Stationäre Zeitreihenmodelle

Größe: px
Ab Seite anzeigen:

Download "Stationäre Zeitreihenmodelle"

Transkript

1 Exemplarisch für parametrische Zeitreihenmodelle werden in diesem Kapitel autoregressive Prozesse und ARCH-Prozesse vorgestellt. Der autoregressive Prozess ist einer der einfachsten stationären Prozesse. Wir weisen nach, dass eine stationäre Lösung seiner definierenden Rekursionsgleichung existiert, sofern die Nullstellen seines zugehörigen charakteristischen Polynoms außerhalb des Einheitskreises liegen. Mithilfe des Ergodensatzes folgt die starke Konsistenz des Yule-Walker-Schätzers. Der ARCH-Prozess (autoregressive conditional heteroscedastic) ist ein nicht-linearer Prozess. Wir beweisen die Existenz einer stationären Lösung seiner definierenden Gleichung in Form einer explizit angegebenen Volterra-Reihe. Autoregressive Prozesse Motivation. Angenommen, man beobachtet n aufeinanderfolgende Werte X 1,...X n eines zentrierten stationären Prozesses und ist interessiert an der Vorhersage von X n+1. Gehen wir als Approximation davon aus, dass die endlichdimensionalen Verteilungen des stationären Prozesses gaußisch sind, so ist der im L 2 -Sinne beste Prädiktor linear, besitzt also eine Darstellung n X n+1 = a i X n+1 i. i=1 Darüberhinaus sind ε n+1 := X n+1 X n+1 und X n+1 unkorreliert (der Prädiktionsfehler steht senkrecht auf dem Prädiktor), und da beide normalverteilt auch unabhängig. Es folgt die Zerlegung X n+1 = X n+1 + ε n+1 n = a i X n+1 i + ε n+1, i=1 mit ε n+1 unabhängig von der voranstehenden Linearkombination. Je nach Zusammenhang könnte man vermuten, dass X n+1 hauptsächlich von Werten aus der nahen Vergangenheit abhängt, die Folge der Koeffizienten (a i ) also gegen Null konvergiert, oder sogar idealistisch 31

2 a i = 0 für alle i > p > 0. Man erhält X n+1 = p i=1 a ix n+1 i + ε n+1, mit Koeffizienten a 1,...,a p, die aus Gründen der Stationarität unabhängig von n sein müssen. Definition 4.1. (Autoregressiver Prozess) Sei (ε i ) i Z eine iid-folge von ZVA s mit E ε i <. Ein stationärer Prozess, welcher für alle t Z die Gleichung α j X t j = ε t (mit α 0 = 1) erfüllt, heißt autoregressiver Prozess der Ordnung p (AR(p)-Prozess). Die Frage ist, unter welchen Bedingungen an die Koeffizienten α 0,...,α p eine stationäre Lösung dieser Rekursionsgleichung existiert. Es wird sich herausstellen, dass die Existenz in Form einer Moving-Average-Darstellung verbunden ist mit dem Nullstellenverhalten des sog. charakteristischen Polynoms, punktweise definiert durch α(z) := p α jz j. In Vorbereitung auf die nächste Proposition folgendes Lemma 4.2. Sei (Z t ) t Z eine Folge von ZVA s mit sup t E Z t <. Ist (ψ j ) j Z eine absolut summierbare reelle Folge, so ist die Reihe X t = j Z ψ j Z t j f.s. absolut konvergent. Gilt zusätzlich sup t EZ 2 t <, so ist die Reihe auch L 2-konvergent und es gelten EX t = j Z ψ j EZ t j sowie EX s X t = j,k Z ψ j ψ k E(Z s j Z t k ). BEWEIS: Übungsaufgabe. Proposition 4.3. Sei (V t ) t Z eine stationäre Folge mit E V t <. Dann existiert eine fast sicher eindeutige stationäre Lösung von (4.1) α j X t j = V t, t Z, falls α(z) 0 für z 1, d.h. falls alle Wurzeln des charakteristischen Polynoms außerhalb der abgeschlossenen Einheitskreisscheibe liegen. Es gilt X t = ψ jv t j f.s. mit ψ j ρ j mit einem ρ < 1 sowie im quadratischen Mittel, falls EVt 2 endlich ist. 32

