Zweiter Hauptsatz der Thermodynamik

Größe: px
Ab Seite anzeigen:

Download "Zweiter Hauptsatz der Thermodynamik"

Transkript

1 Thermodynamik I Kapitel 4 Zweiter Hauptsatz der Thermodynamik Prof. Dr.-Ing. Heinz Pitsch

2 Kapitel 4: Ü bersicht 4 Zweiter Hauptsatz der Thermodynamik 4.1 Klassische Formulierungen Kelvin-Planck-Formulierung der 2. Hauptsatzes der Thermodynamik Clausiussche Formulierung des 2. Hauptsatzes 4.2 Irreversible und reversible Prozesse 4.3 Entropie Energiequalität und Ordnung Definition der Entropie nach Clausius Zustandsgleichung der Entropie: Die Fundamentalgleichung 4.5 Entropiebilanz Allgemeine Entropiebilanz Entropieflüsse 4.6 Exergie Exergie und Anergie eines Wärmestroms Exergie und Anergie eines Stoffstroms Exergiebilanzen und exergetische Wirkungsgrade 2

3 4. Zweiter Hauptsatz der Thermodynamik 4.1 Klassische Formulierungen Kelvin-Planck-Formulierung des 2. Hauptsatzes der Thermodynamik Thermischer Wirkungsgrad einer Arbeitsmaschine: KP- Arbeitsmaschine Beispiel Ottomotor Wie groß ist der maximale Wirkungsgrad einer Arbeitsmaschine? Erlaubt lt. 1. HS.: und damit möglich

4 Kelvin-Planck-Formulierung des 2. Hauptsatzes der Thermodynamik Kelvin-Planck-Formulierung: Es ist für eine Arbeitsmaschine, die als Kreisprozess arbeitet, unmöglich mit nur einem Reservoir Wärme auszutauschen und dabei Arbeit zu produzieren. oder Für eine Arbeitsmaschine ist ein thermischer Wirkungsgrad von 100% unmöglich!

5 4.1.2 Clausiussche Formulierung des 2. Hauptsatzes Leistungszahl einer Kältemaschine: C- Kältemaschine Wie groß ist der maximale erreichbare Leistungszahl? Erlaubt lt. 1. HS.: und damit möglich

6 Clausiussche Formulierung des 2. Hauptsatzes Clausius-Formulierung: Es ist für eine Kältemaschine, die als Kreisprozess arbeitet, unmöglich ohne einen weiteren Effekt (z.b. ohne Zufuhr von Arbeit) Wärme von einem kalten zu einem wärmeren Reservoir zu befördern. oder Für eine Kältemaschine ist eine unendlich große Leistungszahl unmöglich! e w > o

7 Äquivalenz der Formulierungen Betrachte Arbeitsmaschine, die im Widerspruch zur Kelvin-Planck-Formulierung steht: Arbeitsmaschine Kältemaschine Die so produzierte Leistung kann benutzt werden eine Kältemaschine zu betreiben. Fasse beide Maschinen zu einem System zusammen.

8 Äquivalenz der Formulierungen Dann ergibt sich eine Kältemaschine, die der Clausiusschen Formulierung widerspricht. + = = Folgerung: Kelvin-Planck- und Clausiussche Formulierung des 2. HS führen zu den gleichen Aussagen Beide sind äquivalent

9 Energie Quantität und Qualität Beide Formulierungen basieren auf Beobachtungen und sind nicht beweisbar Energie hat Quantität und Qualität Energiemenge und 1. HS beschreiben Quantität der Energie 2. HS macht Aussagen über Qualität der Energie Sowohl Kelvin-Planck- als auch Clausius-Formulierung sind qualitativ Quantitative Betrachtung des 2. HS durch Einführung der Entropie Apparaturen, die ersonnen werden und dem 2. HS widersprechen, werden genannt Perpetuum mobile 2. Art

10 Kapitel 4: Ü bersicht 4 Zweiter Hauptsatz der Thermodynamik 4.1 Klassische Formulierungen Kelvin-Planck-Formulierung der 2. Hauptsatzes der Thermodynamik Clausiussche Formulierung des 2. Hauptsatzes 4.2 Irreversible und reversible Prozesse 4.3 Entropie Energiequalität und Ordnung Definition der Entropie nach Clausius Zustandsgleichung der Entropie: Die Fundamentalgleichung 4.5 Entropiebilanz Allgemeine Entropiebilanz Entropieflüsse 4.6 Exergie Exergie und Anergie eines Wärmestroms Exergie und Anergie eines Stoffstroms Exergiebilanzen und exergetische Wirkungsgrade 10

11 4.2 Irreversible und reversible Prozesse Die Erfahrung lehrt: Zeit hat eine eindeutige Richtung! Alle natürlichen Prozesse sind irreversibel, d. h. sie sind ohne zusätzlich aufgewendete Arbeit oder Energie oder ohne andere bleibende Veränderung in Umgebung nicht umkehrbar

12 Einige Beispiel: 1. Mechanische Prozesse wie eine vom Tisch fallende, zerspringende Tasse 2. Wärme geht stets von einem Körper hoher auf einen Körper niedrigerer Temperatur über Prozess läuft nie umgekehrt ab

13 3. Chemische Prozesse wie rostendes Eisen oder verbrennendes Holz 4. Mechanische Arbeit kann nicht dadurch gewonnen werden, dass ein Wärmereservoir abgekühlt wird (Perpetuum Mobile 2. Art)

14 5. Mischung zweier Stoffe Mischung führt auf thermodynamisch stabiles Gemisch Entmischt nicht ohne Energiezufuhr aus Umgebung Prozesse wie Destillation, Desalinierung und Trocknung werden durch Energiezufuhr von außen betrieben

15 6. Druckverlust durch Verwirbelung nach Blende im Rohr, Strömungsrichtung zwingend vom hohen zum niedrigen Druck

16 Einteilung thermodynamischer Prozesse 1. Irreversible Prozesse (alle realen Prozesse) Nicht ohne andere Einflüsse umkehrbar 2. Reversible Prozesse (als Idealisierung) Durchlaufen eine Serie von Gleichgewichtszuständen Laufen damit unendlich langsam ab (quasistatisch) Sind reibungsfrei Umkehrbar, ohne in der Umgebung Änderungen zu hinterlassen Beispiel: Arbeit am geschlossenen System Arbeit = reversible Volumenänderungsarbeit + irreversible Arbeit

17 Qualität der Energie Energie hat Quantität (1. HS) und Qualität (2. HS) Ohne Beschränkung verteilt sich die Energie Verteilung der Energie verringert die Qualität Energiemenge U beschreibt Quantität Beschreibung der Qualität durch Entropie Änderungen in der Qualität der Energie drücken sich in Änderungen der Entropie aus!

