(b) Man nennt die Menge M beschränkt, wenn sie nach oben und unten beschränkt ist.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "(b) Man nennt die Menge M beschränkt, wenn sie nach oben und unten beschränkt ist."

Transkript

1 8 Punktmengen Für die Menge M = { 1 n ; n N } ist 1 = max(m), denn 1 M und 1 n 1 für alle n N. Die Menge M besitzt aber kein Minimum, denn zu jeder Zahl x = 1 n M existiert ein y M mit y < x, etwa y = 1 n+1. Definition 8.1. Sei M R eine Teilmenge von R und seien s, t R reelle Zahlen. (a) Die Menge M heißt nach oben (bzw. nach unten) beschränkt, falls es ein a R gibt mit x a (bzw. mit x a) für alle x M. Jede solche Zahl a heißt obere (bzw. untere) Schranke von M. (b) Man nennt die Menge M beschränkt, wenn sie nach oben und unten beschränkt ist. (c) Die Zahl t heißt Supremum (oder kleinste obere Schranke) von M (geschrieben t = sup M), falls (i) x t für alle x M ist und (ii) für jede Zahl a R mit x a für alle x M gilt, dass t a ist. Man nennt s Infimum (oder größte untere Schranke) von M, falls (i) x s für alle x M ist und (ii) für jede Zahl a R mit x a für alle x M gilt, dass s a ist. Aus den beiden definierenden Bedingungen folgt sofort, dass das Supremum und Infimum einer Menge, wenn sie existieren, eindeutig bestimmt sind. Es gibt eine sehr einfache Beziehung zwischen Suprema und Maxima sowie Infima und Minima von Mengen. Bemerkung 8.. Sei M R und seien s, t R. Dann gilt: (i) t = max(m) genau dann, wenn t = sup M ist und t M gehört. (ii) s = min(m) genau dann, wenn s = inf M ist und s M gehört. Beweis. Sei t = max(m). Nach Definition ist t M und t x für alle x M. Ist a R irgendeine obere Schranke von M, so ist a t, da t M. Also ist t = sup M. Ist umgekehrt t = sup M und t M, so gilt t x für alle x M und daher ist t = max(m). Teil (ii) beweist man entsprechend. Für M R definieren wir M = { x; x M}. Lemma 8.3. Seien M R und t R. Dann gilt t = sup(m) genau dann, wenn t = inf( M) ist. Beweis. Sei t = sup M. Dann ist t x für alle x M und daher t x für alle x M. Ist a R mit a x für alle x M, so ist a x für alle x M. Nach Definition des Supremums ist a t, also a t. Damit ist gezeigt, dass t = inf( M) ist. Die umgekehrte Implikation folgt völlig analog. 41

2 Beschränkte Mengen brauchen weder ein Maximum noch ein Minimum zu besitzen. Mit Hilfe des Intervallschachtelungsprinzips, und damit letztlich der Vollständigkeit von R, zeigen wir, dass sich Suprema und Infima wesentlich besser verhalten in dieser Hinsicht. Satz 8.4. (a) Jede nach oben beschränkte Menge M R hat ein Supremum. (b) Jede nach unten beschränkte Menge M R besitzt ein Infinimum. Beweis. Wegen Lemma 8.3 genügt es, den Teil (a) zu beweisen. Sei also M R nicht leer und nach oben beschränkt. Wir fixieren einen Punkt a 0 M sowie eine obere Schranke b 0 von M und setzen I 0 = [a 0, b 0 ]. Rekursiv kann man abgeschlossene Intervalle I k = [a k, b k ] R wählen so, dass für alle k N gilt (i) I k+1 I k, (ii) Länge (I k ) = ( 1 )k Länge (I 0 ), (iii) b k ist obere Schranke von M und M I k. Seien dazu I 0,..., I k gewählt mit diesen Eigenschaften. Ist a k+b k obere Schranke von M, so setze man a k+1 = a k und b k+1 = a k+b k. Ist a k+b k keine obere Schranke von M, so wähle man a k+1 = a k+b k und b k+1 = b k. Sei I k+1 = [a k+1, b k+1 ]. In jedem Fall ist Länge (I k+1 ) = 1 Länge (I k) = ( 1 )k+1 Länge (I 0 ), die Zahl b k+1 ist obere Schranke von M und I k+1 M. Nach dem Intervallschachtelungsprinzig (Satz 5.5) gibt es ein t R mit k N I k = {t}. Im Beweis von Satz 5.5 haben wir gesehen, dass lim a k = t = lim b k k k ist. Ist x M, so ist x b k für alle k N und damit nach Satz 4.10 auch x t. Sei a R irgendeine obere Schranke von M. Nach Konstruktion gibt es eine Folge (x k ) k N in M mit a k x k b k für alle k N. Nach dem Vergleichskriterium (4.9) und Satz 4.10 ist t = lim k x k gezeigt, dass t = sup M gilt. a. Damit haben wir Beispiele 8.5. (a) Ist (x n ) n N eine monoton wachsende beschränkte Folge in R, so gilt lim n x n = sup{x n ; n N}. Zur Begründung beachte man, dass nach Satz 8.4 das Supremum t = sup{x n ; n N} existiert und dass nach Definition des Supremums zu jedem ɛ > 0 ein n 0 N existiert mit x n0 > t ɛ. Da die Folge (x n ) n N monoton wächst, ist dann t ɛ < x n0 x n t und insbesondere auch x n t < ɛ für alle n n 0. (b) Ist (x n ) eine monoton fallende und beschränkte Folge in R, so gilt entsprechend lim n x n = inf{x n ; n N}. (c) Direkt oder als Anwendung von Teil (b) folgt, dass inf{ 1 n ; n N } = 0. 4

