Kapitel GWBS:III. III. Regeln mit Konfidenzen. Einführung. Verrechnung von Konfidenzen. Probleme des Ansatzes. Beispiel für ein Diagnosesystem

Größe: px
Ab Seite anzeigen:

Download "Kapitel GWBS:III. III. Regeln mit Konfidenzen. Einführung. Verrechnung von Konfidenzen. Probleme des Ansatzes. Beispiel für ein Diagnosesystem"

Transkript

1 Kapitel GWBS:III III. Regeln mit Konfidenzen Einführung Verrechnung von Konfidenzen Probleme des Ansatzes Beispiel für ein Diagnosesystem GWBS: III-1 Konfidenzen c BUBECK/LETTMANN

2 Glaubwürdigkeit und Fragwürdigkeit Definition 1 (Glaubwürdigkeitsmaß, Fragwürdigkeitsmaß) Sei S ein Zusammenhang der Form Hypothese H i gilt unter der Voraussetzung, daß Annahme P gilt, kurz S = (H i P ). 1. Ein Glaubwürdigkeitsmaß (Measure of Belief) ist eine Abbildung µ B : S x [0; 1]. 2. Ein Fragwürdigkeitsmaß (Measure of Disbelief) ist eine Abbildung µ D : S x [0; 1]. GWBS: III-2 Konfidenzen c BUBECK/LETTMANN

3 Bemerkungen: P ist meist komplexer zusammengesetzt, während H i eine einfache Aussage ist. Sowohl Glaubwürdigkeitsmaß als auch Fragwürdigkeitsmaß modellieren Unwissen über den exakten Zusammenhang und nicht Wahrscheinlichkeiten. µ B (H i P ) kann als (heuristisches) Gegenstück zu den (exakten) bedingten Wahrscheinlichkeiten angesehen werden. µ D (H i P ) ist ein Maß dafür, wie stark die Annahme von P gegen die Gültigkeit der Hypothese H i spricht. GWBS: III-3 Konfidenzen c BUBECK/LETTMANN

4 Konfidenzfaktor Definition 2 (Konfidenzfaktor) Der Konfidenzfaktor (Certainty Factor) CF (H i P ) = µ B (H i P ) µ D (H i P ) ist ein Maß für die Zustimmung für H i unter P. Der Wert kann folgendermaßen interpretiert werden: CF (H i P ) CF (H i P ) CF (H i P ) > 0 Zustimmung = 0 Keine Aussage möglich < 0 Ablehnung GWBS: III-4 Konfidenzen c BUBECK/LETTMANN

5 Bemerkungen: Die numerischen Werte können auf sprachliche Formulierungen abgebildet werden: 1 Wenn P gilt, gilt H i sicher nicht 0,9 Wenn P gilt, gilt H i höchstwahrscheinlich nicht 0,5 Wenn P gilt, gilt H i wahrscheinlich nicht 0,2 Wenn P gilt, gilt H i möglicherweise nicht 0 Wenn P gilt, wissen wir nichts über H i 0,2 Wenn P gilt, gilt H i möglicherweise auch 0,5 Wenn P gilt, gilt H i wahrscheinlich auch 0,9 Wenn P gilt, gilt H i höchstwahrscheinlich auch 1 Wenn P gilt, gilt H i sicher auch Ist in der Schreibweise CF (H P ) die Voraussetzung P sicher, schreibt man auch CF (H). GWBS: III-5 Konfidenzen c BUBECK/LETTMANN

6 Konfidenzfaktor einer Regel Definition 3 (Konfidenzfaktor einer Regel) Für eine Regel der Form IF P THEN H mit Prämisse P und Konklusion H bezeichne CF (H P ) deren Konfidenzfaktor. Der Konfidenzfaktor einer Regel kann als Maß für die Gültigkeit der Regel angesehen werden. GWBS: III-6 Konfidenzen c BUBECK/LETTMANN

7 Verrechnung der Konfidenzen bei Regelanwendungen Bei der Anwendung von Regeln müssen die Konfidenzfaktoren verrechnet werden, um die Glaubwürdigkeit der abgeleiteten Fakten einschätzen zu können. Definition 4 (Konfidenzfaktor bei Regelanwendung) Für eine Regel der Form IF P THEN H mit Prämisse P und Konklusion H ist CF (H) = CF (P ) CF (H P ) die Bewertung der Konklusion nach Anwendung der Regel. Dabei gilt für den Konfidenzfaktor CF (P ) der Prämisse: 1. Besteht P aus einem einzelnen Atom α, so ist CF (P ) = CF (α) mit einer initial vorgegebenen oder aus einer vorherigen Regelanwendung folgenden Bewertung CF (α). 2. Falls P = P 1 P 2, so ist CF (P ) = min(cf (P 1 ), CF (P 2 )). 3. Falls P = P 1 P 2, so ist CF (P ) = max(cf (P 1 ), CF (P 2 )). GWBS: III-7 Konfidenzen c BUBECK/LETTMANN