18 Kapitel 4: Ü bersicht 4 Zweiter Hauptsatz der Thermodynamik 4.1 Klassische Formulierungen Kelvin-Planck-Formulierung der 2. Hauptsatzes der Thermodynamik Clausiussche Formulierung des 2. Hauptsatzes 4.2 Irreversible und reversible Prozesse 4.3 Entropie Energiequalität und Ordnung Definition der Entropie nach Clausius Zustandsgleichung der Entropie: Die Fundamentalgleichung 4.5 Entropiebilanz Allgemeine Entropiebilanz Entropieflüsse 4.6 Exergie Exergie und Anergie eines Wärmestroms Exergie und Anergie eines Stoffstroms Exergiebilanzen und exergetische Wirkungsgrade 18

19 4.3 Entropie Energiequalität und Ordnung Beobachtung: Verteilung der Energie verringert Qualität Mikroskopisches Experiment: Beobachtung Sowohl der große als auch der kleine Behälter besitzen nur eine mögliche Anordnung Ordnung Nach Ö ffnen der Klappe besitzt das Molekül eine größere Zahl von möglichen Anordnungen höherer Grad an Unordnung Definition der Entropie in der statistischen Thermodynamik: Entropie log ( mögliche Anordnungen )

20

21 Makroskopisches Experiment Ö ffnen des Ventils führt wie im mikroskopischen Experiment zur Erhöhung des Grades der Unordnung Materie und Energie werden dadurch im Raum verteilt Höhere Zahl möglicher Anordnungen Erhöhung der Entropie Verminderung der Fähigkeit des Systems Arbeit zu leisten Verringerung der Qualität der Energie Je höherer der Grad an Unordnung, desto geringer die Qualität der Energie, desto höher die Entropie

22 Beobachtungen: Verteilung der Energie führt zur Erhöhung der Entropie Spontan ablaufende Prozesse führen zur Erhöhung der Entropie Höhere Entropie führt zu verringerter Fähigkeit Arbeit zu leisten Ohne Eingriff von außen in ein reales System nimmt die Entropie stetig zu Definition der Entropie aus statistischer Thermodynamik sehr anschaulich Aber, hier wird ein Zusammenhang der Entropie mit Größen der klassischen Thermodynamik benötigt Definition der Entropie nach Clausius

23 4.3.2 Definition der Entropie nach Clausius Hier zur besseren Anschauung für ideales Gas! 1. HS Therm. Zust.-gl.: Kalor. Zust.-gl.: Arbeit bei reversiblem Prozess: Ü bertragene Wärme hängt vom Prozessverlauf ab Druck muss als Funktion des Volumens angegeben werden

24 Aber mit und folgt kann für bekannte Temperaturabhängigkeit der spez. Wärme integriert werden: Das Integral hängt lediglich von Anfangs- und Endzustand ab! Neue Zustandsfunktion! Definition:

25 Neue Zustandsfunktion heißt Entropie s: und damit s sind nicht vom Prozessverlauf abhängig ds ist ein vollständiges oder totales Differential Da Entropie eine extensive Größe ist, führt ein Massenstrom den Entropiestrom Damit kann Entropiebilanz auch für offene Systeme formuliert werden Beachte den Index rev!

26 Frage: Welcher Zusammenhang besteht zwischen der Entropie s und der Qualität der Energie? Zur Beantwortung sind empirische Beobachtungen notwendig, wie zum Beispiel: Die Entropie nimmt für spontan ablaufende Prozesse stets zu Kelvin-Planck-Aussage

27 Clausiussche Ungleichung Betrachte Arbeitsmaschine mit innerer Reibung 1. HS Clausiussche Ungleichung: Nur für einen reversiblen Prozess, w R = 0, gilt das Gleichheitszeichen Für alle realen Prozesse ist das Umlaufintegral negativ!

28 Kapitel 4: Ü bersicht 4 Zweiter Hauptsatz der Thermodynamik 4.1 Klassische Formulierungen Kelvin-Planck-Formulierung der 2. Hauptsatzes der Thermodynamik Clausiussche Formulierung des 2. Hauptsatzes 4.2 Irreversible und reversible Prozesse 4.3 Entropie Energiequalität und Ordnung Definition der Entropie nach Clausius Zustandsgleichung der Entropie: Die Fundamentalgleichung 4.5 Entropiebilanz Allgemeine Entropiebilanz Entropieflüsse 4.6 Exergie Exergie und Anergie eines Wärmestroms Exergie und Anergie eines Stoffstroms Exergiebilanzen und exergetische Wirkungsgrade 28

29 4.3.3 Zustandsgleichung der Entropie: Die Fundamentalgleichung Entropie S [S] = J/K spezifische Entropie: s = S/m molare Entropie: s m = S/n Mit dem 1. Hauptsatz für einen reversiblen Prozess und der Definition für die Entropie folgt die Fundamentalgleichung für die Entropie: 29 Zustandsgleichung für die Entropie

30 Fundamentalgleichung Mit Fundamentalgleichung können Zustandsgleichungen für Entropie auch aus anderen Zustandsgrößen bestimmt werden Beispiel: Entropie als Funktion von Temperatur und Volumen Mit folgt nach Einsetzen in Fundamentalgleichung Damit sind die partiellen Ableitungen in (*) auf leicht messbare und bereits bekannte Größen zurückgeführt: 30

31 Integration der Fundamentalgleichungen oder liefert bzw. Integrale lassen sich mit Stoffgesetzen auswerten 31

32 Entropie des idealen Gases Gesucht: Für ideales Gas mit kalorischer und thermischer Zustandsgleichung Fundamentalgleichung Integriert Für konstante Wärmekapazität 32

33 Entropie des idealen Gases Analog: Ideales Gas: Fundamentalgleichung: Integriert: Für konstante Wärmekapazität: 33

34 Isentrope Zustandsänderung Spezialfall: Isentrope Zustandsänderung des idealen Gases Vergleich mit der Isentropenbeziehung zeigt: Beim idealen Gas mit konstanten spezifischen Wärmen stimmt der Isentropenexponent k mit dem Verhältnis der spezifischen Wärmen k überein: Es folgt weiterhin: 34

35 Entropie bei der idealen Flüssigkeit Ideale Flüssigkeit: Fundamentalgleichung in der Form Ferner gilt: Für die Entropie folgt: Integriert: Für konstante Wärmekapazität: Für die ideale Flüssigkeit bedeutet isotherm auch isentrop! 35

36 Beispiel: Nassdampfgebiet Reine Stoffe im Nassdampfgebiet Wegen folgt mit p, T = const durch Integration: mit Verdampfungsenthalpie r = h - h Zahlenbeispiel - Wasserdampf wird bei p = 1 atm von J 1 = 200 C auf J 2 = 20 C abgekühlt - 3 Schritte: 1. Abkühlung des Dampfes von 200 C auf 100 C 2. Kondensation 3. Abkühlung des flüssigen Wassers von 100 C auf 20 C 36

37 Entropieänderung: Aus Wasserdampftafel (interpoliert) p = 0,10135 Mpa Gesättigter Dampf: Ü berhitzter Dampf: Kondensation: Flüssigkeit: Gesamt: 37

38 Kapitel 4: Ü bersicht 4 Zweiter Hauptsatz der Thermodynamik 4.1 Klassische Formulierungen Kelvin-Planck-Formulierung der 2. Hauptsatzes der Thermodynamik Clausiussche Formulierung des 2. Hauptsatzes 4.2 Irreversible und reversible Prozesse 4.3 Entropie Energiequalität und Ordnung Definition der Entropie nach Clausius Zustandsgleichung der Entropie: Die Fundamentalgleichung 4.5 Entropiebilanz Allgemeine Entropiebilanz Entropieflüsse 4.6 Exergie Exergie und Anergie eines Wärmestroms Exergie und Anergie eines Stoffstroms Exergiebilanzen und exergetische Wirkungsgrade 38

39 4.5 Entropiebilanz Allgemeine Entropiebilanz 2. Hauptsatz 39

40 4.5.2 Entropieflüsse Energieflüsse über Systemgrenzen werden unterschieden in Arbeit, Wärme und Energiefluss durch Massenströme Je nach Qualität der zu- oder abgeführten Energie wird dem System auch Entropie zugeführt oder entzogen 1. Reversible Arbeit: kein Entropiestrom 2. Reversible Wärme: 3. Massenstrom: 40

41 Entropiefluss durch reversible Arbeit Betrachte adiabates, reversibles System 1. Hauptsatz: Fundamentalgleichung: Entropiebilanz: Reversible Arbeit führt keine Entropie mit sich! Zustandsänderung: adiabat & reibungsfrei Isentrop 41

