Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am"

Transkript

1 Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am..9 Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3 4 erreichbare Punkte 9 4 erreichte Punkte Bitte tragen Sie Name, Vorname und Matrikelnummer auf dem Deckblatt ein,... rechnen Sie die Aufgaben auf separaten Blättern, nicht auf dem Angabeblatt,... beginnen Sie für eine neue Aufgabe immer auch eine neue Seite,... geben Sie auf jedem Blatt den Namen sowie die Matrikelnummer an,... begründen Sie Ihre Antworten ausführlich und... kreuzen Sie hier an, an welchem der folgenden Termine Sie nicht zur mündlichen Prüfung antreten können Fr, 8..9 Mo,..9 Viel Erfolg!

2 B F ges α v i m c d F L s Abbildung : Dreiecksförmige Leiterschleife im Magnetfeld.. Gegeben ist eine dreiecksförmige Leiterschleife, die teilweise in ein Magnetfeld mit der konstanten magnetischen Flussdichte B eingetaucht ist, siehe Abbildung. Die Leiterschleife ist fest mit einer Spannungsquelle (Spannung v) verbunden, die mit einem linearen Feder-/Dämpfersystem (Federkonstante c, Ruhelage der Feder bei s =, Dämpfungskonstante d) gegenüber dem Inertialsystem gelagert ist. Die Masse der Leiterschleife sei gegenüber der Masse m der Spannungsquelle vernachlässigbar klein. An der Spitze der vom Strom i durchflossenen Leiterschleife greift die Kraft F ges = F ext +F m an, wobei F m die magnetische Kraft und F ext eine externe Kraft bezeichnen. Die Induktivität der Leiterschleife beträgt L, der elektrische Widerstand R. a) Bestimmen Sie mit Hilfe des verketteten Flußes ψ = BA(s)+Li und des Induk-.5 P. tionsgesetzes d ψ = Ri+v die Gleichung für die Stromdynamik, wobei A(s) die dt im Magnetfeld eingetauchte Fläche der Leiterschleife darstellt. b) Die magnetische Koenergie berechnet sich zu W m = ψdi. Berechnen Sie daraus.5 P. die magnetische Kraft F m = W m s. c) Geben Sie das Gesamtmodell des Systems in der nichtlinearen Zustandsdarstellung P. ẋ = f(x,u), x() = x y = h(x) an. Wählen Sie hierbei den Zustandsvektorx = [s, w, i] T mit der Geschwindigkeit w, dem Eingangsvektor u = [v, F ext ] T und dem Ausgang y = F m. d) Berechnen Sie eine allgemeine Ruhelage x R des Systems für einen beliebigen Ein-.5 P. gang u R und s >. Bestimmen Sie die Federkonstante c so, dass für eine verschwindende Kraft F ext = und eine konstante Spannung v = v eine solche Ruhelage existiert. e) Linearisieren Sie das nichtlineare Zustandsmodell um eine allgemeine Ruhelage.5 P. (x R,u R ) und geben Sie es in der Zustandsdarstellung an: ẋ = A x+b u, x() = x x R y = c T x+d T u

3 . Die Aufgabenteile a) und b) können unabhängig von den Aufgabenteilen c) und d) gelöst werden. a) Gegeben ist eine Strecke G (s) mit dem im folgenden Bode-Diagramm dargestell- 3 P. ten Übertragungsverhalten. Magnitude (db) Phase (deg) Abbildung : Bode-Diagramm von G (s). Betrachten Sie das System r(t) u(t) y(t) G (s) G (s) mit der Übertragungsfunktion G (s) = s s +s+. i) Bestimmen Sie für einen rampenförmigen Verlauf der Eingangsgröße r(t) = tσ(t) die stationäre Lösung der Größe u = lim t u(t) und der Größe y = lim t y(t). ii) Berechnen Sie für einen harmonischen Verlauf der Eingangsgröße r(t) = 5 sin(t) die eingeschwungene Lösung von u(t) und y(t). 3

4 b) Welche der hier abgebildeten Ortskurven entspricht der StreckeG (s)? Begründen P. Sie Ihre Antwort und geben Sie insbesondere an, warum die anderen Ortskurven nicht in Frage kommen (a) (b) (c) c) Klassifizieren Sie die folgenden Differentialgleichungen hinsichtlich Linearität und P. Zeitvarianz: i) ii) 5ÿ = 5tu 5ẏy ẏ y +t = t u(τ)dτ d) Geben Sie für die Differentialgleichungen aus c) die Zustandsraumdarstellung 3 P. an. ẋ = f (x,u,t) 4

5 3. a) Gegeben ist das vollständig beobachtbare System P. [ ] [ ] 3 x k+ = x 5 7 k + u k y k = [ 4 ] x k. Weisen Sie mit Hilfe des PBH-Eigenvektortests nach, dass das System nicht vollständig erreichbar ist. b) Berechnen Sie das zum System aus Aufgabe (a) duale System. Welche Aussa- P. gen können Sie bezüglich der Erreichbarkeit/Beobachtbarkeit und bezüglich des Eingangs-/Ausgangsverhaltens des primalen und dualen Systems treffen? c) Gegeben ist der geschlossene Regelkreis 5 P. r e s x I k II u. x x = Ax + bu c T y k x T mit der Strecke A = [ ], b = [ ], c = [ ], dem Rückführvektor k T x = [k, k ] und der Konstanten k I. Geben Sie den geschlossenen Kreis mit dem Zustand x g = [ x T, x I ] T in der Form ẋ g = A g x g +b g r an. Berechnen Sie die Konstanten k, k und k I so, dass die Pole des geschlossenen Kreises bei {,, } liegen. Hinweis: Berechnen Sie dazu zunächst das charakteristische Polynom von A g! d) Auf welchem Prinzip beruht die Zulässigkeit des getrennten Entwurfes eines Zu- P. standsreglers und -beobachters. Was besagt dieses Prinzip bezüglich der Lage der Pole des geschlossenen Kreises? 5