3 BEWEIS. Seien Y t := (X t,...,x t p+1 ), W t := (V t,0,...,0) und }{{} p-dim. α 1 α 2... α p A := Offenbar gilt (4.1) genau dann, wenn (4.2) Y t = AY t 1 + W t, t Z. Durch Entwicklung nach der ersten Zeile kann man ferner zeigen, dass det ( te p A ) = t p α ( 1/t ), die absoluten Eigenwerte λ j also strikt kleiner als 1 sind. Daraus folgt mithilfe der Singulärwertzerlegung A spec ρ für ein ρ < 1. Sei nun Ỹ n t := n A j W t j. Es gilt für die k-te Koordinate Ỹ n tk = n (Aj ) k1 V t j, und mit der Abschätzung Bx 2 B spec x 2 erhält man (A j ) k1 = e k Aj e 1 Cauchy- Schwarz e k 2 A j e 1 2 A j spec A j spec ρ j. Das vorangehende Lemma impliziert Ỹ t n Ỹt f.s. (Ỹt) t Z ist offensichtlich eine stationäre Lösung von (4.2) (Prop. 3.1). Umgekehrt folgt aus (4.2) für jede Lösung n 1 Y t = A j W t j + A n Y t n. Der erste Term konvergiert aber f.s. gegen Ỹt und der zweite im Falle einer stationären Lösung f.s. gegen 0, womit Ỹt = Y t f.s. und ψ j = (A j ) 11. Unter der zusätzlichen Voraussetzung EVt 2 < folgt die L 2 -Konvergenz mit Lemma 4.2. Die folgende Proposition beschreibt im Falle seiner Existenz das Spektralmaß von (X t ) t Z. Proposition 4.4. Sei (Z t ) t Z eine stationäre Folge mit EZ 2 t < und (a j) j Z eine absolut summierbare Folge, d.h. j Z a j <. Das Spektralmaß der stationären Folge (X t ) t Z mit X t := j Z a jz t j f.s. ist gegeben durch F X (dλ) = A(λ) 2 F Z (dλ) 33

4 mit sog. Transferfunktion A(.) := j a j exp(ij.). Existiert die Spektraldichte der Folge (Z t ) t Z, so auch die der Folge (X t ) t Z, und es gilt die Identität f X (λ) = A(λ) 2 f Z (λ). BEWEIS. Unter den gegebenen Voraussetzungen konvergiert die Reihe n j= n a jz t j fast sicher und in L 2 (Lemma 4.2). Wegen Proposition 3.1 ist (X t ) stationär. Ferner gilt cov (X t,x t+l ) = a j a k cov (Z t j,z t+l k ) j,k Z = = j,k Z Π a j a k Π exp ( iλ(l k + j) ) F Z (dλ) 2 exp(iλl) a j exp(iλj) F Z (dλ). Wegen der Eindeutigkeit des Spekralmaßes folgt dann F X (dλ) = A(λ) 2 F Z (dλ). j Z Bemerkung 4.5. Die Abbildung ( ) (Z t ) a j Z t j j heißt linearer Filter mit Transferfunktion A(.). Die Namensgebung wird plausibel, wenn man eine Folge (a j ) j Z mit Transferfunktion { 1 λ [λ0,λ A(λ) := 0 + ] 0 sonst betrachtet. Der so definierte Filter filtert dann gerade alle Frequenzen außerhalb von [λ 0,λ 0 + ] heraus. In der Regel muss man sich auf Filter mit α j = 0 für j < 0 und j > m beschränken und sucht dann solche α j, die eine gute Approximation an obiges A(λ) ergeben. Zusammenfassend aus den beiden vorangehenden Propositionen ergibt sich der nachstehende Satz 4.6. Sei (ε i ) i Z eine iid-folge mit Eε i = 0 und Eε 2 i = σ2. Liegen alle Wurzeln des charakteristischen Polynoms nachfolgender Rekursionsgleichung außerhalb des Einheitskreises, so hat die AR-Gleichung (4.3) α j X t j = ε t, t Z (α 0 = 1), eine f.s. eindeutig bestimmte ergodische Lösung der Form X t = ψ jε t j mit ψ j ρ j (d.h. eine MA( )-Darstellung). Für die Spektraldichte von (X t ) t Z gilt f(λ) = σ2 ( ) α exp(iλ) 2 σ 2 p = 1 exp(iλ) 2, 2π 2π z j wobei die z j die Nullstellen des charakteristischen Polynoms sind. 34

5 BEWEIS. Aus Proposition 4.3 folgt X t = ψ jε t j f.s. und in L 2 sowie aus Proposition 4.4 f ε (λ) = α ( exp(iλ) ) 2 f X (λ). Wegen f ε (λ) = σ 2 /(2π) und α(z) = p (1 z/z j) folgt die Form der Spektraldichte. Die Ergodizität folgt aus Proposition 3.1, da eine iid-folge ergodisch ist. Beispiel 4.7. Sei p = 2 und z 1,2 = r exp(±iλ 0 ), r > 1. Dann gilt ( α(z) = 1 1 )( r exp(iλ 0)z 1 1 ) r exp( iλ 0)z und = 1 2cos λ 0 z + 1 r r 2z2 f X (λ) = σ2 1 2π 1 1 r exp( i(λ λ 0 ) ) r exp( i(λ 0 λ) ) 2. Für r nahe bei 1 hat f(λ) ausgeprägte Spitzen an den Frequenzen ±λ 0, d.h. der Prozess hat eine starke periodische Komponente mit Frequenz λ 0. Yule-Walker-Schätzer Sei (X t ) t Z ein AR(p)-Prozess, d.h. stationäre (und ergodische) Lösung der Rekursionsgleichung (4.3). Dann erhält man sowie ( ) 0 = cov (ε t,x t k ) = cov α j X t j,x t k = c(k) + c(0) + c(k j)α j, (k = 1,...,p) c(j)α j = cov (ε t,x t ) = σ 2. Offenbar gelten die Beziehungen α 1 c(0) c(1)... c(p 1) α 2. = c(1) c(0)... c(p 2) α p c(p 1) c(p 2)... c(0) und σ 2 = c(0) + c(j)α j. 1 c(1) c(2). c(p) Mithilfe der Spekraldarstellung kann man zeigen, dass die Matrix ( c(k j) ) j,k=1,...,n strikt positiv definit und damit nicht-singulär ist (Übungsaufgabe). Ersetzt man nun jeweils auf 35