3 (d) Offensichtlich ist inf[a, b] = inf]a, b[= a, sup[a, b] = sup]a, b[= b für alle a, b R mit a < b. Definition 8.6. Sei M R eine Menge und sei (a n ) n N eine Folge in R. (a) Ist M nicht nach oben (bzw. unten) beschränkt, so setzt man sup M = ( bzw. inf M = ). (b) Man nennt den Limes superior und lim n a n := lim sup a n := lim (sup{a k; k n}) R {+, } n n lim n a n := lim inf n a n := lim n (inf{a k; k n}) R {+, } den Limes inferior der Folge (a n ) n N. Hierbei gelte für die konstanten Folgen c n = (n N), d n = (n N) definitonsgemäß lim c n =, n lim d n =. n Als vereinfachende Konvention schreibt man x < und x > für alle x R. Bemerkung 8.7. Zur Wohldefiniertheit von Limes superior und Limes inferior überlege man sich: (a) Für zwei Mengen A B gilt sup A sup B und inf A inf B. (b) Ist (a n ) n N nicht nach oben beschränkt, so gilt sup{a k ; k n} = für alle n N und damit lim n a n =. Ist (a n ) n N nach oben beschränkt, so ist (sup{a k ; k n}) n N eine monoton fallende Folge in R und konvergiert eigentlich gegen ein s R oder uneigentlich gegen. Es ist lim n a n = genau dann, wenn lim n a n = gilt. (c) Zu (b) entsprechende Aussagen gelten für den Limes inferior. Satz 8.8. Sei (a n ) n N eine beschränkte Folge in R. Dann gilt: (a) lim n a n = max{c R; c ist Häufungspunkt von (a n ) n N }. (b) lim n a n = min{c R; c ist Häufungspunkt von (a n ) n N }. Beweis. (a) Sei (a n ) n N eine beschränkte Folge in R. Aus Bemerkung 8.7 (b) folgt, dass s = lim n a n R. Sei ɛ > 0. Dann gibt es nur endlich viele n N mit a n s + ɛ. Denn sonst wäre nach Satz 4.10 s = lim n sup{a k ; k n} s + ɛ. Also liegt jeder Häufungspunkt der Folge (a n ) n N in (, s]. Anderseits gibt es zu jedem gegebenen ɛ > 0 unendlich viele Indizes n N mit a n > s ɛ. Denn sonst gäbe es ein n 0 N mit a k s ɛ für alle k n 0. Folglich wäre sup{a k ; k n 0 } s ɛ und nach Beispiel 8.5 (b) würde folgen, dass s sup{a k ; k n 0 } s ɛ. Da es zu jedem ɛ > 0 unendlich viele 43