8 Verrechnung der Konfidenzen bei Regelanwendungen Beispiel: Gegeben seien die folgenden Regeln: Wir formen die Schreibweise um: R 1 (0,7): IF (P 1 and P 2 ) or P 3 THEN K 1 R 2 (0,3): IF (P 1 and P 2 ) or P 3 THEN K 2 CF (K 1 (P 1 and P 2 ) or P 3 ) = 0,7 CF (K 2 (P 1 and P 2 ) or P 3 ) = 0,3 Für die Prämissen gelte: CF (P 1 ) = 0,6, CF (P 2 ) = 0,4 und CF (P 3 ) = 0,2. Damit ergibt sich CF (P 1 and P 2 ) = min(0,6; 0,4) = 0,4 CF ((P 1 and P 2 ) or P 3 ) = max(0,4; 0,2) = 0,4 CF (K 1 ) = 0,4 0,7 = 0,28 CF (K 2 ) = 0,4 0,3 = 0,12 Die beiden neuen Fakten K 1 und K 2 werden also mit 0,28 bzw. 0,12 bewertet. GWBS: III-8 Konfidenzen c BUBECK/LETTMANN

9 Verrechnung der Konfidenzen bei Regelanwendungen Kann ein bereits bewertetes Faktum über eine weitere Regel hergeleitet werden, so müssen die jeweiligen Konfidenzfaktoren verrechnet werden. Es sei CF O (H) die vorhandene Bewertung für H. Über die (neue) Regel R: IF P THEN H sei nun eine zweite Bewertung CF R (H) herleitbar. Dann wird die neue gemeinsame Bewertung CF O R (H) wie folgt bestimmt: X + Y (X Y ) falls X, Y > 0 CF O R (H) = X + Y + (X Y ) falls X, Y < 0 mit X = CF O (H) und Y = CF R (H). X + Y 1 min( X, Y ) sonst. GWBS: III-9 Konfidenzen c BUBECK/LETTMANN

10 Bemerkungen: Analog dazu lassen sich Bewertungen CF R1 (H) und CF R2 (H) aus Herleitungen über zwei unterschiedliche Regeln R 1 und R 2 zu einer gemeinsamen Bewertung CF R1 R 2 (H) verrechnen. GWBS: III-10 Konfidenzen c BUBECK/LETTMANN

11 Gesetze für Konfidenzfaktoren 1. CF R1 R 2 (H) = CF R2 R 1 (H) 2. CF R1 (R 2 R 3 )(H) = CF (R1 R 2 ) R 3 (H) 3. CF R1 (H) = 0 CF R1 R 2 (H) = CF R2 (H) 4. 1 CF R1 (H) = CF R2 (H) CF R1 R 2 (H) = 0 5. CF R1 (H) = 1; CF R2 (H) = 1 CF R1 R 2 (H) nicht definiert GWBS: III-11 Konfidenzen c BUBECK/LETTMANN

12 Bemerkungen: Die Kommutativität (Gesetz 1.) und die Assoziativität der Verrechnung (Gesetz 2.) sind wichtig, da sonst die Reihenfolge der Regelanwendung Einfluß auf das Ergebnis hätte. GWBS: III-12 Konfidenzen c BUBECK/LETTMANN

13 Probleme des Ansatzes Wird ein Faktum durch zwei nur scheinbar unabhängige Regeln hergeleitet, erhöht sich der Gesamtfaktor, obwohl dieselbe Prämisse verwendet wurde. Beispiel: Die Regeln IF A THEN B, CF (B A) = 0,5 IF B THEN D, CF (D B) = 1 IF A THEN C, CF (C A) = 0,5 IF C THEN D, CF (D C) = 1 ergeben für D den Wert 0,75, wenn A sicher ist. Die gleichwertige Regel IF A THEN D ergäbe jedoch mit CF (D A) = 0,5 den Wert 0,5. Bei großen Regelmengen mit langen Ketten ist es nahezu unmöglich, solche Abhängigkeiten zu entdecken. GWBS: III-13 Konfidenzen c BUBECK/LETTMANN

14 Probleme des Ansatzes Ein weiteres Problem sind Rekursionen der Form IF A THEN B und IF B THEN A. Ein solcher Kreislauf würde sich selbst hochschaukeln und die Konfidenzfaktoren konvergierten gegen 1. Beispiel: Sei CF (B A) = 0,3 und CF (A B) = 0,4, CF (A) = 0,7 und CF (B) = 0,3. Es ergibt sich zunächst der Zwischenwert für B: CF (B) = 0,3 0,7 = 0,21. Dieser muß nun mit dem alten Wert für B verrechnet werden: CF (B) = 0,21 + 0,3 0,21 0,3 = 0,447. Jetzt liefert die Regel IF B THEN A den Wert CF (A) = 0,447 0,4 = 0,1788. Mit dem alten Wert ergibt sich CF (A) = 0,7 + 0,1788 0,7 0,1788 = 0,75364, usw. A B 0, , , , , , , , , , , , GWBS: III-14 Konfidenzen c BUBECK/LETTMANN

15 Beispiel für ein Diagnosesystem Gegeben seien die folgenden Regeln für die Diagnose einer nicht funktionierenden Zimmerleuchte: R 1 (0,9): IF kein-licht THEN Lampe-defekt R 2 (0,1): IF kein-licht THEN Schalter-defekt R 3 (0,3): IF kein-licht THEN Sicherung-defekt R 4 ( 0,9): IF Phasenprüfer-dunkel THEN Lampe-defekt R 5 (1,0): IF andere-leuchte-brennt THEN Strom-vorhanden R 6 ( 1,0): IF Strom-vorhanden THEN Sicherung-defekt R 7 ( 0,1): IF Schalter-defekt THEN kein-strom R 8 (1,0): IF Sicherung-defekt THEN kein-strom R 9 (0,8): IF Phasenprüfer-dunkel AND andere-leuchte-brennt THEN Schalter-defekt GWBS: III-15 Konfidenzen c BUBECK/LETTMANN