6 4. Lösen Sie folgende Teilaufgaben: a) Geben Sie die Eigenschaften der Transitionsmatrix an. P. b) Gegeben ist die Transitionsmatrix eines autonomen Systems ẋ = Ax e t Φ(t) = e t +e t e t e 3t + 3 e t e t 6e t +6e 3t e 3t Geben Sie die Dynamikmatrix A des Systems sowie deren Eigenwerte an. Beweisen Sie die folgende Aussage lim x(t) =. t Können Sie damit eine Aussage über die Stabilität der Ruhelage treffen? Wie lautet die Ruhelage und ist diese eindeutig? Gegeben ist der Zustand x T = [ e 3] zur Zeit t =. Berechnen Sie den P. Zustand des Systems zur Zeit t =. c) Gegeben ist das autonome System P. [ ] 4 6 ẋ = x. Geben Sie einen Anfangswert x und eine skalare Funktion α(t) derart an, dass sich die Lösung des Systems in der Form x(t) = α(t)x darstellt. d) Gegeben ist der folgende Regelkreis: 3 P. P. P. r k P u k x =a x +b u k+ k k v =c x k k v k w =w +b v k+ k k y =c w k k G (z) G (z) Strecke y k Die Strecke wird mit einem P Regler geregelt. Geben Sie mit Hilfe des Jury- Schemas Bedingungen dafür an, in welchem Wertebereich der Parameter P eingestellt werden darf, damit die Führungsübertragungsfunktion T r,y (z) des Regelkreises BIBO-stabil ist. Berechnen Sie dazu zunächst die Übertragungsfunktion G(z) = yz(z) u z(z) der Strecke und setzen Sie dann die folgenden Parameter ein. a =.5 b = b = c = c = Hinweis: Sie müssen die Ungleichungen des Jury-Schemas nicht lösen! 6

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 202 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 203 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

IEMS Regelungstechnik Abschlussklausur

IEMS Regelungstechnik Abschlussklausur IEMS Regelungstechnik Abschlussklausur Prof. Dr. Moritz Diehl, IMTEK, Universität Freiburg, und ESAT-STADIUS, KU Leuven 30. August, 0:5-3:5, Freiburg, Georges-Koehler-Allee 06, Raum 00-007 page 0 2 3 4

Mehr

Zusammenfassung der 8. Vorlesung

Zusammenfassung der 8. Vorlesung Zusammenfassung der 8. Vorlesung Beschreibung und und Analyse dynamischer Systeme im im Zustandsraum Steuerbarkeit eines dynamischen Systems Unterscheidung: Zustandssteuerbarkeit, Zustandserreichbarkeit

Mehr

Zusammenfassung der 6. Vorlesung

Zusammenfassung der 6. Vorlesung Zusammenfassung der 6. Vorlesung w-transformation Die w-transformationbildet das Innere des Einheitskreises der z-ebene in die linke w-ebene ab. z 1 w= z+1, bzw. z= 1+w 1 w Nach Anwendung der w-transformationist

Mehr

Entwurf robuster Regelungen

Entwurf robuster Regelungen Entwurf robuster Regelungen Kai Müller Hochschule Bremerhaven Institut für Automatisierungs- und Elektrotechnik z P v K Juni 25 76 5 OPTIMALE ZUSTANDSREGELUNG 5 Optimale Zustandsregelung Ein optimaler

Mehr

PS II - Verständnistest 24.02.2010

PS II - Verständnistest 24.02.2010 Grundlagen der Elektrotechnik PS II - Verständnistest 24.02.2010 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 3 4 2 2 1 5 2 erreicht Aufgabe 8 9 10 11 12 Summe Punkte 4 2 3 3 4 35 erreicht Hinweise:

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Ingenieurmathematik für Maschinenbau, Blatt 1

Ingenieurmathematik für Maschinenbau, Blatt 1 Ingenieurmathematik für Maschinenbau, Blatt 1 Probeklausur Ingenieurmathematik für Maschinenbau Studiengang Prüfungsfach Prüfer Prüfungstermin Prüfungsdauer Prüfungsunterlagen Hilfsmittel Maschinenbau

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

PRAKTIKUM REGELUNGSTECHNIK 2

PRAKTIKUM REGELUNGSTECHNIK 2 FACHHOCHSCHULE LANDSHUT Fachbereich Elektrotechnik Prof. Dr. G. Dorn PRAKTIKUM REGELUNGSTECHNIK 2 1 Versuch 2: Übertragungsfunktion und Polvorgabe 1.1 Einleitung Die Laplace Transformation ist ein äußerst