4 n N gibt a n > s ɛ und nur endlich viele n N mit a n s + ɛ, ist {n N; a n ]s ɛ, s + ɛ[} unendlich für alle ɛ > 0. Also ist s ein Häufungspunkt der Folge (a n ) n N, der größer oder gleich jedem anderen Häufungspunkt dieser Folge ist. (b) Entsprechend zeigt man, dass lim n a n der kleinste Häufungspunkt von (a n ) n N ist. Korollar 8.9. Eine Folge (a n ) n N in R ist (eigentlich oder uneigentlich) konvergent genau dann, wenn lim n a n = lim n a n ist. In diesem Fall gilt lim n a n = lim n a n = lim n a n. Beweis. Ist (a n ) n N beschränkt, so konvergiert (a n ) n N nach Satz 5.7 dann und nur dann, wenn (a n ) n N genau einen Häufungspunkt besitzt und nach Satz 8.8 ist dies äquivalent zu lim n a n = lim n a n. Offensichtlich stimmen in diesem Fall Limes superior und Limes inferior mit dem Limes überein. Bleibt noch der Fall zu betrachten, dass (a n ) n unbeschränkt ist. Ist (a n ) n N nicht nach oben beschränkt, so konvergiert (a n ) n N (uneigentlich!) genau dann, wenn lim n a n = ist. Dies impliziert, dass lim n a n = lim n a n = ist. Stimmen umgekehrt Limes superior und Limes inferior überein, so ist lim n a n = lim n a n = und daher auch lim n a n =. Ist (a n ) n N nicht nach unten beschränkt, so sieht man entsprechend, dass (a n ) n N konvergiert (uneigentlich!) genau dann, wenn lim n a n = ist bzw. genau dann, wenn lim n a n = lim n a n = gilt. Im Folgenden wollen wir uns überlegen, wie man die Größe (in der Mathematik spricht man von Mächtigkeit) unendlicher Mengen vergleichen kann. Definition Eine Menge M heißt abzählbar, falls es eine surjektive Abbildung ϕ : N M gibt. Offensichtlich ist eine Menge M genau dann abzählbar, wenn es eine Folge (x n ) n N gibt mit {x n ; n N} = M. Beispiel (a) Jede endliche Menge {a 0,..., a N } ist abzählbar. Denn {a 0,..., a N } ist die Menge der Folgenglieder der durch x n = a n für n = 0,..., N, x n = a N für n > N definierten Folge. (b) Die Menge N der natürlichen Zahlen ist abzählbar als Bildmenge der Folge x n = n (n N). (c) Die Menge Z der ganzen Zahlen ist abzählbar als Bildmenge der durch x n = n für n N und x n 1 = n für n N definierten Folge (x n ) n N. (d) Die Menge N = {(i, j); i, j N} ist abzählbar. Eine Folge (x n ) n N mit Bildmenge N erhält man, indem man nacheinander für k = 0, 1,,... die Mengen {(i, j) N ; i + j = k} abzählt: (x n ) n N = ((0, 0), (0, 1), (1, 0), (0, ), (1, 1), (, 0),...). 44

5 (e) Die Vereinigung abzählbar vieler abzählbarer Mengen M n (n N) ist abzählbar. Zum Beweis schreibe man M n in der Form M n = {x nm ; m N} (n N) und beachte, dass die durch ϕ : N M n, (i, j) x ij n N definierte Abbildung surjektiv ist. Da N nach Teil (d) abzählbar ist, gibt es eine surjektive Abbildung ψ : N N. Als Komposition surjektiver Abbildungen ist auch ϕ ψ : N n N M n surjektiv. (f) Auch die Menge Q der rationalen Zahlen ist abzählbar. Dies folgt mit Teil (e), denn Q = { } p ; p { n,..., n} und q {1,..., n} q n N ist eine Darstellung von Q als Vereinigung abzählbar vieler abzählbarer Mengen. Bevor wir zeigen, dass R nicht abzählbar ist, kommen wir noch einmal auf das Eindeutigkeitsproblem für die Darstellung reeller Zahlen als b-adische Brüche zurück (vgl. Satz 5.11). Wir betrachten nur den Fall b = 10. Lemma 8.1. Seien (a k ) k 1, (b k ) k 1 Folgen in {0,..., 9} mit a k 10 k = b k 10 k. k=1 k=1 Dann gilt a k = b k für alle k 1 oder es gibt ein k 0 N mit a k, b k {0, 9} für alle k k 0. Beweis. Sei a k b k für ein k N. Definiere N = min{k N ; a k b k } als die kleinste Zahl mit a N b N. Da alle Ziffern mit kleineren Indizes übereinstimmen, sind auch x := a k 10 k = b k 10 k k=n k=n Darstellungen derselben reellen Zahl x. Ist a N < b N, so folgt aus ( x a N 10 N k = a N 10 N + 9 k=n+1 = (a N + 1)10 N b N 10 N k=1 b k 10 k = x, k=n 10 k ) 10 N dass b N = a N + 1, a k = 9 und b k = 0 für alle k > N gilt. Ist a N > b N, so folgt genauso, dass a N = b N + 1, b k = 9 und a k = 0 für alle k > N gilt. 45

