 Punkte Sebastian Zanker, Daniel Mendler

Mehr

Grundwissen. 10. Jahrgangsstufe. Mathematik

Grundwissen. 10. Jahrgangsstufe. Mathematik Grundwissen 10. Jahrgangsstufe Mathematik 1 Kreis und Kugel 1.1 Kreissektor und Bogenmaß Kreis Umfang U = π r=π d Flächeninhalt A=π r Kreissektor mit Mittelpunktswinkel α Bogenlänge b= α π r 360 Flächeninhalt

Mehr

63.5 Das Vektorprodukt - Übungen (2)

63.5 Das Vektorprodukt - Übungen (2) Mathematik mit Mathcad MK.. Vektorprodukt_Ueb_.xmcd. Das Vektorprodukt - Übungen () Aufgaben () Gegeben sind zwei Vektoren a, die ein Parallelogramm aufspannen. () Gegeben sind die drei Eckpunkte A( -;

Mehr

Kaufmännische Berufsmatura 2014

Kaufmännische Berufsmatura 2014 Kaufmännische Berufsmatura 04 Serie a: Lösungen Serie a - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig

Mehr

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15 5. Es sei Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 5 f(x, y) : x y, : x, y, x + y, y x. erechnen Sie f(x, y) d. Wir lösen diese Aufgabe auf zweierlei Art. Zuerst betrachten wir das Gebiet

Mehr

Klausur Mathematik I

Klausur Mathematik I Klausur Mathematik I E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). März 007 Hans-Georg Rück) Aufgabe 6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft z z = und z ) z ) =.

Mehr

Mathematik-Vorkurs. Übungsaufgaben. im Sommersemester 2012

Mathematik-Vorkurs. Übungsaufgaben. im Sommersemester 2012 Mathematik-Vorkurs Übungsaufgaben im Sommersemester 2012 Goethe Universität-Frankfurt am Main Prof. Dr. Heinz D. Mathes Professur für Produktionswirtschaft 1 Aufgaben zu Thema 1 Aufgabe 1.1: Lesen Sie

Mehr

Kaufmännische Berufsmatura 2014

Kaufmännische Berufsmatura 2014 Kaufmännische Berufsmatura 04 Serie a: Lösungen Serie a - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig

Mehr

Angewandte Mathematik Probeklausur 2014 Teil A / Teil B Cluster 8

Angewandte Mathematik Probeklausur 2014 Teil A / Teil B Cluster 8 Name: Klasse/Jahrgang: Standardisierte kompetenzorientierte schriftliche Reife- und Diplomprüfung Angewandte Mathematik Probeklausur 2014 Teil A / Teil B Cluster 8 Bearbeitungshinweise Im vorliegenden

Mehr

Angewandte Mathematik 9. Mai 2014 Korrekturheft Teil A + Teil B (Cluster 8)

Angewandte Mathematik 9. Mai 2014 Korrekturheft Teil A + Teil B (Cluster 8) Standardisierte kompetenzorientierte schriftliche Reife- und Diplomprüfung Angewandte Mathematik 9. Mai 2014 Korrekturheft Teil A + Teil B (Cluster 8) Aufgabe 1 a) x Masse der Rosinen oder Mandeln in Kilogramm

Mehr

Aufgabe (Seite 42)

Aufgabe (Seite 42) Aufgabe. (Seite ) i) Die Gerade g 9 verläuft durch den Punkt P 9 ( - - ) und hat die Steigung -. Wie lautet die Noralfor der Geraden h 9, welche die Y-Achse i selben Punkt wie die Gerade g 9 und die X-Achse

Mehr

(g) y = 2,2. (j) y = x (b) y = x 1. (k) y = x (c) y = 4. (h) y = 4x + 2. (i) y = x

(g) y = 2,2. (j) y = x (b) y = x 1. (k) y = x (c) y = 4. (h) y = 4x + 2. (i) y = x Lineare Funktionen: F. Zeichne die Graphen der folgenden Funktionen und gib jeweils (i) die Steigung und den Steigungswinkel an! (ii) die Wertemenge der Funktion an, wenn die Definitionsmenge D f = R ist!