42 Entropiefluss durch Wärmestrom Betrachte nicht-adiabates System 1. Hauptsatz: Fundamentalgleichung: Entropiebilanz: Daraus folgt: für reversiblen Wärmeübergang Wärme enspricht Fläche im T-S Diagramm 42

43 Entropiebilanz Änderung der Entropie S eines Systems - Zu- und Abfuhr durch Stoff- und Wärmeströme - Produktion innerhalb des Systems Entropieproduktion Durch irreversible Prozesse Stets positiv 43

44 Entropieproduktion Beschreibt die Zustandsgröße Entropie die Irreversibilität von Prozessen? Irreversibilität Entropieproduktion Entropieproduktion ist Prozessgröße Entropieänderung Entropieänderung durch Wärmestrom Irreversibilität Vergleich mit 1. Hauptsatz für geschlossene Systeme in differentieller Form 44

45 Beispiel: Stationäre Wärmeleitung durch feste Wand Entropiebilanz innerhalb der Wand 1. Hauptsatz: Entropieproduktion in der Wand durch irreversiblen Wärmefluss: Entropieproduktion nur positiv (2. HS), wenn T 1 > T 2 Reversibler Wärmeübergang nur bei verschwindender Temperaturdifferenz! 45

46 Entropiebilanz außerhalb der Wand Zustandsänderungen in Systemen 1 und 2 werden als reversibel betrachtet (kein Temperatur-gradient) Mit sind die Entropieströme Somit ist wegen (Bilanzsystem Wand) Entropiefluss in System 2 ist gleich dem Entropiefluss aus System 1 plus der Entropieproduktion der Wand 46

47 Betrachtung der Kelvin-Planck-Arbeitsmaschine Kelvin-Planck Aussage als qualitative Formulierung des 2. HS besagt, dass bei einer Wärmemaschine ein Wärmestrom abgeführt werden muss Frage: Wie groß muss der abgeführte Wärmestrom mindestens sein (damit s irr > 0)? Entropiebilanz: Für wäre im Widerspruch zum 2. Hauptsatz! 47

48 Betrachtung der Kelvin-Planck-Arbeitsmaschine Da sein muss, folgt mit Für den maximal erreichbaren Wirkungsgrad folgt: Carnot-Wirkungsgrad h C Annahmen: Reversible Arbeitsmaschine Reversibler Wärmeübergang Wärmezu- und abfuhr bei konstanten Temperaturen Keine weitere Annahme über Funktionsweise der Arbeitsmaschine! 48

49 Der Carnot-Prozess 49 Sadi Nicolas Léonard Carnot 1. Juni August 1832

50 Wärmemaschine mit Carnot-Wirkungsgrad Eine idealisierte, reversible Maschine muss folgende Bedingungen erfüllen: Jeder Vorgang muss zu jedem Zeitpunkt umkehrbar sein, das heißt, nach der Rückkehr zum Anfangszustand darf in der Umgebung keine bleibende Veränderung zurückbleiben - Dazu muss der Vorgang reibungsfrei ablaufen - Es dürfen keine endlichen Temperaturunterschiede zwischen dem Arbeitsmedium und den Wärmereservoirs auftreten (Quasistationäre Zustandsänderung, Folge von Gleichgewichtszuständen) 50

51 Entwurf einer solchen Maschine: Arbeitsmedium in einem Zylinder mit reibungsfreiem Kolben Zwei Wärmereservoirs von unterschiedlicher Temperatur: 1. Schritt: isentrope (adiabat und reibungsfrei) Kompression 2. Schritt: isotherme Wärmezufuhr (Expansion) bei Temperatur T h 3. Schritt: isentrope (adiabat und reibungsfrei) Expansion 4. Schritt: isotherme Wärmeabfuhr (Kompression) bei Temperatur T k 51

52 Darstellung im p,v- und T,s-Diagramm 52

53 Schaltschema Idealisierter Prozesses durch Hintereinanderschaltung stationärer Fließprozesse Adiabate und reibungsfreie Kompression im Verdichter: p 1, T 1 =T k p 2, T 2 =T h Isotherme Expansion in der Turbine unter Wärmezufuhr: p 2 p 3 mit T h = const Adiabate und reibungsfreie Expansion in einer Turbine: p 3, T 3 =T h p 4, T 4 =T k Isotherme Kompression im Verdichter unter Wärmeabfuhr: p 4 p 1 mit T k = const 53

54 Zu- und abgeführte Wärmen (Ann.: Ideales Gas) 1 2: Adiabate Kompression: 2 3: Isotherme Expansion: 3 4: Adiabate Expansion: 4 1: Isotherme Kompression: Mit 2. HS folgt: 54

55 Thermischer Wirkungsgrad Damit ergibt sich für den thermischer Wirkungsgrad Wärmezufuhr erfolgt bei der maximalen Temperatur T h Wärmeabfuhr bei der minimalen Temperatur T k, obwohl idealisierter, verlustloser Prozess betrachtet wurde! Carnot-Faktor: h C = 1 T min /T max gibt an, welcher Anteil der Wärme maximal in Arbeit umgewandelt werden kann! 55

56 Carnot Wirkungsgrad h C = 1 T min /T max ist der in einer zwischen zwei Temperaturen arbeitenden thermischen Arbeitsmaschine maximal erreichbare Wirkungsgrad Dabei ist egal, wie die Maschine tatsächlich konstruiert ist, und welches Arbeitsmedium genutzt wird Dies wurde anhand der Kelvin-Planck Maschine gezeigt 56

57 Betrachtung der Clausius Kältemaschine Wie groß muss die zugeführte Arbeit mindestens sein? Entropiebilanz: Mit der Energiebilanz folgt Für wäre im Widerspruch zum 2. Hauptsatz! Da sein muss, folgt wegen Für die maximal erreichbare Leistungszahl folgt: 57 Carnotsche Leistungszahl e C

58 Kapitel 4: Ü bersicht 4 Zweiter Hauptsatz der Thermodynamik 4.1 Klassische Formulierungen Kelvin-Planck-Formulierung der 2. Hauptsatzes der Thermodynamik Clausiussche Formulierung des 2. Hauptsatzes 4.2 Irreversible und reversible Prozesse 4.3 Entropie Energiequalität und Ordnung Definition der Entropie nach Clausius Zustandsgleichung der Entropie: Die Fundamentalgleichung 4.5 Entropiebilanz Allgemeine Entropiebilanz Entropieflüsse 4.6 Exergie Exergie und Anergie eines Wärmestroms Exergie und Anergie eines Stoffstroms Exergiebilanzen und exergetische Wirkungsgrade 58

59 4.6 Exergie Exergie bezeichnet die maximale Arbeit, die in einem reversiblen Prozess beim Austausch mit einer vorgegebenen Umgebung (z. B. p u, T u, h u, s u, c = 0, z = 0) gewonnen werden kann Flussbild für die reversible Maschine Exergie der Wärme: Anergie der Wärme : 59

60 4.6.1 Exergie und Anergie eines Wärmestroms Energiebilanz an der stationären reversiblen Maschine: Mit folgt: Entropiebilanz: Exergiestrom: mit dem Carnot-Faktor: Anergiestrom: 60

61 4.6.2 Exergie und Anergie eines Stoffstroms Ausgangspunkt: stationäres, offenes System Energiebilanz für den stationären Fließprozess Entropiebilanz: 61 Entropie der reversiblen Wärmeaustauschprozesse

62 Gesamtexergiestrom durch Wärme und Stoffströme: Für maximale Arbeit entspricht Zustand 2 dem Umgebungszustand 2 u, c 2 = 0, z 2 = 0 sowie reversibler Prozess Exergie des Wärmestroms Exergie des Stoffstroms Exergie des Stoffstroms: Exergie der Enthalpie Anergie des Stoffstroms: 62