Mehr

AUFGABENSAMMLUNG ZUM LEHRGEBIET. AUTOMATISIERUNGSTECHNIK bzw. KONTINUIERLICHE SYSTEME

AUFGABENSAMMLUNG ZUM LEHRGEBIET. AUTOMATISIERUNGSTECHNIK bzw. KONTINUIERLICHE SYSTEME Dr.-Ing. Tatjana Lange Fachhochschle für Technik nd Wirtschaft Fachbereich Elektrotechnik AUFGABENSAMMLUNG ZUM LEHRGEBIET AUTOMATISIERUNGSTECHNIK bzw. KONTINUIERLICHE SYSTEME. Differentialgleichngen Afgabe.:

Mehr

Aufgabe 1 2 3 4 5 6 Summe Note Mögliche Punkte 13 20 16 23 31 15 118 Erreichte Punkte

Aufgabe 1 2 3 4 5 6 Summe Note Mögliche Punkte 13 20 16 23 31 15 118 Erreichte Punkte Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 1 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 11. Oktober 005 Klausurdauer : Stunden Hilfsmittel : 5 Blätter Formelsammlung

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

Seite 1 von 2. Teil Theorie Praxis S Punkte 80+25 120+73 200+98 erreicht

Seite 1 von 2. Teil Theorie Praxis S Punkte 80+25 120+73 200+98 erreicht Seite 1 von 2 Ostfalia Hochschule Fakultät Elektrotechnik Wolfenbüttel Prof. Dr.-Ing. T. Harriehausen Bearbeitungszeit: Theoretischer Teil: 60 Minuten Praktischer Teil: 60 Minuten Klausur FEM für elektromagnetische

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

Abtastsysteme im Zustandsraum

Abtastsysteme im Zustandsraum Abtastsysteme im Zustandsraum Prof. Dr. François E. Cellier Institut für Computational Science ETH Zürich May 11, 2006 Kontinuierliches System: ẋ(t) = Fx(t)+gu(t) y(t) = c T x(t)+du(t) : t x(t) =e F(t

Mehr

Musterlösung. 8 (unterschiedlich gewichtet, total 69 Punkte)

Musterlösung. 8 (unterschiedlich gewichtet, total 69 Punkte) BSc - Sessionsprüfung 5.2.2 Regelungstechnik I (5-59-) Prof. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: 2 Minuten 8 (unterschiedlich gewichtet, total 69 Punkte) Um die

Mehr

Institut für Leistungselektronik und Elektrische Antriebe. Übungen Regelungstechnik 2

Institut für Leistungselektronik und Elektrische Antriebe. Übungen Regelungstechnik 2 Institut für Leistungselektronik und Elektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow Übungen Regelungstechnik 2 Inhalt der Übungen: 1. Grundlagen (Wiederholung RT1) 2. Störgrößenaufschaltung 3. Störgrößennachbildung

Mehr

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

Übung 3: Oszilloskop

Übung 3: Oszilloskop Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Institut für Grundlagen und Theorie der Elektrotechnik Institut für Elektrische Antriebstechnik und Maschinen Grundlagen der Elektrotechnik,

Mehr

Modellordnungsreduktion für strukturmechanische FEM-Modelle von Werkzeugmaschinen

Modellordnungsreduktion für strukturmechanische FEM-Modelle von Werkzeugmaschinen Modellordnungsreduktion für strukturmechanische FEM-Modelle von Werkzeugmaschinen Professur Mathematik in Industrie und Technik Fakultät für Mathematik, Technische Universität Chemnitz Arbeitsbericht zum

Mehr

1 Allgemeine Grundlagen

1 Allgemeine Grundlagen 1 Allgemeine Grundlagen 1.1 Gleichstromkreis 1.1.1 Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j = di da di da Stromelement 1.1.2 Die

Mehr

Wärmeleitung und thermoelektrische Effekte Versuch P2-32

Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Vorbereitung Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Iris Conradi und Melanie Hauck Gruppe Mo-02 3. Juni 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Wärmeleitfähigkeit 3 2 Peltier-Kühlblock

Mehr

Theorie der Regelungstechnik

Theorie der Regelungstechnik 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. H. Gassmann Theorie der Regelungstechnik Eine Einführung Verlag Harri

Mehr

Wärmeleitung und thermoelektrische Effekte Versuch P2-32

Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Auswertung Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Iris Conradi und Melanie Hauck Gruppe Mo-02 7. Juni 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Wärmeleitfähigkeit 3 2 Peltier-Kühlblock

Mehr

Theoretische Grundlagen

Theoretische Grundlagen Theoretische Grundlagen m eistungsbereich oberhalb 0,75 kw ("integral horsepower") sind etwa 7% der gefertigten elektrischen Maschinen Gleichstrommaschinen. Haupteinsatzgebiete sind Hüttenund Walzwerke,

Mehr

Die regelungstechnischen Grundfunktionen P, I, D, Totzeit und PT1. 1. Methoden zur Untersuchung von Regelstrecken

Die regelungstechnischen Grundfunktionen P, I, D, Totzeit und PT1. 1. Methoden zur Untersuchung von Regelstrecken FELJC P_I_D_Tt.odt 1 Die regelungstechnischen Grundfunktionen P, I, D, Totzeit und PT1 (Zum Teil Wiederholung, siehe Kurs T2EE) 1. Methoden zur Untersuchung von Regelstrecken Bei der Untersuchung einer

Mehr

Induktionsgesetz (E13)

Induktionsgesetz (E13) Induktionsgesetz (E13) Ziel des Versuches Es soll verifiziert werden, dass die zeitliche Änderung eines magnetischen Flusses, hervorgerufen durch die Änderung der Flussdichte, eine Spannung induziert.