Mehr

Linien- oder Kurvenintegrale: Aufgaben

Linien- oder Kurvenintegrale: Aufgaben Linien- oder Kurvenintegrale: Aufgaben 4-E Das ebene Linienintegral Im Fall eines ebenen Linienintegrals liegt der Integrationsweg C häufig in Form einer expliziten Funktionsgleichung y = f (x) vor. Das

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematik - Sommer 2016 Prof Dr Matthias Lesch, Regula Krapf Übungsblatt 7 Aufgabe 23 9 Punkte In der folgenden Aufgabe sei mit baryzentrischen Koordinaten immer die baryzentrischen Koordinaten

Mehr

Schriftliche Reifeprüfung aus Mathematik Haupttermin ABC- Klasse

Schriftliche Reifeprüfung aus Mathematik Haupttermin ABC- Klasse Schriftliche Reifeprüfung aus Mathematik Haupttermin 2011 8ABC- Klasse 1 Grundkompetenzen a Trigonometrie Gegeben ist ein Streckenplan (Quelle: Wikipedia.org) der berühmten Pöstlingbergbahn in Linz. Die

Mehr

fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt 1 für beliebiges k N und x 0. a 2 x 1 x 3 y 2 ) 2

fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt 1 für beliebiges k N und x 0. a 2 x 1 x 3 y 2 ) 2 fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt Aufgabe Induktion). a) Beweisen Sie, dass + 3 + 5 +... + n )) ein perfektes Quadrat genauer n ) ist. b) Zeigen Sie: + + +...

Mehr

BESONDERE LEISTUNGSFESTSTELLUNG Schuljahr 2014/2015 MATHEMATIK

BESONDERE LEISTUNGSFESTSTELLUNG Schuljahr 2014/2015 MATHEMATIK Prüfungstag: 28. Mai 2015 (HAUPTTERMIN) Prüfungsbeginn: 08:00 Uhr BESONDERE LEISTUNGSFESTSTELLUNG Schuljahr 2014/2015 MATHEMATIK Hinweise für die Teilnehmerinnen und Teilnehmer Bearbeitungszeit: 180 Minuten

Mehr

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c)

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c) Komplexe Zahlen Wir betrachten Zahlenpaare (a, b, (c, d R und definieren eine Addition und eine Multiplikation wie folgt: (a, b + (c, d := (a + c, b + d (a, b (c, d := (a c b d, a d + b c Satz: R mit dieser

Mehr

1. Übung zur Vorlesung,,Diskrete Strukturen (SS 01)

1. Übung zur Vorlesung,,Diskrete Strukturen (SS 01) 1 Übung zur Vorlesung,,Disrete Struturen (SS 01 Lösung zu Aufgabe Es ist zu zeigen: Für, n N 0 gilt Algebraischer Beweis ( ( n + n + + 1 0 Es sei n N 0 beliebig Wir beweisen die Behauptung durch Indution

Mehr

Berechne die folgenden Integrale [ zu d): vereinfache den Intergralwert weitestmöglich)] : a) b) c) d) 2

Berechne die folgenden Integrale [ zu d): vereinfache den Intergralwert weitestmöglich)] : a) b) c) d) 2 Loock 6/7 WG LK MATHEMATIK-KLAUSUR NR. 3 (HT) Name:----------------------------------------------------- Beachte: Erlaubte Hilfsmittel: keine Auf jeder Seite mindestens 5 cm Rand lassen! Blätter in der

Mehr

Jan Auffenberg. 2. Theorie 2.1 Mathematisches Pendel Um eine Pendelbewegung einfach beschreiben zu können, wendet man folgende Abstraktionen a:

Jan Auffenberg. 2. Theorie 2.1 Mathematisches Pendel Um eine Pendelbewegung einfach beschreiben zu können, wendet man folgende Abstraktionen a: Gruppe 8 Björn Baueier Protokoll zu Versuch M1: Pendel 1. Einleitung Die Eigenschaften und Bewegungen der in diese Versuch untersuchten Fadenund Federpendel, werden durch eine besonders einfache haronische