6 der rechten Seite alle vorkommenden Kovarianzen durch die in Kapitel 3 definierten empirischen Kovarianzen ĉ n (j) = 1 n n j X k X k+ j, erhält man Schätzer ( α 1, α 2,..., α p ) und σ 2 für die unbekannten Parameter. ( α 1, α 2,..., α p ) heißt Yule-Walker-Schätzer. Wegen ĉ n (j) c(j) für alle j f.s. (Birkhoff) folgen α k α k f.s. für k = 1,...,p und damit σ 2 σ 2 f.s. im Falle eines korrekt spezifizierten Modells. Bemerkung 4.8. Sofern der zugrundeliegende Prozess quadratintegrabel ist, konvergiert der Yule-Walker-Schätzer auch im missspezifizierten Modell f.s. es bleibt die wichtige Frage, wie sich die Größen α k, k = 1,...,p, dann interpretieren lassen, da parametrische Zeitreihenmodelle bis auf wenige Ausnahmen lediglich als Approximationen verstanden werden. ARCH-Prozesse Definition 4.9. (ARCH-Prozess) Ein stationärer Prozess (X t ) t Z heißt ARCH(p)-Prozess (autoregressive conditional heteroscedastic), falls gilt: (4.4) X t = σ t Z t, σt 2 = a 0 + a j Xt j 2, t Z. Hierbei seien (Z t ) t Z eine iid-folge mit EZ t = 0 und EZ 2 t = 1, und a i > 0 (i = 0,1,...,p) mit p a j = ρ < 1. ARCH-Prozesse werden häufig zur Modellierung der Volatilität bei Finanzzeitreihen verwendet. Bedingt auf die Vergangenheit σ(x t 1,X t 2,...) hat X t die Varianz σt 2, welche zeitlich veränderlich ist (daher conditional heteroscedastic). Es gilt Xt 2 = σt 2 Zt 2. Ersetzt man rekursiv σt 2 durch a 0 + p a jxt j 2, erhält man nachfolgende Reihenentwicklung. Satz Unter den oben genannten Bedingungen hat die ARCH-Gleichung (4.4) eine f.s. eindeutig bestimmte ergodische Lösung, welche gegeben ist durch (4.5) Xt 2 = a 0 Zt 2 + m t (k) mit (4.6) m t (k) = k=1 j 1,...,j k =1 a 0( k r=1a jr) k r=0 Z 2 t P r s=0 js, (j 0 = 0), wobei die obige Summe f.s. konvergent ist. (Man erhält X t = X 2 t sign(z t).) 36

7 Bemerkung Eine Reihenentwicklung der Form (4.5) nennt man Volterra-Reihe. BEWEIS. Wir weisen zunächst nach, dass die Reihe (4.5) f.s. absolut konvergent ist. Da alle Koeffizienten und ZVA s positiv sind, folgt dies aus der Endlichkeit ihres Erwartungswertes. Wegen EZ 2 t = 1, der Unabhängigkeit der Z t sowie dem Satz von Fubini folgt (4.7) EXt 2 = a ( ) k 0 + a 0 a j = a 0 ρ k <. k=1 Da (Z t ) t Z eine iid-folge ist, impliziert Prop. 3.1 Stationarität und Ergodizität von (X t ) t Z. Durch Einsetzen sieht man, dass (X t ) t Z eine Lösung der ARCH-Gleichung ist (man kann verhältnismäßig schnell die Beziehung p a jm t j (k)z 2 t = m t (k + 1) zeigen.). Für die Eindeutigkeit ist zu beweisen, dass jede mögliche Lösung (Y t ) t Z f.s. mit (X t ) t Z übereinstimmt. r-malige Anwendung der ARCH-Gleichung liefert mit Damit gilt V r (t) = Y 2 k=0 r 1 t = a 0 Zt 2 + m t (k) + V r (t) t rp l r<...<l 0 =t k=1 ( r ) a li 1 l i i=1 Zl 2 i. r 1 Yl 2 r i=0 X 2 t Y 2 t = U r (t) V r (t), wobei U r (t) = m t (k). Wegen EZt 2 = 1 und p a j = ρ gilt EU r (t) Cρ r für eine Konstante C > 0. Ferner sind Yl 2 r und r 1 i=0 Z2 l i stochastisch unabhängig (für i < r gilt l i > l r ). Damit folgt E(Yl 2 r 1 r i=0 Z2 l i ) = EYl 2 r, und man erhält EV r (t) = t rp l r<...<l 0 =t ( r i=1 k=r a li 1 l i ) EY 2 l r EY 2 l r ρ r. Anwendung der Markov-Ungleichung ergibt P(U r (t) > ε) C ρ r /ε für eine Konstante C > 0. Damit gilt P ( U r (t) V r (t) > ε ) <. r=1 Da ε > 0 beliebig war, folgt U r (t) V r (t) 0 f.s. nach dem Borel-Cantelli-Lemma, und Yt 2 = Xt 2 f.s. ist bewiesen. 37

8 38

2 Stationarität. Strikte Stationarität

2 Stationarität. Strikte Stationarität 2 Stationarität. Strikte Stationarität Die in 1 benutzten Begriffe sind noch zu präzisieren : Definition 2.1. a) Ein stochastischer Prozess {X t } t T heißt strikt stationär, falls für je endlich viele

Mehr

Zeitreihenanalyse. Seminar Finanzmathematik. Andreas Dienst SS Einleitung - Begrüßung - Motivation - Inhaltsangabe. 2.