Mehr

Klausur zur Vorlesung E1 Mechanik (6 ECTS)

Klausur zur Vorlesung E1 Mechanik (6 ECTS) Ludwig Maximilians Universität München Fakultät für Physik Klausur zur Vorlesung E1 Mechanik WS 2013/2014 17. Feb. 2014 für Studierende im Lehramt und Nebenfach Physik (6 ECTS) Prof. J. Rädler, Prof. H.

Mehr

8. Übung zur Vorlesung Mathematisches Modellieren Lösung

8. Übung zur Vorlesung Mathematisches Modellieren Lösung Universität Duisburg-Essen Essen, den.6. Fakultät für Mathematik S. Bauer C. Hubacsek C. Thiel 8. Übung zur Vorlesung Mathematisches Modellieren Lösung In dieser Übung sollen in Aufgabe und die qualitativ

Mehr

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H ET 6 Elektromagnetisches Feld Magnetische Feldstärke (magnetische Erregung) In der Umgebung stromdurchflossener Leiter entsteht ein magnetisches Feld, H = H e s... quellenfreies Vektorfeld der Feldstärke

Mehr

Übertragungsglieder mit Sprung- oder Impulserregung

Übertragungsglieder mit Sprung- oder Impulserregung Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Protokoll-Nr.: 4 Übertragungsglieder mit Sprung- oder Impulserregung Protokollant: Jens Bernheiden Gruppe: Aufgabe durchgeführt:

Mehr

7.3 Anwendungsbeispiele aus Physik und Technik

7.3 Anwendungsbeispiele aus Physik und Technik 262 7. Differenzialrechnung 7.3 7.3 Anwendungsbeispiele aus Physik und Technik 7.3.1 Kinematik Bewegungsabläufe lassen sich durch das Weg-Zeit-Gesetz s = s (t) beschreiben. Die Momentangeschwindigkeit

Mehr

EO - Oszilloskop Blockpraktikum Frühjahr 2005

EO - Oszilloskop Blockpraktikum Frühjahr 2005 EO - Oszilloskop, Blockpraktikum Frühjahr 25 28. März 25 EO - Oszilloskop Blockpraktikum Frühjahr 25 Alexander Seizinger, Tobias Müller Assistent René Rexer Tübingen, den 28. März 25 Einführung In diesem

Mehr

Lageregelung eines Magnetschwebekörpers

Lageregelung eines Magnetschwebekörpers Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Fachgebiet Regelungssysteme Leitung: Prof. Dr.-Ing. Jörg Raisch Praktikum Digitale Signalverabeitung Praktikum Regelungstechnik 1

Mehr

Mathematik für Bioinformatik und Systembiologie. - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz

Mathematik für Bioinformatik und Systembiologie. - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz Mathematik für Bioinformatik und Systembiologie - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz WS 2009/10 Universität Freiburg Dieses Vorlesungsskript ist auf der Basis von Vorlesungen

Mehr

Experimentalpraktikum zur Induktion Blatt 1

Experimentalpraktikum zur Induktion Blatt 1 Experimentalpraktikum zur Induktion Blatt 1 Vorbemerkung: Diese Ausführungen sind nicht als eine fertige, sensationell gut Unterrichtsreihe zu verstehen, sondern sie sollen ein Beitrag zur Diskussion über

Mehr

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 TECHNISCHE UNIVERSITÄT MÜNCHEN Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 Patrick Christ und Daniel Biedermann 16.10.2009 1. INHALTSVERZEICHNIS 1. INHALTSVERZEICHNIS... 2 2. AUFGABE 1...

Mehr

Skalare Differentialgleichungen

Skalare Differentialgleichungen Kapitel 2 Skalare Differentialgleichungen 2.1 Skalare lineare Differentialgleichungen 2.2 Bernoulli und Riccati Differentialgleichungen 2.3 Differentialgleichungen mit getrennten Variablen 2.4 Exakte Differentialgleichungen

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 3 Dr. Ana Cannas Serie 3: Online Test Einsendeschluss: 3. Januar 4 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Magnetischer Kreis. Praktikum. Grundlagen der Elektrotechnik. Versuch: Versuchsanleitung. 0. Allgemeines

Magnetischer Kreis. Praktikum. Grundlagen der Elektrotechnik. Versuch: Versuchsanleitung. 0. Allgemeines Praktikum Grundlagen der Elektrotechnik Versuch: Magnetischer Kreis Versuchsanleitung 0. Allgemeines Eine sinnvolle Teilnahme am Praktikum ist nur durch eine gute Vorbereitung auf dem jeweiligen Stoffgebiet

Mehr

Prüfung SS 2008. Mechatronik. Prof. Dr.-Ing. K. Wöllhaf

Prüfung SS 2008. Mechatronik. Prof. Dr.-Ing. K. Wöllhaf Prüfung SS 28 Mechatronik Prof. Dr.-Ing. K. Wöllhaf Anmerkungen: Aufgabenblätter auf Vollständigkeit überprüfen Nur Blätter mit lesbarem Namen werden korrigiert. Keine rote Farbe verwenden. Zu jeder Lösung

Mehr

Prüfung Sommersemester 2015 Grundlagen der Elektrotechnik Dauer: 90 Minuten

Prüfung Sommersemester 2015 Grundlagen der Elektrotechnik Dauer: 90 Minuten Prüfung GET Seite 1 von 8 Hochschule München FK 03 Prüfung Sommersemester 2015 Grundlagen der Elektrotechnik Dauer: 90 Minuten F. Palme Zugelassene Hilfsmittel: Taschenrechner, 1 DIN-A4-Blatt Matr.-Nr.:

