Analysis I. Vorlesung 18. Differenzierbare Funktionen. f: D K

Größe: px
Ab Seite anzeigen:

Download "Analysis I. Vorlesung 18. Differenzierbare Funktionen. f: D K"

Transkript

1 Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 18 Differenzierbare Funktionen In dieser Vorlesung betracten wir Funktionen, wobei D K eine offene Menge in K ist. Das ist eine Menge derart, dass es zu jedem a D auc eine offene Umgebung U (a,r), r > 0, gibt, die ganz in D liegt. Typisce Beispiele sind D = K, U (a,r), K\{a 1,...,a n }. Definition Sei D K offen, a D ein Punkt und eine Funktion. Zu x D, x a, eißt die Zal f(x) f(a) der Differenzenquotient von f zu a und x. Der Differenzenquotient ist die Steigung der Sekante am Grap durc die beiden Punkte (a,f(a)) und (x,f(x)). Für x = a ist dieser Quotient nict definiert. Allerdings kann ein sinnvoller Limes für x a existieren. Dieser repräsentiert dann die Steigung der Tangente. Definition Sei D K offen, a D ein Punkt und eine Funktion. Man sagt, dass f differenzierbar in a ist, wenn der Limes lim x D\{a},x a f(x) f(a) 1

2 2 existiert. Im Fall der Existenz eißt dieser Limes der Differentialquotient oder die Ableitung von f in a, gescrieben f (a). Die Ableitung in einem Punkt a ist, falls sie existiert, ein Element in K. Häufig nimmt man die Differenz = als Parameter für den Limes des Differenzenquotienten, und lässt gegen 0 geen, d.. man betractet f(a+) f(a) lim 0. Die Bedingung x D\{a} wird dann zu a+ D, 0. Beispiel Es seien s,c K und sei α: K K, z sz +c, eine sogenannte affin-lineare Funktion. Zur Bestimmung der Ableitung in einem Punkt a K betractet man (sx+c) (sa+c) = s() = s. Dies ist konstant gleic s, so dass der Limes für x gegen a existiert und gleic s ist. Die Ableitung in jedem Punkt existiert demnac und ist gleic s. Die Steigung der affin-linearen Funktion ist also die Ableitung. Beispiel Wir betracten die Funktion f: K K, z z 2. Der Differenzenquotient zu a und a+ ist f(a+) f(a) = (a+)2 a 2 = a2 +2a+ 2 a 2 = 2a+2 = 2a+. Der Limes davon für gegen 0 ist 2a. Die Ableitung ist daer f (a) = 2a. Lineare Approximierbarkeit Satz Sei D K offen, a D ein Punkt und eine Funktion. Dann ist f in a genau dann differenzierbar, wenn es ein s K und eine Funktion r: D K gibt mit r stetig in a und r(a) = 0 und mit f(x) = f(a)+s()+r(x)().

3 Beweis. Wennf differenzierbarist,sosetzenwirs := f (a).fürdiefunktion r muss notwendigerweise { f(x) f(a) s für x a, r(x) = 0 für x = a, gelten, um die Bedingungen zu erfüllen. Aufgrund der Differenzierbarkeit existiert der Limes ( ) f(x) f(a) lim x a,x D\{a} r(x) = lim x a,x D\{a} s, und at den Wert 0. Dies bedeutet, dass r in a stetig ist. Wenn umgekert s und r mit den angegebenen Eigenscaften existieren, so gilt für x a die Bezieung f(x) f(a) = s+r(x). Da r stetig in a ist, muss auc der Limes links für x a existieren. Die in diesem Satz formulierte Eigenscaft, die zur Differenzierbarkeit äquivalent ist, nennt man auc die lineare Approximierbarkeit. Die affin-lineare Abbildung D K, x f(a)+f (a)(), eißt dabei die affin-lineare Approximation. Ir Grap eißt die Tangente an f im Punkt a. Die durc f(a) gegebene konstante Funktion kann man als konstante Approximation anseen. Korollar Sei D K offen, a D ein Punkt und eine Funktion, die im Punkt a differenzierbar sei. Dann ist f stetig in a. 3 Beweis. Dies folgt direkt aus Satz Ableitungsregeln Lemma Sei D K offen, a D ein Punkt und f,g: D K zwei Funktionen, die in a differenzierbar seien. Dann gelten folgende Differenzierbarkeitsregeln. (1) Die Summe f +g ist differenzierbar in a mit (f +g) (a) = f (a)+g (a). (2) Das Produkt f g ist differenzierbar in a mit (f g) (a) = f (a)g(a)+f(a)g (a).