Zeitreihenanalyse. Seminar Finanzmathematik. Andreas Dienst SS Einleitung - Begrüßung - Motivation - Inhaltsangabe. 2. Seminar Finanzmathematik - Begrüßung - Motivation - Inhaltsangabe 3. Zusammen - fassung Zeitreihenanalyse Andreas Dienst SS 2006 Zeitreihen: Definition und Motivation - Begrüßung - Motivation - Inhaltsangabe

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

7. Stochastische Prozesse und Zeitreihenmodelle

7. Stochastische Prozesse und Zeitreihenmodelle 7. Stochastische Prozesse und Zeitreihenmodelle Regelmäßigkeiten in der Entwicklung einer Zeitreihe, um auf zukünftige Entwicklung zu schließen Verwendung zu Prognosezwecken Univariate Zeitreihenanalyse

Mehr

Endliche Markov-Ketten - eine Übersicht

Endliche Markov-Ketten - eine Übersicht Endliche Markov-Ketten - eine Übersicht Diese Übersicht über endliche Markov-Ketten basiert auf dem Buch Monte Carlo- Algorithmen von Müller-Gronbach et. al. und dient als Sammlung von Definitionen und

Mehr

Zeitreihenanalyse. 1 Einleitung. 2 Autoregressive Prozesse, lineare Differenzengleichungen

Zeitreihenanalyse. 1 Einleitung. 2 Autoregressive Prozesse, lineare Differenzengleichungen Zeitreihenanalyse Enno MAMMEN Department of Economics, University of Mannheim L7, 3-5, 68131 Mannheim, Germany E mail: emammen@rumms.uni-mannheim.de February 22, 2006 1 Einleitung Klassisches Komponentenmodell,

Mehr

3. ARMA-Modelle. Jetzt: Wichtigste Modellklasse für stationäre Prozesse

3. ARMA-Modelle. Jetzt: Wichtigste Modellklasse für stationäre Prozesse 3. ARMA-Modelle Jetzt: Wichtigste Modellklasse für stationäre Prozesse Definition 3.1: (ARMA(p, q)-prozess) Gegeben sei das Weiße Rauschen {ɛ t } t Z WR(0, σ 2 ). Der Prozess {X t } t Z heißt AutoRegressiver-Moving-Average-Prozess

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie Tobias Ried. März 2 2 Aufgabe (Messbarkeit der Komposition zweier Abbildungen). Seien (X, A), (Y, B) und (Z, C) Messräume und f : (X,

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 30.11.2016 5. Teilmengen von R und von R n Der R n ist eine mathematische Verallgemeinerung: R n = {x = (x 1,..., x n ) : x i R} = } R. {{.. R }. n mal Für x R ist x der Abstand zum

Mehr

Unabhängige Zufallsvariablen

Unabhängige Zufallsvariablen Kapitel 9 Unabhängige Zufallsvariablen Die Unabhängigkeit von Zufallsvariablen wird auf die Unabhängigkeit von Ereignissen zurückgeführt. Im Folgenden sei Ω, A, P ) ein Wahrscheinlichkeitsraum. Definition

Mehr

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel 4 Orthogonalität 4. Motivation Im euklidischen Raum ist das euklidische Produkt zweier Vektoren u, v IR n gleich, wenn die Vektoren orthogonal zueinander sind. Für beliebige Vektoren lässt sich sogar der

Mehr

Gesetze der großen Zahlen

Gesetze der großen Zahlen Kapitel 0 Gesetze der großen Zahlen 0. Einführung Im ersten Kapitel wurde auf eine Erfahrungstatsache im Umgang mit zufälligen Erscheinungen aufmerksam gemacht, die man gewöhnlich als empirisches Gesetz

Mehr

Definition und Beispiele. Lineare Prozesse. Kausalität und Invertierbarkeit. Berechnung der Autokovarianzfunktion. Prognosen in ARMA-Modellen

Definition und Beispiele. Lineare Prozesse. Kausalität und Invertierbarkeit. Berechnung der Autokovarianzfunktion. Prognosen in ARMA-Modellen Kap. 2: ARMA-Prozesse Definition und Beispiele Lineare Prozesse Kausalität und Invertierbarkeit Berechnung der Autokovarianzfunktion Prognosen in ARMA-Modellen Wold-Darstellung 2.1 Definition und Beispiele

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Beispiele. Grundlagen. Kompakte Operatoren. Regularisierungsoperatoren

Beispiele. Grundlagen. Kompakte Operatoren. Regularisierungsoperatoren Beispiele Grundlagen Kompakte Operatoren Regularisierungsoperatoren Transportgleichung Dierenzieren ( nx ) (f δ n ) (x) = f (x) + n cos, x [0, 1], δ Regularisierung!! Inverse Wärmeleitung Durc f (f δ n