6 Genauso wie im obigen Beweis zeigt man, dass sich zwei Ziffernfolgen (a n ) n k, (b n ) n k in {0,..., b 1} derart, dass die b-adischen Brüche mit diesen Ziffernfolgen dieselbe reelle Zahl darstellen, in der ersten voneinander verschiedenen Ziffer höchstens um 1 unterscheiden können und dass von dieser Stelle an in der Ziffernfolge, in der an dieser Stelle die kleinere Ziffer steht, nur noch die Ziffer b 1 und in der anderen Ziffernfolge nur noch die Ziffer 0 vorkommen kann. Satz Die Menge R der reellen Zahlen ist nicht abzählbar. Beweis. Wir nehmen an, R sei abzählbar. Eine einfache Überlegung zeigt, dass jede Teilmenge einer abzählbaren Menge abzählbar ist. Also gibt es eine Folge (x n ) n 1 in R mit {x n ; n 1} =]0, 1[. Die Dezimalbruchentwicklung der Zahlen x n (siehe Satz 5.11) hat die Form x 1 = 0, a 11 a 1 a x = 0, a 1 a a 3... x 3 = 0, a 31 a 3 a Da die reelle Zahl c = 0, c 1 c c 3... mit den Ziffern c k = 1, falls a kk 1, c k =, falls a kk = 1, in ]0, 1[ liegt, müsste es ein n N geben mit c = x n. Da in der Dezimalbruchentwicklung von c weder die Zahl 0 noch die Zahl 9 vorkommt, müssten nach Satz 8.1 alle Ziffern in der Entwicklung von c und von x n übereinstimmen. Dies ist nicht möglich, da c so definiert wurde, dass c n a nn ist. Dieser Widerspruch zeigt, dass R nicht abzählbar ist. Korollar (a) Kein Intervall ]a, b[ R mit a < b ist abzählbar. (b) Die Menge R \ Q der irrationalen Zahlen ist nicht abzählbar. Beweis. (a) Da für a, b R mit a < b die Abbildung ϕ : ]0, 1[ ]a, b[, ϕ(t) = a + t(b a) bijektiv ist und da ]0, 1[ nach dem letzten Beweis nicht abzählbar ist, kann auch das Intervall ]a, b[ nicht abzählbar sein. (b) Nach Beispiel 8.11 (f) ist Q abzählbar und nach 8.11 (e) ist insbesondere die Vereinigung zweier abzählbarer Mengen abzählbar. Die Annahme, dass R \ Q abzählbar ist, würde zu dem Widerspruch führen, dass auch R = Q (R \ Q) abzählbar wäre. 46

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper 32 Andreas Gathmann 3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper Wir haben bisher von den reellen Zahlen nur die Körpereigenschaften, also die Eigenschaften der vier Grundrechenarten ausgenutzt

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Analysis I III. Vorlesungsskriptum WS 2005/06 WS 2006/07. Fakultät für Mathematik, Ruhr-Universität Bochum

Analysis I III. Vorlesungsskriptum WS 2005/06 WS 2006/07. Fakultät für Mathematik, Ruhr-Universität Bochum Analysis I III Vorlesungsskriptum WS 2005/06 WS 2006/07 R. Verfürth Fakultät für Mathematik, Ruhr-Universität Bochum Inhaltsverzeichnis Kapitel I. Aufbau des Zahlsystems 5 I.1. Die natürlichen Zahlen

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Mengensysteme, Wahrscheinlichkeitsmaße

Mengensysteme, Wahrscheinlichkeitsmaße Kapitel 1 Mengensysteme, Wahrscheinlichkeitsmaße Der Großteil der folgenden fundamentalen Begriffe sind schon aus der Vorlesung Stochastische Modellbildung bekannt: Definition 1.1 Eine Familie A von Teilmengen