63 Beispiel: Exergie der inneren Energie Geschlossenes System im Zustand p 1,T 1 wird auf den Umgebungszustand p u,t u gebracht Damit ist eine Volumenänderung verbunden Betrachte geschlossenes Zylinder-Kolbensystem - Maximale Nutzarbeit muss die in innerer Energie U gespeicherte Exergie E U sein - Maximale Nutzarbeit bei reversiblem Prozess Es ist damit: Volumenänderungsarbeit errechnet sich aus 1. Hauptsatz zu (Wärmestrom um T u zu erreichen) Daraus folgt für die Exergie der inneren Energie: 63

64 Wärmestrom ist prozessabhängige Größe, die durch Zustandsgrößen ausgedrückt werden soll Definition der Entropie und damit Da dq rev /T Zustandsfunktion ist, hängt das Integral nicht vom Pfad ab Integrationspfad kann frei gewählt werden Isentrope + isotherme Zustandsänderung Dann ist und Exergie E U der inneren Energie ist damit: 64

65 4.6.3 Exergiebilanzen und exergetische Wirkungsgrade Der Wärmestrom Q wird bei der Temperatur T m zugeführt Der Wärmestrom Q 0 wird bei T 0 T u abgeführt Bei nicht reversiblen Prozessen: Exergieverluststrom 65

66 Exergetischer Wirkungsgrad Bilanz des Exergiestromes: Gewonnene Leistung: Wirkungsgrade Thermischer Wirkungsgrad: Exergetischer Wirkungsgrad: 66

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 4, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 4, Teil 1: Übersicht 4 Zweiter Hauptsatz der Thermodynamik 4.1Klassische Formulierungen 4.1.1Kelvin-Planck-Formulierung

Mehr

4.1.1 Kelvin-Planck-Formulierung des 2. Hauptsatzes der Thermodynamik. Thermischer Wirkungsgrad einer Arbeitsmaschine:

4.1.1 Kelvin-Planck-Formulierung des 2. Hauptsatzes der Thermodynamik. Thermischer Wirkungsgrad einer Arbeitsmaschine: 4. Zweiter Hauptsatz der Thermodynamik 4.1. Klassische Formulierungen 4.1.1 Kelvin-Planck-Formulierung des 2. Hauptsatzes der Thermodynamik Thermischer Wirkungsgrad einer Arbeitsmaschine: Beispiel Ottomotor

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 2. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 2. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 4, Teil 2 Prof. Dr.-Ing. Heinz Pitsch Kapitel 4, Teil 2: Übersicht 4 Zweiter Hauptsatz der Thermodynamik 4.5 Entropiebilanz 4.5.1 Allgemeine Entropiebilanz 4.5.2

Mehr

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K Fundamentalgleichung für die Entropie Entropie S [S] = J/K spezifische Entropie: s = S/m molare Entropie: s m = S/n Mit dem 1. Hauptsatz für einen reversiblen Prozess und der Definition für die Entropie

Mehr

Thermodynamik Hauptsatz

Thermodynamik Hauptsatz Thermodynamik. Hauptsatz Inhalt Wärmekraftmaschinen / Kälteprozesse. Hauptsatz der Thermodynamik Reversibilität Carnot Prozess Thermodynamische Temperatur Entropie Entropiebilanzen Anergie und Exergie

Mehr

5. Entropie *), 2. Hauptsatz der Thermodynamik

5. Entropie *), 2. Hauptsatz der Thermodynamik 5. Entropie *), 2. Hauptsatz der Thermodynamik Was also ist Zeit? Wenn niemand mich danach fragt, weiß ich es; wenn ich es jemandem auf seine Frage hin erklären soll,, weiß ich es nicht zu sagen. Augustinus,

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 2 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen 3.3.1 Massebilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

Thermodynamik I PVK - Tag 2. Nicolas Lanzetti

Thermodynamik I PVK - Tag 2. Nicolas Lanzetti Thermodynamik I PVK - Tag 2 Nicolas Lanzetti Nicolas Lanzetti 05.01.2016 1 Heutige Themen Carnot; Wirkungsgrad/Leistungsziffer; Entropie; Erzeugte Entropie; Isentroper Wirkungsgrad; Isentrope Prozesse

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 3 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen 3.3.1 Massebilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

Inhaltsverzeichnis VII

Inhaltsverzeichnis VII Inhaltsverzeichnis 1 Grundlagen 1 1.1 Mathe für Thermodynamiker und -innen 1 1.2 Deutsch für Thermodynamiker (m/w) 2 1.2.1 Hier geht nix verloren - die Sache mit der Energie 4 1.2.2 Erst mal Bilanz ziehen

Mehr

Aufgabe 1 (60 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!!

Aufgabe 1 (60 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!! Aufgabe (60 Punkte, TTS & TTD) Bitte alles LESBAR verfassen!!!. In welcher Weise ändern sich intensive und extensive Zustandsgrößen bei der Zerlegung eines Systems in Teilsysteme?. Welche Werte hat der

Mehr

Thermodynamik I. Sommersemester 2014 Kapitel 5. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2014 Kapitel 5. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2014 Kapitel 5 Prof. Dr.-Ing. Heinz Pitsch Kapitel 5: Übersicht 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse

Mehr

Thermodynamik I - Übung 6. Nicolas Lanzetti

Thermodynamik I - Übung 6. Nicolas Lanzetti Thermodynamik I - Übung 6 Nicolas Lanzetti Nicolas Lanzetti 06.11.2015 1 Heutige Themen Zusammenfassung letzter Woche; Zweiter Hauptsatz der Thermodynamik; Halboffene Systeme; Reversible und irreversible

Mehr

Enthalpienullpunkt von Luft und Wasser am Tripelpunkt des siedenden Wassers T=T tr = 273,16 K:

Enthalpienullpunkt von Luft und Wasser am Tripelpunkt des siedenden Wassers T=T tr = 273,16 K: 3.3.5 Energiebilanz bei der Mischung feuchter Luft Bezugsgröße: Masse der trockenen Luft m L Beladung: Auf die Masse der Luft bezogene Enthalpie Enthalpienullpunkt von Luft und Wasser am Tripelpunkt des

Mehr

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme 6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher mit der

Mehr

Keine Panik vor Thermodynamik! Erfolg und Spaß im klassischen Dickbrettbohrerfach" des Ingenieurstudiums

Keine Panik vor Thermodynamik! Erfolg und Spaß im klassischen Dickbrettbohrerfach des Ingenieurstudiums Dirk Labuhn Oliver Romberg Keine Panik vor Thermodynamik! Erfolg und Spaß im klassischen Dickbrettbohrerfach" des Ingenieurstudiums \ 4., aktualisierte Auflage STUDIUM... V : ;; VIEWEG+ TEUBNER Inhaltsverzeichnis

Mehr

Hans Dieter Baehr. Thermodynamik. Eine Einführung in die Grundlagen und ihre technischen Anwendungen. Vierte, berichtigte Auflage

Hans Dieter Baehr. Thermodynamik. Eine Einführung in die Grundlagen und ihre technischen Anwendungen. Vierte, berichtigte Auflage Hans Dieter Baehr Thermodynamik Eine Einführung in die Grundlagen und ihre technischen Anwendungen Vierte, berichtigte Auflage Mit 271 Abbildungen und zahlreichen Tabellen sowie 80 Beispielen Springer-Verlag

Mehr

Inhaltsverzeichnis. Formelzeichen...XIII. 1 Einleitung Einheiten physikalischer Größen...3

Inhaltsverzeichnis. Formelzeichen...XIII. 1 Einleitung Einheiten physikalischer Größen...3 Inhaltsverzeichnis Formelzeichen...XIII 1 Einleitung...1 2 Einheiten physikalischer Größen...3 3 Systeme...6 3.1 Definition von Systemen...6 3.2 Systemarten...7 3.2.1 Geschlossenes System...7 3.2.2 Offenes

Mehr

Keine Panik vor Thermodynamik!