16 Bemerkungen: Der Wert 1,0 bedeutet, daß die Regel mit Sicherheit zutrifft, der Wert 1,0 besagt, daß die betreffende Regel mit Sicherheit nicht zutrifft. Eine Regel IF A THEN B mit CF (B A) = 1, wobei B eine Aussage ist, kann umgeformt werden in IF A THEN B mit CF ( B A) = 1. Die Fakten X mit CF (X) = 1 können als Aussagen (im aussagenlogischen Sinne) gedeutet werden. GWBS: III-16 Konfidenzen c BUBECK/LETTMANN

17 Beispiel für ein Diagnosesystem Es werden die Symptome kein-licht, Phasenprüfer-dunkel und andere-leuchte-brennt beobachtet. Die Symptome erhalten, da sie gesichert sind, die Konfidenzfaktoren 1. Die Konfidenzfaktoren können wie folgt verrechnet werden: (1) Phasenprüfer dunkel -0.9 Lampe defekt (0) min 0.8 Schalter defekt (0.82) -0.1 (1) kein Licht Sicherung defekt (-1) -1 1 kein Strom (-1) (1) andere Leuchte brennt 1 Strom vorhanden (1) Als Diagnose wird die Schlußfolgerung mit dem höchsten (End )Wert gewählt, d.h. Strom vorhanden. Ggf. könnte zusätzlich Schalter defekt ausgegeben werden. GWBS: III-17 Konfidenzen c BUBECK/LETTMANN

18 Bemerkungen: Für Lampe-defekt wird sowohl der Wert 0,9 als auch der Wert 0,9 über zwei verschiedene Regeln hergeleitet. Dies muß aber nicht unbedingt einen Widerspruch darstellen; vielmehr folgt daraus, daß keine verläßliche Aussage möglich ist. Dies zeigt auch der resultierende Wert 0. Können Fakten mit den Konfidenzfaktoren 1 bzw. 1 hergeleitet werden, setzen sich diese Werte unabhängig von den durch andere Regeln hergeleiteten Werten durch. Man beachte allerdings, daß ein Widerspruch auftritt, wenn sich für ein Faktum 1 und 1 ergibt. Dies entspricht dem aussagenlogischen Fall A und A. GWBS: III-18 Konfidenzen c BUBECK/LETTMANN

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/37

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/37 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/37 Modellierungsaufgabe Es gibt drei Tauben und zwei Löcher. Jede Taube soll in

Mehr

Resolution für die Aussagenlogik

Resolution für die Aussagenlogik Resolution für die Aussagenlogik Der Resolutionskakül ist ein Beweiskalkül, der auf Klauselmengen, d.h. Formeln in KNF arbeitet und nur eine Schlußregel besitzt. Der Resolution liegt die folgende Vorstellung

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen (Teil I) Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents Mengen und ihre Darstellung Darstellung endlicher Mengen Darstellung unendlicher

Mehr

De Morgan sche Regeln

De Morgan sche Regeln De Morgan sche Regeln Durch Auswerten der Wahrheitswertetabelle stellen wir fest, dass allgemeingültig ist; ebenso (p q) p q (p q) p q. Diese beiden Tautologien werden als die De Morgan schen Regeln bezeichnet,

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr

Lösungshinweise zu Kapitel 4

Lösungshinweise zu Kapitel 4 L-23 Lösungshinweise zu Kapitel 4 zu Selbsttestaufgabe 4.3 (Regelumformungen 1) Die Regeln R1, R2 und R2 sind bereits in vereinfachter Form und entsprechen genau den Regeln GA-1, GA-8 und GA-7. Die Umformung

Mehr

Um zu entscheiden, welchen Inhalt die Urne hat, werden der Urne nacheinander 5 Kugeln mit Zurücklegen entnommen und ihre Farben notiert.

Um zu entscheiden, welchen Inhalt die Urne hat, werden der Urne nacheinander 5 Kugeln mit Zurücklegen entnommen und ihre Farben notiert. XV. Testen von Hypothesen ================================================================== 15.1 Alternativtest ------------------------------------------------------------------------------------------------------------------

Mehr

7. Hypothesentests. Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang. X habe die unbekannte VF F X (x)

7. Hypothesentests. Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang. X habe die unbekannte VF F X (x) 7. Hypothesentests Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang X habe die unbekannte VF F X (x) Interessieren uns für einen unbekannten Parameter θ der Verteilung von X 350 Bisher:

Mehr

Kapitel MK:V. V. Diagnoseansätze

Kapitel MK:V. V. Diagnoseansätze Kapitel MK:V V. Diagnoseansätze Diagnoseproblemstellung Diagnose mit Bayes Evidenztheorie von Dempster/Shafer Diagnose mit Dempster/Shafer Truth Maintenance Assumption-Based TMS Diagnosis Setting Diagnosis

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/25 Einführendes Beispiel Falls Lisa Peter trifft, dann trifft Lisa auch Gregor.