Mehr

Inhaltsverzeichnis INHALTSVERZEICHNIS 1

Inhaltsverzeichnis INHALTSVERZEICHNIS 1 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Die Parabel 2 1.1 Definition................................ 2 1.2 Bemerkung............................... 3 1.3 Tangenten................................ 3 1.4

Mehr

Der Fundamentalsatz der Algebra. 1 Motivation

Der Fundamentalsatz der Algebra. 1 Motivation Vortrag im Rahmen des Proseminars zur Analysis, 24. April 2006 Micha Bittner Motivation Den ersten des Fundamentalsatzes der Algebra erbrachte C.F. Gauss im Jahr 799 im Rahmen seiner Dissertation. Heute

Mehr

Pr[X t+1 = k] = Pr[X t+1 = k X t = i] Pr[X t = i], also. (q t+1 ) k = p ik (q t ) i, bzw. in Matrixschreibweise. q t+1 = q t P.

Pr[X t+1 = k] = Pr[X t+1 = k X t = i] Pr[X t = i], also. (q t+1 ) k = p ik (q t ) i, bzw. in Matrixschreibweise. q t+1 = q t P. 2.2 Berechnung von Übergangswahrscheinlichkeiten Wir beschreiben die Situation zum Zeitpunkt t durch einen Zustandsvektor q t (den wir als Zeilenvektor schreiben). Die i-te Komponente (q t ) i bezeichnet

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 3 Anwendungen der Differentialrechnung 3.1 Lokale Maxima und Minima Definition 16: Sei f : D R eine Funktion von n Veränderlichen. Ein Punkt x heißt lokale oder relative Maximalstelle bzw. Minimalstelle

Mehr

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,

Mehr

Gegenbeispiele in der Wahrscheinlichkeitstheorie

Gegenbeispiele in der Wahrscheinlichkeitstheorie Gegenbeispiele in der Wahrscheinlichkeitstheorie Mathias Schaefer Universität Ulm 26. November 212 1 / 38 Übersicht 1 Normalverteilung Definition Eigenschaften Gegenbeispiele 2 Momentenproblem Definition

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Konvergenz im quadratischen Mittel - Hilberträume

Konvergenz im quadratischen Mittel - Hilberträume CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften

Mehr

86 Klassifizierung der isolierten Singularitäten holomorpher

86 Klassifizierung der isolierten Singularitäten holomorpher 86 Klassifizierung der isolierten Singularitäten holomorpher Funktionen 86. Isolierte Singulariäten holomorpher Funktionen 86.3 Klassifizierung der isolirerten Singularitäten 86.5 Charakterisierung hebbarer

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 53 Norm von Endomorphismen und Matrizen Definition 53.1. Es seien V und W endlichdimensionale normierte K-

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Siehe Analysis (von der Hude, Folie 20: Definition 2.3. Ein Vektor x R n heißt Eigenvektor der quadratischen n n-matrix A zum Eigenwert λ R, wenn gilt Ax = λx Die Eigenwerte

Mehr

Erwartungswert und Varianz von Zufallsvariablen

Erwartungswert und Varianz von Zufallsvariablen Kapitel 7 Erwartungswert und Varianz von Zufallsvariablen Im Folgenden sei (Ω, A, P ) ein Wahrscheinlichkeitsraum. Der Erwartungswert von X ist ein Lebesgue-Integral (allerdings allgemeiner als in Analysis

Mehr

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich:

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: Lineare Algebra D-MATH, HS 04 Prof. Richard Pink Lösung zu Serie. [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: a) F (X) := X 5 X in R[X] und C[X]. b) F (X) := X 4 +X 3 +X in

Mehr

Einführung und Grundlagen

Einführung und Grundlagen Kapitel 1 Einführung und Grundlagen Generelle Notation: Ω, A, P sei ein W-Raum im Hintergrund nie weiter spezifiziert Die betrachteten Zufallsvariablen seien auf Ω definiert, zb X : Ω, A M, A, wobei M,

Mehr

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg. PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg. PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004 Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004 Aufgabe 1 U t bedeute weißes Rauschen und B den Backshift

Mehr

44 Spektralzerlegung normaler Operatoren im endlichdimensionalen Fall

44 Spektralzerlegung normaler Operatoren im endlichdimensionalen Fall 44 Spektralzerlegung normaler Operatoren im endlichdimensionalen Fall 44 1 Zusammenfassung Dieser Paragraf richtet sich im Aufbau weitgehend nach 42, um den Zerlegungssatz (44.7) analog zum Satz über die

Mehr

1 Erwartungswert und Kovarianzmatrix von Zufallsvektoren

1 Erwartungswert und Kovarianzmatrix von Zufallsvektoren Erwartungswert und Kovarianzmatrix von Zufallsvektoren Erwartungswert und Kovarianzmatrix von Zufallsvektoren. Definition Ist X X,...,X p ein p-dimensionaler Zufallsvektor mit E X j < für alle j, so heißt

Mehr

7. Die Brownsche Bewegung

7. Die Brownsche Bewegung 7. DIE BROWNSCHE BEWEGUNG 7 5 5 50 00 50 200 250 0 5 20 Abbildung 7.: Pfad einer Brownschen Bewegung 7. Die Brownsche Bewegung Definition 7.. Ein cadlag stochastischer Prozess {W t } mit W 0 = 0, unabhängigen