Keine Panik vor Thermodynamik! Keine Panik vor Thermodynamik! Erfolg und Spaß im klassischen "Dickbrettbohrerfach" des Ingenieurstudiums Bearbeitet von Dirk Labuhn, Oliver Romberg 1. Auflage 2013. Taschenbuch. xii, 351 S. Paperback

Mehr

Kapitel 8: Thermodynamik

Kapitel 8: Thermodynamik Kapitel 8: Thermodynamik 8.1 Der erste Hauptsatz der Thermodynamik 8.2 Mechanische Arbeit eines expandierenden Gases 8.3 Thermische Prozesse des idealen Gases 8.4 Wärmemaschine 8.5 Der zweite Hauptsatz

Mehr

Hauptsatz der Thermodynamik

Hauptsatz der Thermodynamik 0.7. Hauptsatz der Thermodynamik Die einem System von außen zugeführte Wärmemenge Q führt zu Erhöhung U der inneren Energie U und damit Erhöhung T der Temperatur T Expansion des olumens gegen den äußeren

Mehr

2. Hauptsatz der Thermodynamik

2. Hauptsatz der Thermodynamik Clausius (850): Wärme kann nie von selbst von einem Körper niederer emperatur auf einen Körper höherer emperatur übergehen Planck (905): Es ist unmöglich, eine periodisch arbeitende Maschine zu konstruieren,

Mehr

Aufgabe 1: Theorie Punkte

Aufgabe 1: Theorie Punkte Aufgabe 1: Theorie.......................................... 30 Punkte (a) (2 Punkte) In einen Mischer treten drei Ströme ein. Diese haben die Massenströme ṁ 1 = 1 kg/s, ṁ 2 = 2 kg/s und ṁ 3 = 2 kg/s.

Mehr

Keine Panik vor Th e r m ody n a m i k!

Keine Panik vor Th e r m ody n a m i k! Dirk Labuhn Oliver Romberg Keine Panik vor Th e r m ody n a m i k! Erfolg und SpaB im klassischen,,dickbrettbohrerfach" des Ingenieurstudiums Mit Cartoons von Oliver Romberg vieweg Inhaltsverzeichnis 1

Mehr

Mögliche Klausurfragen und aufgaben (Beispiele mit keinem Anspruch auf Vollständigkeit)

Mögliche Klausurfragen und aufgaben (Beispiele mit keinem Anspruch auf Vollständigkeit) LTT ERLANGEN 1 VON 5 FRAGENSAMMLUNG Mögliche Klausurfragen und aufgaben (Beispiele mit keinem Anspruch auf Vollständigkeit) Neben den Fragen können einfachste Rechenaufgaben gestellt werden. Bei einigen

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 200 Abbildungen und 7 Tabellen Springer Inhaltsverzeichnis Liste der Formelzeichen XV 1 Grundlagen der Technischen Thermodynamik 1 1.1 Gegenstand und Untersuchungsmethodik

Mehr

Spontane und nicht spontane Vorgänge Freiwillig und nicht freiwillig ablaufende Vorgänge

Spontane und nicht spontane Vorgänge Freiwillig und nicht freiwillig ablaufende Vorgänge Prof. Dr. Norbert Hampp 1/7 6. Freie Energie und Freie Enthalphie / 2. Hauptsatz Spontane und nicht spontane Vorgänge Freiwillig und nicht freiwillig ablaufende Vorgänge 1. Empirischer Befund: Bei einer

Mehr

Einführung in die Technische Thermodynamik

Einführung in die Technische Thermodynamik Arnold Frohn Einführung in die Technische Thermodynamik 2., überarbeitete Auflage Mit 139 Abbildungen und Übungen AULA-Verlag Wiesbaden INHALT 1. Grundlagen 1 1.1 Aufgabe und Methoden der Thermodynamik

Mehr

Inhaltsverzeichnis. Formelzeichen. 1 Einleitung 1. 2 Einheiten physikalischer Größen 3

Inhaltsverzeichnis. Formelzeichen. 1 Einleitung 1. 2 Einheiten physikalischer Größen 3 Formelzeichen XIII 1 Einleitung 1 2 Einheiten physikalischer Größen 3 3 Systeme 7 3.1 Definition von Systemen 7 3.2 Systemarten 8 3.2.1 Geschlossenes System 8 3.2.2 Offenes System 9 3.2.3 Adiabates System

Mehr

Thermodynamik. Springer. Peter Stephan Karlheinz Schaber Karl Stephan Franz Mayinger. Grundlagen und technische Anwendungen Band 1: Einstoffsysteme

Thermodynamik. Springer. Peter Stephan Karlheinz Schaber Karl Stephan Franz Mayinger. Grundlagen und technische Anwendungen Band 1: Einstoffsysteme Peter Stephan Karlheinz Schaber Karl Stephan Franz Mayinger Thermodynamik Grundlagen und technische Anwendungen Band 1: Einstoffsysteme 16., vollständig neu bearbeitete Auflage Mit 195 Abbildungen und

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

Entropie und 2. Hauptsatz der Thermodynamik

Entropie und 2. Hauptsatz der Thermodynamik Entropie und 2. Hauptsatz der hermodynamik Seminar Didaktik der Physik Datum: 20.11.1006 LV-Nummer: 706099 Vortragende: Markus Kaldinazzi Mathias Scherl Inhalte Reversible und Irreversible Prozesse Drei

Mehr

Repetitorium. Thermodynamik. 3., überarbeitete und ergänzte Auflage. von. Wilhelm Schneider. unter Mitarbeit von. Stefan Haas und Karl Ponweiser

Repetitorium. Thermodynamik. 3., überarbeitete und ergänzte Auflage. von. Wilhelm Schneider. unter Mitarbeit von. Stefan Haas und Karl Ponweiser Repetitorium Thermodynamik 3., überarbeitete und ergänzte Auflage von Wilhelm Schneider unter Mitarbeit von Stefan Haas und Karl Ponweiser Oldenbourg Verlag München Inhaltsverzeichnis 1 Grundbegriffe 1

Mehr

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher Dies

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Thermodynamik des Kraftfahrzeugs Bearbeitet von Cornel Stan 1. Auflage 2012. Buch. xxiv, 598 S. Hardcover ISBN 978 3 642 27629 3 Format (B x L): 15,5 x 23,5 cm Gewicht: 1087 g Weitere Fachgebiete > Technik

Mehr

4 Entropie. 4.1 Der Zweite Hauptsatz

4 Entropie. 4.1 Der Zweite Hauptsatz 4 Entropie 4.1 Der Zweite Hauptsatz In vereinfachter Form besagt der Zweite Hauptsatz(II. HS), daß Wärme nie von selbst von niedriger zu höherer Temperatur fließen kann. Aus dieser schlichten Feststellung

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 ladimir Dyakonov #0 am 4.0.007 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E43, Tel. 888-5875,

Mehr

3 Grundlegende strömungstechnische und thermodynamische Voraussetzungen

3 Grundlegende strömungstechnische und thermodynamische Voraussetzungen 3 Grundlegende strömungstechnische und thermodynamische Voraussetzungen 3.1 Stationär durchströmte offene Systeme - Grundlegende Beziehungen - nergiesatz stationär durchströmter offener Systeme - nwendung

Mehr

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch hermodynamik _ hermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch _ hermodynamik Einleitung Grundbegriffe 3 Systembeschreibung 4 Zustandsgleichungen 5 Kinetische

Mehr

22. Entropie; Zweiter Hauptsatz der Wärmelehre

22. Entropie; Zweiter Hauptsatz der Wärmelehre 22. Entropie; Zweiter Hauptsatz der Wärmelehre Nicht alle Prozesse, die dem Energiesatz genügen, finden auch wirklich statt Beispiel: Um alle Energieprobleme zu lösen, brauchte man keine Energie aus dem

Mehr

Thermodynamik I Formeln

Thermodynamik I Formeln Thermodynamik I Formeln Tobi 4. September 2006 Inhaltsverzeichnis Thermodynamische Systeme 3. Auftriebskraft........................................ 3 2 Erster Hauptsatz der Thermodynamik 3 2. Systemenergie........................................