Mehr

Kapitel 1.5. Ein adäquater Kalkül der Aussagenlogik. Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls

Kapitel 1.5. Ein adäquater Kalkül der Aussagenlogik. Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls Kapitel 1.5 Ein adäquater Kalkül der Aussagenlogik Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls Mathematische Logik (WS 2012/13) Kapitel 1.5: Kalküle 1/30 Syntaktischer

Mehr

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird.

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird. Thomas Studer Relationale Datenbanken: Von den theoretischen Grundlagen zu Anwendungen mit PostgreSQL Springer, 2016 ISBN 978-3-662-46570-7 Dieser Foliensatz darf frei verwendet werden unter der Bedingung,

Mehr

Kapitel VIII - Tests zum Niveau α

Kapitel VIII - Tests zum Niveau α Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel VIII - Tests zum Niveau α Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh Testsituationen

Mehr

Resolutionsalgorithmus

Resolutionsalgorithmus 112 Resolutionskalkül Mit dem Begriff Kalkül bezeichnet man eine Menge von syntaktischen Umformungsregeln, mit denen man semantische Eigenschaften der Eingabeformel herleiten kann. Für den Resolutionskalkül:

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

Einführung in die Fuzzy Logik

Einführung in die Fuzzy Logik Einführung in die Fuzzy Logik Einleitung und Motivation Unscharfe Mengen fuzzy sets Zugehörigkeitsfunktionen Logische Operatoren IF-THEN-Regel Entscheidungsfindung mit dem Fuzzy Inferenz-System Schlußbemerkungen

Mehr

Kapitel 1.5 und 1.6. Ein adäquater Kalkül der Aussagenlogik

Kapitel 1.5 und 1.6. Ein adäquater Kalkül der Aussagenlogik Kapitel 1.5 und 1.6 Ein adäquater Kalkül der Aussagenlogik Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls Mathematische Logik (WS 2010/11) Kapitel 1.5 und 1.6: Kalküle 1 /

Mehr

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen Topologische Grundbegriffe I Vortrag zum Proseminar Analysis, 26.04.2010 Nina Neidhardt und Simon Langer Im Folgenden soll gezeigt werden, dass topologische Konzepte, die uns schon für die Reellen Zahlen

Mehr

11 Dezimalbruchdarstellung reeller Zahlen; Mächtigkeitsvergleich von Mengen

11 Dezimalbruchdarstellung reeller Zahlen; Mächtigkeitsvergleich von Mengen 11 Dezimalbruchdarstellung reeller Zahlen; Mächtigkeitsvergleich von Mengen 11.1 g-adische Entwicklung von Zahlen aus [0, 1[ 11.2 g-adische Entwicklung reeller Zahlen 11.3 g-adische Entwicklung nicht-negativer

Mehr

Um zu entscheiden, welchen Inhalt die Urne hat, werden der Urne nacheinander 5 Kugeln mit Zurücklegen entnommen und ihre Farben notiert.

Um zu entscheiden, welchen Inhalt die Urne hat, werden der Urne nacheinander 5 Kugeln mit Zurücklegen entnommen und ihre Farben notiert. 7. Testen von Hypothesen ================================================================== 15.1 Alternativtest -----------------------------------------------------------------------------------------------------------------

Mehr

Einführung in die statistische Testtheorie

Einführung in die statistische Testtheorie 1 Seminar Simulation und Bildanalyse mit Java von Benjamin Burr und Philipp Orth 2 Inhalt 1. Ein erstes Beispiel 2. 3. Die Gütefunktion 4. Gleichmäßig beste Tests (UMP-Tests) 1 Einführendes Beispiel 3

Mehr

14 Beurteilung umgangssprachlicher Sätze und Argumente mit aussagenlogischen Mitteln

14 Beurteilung umgangssprachlicher Sätze und Argumente mit aussagenlogischen Mitteln 14 Beurteilung umgangssprachlicher Sätze und Argumente mit aussagenlogischen Mitteln Erinnerung Man kann die logischen Eigenschaften von Sätzen der Sprache AL in dem Maße zur Beurteilung der logischen

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

1. Gruppen. 1. Gruppen 7

1. Gruppen. 1. Gruppen 7 1. Gruppen 7 1. Gruppen Wie schon in der Einleitung erläutert wollen wir uns in dieser Vorlesung mit Mengen beschäftigen, auf denen algebraische Verknüpfungen mit gewissen Eigenschaften definiert sind.

Mehr

Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 1

Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 1 Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 1 1 Vorbemerkungen Mathematische Begriffe und Argumentationsweisen sind in vielen Fällen nötig, wo man über abstrakte Objekte sprechen und

Mehr

Der Ergodensatz. Hendrik Hülsbusch

Der Ergodensatz. Hendrik Hülsbusch Der Ergodensatz Hendrik Hülsbusch 1..212 Inhaltsverzeichnis Einleitung 3 5 Stationäre Verteilungen 5 6 Reversible Markovketten 11 2 Einleitung In meinem Vortrag beschäftigen wir uns mit dem asymptotischen

Mehr

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff 47 5 Irrationales 5.1 Folgen, Konvergenz und Vollständigkeit Eine Abbildung a : N R definiert eine Folge von reellen Werten a 1 = a(1), a 2 = a(2), a 3 = a(3),... Solche Zahlenfolgen werden uns dazu dienen,