Mehr

Einführung in die komplexe Berechnung von Netzwerken

Einführung in die komplexe Berechnung von Netzwerken Physikalisches Praktikum für Anfänger (Hauptfach) Grundlagen Einführung in die komplexe Berechnung von Netzwerken Unter einem elektrischen Netzwerk versteht man eine Schaltung aus beliebigen elektrischen

Mehr

A2.3: Sinusförmige Kennlinie

A2.3: Sinusförmige Kennlinie A2.3: Sinusförmige Kennlinie Wie betrachten ein System mit Eingang x(t) und Ausgang y(t). Zur einfacheren Darstellung werden die Signale als dimensionslos betrachtet. Der Zusammenhang zwischen dem Eingangssignal

Mehr

Probeklausur Signale + Systeme Kurs TIT09ITA

Probeklausur Signale + Systeme Kurs TIT09ITA Probeklausur Signale + Systeme Kurs TIT09ITA Dipl.-Ing. Andreas Ströder 13. Oktober 2010 Zugelassene Hilfsmittel: Alle außer Laptop/PC Die besten 4 Aufgaben werden gewertet. Dauer: 120 min 1 Aufgabe 1

Mehr

Signal- und Systemtheorie 2

Signal- und Systemtheorie 2 Signal- und Systemtheorie 2 Tamara Ulrich WS 03/04 ii Inhaltsverzeichnis 1 Elementare Prinzipien und Modellierung 1 1.1 Elemente in Systemen........................ 1 1.1.1 Mechanisches Translationssystem

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #17 14/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Laden eines Kondensators Aufladen erfolgt durch eine Spannungsquelle, z.b. Batterie, die dabei

Mehr

A. Ein Kondensator differenziert Spannung

A. Ein Kondensator differenziert Spannung A. Ein Kondensator differenziert Spannung Wir legen eine Wechselspannung an einen Kondensator wie sieht die sich ergebende Stromstärke aus? U ~ ~ Abb 1: Prinzipschaltung Kondensator: Physiklehrbuch S.

Mehr

Stabilität mittels Ljapunov Funktion

Stabilität mittels Ljapunov Funktion Stabilität mittels Ljapunov Funktion Definition Eine C 1 Funktion V : D R, D R, heißt eine Ljapunov Funktion auf K r (0) D für f(y), falls gilt: 1) V(0) = 0, V(y) > 0 für y 0 2) V,f(y) 0 ( y, y r) Gilt

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 2. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 2. Übungsblatt Prof. Dr. T. Apel J. Mihael Mathematishe Methoden in den Ingenieurwissenshaften. Übungsblatt Wintertrimester 5 Aufgabe 4 : (Variationsrehnung Extremalen Bestimmen Sie die Extremalen der folgenden Variationsprobleme

Mehr

RT-E: Entwurf der Drehzahlregelung eines Gebläsemotors

RT-E: Entwurf der Drehzahlregelung eines Gebläsemotors RT-E: Entwurf der Drehzahlregelung eines Gebläsemotors Quelle: http://de.wikipedia.org/w/index.php?title=datei:radialventilator- Wellringrad.jpg&filetimestamp=20061128101719 (Stand: 26.09.2012) Martin

Mehr

Messung von Zeitverläufen und Kennlinien mit Hilfe des Oszilloskop

Messung von Zeitverläufen und Kennlinien mit Hilfe des Oszilloskop TFH Berlin Messtechnik Labor Seite 1 von 7 Messung von Zeitverläufen und Kennlinien mit Hilfe des Oszilloskop Ort: TFH Berlin Datum: 07.04.2004 Uhrzeit: von 8.00 bis 11.30 Dozent: Kommilitonen: Prof. Dr.-Ing.

Mehr

Versuchsanleitung Zweipunktregelung. Versuch. Zweipunktregelung. Kennenlernen typischer Eigenschaften und Berechnungsmethoden von Zweipunktregelungen

Versuchsanleitung Zweipunktregelung. Versuch. Zweipunktregelung. Kennenlernen typischer Eigenschaften und Berechnungsmethoden von Zweipunktregelungen Otto-von-Guericke Universität Magdeburg Fakultät für Elektrotechnik Institut für Automatisierungstechnik Versuch Zweipunktregelung Versuchsziel: Kennenlernen typischer Eigenschaften und Berechnungsmethoden

Mehr

Aufgabe 3. Signal Processing and Speech Communication Lab. Graz University of Technology

Aufgabe 3. Signal Processing and Speech Communication Lab. Graz University of Technology Signal Processing and Speech Communication Lab. Graz University of Technology Aufgabe 3 Senden Sie die Hausübung bis spätestens 15.06.2015 per Email an hw1.spsc@tugraz.at. Verwenden Sie MatrikelNummer1

Mehr

Grundlagen der Elektrotechnik Übungsaufgaben mit Lösungen

Grundlagen der Elektrotechnik Übungsaufgaben mit Lösungen Helmut Haase und Heyno Garbe Grundlagen der Elektrotechnik Übungsaufgaben mit Lösungen Mit 156 Aufgaben und 375 Abbildungen UniVerlag Witte Hannover Inhaltsverzeichnis 1. Grundbegriffe und Gleichstromnetzwerke