Mehr

Mathematik I. Vorlesung 16. Eigentheorie

Mathematik I. Vorlesung 16. Eigentheorie Prof Dr H Brenner Osnabrück WS 009/00 Mathematik I Vorlesung 6 Eigentheorie Unter einer Achsenspiegelung in der Ebene verhalten sich gewisse Vektoren besonders einfach Die Vektoren auf der Spiegelungsachse

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Musterlösung zu Blatt 10. f(z) f(z) dz

Übungen zur Vorlesung Funktionentheorie Sommersemester Musterlösung zu Blatt 10. f(z) f(z) dz UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Musterlösung zu Blatt 0 Aufgabe. Berechnen Sie

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 213 Prof. Dr. Erich Walter Farkas Kapitel 7: Lineare Algebra Kapitel 7.5: Eigenwerte und Eigenvektoren einer quadratischen Matrix Prof. Dr. Erich Walter Farkas Mathematik

Mehr

16.3 Rekurrente und transiente Zustände

16.3 Rekurrente und transiente Zustände 16.3 Rekurrente und transiente Zustände Für alle n N bezeichnen wir mit f i (n) = P(X n = i,x n 1 i,...,x 1 i,x 0 = i) die Wahrscheinlichkeit, daß nach n Schritten erstmalig wieder der Zustand i erreicht

Mehr

sie ist also eine Lösung der Differenzialgleichung y 0 = Ay. Bei x = 0 sind diese n Spalten auch linear unabhängig, da ja

sie ist also eine Lösung der Differenzialgleichung y 0 = Ay. Bei x = 0 sind diese n Spalten auch linear unabhängig, da ja Lineare Systeme mit konstanten Koeffizienten 44 63 Zusammenhang mit Fundamentalsystemen Für die Matrix-Exponenzialfunkton e Ax gilt (e Ax ) = Ae Ax Für jede Spalte '(x) der Matrix e Ax Matrixmultpiplikation

Mehr

Wiederholung von Linearer Algebra und Differentialrechnung im R n

Wiederholung von Linearer Algebra und Differentialrechnung im R n Wiederholung von Linearer Algebra und Differentialrechnung im R n 1 Lineare Algebra 11 Matrizen Notation: Vektor x R n : x = x 1 x n = (x i ) n i=1, mit den Komponenten x i, i {1,, n} zugehörige Indexmenge:

Mehr

Exponentialabbildung für Matrizen und Systeme von Differentialgleichungen

Exponentialabbildung für Matrizen und Systeme von Differentialgleichungen Proseminar Lineare Algebra SS10 Exponentialabbildung für Matrizen und Systeme von Differentialgleichungen Simon Strahlegger Heinrich-Heine-Universität Betreuung: Prof. Dr. Oleg Bogopolski Inhaltsverzeichnis:

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

2.5 Lineare Differentialgleichungen n-ter Ordnung

2.5 Lineare Differentialgleichungen n-ter Ordnung 2.5 Lineare Differentialgleichungen n-ter Ordnung Eine Dgl der Gestalt a n (x)y (n) +a n 1 (x)y (n 1) +...+a 2 (x)y +a 1 (x)y +a 0 (x)y = b(x) heißt lineare Dgl n-ter Ordnung. ( ) Dabei sind a 0, a 1,...,

Mehr

Kapitel 5. Vektorräume mit Skalarprodukt

Kapitel 5. Vektorräume mit Skalarprodukt Kapitel 5 Vektorräume mit Skalarprodukt 119 120 Kapitel V: Vektorräume mit Skalarprodukt 5.1 Elementare Eigenschaften des Skalarprodukts Dienstag, 20. April 04 Wollen wir in einem Vektorraum wie in der

Mehr

4 Anwendungen des Cauchyschen Integralsatzes

4 Anwendungen des Cauchyschen Integralsatzes 4 Anwendungen des Cauchyschen Integralsatzes Satz 4. (Cauchysche Integralformel) Es sei f : U C komplex differenzierbar und a {z C; z z 0 r} U. Dann gilt f(a) = z z 0 =r z a dz. a z 0 9 Beweis. Aus dem

Mehr

Das Trust-Region-Verfahren

Das Trust-Region-Verfahren Das Trust-Region-Verfahren Nadine Erath 13. Mai 2013... ist eine Methode der Nichtlinearen Optimierung Ziel ist es, das Minimum der Funktion f : R n R zu bestimmen. 1 Prinzip 1. Ersetzen f(x) durch ein

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

6.5 Die Taylor-Reihe. Start: Erinnerung an den Satz über die geometrische Reihe. Für die endliche geometrische Reihe gilt die Summenformel

6.5 Die Taylor-Reihe. Start: Erinnerung an den Satz über die geometrische Reihe. Für die endliche geometrische Reihe gilt die Summenformel 6.5 Die Taylor-Reihe Start: Erinnerung an den Satz über die geometrische Reihe. Für die endliche geometrische Reihe gilt die Summenformel N q n = qn+ q für q C \ {}. Für q < ist die unendliche geometrische