Mehr

Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2000 2004

Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2000 2004 Höhere Mathεmatik für Informatiker Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2 24 ii Inhaltsverzeichnis I Eindimensionale

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Handreichung. zur Mathematikvorlesung für. Wirtschaftswissenschaftler)

Handreichung. zur Mathematikvorlesung für. Wirtschaftswissenschaftler) 1 Handreichung zur Mathematikvorlesung für Wirtschaftswissenschaftler) Dr.Dr. Christina Schneider 2 Hinweis Das vorliegende Manuskript versteht sich als kurze und kompakte Handreichung zu meiner Vorlesung

Mehr

Gibt es verschiedene Arten unendlich? Dieter Wolke

Gibt es verschiedene Arten unendlich? Dieter Wolke Gibt es verschiedene Arten unendlich? Dieter Wolke 1 Zuerst zum Gebrauch des Wortes unendlich Es wird in der Mathematik in zwei unterschiedlichen Bedeutungen benutzt Erstens im Zusammenhang mit Funktionen

Mehr

Reelle Zahlen. Mathematische Grundlagen Lernmodul 4. Stand: Oktober 2010

Reelle Zahlen. Mathematische Grundlagen Lernmodul 4. Stand: Oktober 2010 Mathematische Grundlagen Lernmodul 4 Reelle Zahlen Stand: Oktober 200 Autoren: Prof. Dr. Reinhold Hübl, Professor Fakultät für Technik, Wissenschaftliche Leitung ZeMath, E-Mail: huebl@dhbw-mannheim.de

Mehr

1 Die reellen Zahlen. 1. Ziele des Mathematikstudiums: Die Studierenden sollen lernen,

1 Die reellen Zahlen. 1. Ziele des Mathematikstudiums: Die Studierenden sollen lernen, 1 Die reellen Zahlen 1. Ziele des Mathematikstudiums: Die Studierenden sollen lernen, präzise und logisch zu denken, komplexe Strukturen schnell und gründlich zu erfassen, Dinge kritisch zu hinterfragen

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 4 13.11.26 Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

1 Stochastische Prozesse in stetiger Zeit

1 Stochastische Prozesse in stetiger Zeit 1 Stochastische Prozesse in stetiger Zeit 1.1 Grundlagen Wir betrachten zufällige Prozesse, definiert auf einem Wahrscheinlichkeitsraum (Ω, F, P), welche Werte in einen fest gewählten Zustandsraum annehmen.

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik für die Studiengänge Ingenieur-Informatik berufsbegleitendes Studium Lehramt Informatik (Sekundar- und Berufsschule) http://theo.cs.uni-magdeburg.de/lehre04s/ Lehrbeauftragter:

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0.

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0. 1 Ordnung uß sein 1.1 Angeordnete Körper Wir nehen einal an, daß es in eine Körper Eleente gibt, die wir positiv nennen. Welche Eigenschaften sollen diese haben? O1) Wenn x und y positiv sind, dann auch

Mehr

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Wintersemester 0/0 Wirtschaftsinformatik Bachelor IW Informatik Bachelor IN Vorlesung Mathematik Mathematik Lösungsvorschläge zum Übungsblatt

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Extremwertverteilungen

Extremwertverteilungen Seminar Statistik Institut für Stochastik 12. Februar 2009 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen

Mehr

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010 Induktive Limiten Arpad Pinter, Tobias Wöhrer 30. Jänner 2010 1 Inhaltsverzeichnis 1 Induktiver Limes von Mengen 2 2 Induktiver Limes von Vektorräumen 4 3 Lokalkonvexe topologische Vektorräumen 7 4 Induktiver

Mehr

Folgen. Kapitel 3. 3.1 Zinsrechnung

Folgen. Kapitel 3. 3.1 Zinsrechnung Kapitel 3 Folgen Eine Folge reeller Zahlen ordnet natürlichen Zahlen jeweils eine reelle Zahl zu. Liegen beispielsweise volkswirtschaftliche Daten quartalsweise vor, so kann man diese als Folge interpretieren.