Mehr

KOSTEN- UND PREISTHEORIE

KOSTEN- UND PREISTHEORIE KOSTEN- UND PREISTHEORIE Fikosten, variable Kosten und Grenzkosten Jedes Unternehmen hat einerseits Fikosten (Kf, sind immer gleich und hängen nicht von der Anzahl der produzierten Waren ab, z.b. Miete,

Mehr

Matura Mathematik schriftlich

Matura Mathematik schriftlich Kantonsschule Zofingen Matura 014 Mathematik schriftlich Abteilungen 4ABCD Hilfsmittel: Formelsammlung Taschenrechner TI84 Zeit: vier Stunden, d.h. 40 Minuten Bewertung: Aufgabe 1 16 Punkte (++3+3+6) Aufgabe

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Keyl M. Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 3 (Analysis 2) MA923 http://www-m5.ma.tum.de/allgemeines/ma923 216S Sommersem. 216 Lösungsblatt 3 (29.4.216)

Mehr

FIZIKA NÉMET NYELVEN JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA NÉMET NYELVEN JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika néet nyelven középszint 0803 ÉRETTSÉGI VIZSGA 009. ájus 3. FIZIKA NÉMET NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fizika néet

Mehr

2. Als Resultate gelten nur eindeutig gekennzeichnete Zahlen, Mengen oder Sätze.

2. Als Resultate gelten nur eindeutig gekennzeichnete Zahlen, Mengen oder Sätze. Kaufmännische Berufsmatura Kanton Zürich 007 Mathematik Serie Serie - en Prüfungsdauer: Max. Punktzahl: 50 Minuten 00 Allgemeine Bewertungshinweise:. Mehrfachlösungen sind nicht gestattet.. Als Resultate

Mehr

Diskrete Mathematik. Kryptographie und Graphentheorie

Diskrete Mathematik. Kryptographie und Graphentheorie Diskrete Matheatik Kryptographie und Graphentheorie Jochen Hores & Jonas Bühler 14.06.006 Jochen Hores, Jonas Bühler Kryptographie & Graphentherorie 1 Inhaltsverzeichnis Inhaltsverzeichnis 1. Kryptographie

Mehr

12 Übungen zu Gauß-Algorithmus

12 Übungen zu Gauß-Algorithmus Aufgaben zum Vorkurs B S. 2 Übungen zu Gauß-Algorithmus 2x x 2 = 7x +, 5x 2 = 7 Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: 2x x 2 = x +2x 2 = 2 2x x 2 = 7x +, 5x 2 =, 5 x 2x 2 = x +x 2 = 5 2x +x 2 = 4

Mehr

Vorbemerkungen zur Optionsscheinbewertung

Vorbemerkungen zur Optionsscheinbewertung Vorbeerkungen zur Optionsscheinbewertung Matthias Groncki 24. Septeber 2009 Einleitung Wir wollen uns it den Grundlagen der Optionsscheinbewertung beschäftigen. Dazu stellen wir als erstes einige Vorraussetzungen

Mehr

Mecklenburg - Vorpommern

Mecklenburg - Vorpommern Arbeit A Seite 1 Mecklenburg - Vorpommern Realschulprüfung 1996 im Fach Mathematik Arbeit A Seite 2 Pflichtteil 1. Bei einer Geschwindigkeitskontrolle innerhalb einer Ortschaft durchfuhren die Meßstelle

Mehr

Dritte Schularbeit Mathematik Klasse 8D WIKU am

Dritte Schularbeit Mathematik Klasse 8D WIKU am Dritte Schularbeit Mathematik Klasse 8D WIKU am 16.03.2016 SCHÜLERNAME: Punkte im ersten Teil: Punkte im zweiten Teil: Davon Kompensationspunkte: Note: Notenschlüssel: Falls die Summe der erzielten Kompensationspunkte

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartent E13 WS 011/1 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbau, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung

Mehr

Rechnungen zu Kraft und Beschleunigung der ICE

Rechnungen zu Kraft und Beschleunigung der ICE Illustrierende Aufgaben zu LehrplanPLUS Gynasiu, Physik, Jahrgangsstufe 8 Rechnungen zu Kraft und Beschleunigung der ICE Stand: 6.08.015 Jahrgangsstufen 8 Fach/Fächer Physik Kopetenzerwartungen Die Schülerinnen