Mehr

Theorie der Informatik. Theorie der Informatik. 6.1 Einführung. 6.2 Alphabete und formale Sprachen. 6.3 Grammatiken. 6.4 Chomsky-Hierarchie

Theorie der Informatik. Theorie der Informatik. 6.1 Einführung. 6.2 Alphabete und formale Sprachen. 6.3 Grammatiken. 6.4 Chomsky-Hierarchie Theorie der Informatik 17. März 2014 6. Formale Sprachen und Grammatiken Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 6.1 Einführung

Mehr

Aussagenlogischer Kalkül, Vollständigkeitssatz

Aussagenlogischer Kalkül, Vollständigkeitssatz Aussagenlogischer Kalkül, Vollständigkeitssatz Salome Vogelsang 22. Februar 2012 Eine Motivation für den Regelkalkül des Gentzen-Typus ist formuliert von Gentzen selbst: "Mein erster Gesichtspunkt war

Mehr

THEMA: "STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN" TORSTEN SCHOLZ

THEMA: STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN TORSTEN SCHOLZ WEBINAR@LUNCHTIME THEMA: "STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN" TORSTEN SCHOLZ EINLEITENDES BEISPIEL SAT: Standardisierter Test, der von Studienplatzbewerbern an amerikanischen Unis gefordert

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 3 Tautologien In der letzten Vorlesung haben wir erklärt, wie man ausgehend von einer Wahrheitsbelegung λ der Aussagevariablen

Mehr

Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die kontinuierlich ablaufende Zeit.

Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die kontinuierlich ablaufende Zeit. Kapitel 4 Reelle Zahlen 4.1 Die reellen Zahlen (Schranken von Mengen; Axiomatik; Anordnung; Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die

Mehr

Einführung in die formale Logik. Prof. Dr. Andreas Hüttemann

Einführung in die formale Logik. Prof. Dr. Andreas Hüttemann Einführung in die formale Logik Prof. Dr. Andreas Hüttemann Textgrundlage: Paul Hoyningen-Huene: Formale Logik, Stuttgart 1998 1. Einführung 1.1 Logische Folgerung und logische Form 1.1.1 Logische Folgerung

Mehr

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Programmierkurs Prolog, SS 1998

Programmierkurs Prolog, SS 1998 Programmierkurs Prolog SS 1998 Universität Dortmund LS VIII - Prof. K. Morik Uebersicht Aufbau von Expertensystemen Produktionenregeln Backward-Chaining Forward-Chaining Erklärungen Unsicheres Wissen Interaktive

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken

Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken Susanna Pohl Vorkurs Mathematik TU Dortmund 09.03.2015 Aussagen, Logik und Beweistechniken Aussagen und Logik Motivation

Mehr

k np g(n, p) = Pr p [T K] = Pr p [T k] Φ. np(1 p) DWT 4.1 Einführung 359/467 Ernst W. Mayr

k np g(n, p) = Pr p [T K] = Pr p [T k] Φ. np(1 p) DWT 4.1 Einführung 359/467 Ernst W. Mayr Die so genannte Gütefunktion g gibt allgemein die Wahrscheinlichkeit an, mit der ein Test die Nullhypothese verwirft. Für unser hier entworfenes Testverfahren gilt ( ) k np g(n, p) = Pr p [T K] = Pr p

Mehr

Exakter Binomialtest als Beispiel

Exakter Binomialtest als Beispiel Prinzipien des statistischen Testens Entscheidungsfindung Exakter Binomialtest als Beispiel Statistische Tests Nullhypothese Alternativhypothese Fehlentscheidungen Ausgangspunkt: Forschungshypothese Beispiele:.

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

2 Wiederholung statistischer Grundlagen Schließende Statistik empirischen Information aus Stichprobenrealisation x von X

2 Wiederholung statistischer Grundlagen Schließende Statistik empirischen Information aus Stichprobenrealisation x von X Hypothesentests Bisher betrachtet: Punkt- bzw. Intervallschätzung des unbekannten Mittelwerts Hierzu: Verwendung der 1 theoretischen Information über Verteilung von X empirischen Information aus Stichprobenrealisation

Mehr

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments 73 Hypothesentests 73.1 Motivation Bei Hypothesentests will man eine gewisse Annahme über eine Zufallsvariable darauf hin überprüfen, ob sie korrekt ist. Beispiele: ( Ist eine Münze fair p = 1 )? 2 Sind

Mehr

2. Lösung weitere Übungsaufgaben Statistik II WiSe 2016/2017

2. Lösung weitere Übungsaufgaben Statistik II WiSe 2016/2017 . Lösung weitere Übungsaufgaben Statistik II WiSe 016/017 1. Aufgabe: Bei der Produktion eines Werkstückes wurde die Bearbeitungszeit untersucht. Für die als normalverteilt angesehene zufällige Bearbeitungszeit

Mehr

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie Was ist Logik? Geschichte der Logik eng verknüpft mit Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie man aus Aussagen andere Aussagen ableiten kann Beschränkung auf

Mehr

Lineare Abbildungen - I

Lineare Abbildungen - I Lineare Abbildungen - I Definition. Seien V und W K-Vektorräume (über demselben K). Eine Abbildung F : V W heißt K-linear, wenn L1) F (v + w) = F (v) + F (w) v, w V L2) F (λv) = λf (v) v V, λ K. Somit