Mehr

Folgen und endliche Summen

Folgen und endliche Summen Kapitel 2 Folgen und endliche Summen Folgen und ihre Eigenschaften Endliche arithmetische und geometrische Folgen und Reihen Vollständige Induktion Anwendungen Folgen/endliche Summen Eigenschaften Folgen

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Aufgaben und Lösungen zu Mathematik für Studierende der Ingenieurwissenschaften II. Heinrich Voß

Aufgaben und Lösungen zu Mathematik für Studierende der Ingenieurwissenschaften II. Heinrich Voß Aufgaben und Lösungen zu Mathematik für Studierende der Ingenieurwissenschaften II Heinrich Voß Institut für Angewandte Mathematik der Universität Hamburg 99 Inhaltsverzeichnis Folgen und Reihen 2. Einführende

Mehr

Vorlesung Analysis I / Lehramt

Vorlesung Analysis I / Lehramt Vorlesung Analysis I / Lehramt TU Dortmund, Wintersemester 2012/ 13 Winfried Kaballo Die Vorlesung Analysis I für Lehramtsstudiengänge im Wintersemester 2012/13 an der TU Dortmund basiert auf meinem Buch

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Diskrete Mathematik für Informatiker

Diskrete Mathematik für Informatiker Diskrete Mathematik für Informatiker Markus Lohrey Universität Siegen Wintersemester 2014/2015 Lohrey (Universität Siegen) Diskrete Mathematik Wintersem. 2014/2015 1 / 344 Organisatorisches zur Vorlesung

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Dr. C.J. Luchsinger 2 Zufallsgrössen Literatur Kapitel 2 * Statistik in Cartoons: Kapitel 4 * Krengel: 3.1 und 3.2 in 3 und (Honours Program) 10 sowie 11.1, 11.2 und 11.3 in

Mehr

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 4 Woche Decodierung; Maximale, Perfekte und Optimale Codes 4 Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 Szenario für fehlerkorrigierende Codes Definition (n, M)-Code Sei C {0, 1}

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 7 Lineare Programmierung II 1 Lineare Programme Lineares Programm: Lineare Zielfunktion Lineare Nebenbedingungen (Gleichungen oder Ungleichungen) Spezialfall der konvexen Optimierung

Mehr

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013 Reelle Analysis Vorlesungsskript Enno Lenzmann, Universität Basel 7. November 2013 6 L p -Räume Mit Hilfe der Masstheorie können wir nun die sog. L p -Räume einführen. Diese Räume sind wichtig in vielen

Mehr

Qualitative Datenanalyse

Qualitative Datenanalyse Qualitative Datenanalyse Prof. Dr. Stefan E. Schmidt Francesco Kriegel TU Dresden Fakultät Mathematik Institut Algebra SS 2007 28. September 2008 Inhaltsverzeichnis Kapitel 1 Formale Begriffsanalyse 1

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Vorlesung Analysis I für Informatiker & Statistiker. Universität München, WS 11/12. Prof. Dr. Max v. Renesse mrenesse@math.tu-berlin.

Vorlesung Analysis I für Informatiker & Statistiker. Universität München, WS 11/12. Prof. Dr. Max v. Renesse mrenesse@math.tu-berlin. Vorlesung Analysis I für Informatiker & Statistiker Universität München, WS 11/12 Prof. Dr. Max v. Renesse mrenesse@math.tu-berlin.de Kapitel 1: Grundlagen 1.1 Aussagenlogik Elementare Aussagenlogik Definition

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Frohe Weihnachten und ein gutes neues Jahr!

Frohe Weihnachten und ein gutes neues Jahr! Frohe Weihnachten und ein gutes neues Jahr! Die mit dem Stern * gekennzeichneten Übungen sind nicht verpflichtend, aber sie liefern zusätzliche Punkte. Unten wird immer mit I das reelle Intervall [0, 1]

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

17. Penalty- und Barriere-Methoden

17. Penalty- und Barriere-Methoden H.J. Oberle Optimierung SoSe 01 17. Penalty- und Barriere-Methoden Penalty- und Barriere Methoden gehören zu den ältesten Ansätzen zur Lösung allgemeiner restringierter Optimierungsaufgaben. Die grundlegende

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

1 Zahlen. 1.1 Die reellen Zahlen

1 Zahlen. 1.1 Die reellen Zahlen Zahlen Die aus dem Alltagsleben bekannten rationalen Zahlen (Bruchzahlen) reichen nicht aus, um Analysis rigoros betreiben zu können. Die historische Entwicklung zeigt vielmehr, dass für die Belange der