Mehr

Aufg. P max 1 10 Klausur "Elektrotechnik" 2 14 3 8 4 10 am 14.03.1997

Aufg. P max 1 10 Klausur Elektrotechnik 2 14 3 8 4 10 am 14.03.1997 Name, Vorname: Matr.Nr.: Hinweise zur Klausur: Aufg. P max 1 10 Klausur "Elektrotechnik" 2 14 3 8 6141 4 10 am 14.03.1997 5 18 6 11 Σ 71 N P Die zur Verfügung stehende Zeit beträgt 1,5 h. Zugelassene Hilfsmittel

Mehr

2.1 Ele kt rom agnetis c he. Sc hwingunge n und We lle n. Sc hwingunge n

2.1 Ele kt rom agnetis c he. Sc hwingunge n und We lle n. Sc hwingunge n 2 Ele kt rom agnetis c he Sc hwingunge n und We lle n 2.1 Ele kt rom agnetis c he Sc hwingunge n 2.1.1 Kapazit ive r und indukt ive r Wide rs t and In einem Gleichstromkreis hängt die Stromstärke, sieht

Mehr

I = I 0 exp. t + U R

I = I 0 exp. t + U R Betrachten wir einen Stromkreis bestehend aus einer Spannungsquelle, einer Spule und einem ohmschen Widerstand, so können wir auf diesen Stromkreis die Maschenregel anwenden: U L di dt = IR 141 Dies ist

Mehr

Mathematische Ökologie

Mathematische Ökologie Mathematische Ökologie Eine Zusammenfassung von Bernhard Kabelka zur Vorlesung von Prof. Länger im WS 2002/03 Version 1.04, 15. März 2004 Es sei ausdrücklich betont, dass (1) dieses Essay ohne das Wissen

Mehr

Induktivitätsmessung bei 50Hz-Netzdrosseln

Induktivitätsmessung bei 50Hz-Netzdrosseln Induktivitätsmessung bei 50Hz-Netzdrosseln Ermittlung der Induktivität und des Sättigungsverhaltens mit dem Impulsinduktivitätsmeßgerät DPG10 im Vergleich zur Messung mit Netzspannung und Netzstrom Die

Mehr

EO Oszilloskop. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April 2007. 1 Einführung 2

EO Oszilloskop. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April 2007. 1 Einführung 2 EO Oszilloskop Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Oszilloskop........................ 2 2.2 Auf- und Entladevorgang

Mehr

AS Praktikum M.Scheffler, C.Koegst, R.Völz Amplitudenmodulation mit einer Transistorschaltung - 1 1. EINFÜHRUNG...2 2. VERSUCHSDURCHFÜHRUNG...

AS Praktikum M.Scheffler, C.Koegst, R.Völz Amplitudenmodulation mit einer Transistorschaltung - 1 1. EINFÜHRUNG...2 2. VERSUCHSDURCHFÜHRUNG... - 1 Inhaltsverzeichnis 1. EINFÜHRUNG...2 1.1 BESTIMMUNG DES MODULATIONSGRADS...3 1.1.1 Synchronisation auf die Modulationsfrequenz...4 1.1.2 Synchronisation auf die Trägerfrequenz...4 1.1.3 Das Modulationstrapez...4

Mehr

Fachbereich IuE Labor für Grundlagen der Elektrotechnik

Fachbereich IuE Labor für Grundlagen der Elektrotechnik Laborversuche Labor für Grundlagen der Elektrotechnik 1. Laborversuche und Dokumente für alle Studiengänge... 1 2. Inhalt der Laborversuche... 2 Fachbereich IuE Labor für Grundlagen der Elektrotechnik

Mehr

Klausur 23.02.2010, Grundlagen der Elektrotechnik I (BSc. MB, SB, VT, EUT, BVT, LUM) Seite 1 von 6. Antwort (ankreuzen) (nur eine Antwort richtig)

Klausur 23.02.2010, Grundlagen der Elektrotechnik I (BSc. MB, SB, VT, EUT, BVT, LUM) Seite 1 von 6. Antwort (ankreuzen) (nur eine Antwort richtig) Klausur 23.02.2010, Grundlagen der Elektrotechnik I (BSc. MB, SB, VT, EUT, BVT, LUM) Seite 1 von 6 1 2 3 4 5 6 Summe Matr.-Nr.: Nachname: 1 (5 Punkte) Drei identische Glühlampen sind wie im Schaltbild

Mehr

Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007

Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007 Protokoll zum Versuch Transistorschaltungen Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007 1 Transistor-Kennlinien 1.1 Eingangskennlinie Nachdem wir die Schaltung wie in Bild 13 aufgebaut hatten,

Mehr

K L A U S U R D E C K B L A T T

K L A U S U R D E C K B L A T T K L A U S U R D E C K B L A T T Name der Prüfung: Einführung in die Robotik Datum und Uhrzeit: 25.02.2014 um 11Uhr Bearbeitungszeit: : Institut: Neuroinformatik Prüfer: Oubbati Vom Prüfungsteilnehmer auszufüllen:

Mehr

Kybernetik Regelung. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 19. 06.