Mehr

II. Wärmelehre. II.2. Die Hauptsätze der Wärmelehre. Physik für Mediziner 1

II. Wärmelehre. II.2. Die Hauptsätze der Wärmelehre. Physik für Mediziner 1 II. Wärmelehre II.2. Die auptsätze der Wärmelehre Physik für Mediziner 1 1. auptsatz der Wärmelehre Formulierung des Energieerhaltungssatzes unter Einschluss der Wärmenergie: die Zunahme der Inneren Energie

Mehr

Thermodynamik. oder Website der Fachhochschule Osnabrück

Thermodynamik.  oder Website der Fachhochschule Osnabrück Thermodynamik Prof. Dr.-Ing. Matthias Reckzügel Vorlesung, Übung und Praktikum im 3. Semester für die Studiengänge: Maschinenbau Fahrzeugtechnik Maschinenbauinformatik Integrierte Produktentwicklung EMS

Mehr

6.4.2 Verdampfen und Eindampfen Destillieren und Rektifizieren Absorbieren

6.4.2 Verdampfen und Eindampfen Destillieren und Rektifizieren Absorbieren Inhaltsverzeichnis 1 Allgemeine Grundlagen................................... 1 1.1 Thermodynamik....................................... 1 1.1.1 Von der historischen Entwicklung der Thermodynamik 1 1.1.2

Mehr

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch Thermodynamik Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch Thermodynamik Einleitung Grundbegriffe 3 Systembeschreibung 4 Zustandsgleichungen 5 Kinetische

Mehr

Thermodynamik. Thermodynamics. Markus Arndt. Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008

Thermodynamik. Thermodynamics. Markus Arndt. Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008 Thermodynamik Thermodynamics Markus Arndt Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008 Die Hauptsätze der Thermodynamik & Anwendungen in Wärmekraft und Kältemaschinen

Mehr

8.3 Ausgleichsprozesse in abgeschlossenen Systemen, thermodynamisches Gleichgewicht und thermodynamische Potentiale

8.3 Ausgleichsprozesse in abgeschlossenen Systemen, thermodynamisches Gleichgewicht und thermodynamische Potentiale 8.3 Ausgleichsprozesse in abgeschlossenen Systemen, thermodynamisches Gleichgewicht und thermodynamische Potentiale Rückschau: Mechanisches Gleichgewicht und Stabilität Ein Körper ist im Gleichgewicht,

Mehr

10. Thermodynamik Der erste Hauptsatz Der zweite Hauptsatz Thermodynamischer Wirkungsgrad Der Carnotsche Kreisprozess

10. Thermodynamik Der erste Hauptsatz Der zweite Hauptsatz Thermodynamischer Wirkungsgrad Der Carnotsche Kreisprozess Inhalt 10.10 Der zweite Hauptsatz 10.10.1 Thermodynamischer Wirkungsgrad 10.10.2 Der Carnotsche Kreisprozess Für kinetische Energie der ungeordneten Bewegung gilt: Frage: Frage: Wie kann man mit U Arbeit

Mehr

8.3 Ausgleichsprozesse in abgeschlossenen und nichtabgeschlossenen Systemen - thermodynamisches Gleichgewicht und thermodynamische Potentiale

8.3 Ausgleichsprozesse in abgeschlossenen und nichtabgeschlossenen Systemen - thermodynamisches Gleichgewicht und thermodynamische Potentiale 8.3 Ausgleichsprozesse in abgeschlossenen und nichtabgeschlossenen Systemen - thermodynamisches Gleichgewicht und thermodynamische Potentiale Rückschau: Mechanisches Gleichgewicht und Stabilität Ein Körper

Mehr

Übungsaufgaben Technische Thermodynamik

Übungsaufgaben Technische Thermodynamik Gernot Wilhelms Übungsaufgaben Technische Thermodynamik 2., aktualisierte Auflage Mit 36 Beispielen und 154 Aufgaben HANSER Inhaltsverzeichnis 1 Grundlagen der Thermodynamik 11 1.1 Aufgabe der Thermodynamik

Mehr

Thermodynamik (Wärmelehre) IV Kreisprozesse und Entropie

Thermodynamik (Wärmelehre) IV Kreisprozesse und Entropie Physik A VL7 (..0) hermodynamik (Wärmelehre) IV Kreisprozesse und Entropie Kreisprozesse Carnot scher Kreisprozess Reale Wärmemaschinen (tirling-motor, Dampfmaschine, Otto- und Dieselmotor) Entropie Der.

Mehr

2 Grundbegriffe der Thermodynamik

2 Grundbegriffe der Thermodynamik 2 Grundbegriffe der Thermodynamik 2.1 Thermodynamische Systeme (TDS) Aufteilung zwischen System und Umgebung (= Rest der Welt) führt zu einer Klassifikation der Systeme nach Art der Aufteilung: Dazu: adiabatisch

Mehr

Thermodynamik Thermodynamische Systeme

Thermodynamik Thermodynamische Systeme Thermodynamik Thermodynamische Systeme p... Druck V... Volumen T... Temperatur (in Kelvin) U... innere Energie Q... Wärme W... Arbeit Idealisierung; für die Betrachtung spielt die Temperatur eine entscheidende

Mehr

Heinz Herwig Christian H. Kautz Technische Thermodynamik

Heinz Herwig Christian H. Kautz Technische Thermodynamik Heinz Herwig Christian H. Kautz Technische Thermodynamik ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam Technische

Mehr

Thermodynamische Hauptsätze, Kreisprozesse Übung

Thermodynamische Hauptsätze, Kreisprozesse Übung Thermodynamische Hauptsätze, Kreisprozesse Übung Marcus Jung 14.09.2010 Inhaltsverzeichnis Inhaltsverzeichnis 1 Thermodynamische Hauptsätze 3 1.1 Aufgabe 1:.................................... 3 1.2 Aufgabe

Mehr

Kapitel IV Wärmelehre und Thermodynamik

Kapitel IV Wärmelehre und Thermodynamik Kapitel IV Wärmelehre und Thermodynamik a) Definitionen b) Temperatur c) Wärme und Wärmekapazität d) Das ideale Gas - makroskopisch e) Das reale Gas / Phasenübergänge f) Das ideale Gas mikroskopisch g)

Mehr

Prof. Dr. Peter Vogl, Thomas Eissfeller, Peter Greck. Übung in Thermodynamik und Statistik 4B Blatt 8 (Abgabe Di 3. Juli 2012)

Prof. Dr. Peter Vogl, Thomas Eissfeller, Peter Greck. Übung in Thermodynamik und Statistik 4B Blatt 8 (Abgabe Di 3. Juli 2012) U München Physik Department, 33 http://www.wsi.tum.de/33 eaching) Prof. Dr. Peter Vogl, homas Eissfeller, Peter Greck Übung in hermodynamik und Statistik 4B Blatt 8 Abgabe Di 3. Juli 202). Extremalprinzip

Mehr

Inhalt 1 Grundlagen der Thermodynamik

Inhalt 1 Grundlagen der Thermodynamik Inhalt 1 Grundlagen der Thermodynamik..................... 1 1.1 Grundbegriffe.............................. 2 1.1.1 Das System........................... 2 1.1.2 Zustandsgrößen........................