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

TEILWEISE ASYNCHRONE ALGORITHMEN

TEILWEISE ASYNCHRONE ALGORITHMEN TEILWEISE ASYNCHRONE ALGORITHMEN FRANK LANGBEIN Literatur: D. Berseas, J. Tsitsilis: Parallel and distributed computatoin, pp. 48 489 URI: http://www.langbein.org/research/parallel/ Modell teilweiser asynchroner

Mehr

GNS-Konstruktion und normale Zustände. 1 Rückblick. 2 Beispiel für einen Typ-II 1 -Faktor

GNS-Konstruktion und normale Zustände. 1 Rückblick. 2 Beispiel für einen Typ-II 1 -Faktor GNS-Konstruktion und normale Zustände 1 Rückblick Wir betrachten von-neumann-algebren M B(H), d.h. Unteralgebren mit 1 H M, die in der schwachen Operatortopologie (und damit in jeder der anderen) abgeschlossen

Mehr

9. Natürliche Zahlen, rationale Zahlen, reelle Zahlen.

9. Natürliche Zahlen, rationale Zahlen, reelle Zahlen. 9-1 Funktionen 9 Natürliche Zahlen, rationale Zahlen, reelle Zahlen Hier soll ein Überblick gegeben werden, wie die reellen Zahlen ausgehend von den natürlichen Zahlen konstruiert werden Dies erfolgt in

Mehr

Lösungen zu Kapitel 7

Lösungen zu Kapitel 7 Lösungen zu Kapitel 7 Lösung zu Aufgabe 1: Nach Definition 7.1 ist eine Verknüpfung auf der Menge H durch eine Abbildung : H H H definiert. Gilt H = {a 1,..., a m }, so wird eine Verknüpfung auch vollständig

Mehr

Elemente der Analysis I: Zusammenfassung und Formelsammlung

Elemente der Analysis I: Zusammenfassung und Formelsammlung Elemente der Analysis I: Zusammenfassung und Formelsammlung B. Schuster/ L. Frerick 9. Februar 200 Inhaltsverzeichnis Grundlagen 5. Mengen und Zahlen................................ 5.. Mengen...................................

Mehr

Die Cantor-Funktion. Stephan Welz

Die Cantor-Funktion. Stephan Welz Die Cantor-Funktion Stephan Welz Ausarbeitung zum Vortrag im Proseminar Überraschungen und Gegenbeispiele in der Analysis (Sommersemester 2009, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In dieser

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

Noethersche und artinsche Ringe

Noethersche und artinsche Ringe Noethersche und artinsche Ringe Seminar Kommutative Algebra und Varietäten Prof. Dr. K. Wingberg, Dr. J. Gärtner Vortrag 6 Yassin Mousa 05.06.2014 Im Folgenden bezeichne R immer einen kommutativen Ring

Mehr

Elementare Zahlentheorie (Version 1)

Elementare Zahlentheorie (Version 1) Elementare Zahlentheorie (Version (Winter Semester, 2005-6 Zur Notation N ist die Menge der natürlichen Zahlen:, 2, 3, 4, 5,... und so weiter. Z ist die Menge aller ganzen Zahlen:..., 4, 3, 2,, 0,, 2,

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Sprechen wir über Zahlen (Karl-Heinz Wolff)

Sprechen wir über Zahlen (Karl-Heinz Wolff) Sprechen wir über Zahlen (Karl-Heinz Wolff) Die Überschrift ist insoweit irreführend, als der Autor ja schreibt und nicht mit dem Leser spricht. Was Mathematik im allgemeinen und Zahlen im besonderen betrifft,

Mehr

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Michael Schaeer 3.04.03 Abstract This seminar is about convex functions and several imortant ineualities. At the beginning the term

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

Amerikanischen Optionen

Amerikanischen Optionen Die Bewertung von Amerikanischen Optionen im Mehrperiodenmodell Universität-Gesamthochschule Paderborn Fachbereich 17 Seminar Finanzmathematik SS 2001 Referentin: Christiane Becker-Funke Dozent: Prof.

Mehr

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1 Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 7 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 1 Wir betrachten die folgende Signatur

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 3: Alphabete (und Relationen, Funktionen, Aussagenlogik) Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Oktober 2008 1/18 Überblick Alphabete ASCII Unicode

Mehr

7 Die Determinante einer Matrix

7 Die Determinante einer Matrix 7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) =

Mehr

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É.