4 4 (3) Für c K ist auc cf in a differenzierbar mit (cf) (a) = cf (a). (4) Wenn g keine Nullstelle in D besitzt, so ist 1/g differenzierbar in a mit ( ) 1 (a) = g (a) g (g(a)). 2 (5) Wenn g keine Nullstelle in D besitzt, so ist f/g differenzierbar in a mit (f/g) (a) = f (a)g(a) f(a)g (a) (g(a)) 2. Beweis. (1). Wir screiben f bzw. g mit den in Satz 18.5 formulierten Objekten, also f(x) = f(a)+s()+r(x)() und Summieren ergibt g(x) = g(a)+ s()+ r(x)(). f(x)+g(x) = f(a)+g(a)+(s+ s)()+(r + r)(x)(). Dabei ist die Summe r+ r wieder stetig in a mit dem Wert 0. (2). Wir geen wieder von f(x) = f(a)+s()+r(x)() und g(x) = g(a)+ s()+ r(x)() aus und multiplizieren die beiden Gleicungen. Dies fürt zu f(x)g(x) = (f(a)+s()+r(x)()) (g(a)+ s()+ r(x)()) = f(a)g(a)+(sg(a)+ sf(a))() +(f(a) r(x)+g(a)r(x)+s s() +s r(x)()+ sr(x)()+r(x) r(x)())(). Aufgrund von Lemma für Limiten ist die aus der letzten Zeile ablesbare Funktion stetig mit dem Wert 0 für x = a. (3) folgt aus (2), da eine konstante Funktion differenzierbar ist mit Ableitung 0. (4). Es ist 1 g(x) 1 g(a) = 1 g(a)g(x) g(x) g(a). Da g nac Korollar 18.6 stetig in a ist, konvergiert für x a der linke Faktor gegen 1 und wegen der Differenzierbarkeit von g in a konvergiert g(a) 2 der recte Faktor gegen g (a). (5) folgt aus (2) und (4).

5 5 Eine Veranscaulicung der Produktregel: Der Zuwacs eines Fläceninalts entsprict der Summe der beiden Produkte aus Seitenlänge und Seitenlängezuwacs. Für den infinitesimalen Zuwacs ist das Produkt der beiden Seitenlängenzuwäcse irrelevant. Korollar Eine Polynomfunktion f = c 0 +c 1 z +c 2 z 2 +c 3 z 3 + +c n 1 z n 1 +c n z n ist in jedem Punkt differenzierbar, und für die Ableitung gilt f (z) = c 1 +2c 2 z +3c 3 z 2 + +(n 1)c n 1 z n 2 +nc n z n 1. Beweis. Dies folgt aus Lemma Satz Seien D und E offene Mengen in K und seien und g: E K Funktionen mit f(d) E. Es sei f in a differenzierbar und g sei in b = f(a) differenzierbar. Dann ist auc die Hintereinanderscaltung in a differenzierbar mit der Ableitung g (g f) (a) = g (f(a)) f (a). Beweis. Aufgrund von Satz 18.5 kann man f(x) = f(a)+f (a)()+r(x)() und g(y) = g(f(a))+g (f(a))(y f(a))+s(y)(y f(a)) screiben. Daer ergibt sic g(f(x)) = g(f(a))+g (f(a))(f(x) f(a))+s(f(x))(f(x) f(a)) = g(f(a))+g (f(a))(f (a)()+r(x)()) +s(f(x))(f (a)()+r(x)()) = g(f(a))+g (f(a))f (a)() +(g (f(a))r(x)+s(f(x))(f (a)+r(x)))().