Mehr

Finanzzeitreihen Teil 2

Finanzzeitreihen Teil 2 Teil 2 Mathematisches Institut der Universität zu Köln Wintersemester 09/10 Betreuung: Prof. Schmidli, J. Eisenberg Literatur : Quantitative Risk Management Wu Jui Sun Contents 1 Wiederholung 2 1.1 Value

Mehr

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C Kapitel 5. Die trigonometrischen Funktionen 5.1. Die komplexen Zahlen 5.. Folgen und Reihen in C 5.10. Definition. Eine Folge (c n n N komplexer Zahlen heißt konvergent gegen c C, falls zu jedem ε > 0

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Seminar Einführung in die Kunst mathematischer Ungleichungen

Seminar Einführung in die Kunst mathematischer Ungleichungen Seminar Einführung in die Kunst mathematischer Ungleichungen Geometrie und die Summe von Quadraten Clara Brünn 25. April 2016 Inhaltsverzeichnis 1 Einleitung 2 1.1 Geometrie allgemein.................................

Mehr

1.3 Zufallsvariablen

1.3 Zufallsvariablen 1.3 Zufallsvariablen Beispiel Irrfahrt zwischen drei Zuständen Start in G bei t = 0, Zeithorizont T N Grundraum σ-algebra Ω = {ω = (ω 0, ω 1,..., ω T ) {G, R, B} T +1, ω 0 = G} Wahrscheinlichkeitsmaß P

Mehr

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1)

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) Eigenwerte 1 Eigenwerte und Eigenvektoren Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) für einen Vektor x 0. Vektor x heißt ein

Mehr

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω 5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,

Mehr

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Dr. Gerhard Mülich Christian Maaß 6.Mai 8 Im letzten Vortrag haben wir gesehen, dass das

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 22 Algebraische Körpererweiterung Satz 1. Sei K L eine Körpererweiterung und sei f L ein Element. Dann sind folgende Aussagen

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

7 Lineare Abbildungen und Skalarprodukt

7 Lineare Abbildungen und Skalarprodukt Mathematik II für inf/swt, Sommersemester 22, Seite 121 7 Lineare Abbildungen und Skalarprodukt 71 Vorbemerkungen Standard Skalarprodukt siehe Kap 21, Skalarprodukt abstrakt siehe Kap 34 Norm u 2 u, u

Mehr

Mathematische Ökonometrie

Mathematische Ökonometrie Mathematische Ökonometrie Ansgar Steland Fakultät für Mathematik Ruhr-Universität Bochum, Germany ansgar.steland@ruhr-uni-bochum.de Skriptum zur LV im SoSe 2005. Diese erste Rohversion erhebt keinen Anspruch

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein

Mehr

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 23. Bemerkung Integralbegriffe für Funktionen f : R d R (i) Lebesgue-Integral (Vorlesung Analysis IV). Spezialfall: (ii) Uneigentliches Riemann-Integral

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

Kapitel 5 Reihen 196

Kapitel 5 Reihen 196 Kapitel 5 Reihen 96 Kapitel 5. Definition und Beispiele 97 Das Material dieses Kapitels können Sie nachlesen in: MICHAEL SPIVAK, Calculus, Kapitel 22 DIRK HACHENBERGER, Mathematik für Informatiker, Kapitel

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

9 Metrische und normierte Räume

9 Metrische und normierte Räume 9 Metrische und normierte Räume Idee: Wir wollen Abstände zwischen Punkten messen. Der Abstand soll eine reelle Zahl 0 sein (ohne Dimensionsangabe wie Meter...). 9.1 Definition Sei X eine Menge. Eine Metrik

Mehr

Klausur zur Einführung in die Wahrscheinlichkeitstheorie und Statistik

Klausur zur Einführung in die Wahrscheinlichkeitstheorie und Statistik Klausur zur Einführung in die Wahrscheinlichkeitstheorie und Statistik Prof. Dr. C. Löh/M. Blank 27. Juli 2012 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen

Mehr

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eine Fragestellung, die uns im weiteren beschäftigen wird, ist das Finden eines möglichst einfachen Repräsentanten aus jeder Äquivalenzklasse

Mehr

Gaußsche Felder und Simulation

Gaußsche Felder und Simulation 3 2 data_2d_1.dat data_2d_2.dat data_2d_64.dat data_2d_128.dat 1-1 -2-3 1 2 3 4 5 6 7 Gaußsche Felder und Simulation Benedikt Jahn, Aaron Spettl 4. November 28 Institut für Stochastik, Seminar Zufällige

Mehr

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1).

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1). Kapitel 4 Stetige lineare Funktionale 4.1 Der Satz von Hahn - Banach Definition 4.1. Sei X ein linearer normierter Raum über dem Körper K (R oder C). Ein linearer Operator f : X K heißt (reelles oder komplexes)

Mehr

7.2 Die adjungierte Abbildung

7.2 Die adjungierte Abbildung 7.2 Die adjungierte Abbildung Definition 7.2.1 Eine lineare Abbildung f : V K heißt lineares Funktional oder Linearform. (Diese Definition gilt für beliebige K-Vektorräume, nicht nur für innere Produkträume.)