Mehr

Theoretische Physik I Mechanik Probeklausur - Lösungshinweise

Theoretische Physik I Mechanik Probeklausur - Lösungshinweise Prof. H. Monien St. Kräer R. Sanchez SS2014 Theoretische Physik I Mechanik Probeklausur - Lösungshinweise Hinweise: Diese Lösung/Lösungshinweise erhebt keinen Anspruch auf Richtigkeit oder Vollständigkeit,

Mehr

Ma 10 / 11 Das Newton-Verfahren Na - 4. September 2014

Ma 10 / 11 Das Newton-Verfahren Na - 4. September 2014 Was ist das Newton-Verfahren? Das Newton-Verfahren ist ein nuerisches Verfahren zur näherungsweisen Bestiung einer Nullstelle einer gegeben Funktion. Analytisch exakt können Nullstellen von Geraden von

Mehr

Lineare Funktionen Kapitel 7. Lineare Funktionen Kapitel 7 ( ) ( 2) ( 5) P und P auf dem Graphen der Funktion

Lineare Funktionen Kapitel 7. Lineare Funktionen Kapitel 7 ( ) ( 2) ( 5) P und P auf dem Graphen der Funktion Schuljahr 06-07 FOS Schuljahr 06-07 FOS Bestimmen Sie für folgende Funktionen die fehlenden Koordinaten: Fehlt der -Wert, wird der gegebene -Wert in die Funktionsgleichung eingesetzt Fehlt der -Wert, setzt

Mehr

Lösungen zu den Übungen zur Newtonschen Mechanik

Lösungen zu den Übungen zur Newtonschen Mechanik Lösungen zu den Übungen zur Newtonschen Mechanik Jonas Probst.9.9 1 Bahnkurve eines Massenpunktes Aufgabe: Ein Massenpunkt bewegt sich auf folgender Trajektorie: 1. Skizzieren Sie die Bahnkurve. r(t) (a

Mehr

Testklausur Mathematik Studiengang Informationstechnik Berufsakademie in Horb

Testklausur Mathematik Studiengang Informationstechnik Berufsakademie in Horb Richtzeit pro Seite: Erste und letzte Seite je 4 min., Andere Seiten je 8 min. Gesamtzeit: 6 min. Vereinfachen Sie folgende Ausdrücke durch Ausklammern, Ausmultiplizieren bzw. Kürzen: 4 ln( ) + ln( ) sin

Mehr

Mathematik. Prüfung zum mittleren Bildungsabschluss Saarland. Schriftliche Prüfung Wahlaufgaben. Name: Vorname: Klasse:

Mathematik. Prüfung zum mittleren Bildungsabschluss Saarland. Schriftliche Prüfung Wahlaufgaben. Name: Vorname: Klasse: Prüfung zum mittleren Bildungsabschluss 2011 Schriftliche Prüfung Wahlaufgaben Mathematik Saarland Ministerium für Bildung Name: Vorname: Klasse: Bearbeitungszeit: 60 Minuten Fach: Mathematik Wahlaufgaben

Mehr

Prüfungsklausur Mathematik II für Wirtschaftsingenieure,

Prüfungsklausur Mathematik II für Wirtschaftsingenieure, HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik II für Wirtschaftsingenieure, 06.07.2015 B Name, Vorname Matr. Nr. Sem. gr. Aufgabe 1 2 3 4 5 6 7 8 gesamt erreichbare

Mehr

ÜTA: B - Schlauch für Cluster 1 (tw.) und 3

ÜTA: B - Schlauch für Cluster 1 (tw.) und 3 bernhard.nietrost@htl-steyr.ac.at Seite 1 von 9 ÜTA: B - Schlauch für Cluster 1 (tw.) und 3 Mathematische / Fachliche Inhalte in Stichworten: allgemeine Sinusfunktion, Winkelfunktionen im schiefwinkeligen

Mehr

Mathematikaufgaben > Vektorrechnung > Parallelogrammpyramide

Mathematikaufgaben > Vektorrechnung > Parallelogrammpyramide Michael Buhlmann, Mathematikaufgaben > Vektorrechnung > Parallelogrammpyramide Michael Buhlmann Mathematikaufgaben > Vektorrechnung > Parallelogrammpyramide Aufgabe: a) Zeige, dass das Viereck ABCD mit