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Tardos Janick Martinez Esturo jmartine@techfak.uni-bielefeld.de xx.08.2007 Sommerakademie Görlitz Arbeitsgruppe 5 Gliederung

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

Jurgen Muller Analysis I-IV

Jurgen Muller Analysis I-IV Jurgen Muller Analysis I-IV Skriptum zur Vorlesung Wintersemester 5/6 bis Sommersemester 7 Universitat Trier Fachbereich IV Mathematik/Analysis Dank an Elke Gawronski und Judith Wahlen fur die Mithilfe

Mehr

Die Weierstraßsche Funktion

Die Weierstraßsche Funktion Die Weierstraßsche Funktion Nicolas Weisskopf 7. September 0 Zusammenfassung In dieser Arbeit führen wir die Weierstraßsche Funktion ein und untersuchen einige ihrer Eigenschaften. Wir zeigen, dass jede

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Fixpunktsemantik logischer Programme Pascal Hitzler Juli 1997 Kurzuberblick im Rahmen der Vorlesung Einfuhrung in Prolog von T. Cornell im Sommersemester 1997 an der Universitat Tubingen. Beweise sind

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 3. Endliche Automaten (V) 21.05.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Determinierte endliche Automaten (DEAs) Indeterminierte

Mehr

6.2 Perfekte Sicherheit

6.2 Perfekte Sicherheit 04 6.2 Perfekte Sicherheit Beweis. H(B AC) + H(A C) = H(ABC) H(AC) + H(AC) H(C) Wegen gilt Einsetzen in die Definition gibt = H(AB C). H(A BC) = H(AB C) H(B C). I(A; B C) = H(A C) H(AB C) + H(B C). Da

Mehr

9. Anwendungen der Fundamentalgruppe

9. Anwendungen der Fundamentalgruppe 76 Andreas Gathmann 9. Anwendungen der Fundamentalgruppe Nachdem wir mit Hilfe von Überlagerungen nun in der Lage sind, Fundamentalgruppen zu berechnen, wollen wir in diesem abschließenden Kapitel noch

Mehr

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie Notation Die in dieser Arbeit verwendete Notation ist im Wesentlichen Standard, so wie sie beispielsweise in [As] zu nden ist. Einige Abweichungen hiervon, Klarstellungen und zusätzliche Notationen (sofern

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Finanzmathematik 1 11 Folgen und Reihen 1 111 Folgen allgemein 1 112

Mehr

BONUS MALUS SYSTEME UND MARKOV KETTEN

BONUS MALUS SYSTEME UND MARKOV KETTEN Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik, Institut für Mathematische Stochastik BONUS MALUS SYSTEME UND MARKOV KETTEN Klaus D. Schmidt Ringvorlesung TU Dresden Fakultät MN,

Mehr

Grammatiken. Einführung

Grammatiken. Einführung Einführung Beispiel: Die arithmetischen Ausdrücke über der Variablen a und den Operationen + und können wie folgt definiert werden: a, a + a und a a sind arithmetische Ausdrücke Wenn A und B arithmetische

Mehr

Definition 27 Affiner Raum über Vektorraum V

Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

Mehr

3 Quellencodierung. 3.1 Einleitung

3 Quellencodierung. 3.1 Einleitung Source coding is what Alice uses to save money on her telephone bills. It is usually used for data compression, in other words, to make messages shorter. John Gordon 3 Quellencodierung 3. Einleitung Im

Mehr

8. Quadratische Reste. Reziprozitätsgesetz

8. Quadratische Reste. Reziprozitätsgesetz O Forster: Prizahlen 8 Quadratische Reste Rezirozitätsgesetz 81 Definition Sei eine natürliche Zahl 2 Eine ganze Zahl a heißt uadratischer Rest odulo (Abkürzung QR, falls die Kongruenz x 2 a od eine Lösung

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Luise Unger In LATEX gesetzt von Luise Unger Mathematische Grundlagen Kurseinheit 1: Grundlagen 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 77 7 7 777 7 77 7777777 77777 7 77 7 7 7 7 7 7 77777777777

Mehr

Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz

Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz Tobias Kraushaar Kaiserstr. 178 44143 Dortmund Matr.- Nr.: 122964 Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz 1. EINLEITUNG... 2 2. HAUPTTEIL... 3 2.1. Der

Mehr