Mehr

Höhere Experimentalphysik 1

Höhere Experimentalphysik 1 Höhere Experimentalphysik 1 Institut für Angewandte Physik Goethe-Universität Frankfurt am Main 8. Vorlesung 13.01.2017 Prüfung Postersession Thema soll innerhalb von Zweiergruppen bearbeitet werden Themenvergabe:

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 5, Teil 1. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 5, Teil 1. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 5, Teil 1 Prof. Dr. Ing. Heinz Pitsch Kapitel 5, Teil 1: Übersicht 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel isotherme

Mehr

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch Thermodynamik Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch Thermodynamik 1 Einleitung 2 Grundbegriffe 3 Systembeschreibung 4 Zustandsgleichungen 5

Mehr

Thermodynamik. ^J Springer. Hans Dieter Baehr Stephan Kabelac. Grundlagen und technische Anwendungen

Thermodynamik. ^J Springer. Hans Dieter Baehr Stephan Kabelac. Grundlagen und technische Anwendungen Hans Dieter Baehr Stephan Kabelac Thermodynamik Grundlagen und technische Anwendungen Dreizehnte, neu bearbeitete und erweiterte Auflage Mit 290 Abbildungen und zahlreichen Tabellen sowie 76 Beispielen

Mehr

Physikalisch-chemische Grundlagen der thermischen Verfahrenstechnik

Physikalisch-chemische Grundlagen der thermischen Verfahrenstechnik Lüdecke Lüdecke Thermodynamik Physikalisch-chemische Grundlagen der thermischen Verfahrenstechnik Grundlagen der Thermodynamik Grundbegriffe Nullter und erster Hauptsatz der Thermodynamik Das ideale Gas

Mehr

13.Wärmekapazität. EP Vorlesung 14. II) Wärmelehre

13.Wärmekapazität. EP Vorlesung 14. II) Wärmelehre 13.Wärmekapazität EP Vorlesung 14 II) Wärmelehre 10. Temperatur und Stoffmenge 11. Ideale Gasgleichung 12. Gaskinetik 13. Wärmekapazität 14. Hauptsätze der Wärmelehre Versuche: Mechanisches Wärmeäquivalent

Mehr

Winter-Semester 2017/18. Moderne Theoretische Physik IIIa. Statistische Physik

Winter-Semester 2017/18. Moderne Theoretische Physik IIIa. Statistische Physik Winter-Semester 2017/18 Moderne Theoretische Physik IIIa Statistische Physik Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Do 11:30-13:00, Lehmann Raum 022, Geb 30.22 http://www.tkm.kit.edu/lehre/

Mehr

Thermodynamik I Klausur 1

Thermodynamik I Klausur 1 Aufgabenteil / 100 Minuten Name: Vorname: Matr.-Nr.: Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern abgegeben werden. Nicht nachvollziehbare

Mehr

Technische Thermodynamik. FB Maschinenwesen. Übungsfragen. Technische Thermodynamik. Wärmeübertragung. University of Applied Sciences

Technische Thermodynamik. FB Maschinenwesen. Übungsfragen. Technische Thermodynamik. Wärmeübertragung. University of Applied Sciences University of Applied Sciences Übungsfragen Technische Thermodynamik Wärmeübertragung Prof. Dr.-Ing. habil. H.-J. Kretzschmar FB Maschinenwesen Technische Thermodynamik HOCHSCHULE ZITTAU/GÖRLITZ (FH) -

Mehr

Beispiel für ein thermodynamisches System: ideales Gas (Edelgas)

Beispiel für ein thermodynamisches System: ideales Gas (Edelgas) 10. Hauptsätze tze der Wärmelehre Thermodynamik: zunächst: Klassische Mechanik punktförmiger Teilchen, starrer und deformierbarer Körper aber: Bewegungsgleichungen für N=10 23 Teilchen mit 6N ariablen

Mehr

Q i + j. dτ = i. - keine pot. und kin. Energien: depot. - adiabate ZÄ: Q i = 0 - keine technische Arbeit: Ẇ t,j = 0

Q i + j. dτ = i. - keine pot. und kin. Energien: depot. - adiabate ZÄ: Q i = 0 - keine technische Arbeit: Ẇ t,j = 0 Institut für hermodynamik hermodynamik - Formelsammlung. Hauptsätze der hermodynamik (a. Hauptsatz der hermodynamik i. Offenes System de = de pot + de kin + du = i Q i + j Ẇ t,j + ein ṁ ein h tot,ein aus

Mehr

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 10/09/15

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 10/09/15 Physikdepartment Ferienkurs zur Experimentalphysik 4 Daniel Jost 10/09/15 Inhaltsverzeichnis Technische Universität München 1 Kurze Einführung in die Thermodynamik 1 1.1 Hauptsätze der Thermodynamik.......................

Mehr

Auswahl von Prüfungsfragen für die Prüfungen im September 2011

Auswahl von Prüfungsfragen für die Prüfungen im September 2011 Auswahl von Prüfungsfragen für die Prüfungen im September 2011 Was ist / sind / bedeutet / verstehen Sie unter... Wie nennt man / lautet / Wann spricht man von / Definieren Sie... Die anschließenden Fragen

Mehr

Thermodynamik. Eine Einführung in die Grundlagen. Von. Dr.-Ing. Hans Dieter Baehr. o. Professor an der Technischen Hochschule Braunschweig

Thermodynamik. Eine Einführung in die Grundlagen. Von. Dr.-Ing. Hans Dieter Baehr. o. Professor an der Technischen Hochschule Braunschweig Thermodynamik Eine Einführung in die Grundlagen und ihre technischen Anwendungen Von Dr.-Ing. Hans Dieter Baehr o. Professor an der Technischen Hochschule Braunschweig Mit 325 Abbildungen und zahlreichen

Mehr

4.6 Hauptsätze der Thermodynamik

4.6 Hauptsätze der Thermodynamik Thermodynamik.6 Hautsätze der Thermodynamik.6. Erster Hautsatz: Energieerhaltungssatz In einem abgeschlossenen System bleibt der gesamte Energievorrat, also die Summe aus Wärmeenergie, mechanischer Energie

Mehr

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert.

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert. Grundbegriffe der Thermodynamik Die Thermodynamik beschäftigt sich mit der Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur. Die Thermodynamik kann voraussagen,

Mehr

12 Der erste Hauptsatz der Thermodynamik für geschlossene Systeme

12 Der erste Hauptsatz der Thermodynamik für geschlossene Systeme Der erste Hauptsatz der Thermodynamik für geschlossene Systeme Der erste Hauptsatz ist die thermodynamische Formulierung des Satzes von der Erhaltung der Energie. Er besagt, daß Energie weder erzeugt noch

Mehr

Physik 2 (B.Sc. EIT) 2. Übungsblatt

Physik 2 (B.Sc. EIT) 2. Übungsblatt Institut für Physik Werner-Heisenberg-Weg 9 Fakultät für Elektrotechnik 85577 München / Neubiberg Universität der Bundeswehr München / Neubiberg Prof Dr H Baumgärtner Übungen: Dr-Ing Tanja Stimpel-Lindner,

Mehr

Statistische Zustandsgröße Entropie Energieentwertung bei Wärmeübertragungen II. Hauptsatz der Thermodynamik