Mehr

Studienberechtigungsprüfung Mathematik 1 VHS polycollege Siebenbrunnengasse, von 9:00 bis 11:00 Seite 1 von 2

Studienberechtigungsprüfung Mathematik 1 VHS polycollege Siebenbrunnengasse, von 9:00 bis 11:00 Seite 1 von 2 Studienberechtigungsprüfung Mathematik 1 VHS polycollege Siebenbrunnengasse, 19.1.201 von 9:00 bis 11:00 Seite 1 von 2 Der Rechenvorgang ist ausführlich darzustellen! Maximale Punkteanzahl: 20 1. ( Punkte)

Mehr

Differentialrechnung

Differentialrechnung Kapitel 7 Differentialrechnung Josef Leydold Auffrischungskurs Mathematik WS 2017/18 7 Differentialrechnung 1 / 75 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f

Mehr

4. In einem Parallelogramm ABCD sind die Seiten a = c = 6 und

4. In einem Parallelogramm ABCD sind die Seiten a = c = 6 und Sinus, Cosinus und Tangens 1. In einem gleichschenkligen Dreieck ABCsind die Seiten c = 4 und a = b = gegeben. Berechne die Winkel im Dreieck ABC und den Flächeninhalt des Dreiecks. In einem Parallelogramm

Mehr

Angewandte Mathematik 9. Mai 2014 Korrekturheft Teil A

Angewandte Mathematik 9. Mai 2014 Korrekturheft Teil A Standardisierte kompetenzorientierte schriftliche Reife- und Diplomprüfung Angewandte Mathematik 9. Mai 2014 Korrekturheft Teil A Aufgabe 1 a) x Masse der Rosinen oder Mandeln in Kilogramm (kg) y Masse

Mehr

Lösung KSR GF Lösung Aufgabe Nr. 1. = 2x. D f = R \ {0} a) Gegeben: Nullstellen: Asymptoten: = 0. + ohne VZW x = 0 Gl. der vertikalen Asymptote

Lösung KSR GF Lösung Aufgabe Nr. 1. = 2x. D f = R \ {0} a) Gegeben: Nullstellen: Asymptoten: = 0. + ohne VZW x = 0 Gl. der vertikalen Asymptote Lösung KSR GF 008 Lösung Aufgabe Nr. a) Gegeben: + f() + + D f R \ {0} Nullstellen: + 0 ( )( ) 0 N (/ 0), N ( / 0) Asymtoten: für 0, < 0 gilt :f() + Polstelle 0 für 0, > 0 gilt :f() + ohne VZW 0 Gl. der

Mehr

Informationen für Lehrpersonen und Lernende GLF-Prüfung Mathematik TALS Juli 2017 (inkl. Nachtermin)

Informationen für Lehrpersonen und Lernende GLF-Prüfung Mathematik TALS Juli 2017 (inkl. Nachtermin) Informationen für Lehrpersonen und Lernende GLF-Prüfung Mathematik TALS Juli 017 (inkl. Nachtermin) Für die Note 6 müssen nicht alle Aufgaben gelöst werden. Der Notenschlüssel wird nach der Prüfung festgelegt.

Mehr

TRÄGHEITSMOMENT. Beschreibung der Apparatur

TRÄGHEITSMOMENT. Beschreibung der Apparatur Versuch 6/ TRÄGHEITSMOMENT 4.5.6 Blatt 1 TRÄGHEITSMOMENT as Trägheitsoent in der Rotationsdynaik entspricht der trägen Masse bei translatorischen Bewegungen. Während die träge Masse gleich der schweren

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

1 + λ 0, die Geraden h : x =

1 + λ 0, die Geraden h : x = Amnalytische Geometrie. In einem kartesischen Koordinatensystem des R sind die Gerade g : x 7 + λ, die Geraden h : x 8 5 + µ, λ, µ, a R sowie die Ebene E durch die Punkte A 5, und gegeben. B 6 C 5 a) K