Kybernetik Regelung. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 19. 06. Kybernetik Regelung Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 73 / 50 2453 mohamed.oubbati@uni-ulm.de 9. 06. 202 Was ist Regelung? Regelung ist eine gezielte Beeinflussung dynamischer Systeme,

Mehr

Aufgaben Wechselstromwiderstände

Aufgaben Wechselstromwiderstände Aufgaben Wechselstromwiderstände 69. Eine aus Übersee mitgebrachte Glühlampe (0 V/ 50 ma) soll mithilfe einer geeignet zu wählenden Spule mit vernachlässigbarem ohmschen Widerstand an der Netzsteckdose

Mehr

Der Transistor als Verstärker

Der Transistor als Verstärker 6 Der Transistor als Verstärker 6.1 Verstärker mit n-kanal MOSFET Aufgabenstellung Gegeben sei die in Abb. 6.1 (links) dargestellte Verstärkerschaltung mit der Betriebsspannung U B = 15 V und dem Drainwiderstand

Mehr

Wechselspannungskreis Definition Teil C: Wechselstromkreis Beschreibungsgrößen Wechselspannung:

Wechselspannungskreis Definition Teil C: Wechselstromkreis Beschreibungsgrößen Wechselspannung: Teil C: Wechselstromkreis Beschreibungsgrößen Ohmscher, kapazitiver, induktiver Widerstand Knoten- und Maschenregeln Passiver / Bandpass Dezibel Bode-Diagramm 6.2.3 Beschreibungsgrößen Wechselspannung:

Mehr

Modulklausur Konstruktion und Analyse ökonomischer Modelle

Modulklausur Konstruktion und Analyse ökonomischer Modelle Modulklausur Konstruktion und Analyse ökonomischer Modelle Aufgabenheft Termin: 04.03.2015, 09:00-11:00 Uhr Prüfer: Univ.-Prof. Dr. J. Grosser Aufbau der Klausur Pflichtaufgabe Maximale Punktzahl: 34 Wahlpflichtaufgabe

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen

Mehr

3 Elektrische Leitung

3 Elektrische Leitung 3.1 Strom und Ladungserhaltung 3 Elektrische Leitung 3.1 Strom und Ladungserhaltung Elektrischer Strom wird durch die Bewegung von Ladungsträgern hervorgerufen. Er ist definiert über die Änderung der Ladung

Mehr

Untersuchung des mathematischen Pendels

Untersuchung des mathematischen Pendels Untersuchung des mathematischen Pendels Thomas Bächler, Markus Lange-Hegermann, Marcel Wallraff Aachen, 7. Mai 7 Einführung Im folgenden Abschnitt wird eine kurze Voruntersuchung des mathematischen Pendel

Mehr

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW)

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW) Physik 1 VNT Aufgabenblatt 8 5. Übung (5. KW) 5. Übung (5. KW) Aufgabe 1 (Achterbahn) Start v h 1 25 m h 2 2 m Ziel v 2? v 1 Welche Geschwindigkeit erreicht die Achterbahn in der Abbildung, wenn deren

Mehr

Bogenschießen. Untersuchung der Auswirkung verschiedener Pfeilgewichte auf die Abschussgeschwindigkeit

Bogenschießen. Untersuchung der Auswirkung verschiedener Pfeilgewichte auf die Abschussgeschwindigkeit Bogenschießen Jan-Patrick Wo hner/jonas Pfeil 30. Januar 2014 Institut fu r experimentelle Physik, Projektpraktikum Untersuchung der Auswirkung verschiedener Pfeilgewichte auf die Abschussgeschwindigkeit

Mehr

Bisher zeitlich konstante elektrische und magnetische Felder (zumindest näherungsweise). rot E 0 rot B o

Bisher zeitlich konstante elektrische und magnetische Felder (zumindest näherungsweise). rot E 0 rot B o Zeitlich veränderliche Felder Bisher zeitlich konstante elektrische und magnetische Felder (zumindest näherungsweise) Dafür gilt rot E 0 rot B o j div E div B 0 j E o E grad B rot A Wie verändern sich

Mehr

Kleine Formelsammlung zu Elektronik und Schaltungstechnik

Kleine Formelsammlung zu Elektronik und Schaltungstechnik Kleine Formelsammlung zu Elektronik und Schaltungstechnik Florian Franzmann 21. September 2004 Inhaltsverzeichnis 1 Stromrichtung 4 2 Kondensator 4 2.1 Plattenkondensator...............................

Mehr

1 C A = A. y 1 y 2. x 1 x 2. x n B @ B @ C A. y m

1 C A = A. y 1 y 2. x 1 x 2. x n B @ B @ C A. y m Kapitel Systeme Ein System ist eine Anordnung von miteinander verbundenen Komponenten zur Realisierung einer technischen Aufgabenstellung. Ein System kann als Operator aufgefasst werden, der Eingangsgrößen

Mehr

Signale und Systeme. A1 A2 A3 Summe

Signale und Systeme. A1 A2 A3 Summe Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................... Vorname:.......................... Matr.Nr:.............................. Ergebnis im Web mit verkürzter Matr.Nr?