Mehr

Kapitel 2. Zahlenbereiche

Kapitel 2. Zahlenbereiche Kapitel 2. Zahlenbereiche 2.3. Reelle Zahlen Erweiterung des Zahlenbereichs der natürlichen Zahlen Ganze Zahlen Z := {..., 3, 2, 1, 0, 1, 2, 3,... } = N {0} N. Rationale Zahlen Q := { m n m Z, n N }. Beachte:

Mehr

FAKULTÄT FÜR INFORMATIK

FAKULTÄT FÜR INFORMATIK TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen WS 2008/09 Einführung in die Informatik 2 Übungsblatt 10 Prof. Dr. Helmut Seidl, T. M. Gawlitza,

Mehr

Kapitel III. Aufbau des Zahlensystems

Kapitel III. Aufbau des Zahlensystems Kapitel III. Aufbau des Zahlensystems 1 Addition und Multiplikation natürlicher Zahlen Wir wollen erklären, wie man natürliche Zahlen addiert und multipliziert und dabei nur den Begriff das Zählens verwenden.

Mehr

Rhetorik und Argumentationstheorie.

Rhetorik und Argumentationstheorie. Rhetorik und Argumentationstheorie 2 [frederik.gierlinger@univie.ac.at] Teil 2 Was ist ein Beweis? 2 Wichtige Grundlagen Tautologie nennt man eine zusammengesetzte Aussage, die wahr ist, unabhängig vom

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 2 28.04.2015 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Organisatorisches Termine Donnerstags: 30.04.2015 nicht

Mehr

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen Kapitel 2 Die reellen Zahlen Die reellen Zahlen werden zunächst und vorübergehend als Dezimalzahlen eingeführt. Die wichtigsten Eigenschaften werden aus dieser Darstellung hergeleitet, mit denen dann die

Mehr

2 Folgen und Reihen. 2.1 Folgen in C Konvergenz von Folgen. := f(n)

2 Folgen und Reihen. 2.1 Folgen in C Konvergenz von Folgen. := f(n) 2 Folgen und Reihen 2.1 Folgen in C 2.1.1 Konvergenz von Folgen Eine Folge komplexer Zahlen ist eine Funktion f : N C. Mit a n schreibt man (a n ) n=1, (a n ) oder auch a 1, a 2,.... := f(n) (a n ) heißt

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise)

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) WS 2014/15 Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_14

Mehr

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Kapitel 1.0 Aussagenlogik: Einführung Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Ziele der Aussagenlogik In der Aussagenlogik analysiert man die Wahrheitswerte zusammengesetzter

Mehr

Hilbert-Kalkül (Einführung)

Hilbert-Kalkül (Einführung) Hilbert-Kalkül (Einführung) Es gibt viele verschiedene Kalküle, mit denen sich durch syntaktische Umformungen zeigen läßt, ob eine Formel gültig bzw. unerfüllbar ist. Zwei Gruppen von Kalkülen: Kalküle

Mehr

1. Grundlegende Konzepte der Informatik

1. Grundlegende Konzepte der Informatik 1. Grundlegende Konzepte der Informatik Inhalt Algorithmen Darstellung von Algorithmen mit Programmablaufplänen Beispiele für Algorithmen Aussagenlogik Zahlensysteme Kodierung Peter Sobe 1 Aussagenlogik

Mehr

7 Gültigkeit und logische Form von Argumenten

7 Gültigkeit und logische Form von Argumenten 7 Gültigkeit und logische Form von Argumenten Zwischenresümee 1. Logik ist ein grundlegender Teil der Lehre vom richtigen Argumentieren. 2. Speziell geht es der Logik um einen spezifischen Aspekt der Güte

Mehr

Vorlesung 2: Präferenzen über Lotterien

Vorlesung 2: Präferenzen über Lotterien Vorlesung 2: Präferenzen über Lotterien Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 2, FS 13 Präferenzen über Lotterien 1/26 2.1 Modellrahmen Wir betrachten im

Mehr

Aussagenlogik. Aussagen und Aussagenverknüpfungen

Aussagenlogik. Aussagen und Aussagenverknüpfungen Aussagenlogik Aussagen und Aussagenverknüpfungen Aussagen sind Sätze, von denen sich sinnvollerweise sagen läßt, sie seien wahr oder falsch. Jede Aussage besitzt also einen von zwei möglichen Wahrheitswerten,

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Beweistechniken 1.1 Prädikatenlogik..................................... 1. Direkter Beweis.................................... 3 1.3 Indirekter Beweis....................................