Mehr

Expertengruppe A: Kostenfunktion

Expertengruppe A: Kostenfunktion Expertengruppe A: Kostenfunktion Gegeben ist eine Kostenfunktion 3. Grades K(x) = x 3 30x 2 + 400x + 512. 1. Lesen Sie aus obigem Funktionsgraphen ab: a) Schnittpunkt des Funktionsgraphen mit der y-achse:

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Schelldorfer) Serie: A2 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer:

Mehr

Kosten und Umsatzfunktionen

Kosten und Umsatzfunktionen In den folgenden Abschnitten wenden wir gelegentlich Anwendungen aus der Wirtschaft behandeln. Wir stellen deshalb einige volks- und betriebswirtschaftliche Funktionen vor. Dabei handelt es sich stets

Mehr

Probeklausur zu Mathematik 3 für Informatik

Probeklausur zu Mathematik 3 für Informatik Gunter Ochs Juli 0 Probeklausur zu Mathematik für Informatik Lösungshinweise wie immel ohne Galantie auf Fehreleiheit Sei f ln a Berechnen Sie die und die Ableitung f und f Mit der Produktregel erhält

Mehr

Kosten- und Preistheorie

Kosten- und Preistheorie Kosten- und Preistheorie Mag. Martin Bruckbauer 8. November 2005 1 Kostenfunktion Unter Kosten versteht man im Allgemeinen den in Geld bewerteten Güterverzehr, der für die Erstellung betrieblicher Leistungen

Mehr

Mag. Günter Mitasch. Schularbeiten der 5. Klasse

Mag. Günter Mitasch. Schularbeiten der 5. Klasse Mag. Günter Mitasch Schularbeiten der 5. Klasse Schularbeiten der 5. Klasse Seite 1 5A/A 1. M- Schularbeit, am 30.10.1997 1 Bestimme die Gleichungen folgender Geraden g1, g2 und g3. g3 g1 g2 Weiters ist

Mehr

1 Finanzmathematik (21 Punkte)

1 Finanzmathematik (21 Punkte) - 2 - AP WS 04M 1 Finanzmathematik (21 Punkte) Herr A freut sich über seinen Lottogewinn in Höhe von 141.783,76. Er legt 75 % davon bei seiner Bank zu einem Zinssatz von 3,5 % an. 1.1 Berechnen Sie, über

Mehr

Realschulabschlußprüfung Mathematik 1998 Arbeit A/B Seite 1. Prüfungsarbeit

Realschulabschlußprüfung Mathematik 1998 Arbeit A/B Seite 1. Prüfungsarbeit Arbeit A/B Seite 1 Pflichtteil Prüfungsarbeit 1. Drei Freunde spielen gemeinsam Lotto. Für den Lottoeinsatz zahlt Albert 20,00 DM, Bert 12,00 DM und Chris 18,00 DM. Sie hatten Glück und haben zusammen

Mehr

R. Brinkmann Seite Anwendungen der Exponentialfunktion

R. Brinkmann  Seite Anwendungen der Exponentialfunktion R. Brinkmann http://brinkmann-du.de Seite 6..2 Aufstellen der Funktionsgleichung : Anwendungen der Eponentialfunktion Coli Bakterien verrichten ihre Arbeit im menschlichen Darm. Sie vermehren sich durch

Mehr

Mathematik Klasse 5A am

Mathematik Klasse 5A am WIEDERHOLUNG der ZWEITEN SCHULARBEIT Mathematik Klasse 5A am 13.12.2013 SCHÜLERNAME: Gruppe A Lehrer: Dr. D. B. Westra Grundkompetenzen, Grundwissen und Grundfertigkeiten Vernetzung und Vertiefung 32 Punkte

Mehr

y = y = 2'500 Darstellung in Grafik: P 2 (800 2'500) x (Stk) 1'000

y = y = 2'500 Darstellung in Grafik: P 2 (800 2'500) x (Stk) 1'000 . Kostenfunktion a) Vorgaben und Fragestellung Über die Herstellungskosten eines Produkts ist folgendes bekannt: Die variablen Material- und Lohnkosten betragen CHF. pro Stück. Die Fikosten belaufen sich

Mehr