Mehr

Versuch 5.1 B Operationsverstärkerschaltungen und Computersimulation elektronischer Schaltungen

Versuch 5.1 B Operationsverstärkerschaltungen und Computersimulation elektronischer Schaltungen Versuch 5.1 B Operationsverstärkerschaltungen und Computersimulation elektronischer Schaltungen Bei diesem Versuch sollen Sie mit den grundlegenden Eigenschaften und Anwendungen von Operationsverstärkern

Mehr

Grundlagen der Elektro-Proportionaltechnik

Grundlagen der Elektro-Proportionaltechnik Grundlagen der Elektro-Proportionaltechnik Totband Ventilverstärkung Hysterese Linearität Wiederholbarkeit Auflösung Sprungantwort Frequenzantwort - Bode Analyse Der Arbeitsbereich, in dem innerhalb von

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Dr. Nico Düvelmeyer Freitag, 1. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel

Mehr

Übung Halbleiterschaltungstechnik

Übung Halbleiterschaltungstechnik Übung Halbleiterschaltungstechnik WS 2011/12 Übungsleiter: Hannes Antlinger Martin Heinisch Thomas Voglhuber-Brunnmaier Institut für Mikroelektronik und Mikrosensorik Altenbergerstr. 69, 4040 Linz, Internet:

Mehr

Reell. u(t) Komplex u(t), Zeitabhängig Zeitunabhängig. u(t)e jωt. Reell Û. Elektrische Größe. Spitzenwert. Komplex Û. Reell U. Effektivwert.

Reell. u(t) Komplex u(t), Zeitabhängig Zeitunabhängig. u(t)e jωt. Reell Û. Elektrische Größe. Spitzenwert. Komplex Û. Reell U. Effektivwert. Aufgaben Reell u(t) Elektrische Größe Zeitabhängig Zeitunabhängig Spitzenwert Effektivwert Komplex u(t), Reell Û Komplex Û Reell U Komplex U u(t)e jωt Institut für Technische Elektronik, RWTH - Aachen

Mehr

Übung 1 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-,SW-CODESIGN

Übung 1 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-,SW-CODESIGN Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 1 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-,SW-CODESIGN Übungsleiter: Dr.-Ing. H.-D. Ribbecke

Mehr

Digitale Regelung. Vorlesung: Seminarübungen: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr

Digitale Regelung. Vorlesung: Seminarübungen: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr Vorlesung: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr Seminarübungen: Dozent: Alexander Weber Ort: 33/1101 Zeit: Mo 9.45 11.15 Uhr (Beginn: 20.04.2015) Vorlesungsskript:

Mehr

PRÜFUNG. Grundlagen der Softwaretechnik

PRÜFUNG. Grundlagen der Softwaretechnik Universität Stuttgart Institut für Automatisierungs- und Softwaretechnik Prof. Dr.-Ing. Dr. h. c. P. Göhner PRÜFUNG Grundlagen der Softwaretechnik Name: Matrikelnummer: Note: Prüfungstag: 21.09.2012 Prüfungsdauer:

Mehr

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L Versuch E 1: PHASENVERSCHIEBUNG IM WECHSELSTROMKREIS Stichworte: Elektronenstrahloszillograph Komplexer Widerstand einer Spule und eines Kondensators Kirchhoffsche Gesetze Gleichungen für induktiven und

Mehr

Verknüpfungen zwischen E und B

Verknüpfungen zwischen E und B Verknüpfungen zwischen E und B Ein Verständnis für die Verbindung von Elektrizität und Magnetismus kam, wie wir schon festgestellt haben, erst sehr spät. Obwohl eine statische Ladungsverteilung ein elektrisches

Mehr

Rotierende Leiterschleife

Rotierende Leiterschleife Wechselstrom Rotierende Leiterschleife B r Veränderung der Form einer Leiterschleife in einem magnetischen Feld induziert eine Spannung ( 13.1.3) A r r B zur kontinuierlichen Induktion von Spannung: periodische

Mehr

Experiment 4.1: Übertragungsfunktion eines Bandpasses

Experiment 4.1: Übertragungsfunktion eines Bandpasses Experiment 4.1: Übertragungsfunktion eines Bandpasses Schaltung: Bandpass auf Steckbrett realisieren Signalgenerator an den Eingang des Filters anschließen (50 Ω-Ausgang verwenden!) Eingangs- und Ausgangssignal

Mehr

Stromortskurve Asynchronmaschine

Stromortskurve Asynchronmaschine Stromortskurve der Asynchronmaschine Prof. Dr.-Ing. Carsten Fräger Folie 1 von 61 Prof. Dr.-Ing. Stromortskurve Asynchronmaschine Stromortskurve der Drehstrom-Asynchronmaschine mit kurzgeschlossenem Rotor

Mehr

K L A U S U R D E C K B L A T T

K L A U S U R D E C K B L A T T K L A U S U R D E C K B L A T T Name der Prüfung: Einführung in die Robotik Datum und Uhrzeit: 16.04.2014 um 11Uhr Bearbeitungszeit: : Institut: Neuroinformatik Prüfer: Oubbati Vom Prüfungsteilnehmer auszufüllen:

Mehr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 01. August 2012, 17-19 Uhr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 01. August 2012, 17-19 Uhr KIT SS 0 Klassische Theoretische Physik II V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch Klausur Lösung 0. August 0, 7-9 Uhr Aufgabe : Kurzfragen (+++4=0 Punkte (a Zwangsbedingungen beschreiben Einschränkungen

Mehr

Übungen zur Numerischen Mathematik 2 Sommersemester 2014. Übungsblatt 13

Übungen zur Numerischen Mathematik 2 Sommersemester 2014. Übungsblatt 13 Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Prof. Dr. Dres. h.c. Hans Georg Bock Dr. Christian Kirches Dipl.-Phys. Simon Lenz Übungen zur Numerischen Mathematik 2 Sommersemester

Mehr

Einführung in die Robotik Regelung. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 04. 12.

Einführung in die Robotik Regelung. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 04. 12. Einführung in die Robotik Regelung Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 04. 12. 2012 The human is perhaps the most intelligent control system

Mehr