Mehr

Vorlesung 2: Präferenzen über Lotterien

Vorlesung 2: Präferenzen über Lotterien Vorlesung 2: Präferenzen über Lotterien Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 2, FS 12 Präferenzen über Lotterien 1/24 2.1 Modellrahmen Wir betrachten im

Mehr

Fuzzy-Logik Kontext C mit Interpretation. A B

Fuzzy-Logik Kontext C mit Interpretation. A B Unexaktes Schlußfolgern Einführung Fuzzy-Mengen Fuzzy-Logik Formel. A B Kontext C mit Interpretation. A B Modifizierer von Fuzzy-Mengen Operationen auf Fuzzy-Mengen Fuzzy-Inferenz Defuzzifizierung C mit

Mehr

Probabilistische Primzahltests

Probabilistische Primzahltests 23.01.2006 Motivation und Überblick Grundsätzliches Vorgehen Motivation und Überblick Als Primzahltest bezeichnet man ein mathematisches Verfahren, mit dem ermittelt wird, ob eine gegebene Zahl eine Primzahl

Mehr

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20 Gleichmäßige Konvergenz für Folgen und Reihen von Funktionen 20.1 Folgen und Reihen von Funktionen 20.3 Die Supremumsnorm 20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20.7 Das Cauchy-Kriterium

Mehr

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests ue biostatistik: hypothesen, fehler 1. und. art, power 1/8 h. lettner / physik Hypothesen: Fehler 1. und. Art, Power eines statistischen Tests Die äußerst wichtige Tabelle über die Zusammenhänge zwischen

Mehr

Rechenoperationen mit Folgen. Rekursion und Iteration.

Rechenoperationen mit Folgen. Rekursion und Iteration. Rechenoperationen mit Folgen. Die Menge aller Folgen in V bildet einen Vektorraum, V N, für den die Addition und skalare Multiplikation wie folgt definiert sind. (a n ) n N + (b n ) n N := (a n + b n )

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 26 1. Folgen R. Steuding (HS-RM)

Mehr

Kapitel 13. Grundbegriffe statistischer Tests

Kapitel 13. Grundbegriffe statistischer Tests Kapitel 13 Grundbegriffe statistischer Tests Oft hat man eine Vermutung über die Verteilung einer Zufallsvariablen X. Diese Vermutung formuliert man als Hypothese H 0.Sokönnte man daran interessiert sein

Mehr

Kapitel 10 VERTEILUNGEN

Kapitel 10 VERTEILUNGEN Kapitel 10 VERTEILUNGEN Fassung vom 18. Januar 2001 130 VERTEILUNGEN Zufallsvariable. 10.1 10.1 Zufallsvariable. HäuÞg wird statt des Ergebnisses ω Ω eines Zufalls-Experiments eine zugeordnete Zahl X(ω)

Mehr

Was bisher geschah. wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min Disjunktion 2 max Negation 1 x 1 x Implikation 2 Äquivalenz 2 =

Was bisher geschah. wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min Disjunktion 2 max Negation 1 x 1 x Implikation 2 Äquivalenz 2 = Was bisher geschah (Klassische) Aussagenlogik: Aussage Wahrheitswerte 0 (falsch) und 1 (wahr) Junktoren Syntax Semantik Stelligkeit Symbol Wahrheitswertfunktion wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Grundlegendes der Mathematik

Grundlegendes der Mathematik Kapitel 2 Grundlegendes der Mathematik (Prof. Udo Hebisch) 2.1 Logik Unter einer Aussage versteht man in der Mathematik einen in einer natürlichen oder formalen Sprache formulierten Satz, für den eindeutig

Mehr

Berechnung von Abständen

Berechnung von Abständen 3. Kreis- und Wegeprobleme Abstände in Graphen Abstände in Graphen Definition 3.4. Es sei G = (V, E) ein Graph. Der Abstand d(v, w) zweier Knoten v, w V ist die minimale Länge eines Weges von v nach w.

Mehr

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe Kapitel 5 Abbildungen 5.1 Definition: (Abbildung) Eine Abbildung zwischen zwei Mengen M und N ist eine Vorschrift f : M N, die jedem Element x M ein Element f(x) N zuordnet. Schreibweise: x f(x) 5. Beispiel:

Mehr

Kapitel 2. Zahlenbereiche

Kapitel 2. Zahlenbereiche Kapitel 2. Zahlenbereiche 2.3. Reelle Zahlen Erweiterung des Zahlenbereichs der natürlichen Zahlen Ganze Zahlen Z := {..., 3, 2, 1, 0, 1, 2, 3,...} = N {0} N. Rationale Zahlen Q := { m } n m Z, n N. Beachte:

Mehr

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Dr. Gerhard Mülich Christian Maaß 6.Mai 8 Im letzten Vortrag haben wir gesehen, dass das

Mehr

Kapitel III: Einführung in die schließende Statistik

Kapitel III: Einführung in die schließende Statistik Kapitel III: Einführung in die schließende Statistik Das zweite Kapitel beschäftigte sich mit den Methoden der beschreibenden Statistik. Im Mittelpunkt der kommenden Kapitel stehen Verfahren der schließenden

Mehr

Vorlesung 2: Erwartungsnutzen

Vorlesung 2: Erwartungsnutzen Vorlesung 2: Erwartungsnutzen Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 2 (FS 11) Erwartungsnutzen 1 / 28 1. Modellrahmen 1.1 Die Alternativen Wir betrachten

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 8 10. November 2009 Kapitel 2. Konvergenz von Folgen und Reihen Definition 27. Eine (reelle bzw. komplexe) Zahlenfolge ist eine R- bzw. C-wertige

Mehr

Informatik 3 Übung 09 Georg Kuschk

Informatik 3 Übung 09 Georg Kuschk Informatik 3 Übung 09 Georg Kuschk 9.1) Das Tupel ( {1,2,3,5,6,10,15,}, kgv, ggt, inv,, 1 ) mit inv()=/ ist eine boolesche Algebra, wenn für alle,y,z M folgende 7 Regeln gelten ( Zur besseren Übersicht