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

15 Integration (gebrochen) rationaler Funktionen

15 Integration (gebrochen) rationaler Funktionen 5 Integration (gebrochen) rationaler Funktionen Wir werden im folgenden sehen, daß sich die Integration gebrochen rationaler Funktionen auf die folgenden drei einfachen Fälle zurückführen läßt (für komplexe

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Serie 12: Eigenwerte und Eigenvektoren

Serie 12: Eigenwerte und Eigenvektoren D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie : Eigenwerte und Eigenvektoren Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom 7 und 9 Dezember Finden Sie für folgende

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme 2 Lineare Gleichungssysteme Betrachte ein beliebiges System von m linearen Gleichungen in den n Unbekannten x,,x n : a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n = b 2 () a m x + a m2 x

Mehr

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink Lineare Algebra D-MATH, HS 201 Prof. Richard Pink Lösung zu Serie 18 1. Sei V,, ein endlich-dimensionaler unitärer Vektorraum. Zeige, dass zu jeder Sesquilinearform f : V V C eine eindeutige lineare Abbildung

Mehr

Kapitel 5 KONVERGENZ

Kapitel 5 KONVERGENZ Kapitel 5 KONVERGENZ Fassung vom 21. April 2002 Claude Portenier ANALYSIS 75 5.1 Metrische Räume 5.1 Metrische Räume DEFINITION 1 Sei X eine Menge. Eine Abbildung d : X X! R + heißt Metrik oder Distanz

Mehr

Folgen und Reihen Folgen

Folgen und Reihen Folgen Folgen und Reihen 30307 Folgen Einstieg: Wir beginnen mit einigen Beispielen für reelle Folgen: (i),, 4, 8, 6, (ii) 4,, 6, 3, 7, (iii) 0,,,, 3,, (iv), 3, 7,,, Aufgabe : Setzt die Zahlenfolgen logisch fort

Mehr

Markov Ketten und Bonus Malus Systeme

Markov Ketten und Bonus Malus Systeme Grund Stoch Markov Ketten Bonus Malus Probleme L 1 / 46 Markov Ketten und Bonus Malus Systeme Klaus D. Schmidt Lehrstuhl für Versicherungsmathematik Technische Universität Dresden TU Wien 19. Mai 2010

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 24 Das Lernen und der Orgasmus finden letztlich im Kopf statt Der Satz von Cayley-Hamilton Arthur Cayley

Mehr

1 Konvergenz im p ten Mittel

1 Konvergenz im p ten Mittel Konvergenz im p ten Mittel 1 1 Konvergenz im p ten Mittel In diesem Paragraphen werden zunächst in Abschnitt 1.1 die L p Räume eingeführt. Diese erweisen sich als vollständige, lineare Räume über R. In

Mehr

1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von

1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von 1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von Wachstumsraten Bestimmung von Maximal- und Minimalwerten von

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) WS 2011/12 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2011ws/ds/uebung/ 18. Januar 2012 ZÜ DS ZÜ XII

Mehr

Brownsche Bewegung. Satz von Donsker. Bernd Barth Universität Ulm

Brownsche Bewegung. Satz von Donsker. Bernd Barth Universität Ulm Brownsche Bewegung Satz von Donsker Bernd Barth Universität Ulm 31.05.2010 Page 2 Brownsche Bewegung 31.05.2010 Inhalt Einführung Straffheit Konvergenz Konstruktion einer zufälligen Funktion Brownsche

Mehr

2. Ein Zufallsvektor X IR d ist multivariat normal verteilt dann und nur dann wenn seine charakteristische Funktion folgendermaßen gegeben ist:

2. Ein Zufallsvektor X IR d ist multivariat normal verteilt dann und nur dann wenn seine charakteristische Funktion folgendermaßen gegeben ist: Multivariate elliptische Verteilungen a) Die multivariate Normalverteilung Definition 2 Der Zufallsvektor (X 1, X 2,..., X d ) T hat eine multivariate Normalverteilung (oder eine multivariate Gauss sche

Mehr

Ritz-Galerkin-Verfahren Courant Element

Ritz-Galerkin-Verfahren Courant Element Ritz-alerkin-Verfahren Courant Element Moritz Scherrmann LMU München Zillertal am 09.01.2015 Moritz Scherrmann Ritz-alerkin-Verfahren Courant Element 1/15 Erinnerung Sei R n beschränktes ebiet, f C 0 ()

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

Klausur zur Vorlesung Stochastik II

Klausur zur Vorlesung Stochastik II Institut für Stochastik WS 007/008 Universität Karlsruhe. 0. 008 r. B. Klar Klausur zur Vorlesung Stochastik II Muster-Lösung auer: 90 Minuten Name: Vorname: Matrikelnummer: iese Klausur hat bestanden,

Mehr

Kompaktskript zur Vorlesung Prognoseverfahren

Kompaktskript zur Vorlesung Prognoseverfahren Kompaktskript zur Vorlesung Prognoseverfahren Friedrich-Schiller-Universität Jena Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Wirtschafts- und Sozialstatistik Prof. Dr. P. Kischka Sommersemester

Mehr

Übungsaufgaben Lösungen

Übungsaufgaben Lösungen Übungsaufgaben Lösungen Stochastische Matrizen, Markov-Prozesse MV5.1 Eine N N-Matrix P heißt stochastisch, wenn ihre Matrixelemente nicht-negativ sind und alle Zeilensummen 1 ergeben. In Formeln: P ij

Mehr