Statistische Zustandsgröße Entropie Energieentwertung bei Wärmeübertragungen II. Hauptsatz der Thermodynamik Statistische Zustandsgröße Entropie Energieentwertung bei Wärmeübertragungen II. Hauptsatz der hermodynamik Die nachfolgenden Ausführungen stellen den Versuch dar, die zugegeben etwas schwierige Problematik

Mehr

Erinnerung an die Thermodynamik

Erinnerung an die Thermodynamik 2 Erinnerung an die Thermodynamik 2.1 Erinnerung an die Thermodynamik Hauptsätze der Thermodynamik Thermodynamische Potentiale 14 2 Erinnerung an die Thermodynamik 2.1 Thermodynamik: phänomenologische

Mehr

4.5 Innere Energie und Enthalpie reiner Stoffe. 4.5.1 Nassdampfgebiet. Spezifische innere Energie. Spezifische Enthalpie

4.5 Innere Energie und Enthalpie reiner Stoffe. 4.5.1 Nassdampfgebiet. Spezifische innere Energie. Spezifische Enthalpie 4.5 Innere Energie und Enthalpie reiner Stoffe 4.5.1 Nassdampfgebiet Spezifische innere Energie Spezifische Enthalpie Spezifische Verdampfungsenthalpie 4.5-1 4.5.2 Energiebilanz bei der Mischung feuchter

Mehr

Kleine Formelsammlung Technische Thermodynamik

Kleine Formelsammlung Technische Thermodynamik Kleine Formelsammlung Technische Thermodynamik von Prof. Dr.-Ing. habil. Hans-Joachim Kretzschmar und Prof. Dr.-Ing. Ingo Kraft unter Mitarbeit von Dr.-Ing. Ines Stöcker 2., aktualisierte Auflage Fachbuchverlag

Mehr

Informationen. Anmeldung erforderlich: ab :00 bis spätestens :00

Informationen. Anmeldung erforderlich: ab :00 bis spätestens :00 10 Informationen Anmeldung erforderlich: ab 1.3. 16:00 bis spätestens 8. 3. 09:00 online im TISS (i (tiss.tuwien.ac.at) i Tutorium: Fr. 10:00 11:00, 11:00, Beginn: 15.3.2013 Gruppeneinteilung wird auf

Mehr

wegen Massenerhaltung

wegen Massenerhaltung 3.3 Bilanzgleichungen Allgemein: Änderung der Bilanzgröße im System = Eingang Ausgang + Bildung - Verbrauch. 3.3.1 Massenbilanz Integration für konstante Massenströme: 0 wegen Massenerhaltung 3.3-1 3.3.2

Mehr

Inhaltsverzeichnis XVII. Häufig verwendete Formelzeichen. 1 Allgemeine Grundlagen l

Inhaltsverzeichnis XVII. Häufig verwendete Formelzeichen. 1 Allgemeine Grundlagen l Inhaltsverzeichnis Häufig verwendete Formelzeichen XVII 1 Allgemeine Grundlagen l 1.1 Thermodynamik 1 1.1.1 Von der historischen Entwicklung der Thermodynamik 1 1.1.2 Was ist Thermodynamik? 9 1.2 System

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3: Übersicht (1) 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie 3.1.2 Innere Energie U 3.1.3 Energietransfer durch

Mehr

Lehrbuch der Thermodynamik

Lehrbuch der Thermodynamik Ulrich Nickel Lehrbuch der Thermodynamik Eine verständliche Einführung Ж HANSER Carl Hanser Verlag München Wien VII Inhaltsverzeichnis 1 GRUNDBEGRIFFE DER THERMODYNAMIK 1 Einführung 1 Systeme 3 offene

Mehr

Eine Einführung in die Grundlagen. und ihre technischen Anwendungen. Von

Eine Einführung in die Grundlagen. und ihre technischen Anwendungen. Von Thermo Eine Einführung in die Grundlagen und ihre technischen Anwendungen Von Dr.-Ing. Hans Dieter Baehr o. Professor und Direktor des Instituts für Tliermodynamik der Teclinischen Hochschule Braunschweig

Mehr

2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen

2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen 2. Thermodynamik 1 2.1 Grundbegriffe 2 2.2 Hauptsätze 3 2.3 Thermodynamische Potentiale 4 2.4 response -Funktionen G. Kahl & F. Libisch (E136) Statistische Physik I Kapitel 2 5. April 2016 1 / 25 2.1 Grundbegriffe

Mehr

Aufgabe 1 (10 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!!

Aufgabe 1 (10 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!! Aufgabe 1 (10 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!! 1.1. Wie erklärt man die dissipierte Energie in einem System? 1.. Kann man aus dieser noch etwas während der folgenden Prozesse in einer

Mehr

Inhaltsverzeichnis. Günter Cerbe, Gernot Wilhelms. Technische Thermodynamik. Theoretische Grundlagen und praktische Anwendungen

Inhaltsverzeichnis. Günter Cerbe, Gernot Wilhelms. Technische Thermodynamik. Theoretische Grundlagen und praktische Anwendungen Inhaltsverzeichnis Günter Cerbe, Gernot Wilhelms Technische Thermodynamik Theoretische Grundlagen und praktische Anwendungen ISBN (Buch): 978-3-446-43638-1 ISBN (E-Book): 978-3-446-43750-0 Weitere Informationen

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 19. Februar 2013 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen

2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen 2. Thermodynamik 1 2.1 Grundbegriffe 2 2.2 Hauptsätze 3 2.3 Thermodynamische Potentiale 4 2.4 response -Funktionen G. Kahl & B.M. Mladek (E136) Statistische Physik I Kapitel 2 5. März 2012 1 / 25 2.1 Grundbegriffe

Mehr

Formel X Leistungskurs Physik 2001/2002

Formel X Leistungskurs Physik 2001/2002 Versuchsaufbau: Messkolben Schlauch PI Barometer TI 1 U-Rohr-Manometer Wasser 500 ml Luft Pyknometer 2 Bild 1: Versuchsaufbau Wasserbad mit Thermostat Gegeben: - Länge der Schläuche insgesamt: 61,5 cm

Mehr

II. Thermodynamische Energiebilanzen

II. Thermodynamische Energiebilanzen II. Thermodynamische Energiebilanzen 1. Allgemeine Energiebilanz Beispiel: gekühlter Verdichter stationärer Betrieb über Systemgrenzen Alle Energieströme werden bezogen auf Massenstrom 1 Energieformen:

Mehr

Technische Thermodynamik Theoretische Grundlagen und praktische Anwendungen

Technische Thermodynamik Theoretische Grundlagen und praktische Anwendungen Günter Cerbe, Gernot Wilhelms Technische Thermodynamik Theoretische Grundlagen und praktische Anwendungen ISBN-10: 3-446-41561-0 ISBN-13: 978-3-446-41561-4 Inhaltsverzeichnis Weitere Informationen oder

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 25. Februar 2016 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Technische Thermodynamik

Technische Thermodynamik Günter Cerbe Gernot Wilhelms Technische Thermodynamik Theoretische Grundlagen und praktische Anwendungen 16., aktualisierte Auflage Mit 213 Bildern, 40 Tafeln, 130 Beispielen, 137 Aufgaben und 181 Kontrollfragen

Mehr

5. Zweiter Hauptsatz der Thermodynamik 5.1 Reversible und irreversible Prozesse 5.2 Formulierung des zweiten Hauptsatzes

5. Zweiter Hauptsatz der Thermodynamik 5.1 Reversible und irreversible Prozesse 5.2 Formulierung des zweiten Hauptsatzes 5.1 5. Zweiter Hauptsatz der hermodynamik 5.1 Reversible und irreversible Prozesse Stoss zweier Billardkugeln: vorwärts und rückwärts laufender Film ist physikalisch sinnvoll, vom Betrachter nicht zu unterscheiden

Mehr