Mehr

b. Lehre des vernünftigen Schlussfolgerns (1. System von Regeln von Aristoteles ( v. Chr.); sprachliche Argumente

b. Lehre des vernünftigen Schlussfolgerns (1. System von Regeln von Aristoteles ( v. Chr.); sprachliche Argumente II. Zur Logik 1. Bemerkungen zur Logik a. Logisches Gebäude der Mathematik: wenige Axiome (sich nicht widersprechende Aussagen) bilden die Grundlage; darauf aufbauend Lehrsätze unter Berücksichtigung der

Mehr

GRUNDPRINZIPIEN statistischen Testens

GRUNDPRINZIPIEN statistischen Testens Fragestellungen beim Testen GRUNDPRINZIPIEN statistischen Testens. Vergleiche Unterscheidet sich die Stichprobenbeobachtung von einer vorher spezifizierten Erwartung ( Hypothese ) mit ausreichender Sicherheit?

Mehr

Folgen. Kapitel 2. Folgen. Peter Becker (H-BRS) Analysis Sommersemester / 543

Folgen. Kapitel 2. Folgen. Peter Becker (H-BRS) Analysis Sommersemester / 543 Kapitel 2 Folgen Peter Becker (H-BRS) Analysis Sommersemester 2016 89 / 543 Inhalt Inhalt 1 Folgen Definition kriterien in C, R d und C d Peter Becker (H-BRS) Analysis Sommersemester 2016 90 / 543 Definition

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 1 17.3.21 Grundlagen zum Hypothesentest Einführung: Wer Entscheidungen zu treffen hat, weiß oft erst im nachhinein ob seine Entscheidung richtig war. Die Unsicherheit

Mehr

Zusammenfassung zur Konvergenz von Folgen

Zusammenfassung zur Konvergenz von Folgen Zusammenfassung zur Konvergenz von Folgen. Definition des Konvergenzbegriffs Eine Folge reeller Zahlen a n n heißt konvergent gegen a in Zeichen a n = a, falls gilt > 0 n 0 n n 0 : an a < Hinweise: Bei

Mehr

Thema: Logik: 2. Teil. Übersicht logische Operationen Name in der Logik. Negation (Verneinung) Nicht

Thema: Logik: 2. Teil. Übersicht logische Operationen Name in der Logik. Negation (Verneinung) Nicht Thema: Logik: 2. Teil Übersicht logische Operationen Name in der Logik Symbol Umgangssprachlicher Name Negation (Verneinung) Nicht Konjunktion ^ Und Disjunktion v Oder Subjunktion (Implikation) Bijunktion

Mehr

Algebra II. Prof. Dr. M. Rost. Übungen Blatt 3 (SS 2016) 1. Abgabetermin: Freitag, 6. Mai.

Algebra II. Prof. Dr. M. Rost. Übungen Blatt 3 (SS 2016) 1. Abgabetermin: Freitag, 6. Mai. Algebra II Prof. Dr. M. Rost Übungen Blatt 3 (SS 2016) 1 Abgabetermin: Freitag, 6. Mai http://www.math.uni-bielefeld.de/~rost/a2 Erinnerungen an die Vorlesung: Im Folgenden werden manchmal einige Definitionen

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

b liegt zwischen a und c.

b liegt zwischen a und c. 2 DIE ANORDNUNGSAXIOME 5 (2.4) a, b, c R : (a < b 0 < c) ac < bc Monotoniegesetz der Multiplikation Bezeichnungen a > b : b < a (> wird gelesen: größer als ) a b : a < b oder a = b a b : a > b oder a =

Mehr

Kapitel 1. Aussagenlogik

Kapitel 1. Aussagenlogik Kapitel 1 Aussagenlogik Einführung Mathematische Logik (WS 2012/13) Kapitel 1: Aussagenlogik 1/17 Übersicht Teil I: Syntax und Semantik der Aussagenlogik (1.0) Junktoren und Wahrheitsfunktionen (1.1) Syntax

Mehr

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10 Fakultät für Mathematik Fachgebiet Mathematische Informatik Anhang Lineare Algebra I Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA Wintersemester 2009/10 A Relationen Definition A.1. Seien X, Y beliebige

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 18 8. Januar 2010 Kapitel 5. Funktionen mehrerer Veränderlicher, Stetigkeit und partielle Ableitungen 5.2. Partielle Ableitungen von Funktionen

Mehr

1 Das Kommunikationsmodell

1 Das Kommunikationsmodell 1 Das Kommunikationsmodell Das Sender-Empfänger-Modell der Kommunikation (nach Shannon und Weaver, 1949) definiert Kommunikation als Übertragung einer Nachricht von einem Sender zu einem Empfänger. Dabei

Mehr

Elliptische Funktionen, elliptische Kurven und Modulformen Die Weierstraß sche -Funktion. Carina Sobotta

Elliptische Funktionen, elliptische Kurven und Modulformen Die Weierstraß sche -Funktion. Carina Sobotta Elliptische Funktionen, elliptische Kurven und Modulformen Die Weierstraß sche -Funktion Carina Sobotta 7. Oktober 004 Einleitung Elliptische Funktionen erhielten ihren Namen, da sie anfangs bei Untersuchungen

Mehr