6 6 Die ier ablesbare Restfunktion ist stetig in a mit dem Wert 0. t(x) := g (f(a))r(x)+s(f(x))(f (a)+r(x)) Eine Veranscaulicung für die Ableitung der Umkerfunktion. Die Umkerfunktion besitzt den an der Hauptdiagonalen gespiegelten Grapen und die Tangente wird mitgespiegelt. Satz Seien D und E offene Mengen in K und sei f: D E eine bijektive stetige Funktion mit einer stetigen Umkerfunktion f 1 : E D Es sei f in a D differenzierbar mit f (a) 0. Dann ist auc die Umkerfunktion f 1 in b = f(a) differenzierbar mit (f 1 ) (b) = 1 f (f 1 (b)) = 1 f (a). Beweis. Wir betracten den Differenzenquotienten f 1 (y) f 1 (b) y b = f 1 (y) a y b und müssen zeigen, dass der Limes für y b existiert und den beaupteten Wertannimmt.Seidazu(y n ) n N einefolgeine\{b},diegegenbkonvergiert. Aufgrund der vorausgesetzten Stetigkeit von f 1 konvergiert auc die Folge mit den Gliedern x n := f 1 (y n ) gegen a. Wegen der Bijektivität ist x n a für alle n. Damit ist f 1 (y n ) a lim n y n b x n a = lim n f(x n ) f(a) = ( lim n wobei die recte Seite nac Voraussetzung existiert. ) 1 f(x n ) f(a), x n a

7 Beispiel Die Funktion f 1 : R + R +, x x, ist die Umkerfunktion der Funktion f mit f(x) = x 2 (eingescränkt auf R + ). Deren Ableitung in einem Punkt a ist f (a) = 2a. Nac Satz gilt daer für b R + die Bezieung (f 1 ) 1 (b) = f (f 1 (b)) = 1 2 b = b 2. Die Funktion f 1 : R R, x x 1 3, ist die Umkerfunktion der Funktion f mit f(x) = x 3 Deren Ableitung in a ist f (a) = 3a 2, dies ist für a 0 von 0 verscieden. Nac Satz ist für b 0 somit (f 1 ) 1 (b) = f (f 1 (b)) = 1 3(b 1 3) = b 3. Im Nullpunkt ist f 1 nict differenzierbar. 7 Höere Ableitungen Definition Sei D K offen und eine Funktion. Man sagt, dass f differenzierbar ist, wenn für jeden Punkt a D die Ableitung f (a) von f in a existiert. Die Abbildung f : D K, x f (x), eißt die Ableitung (oder Ableitungsfunktion) von f. Definition Es sei D K offen und eine Funktion. Man sagt, dass f n-mal differenzierbar ist, wenn f (n 1)-mal differenzierbar ist und die (n 1)-te Ableitung f (n 1) differenzierbar ist. Die Ableitung f (n) (z) := (f (n 1) ) (z) nennt man dann die n-te Ableitung von f. Definition Sei D K offen und eine Funktion. Man sagt, dass f n-mal stetig differenzierbar ist, wenn f n-mal differenzierbar ist und die n-te Ableitung f (n) stetig ist.

8

9 Abbildungsverzeicnis Quelle = Tangente2.gif, Autor = Benutzer Loveless auf Commons, Lizenz = CC-by-sa Quelle = Scema Règle produit.png, Autor = Benutzer TibautLienart auf Commons, Lizenz = CC-by-sa Quelle = FunktionUmkerTangente.svg, Autor = Jonatan Steinbuc, Lizenz = CC-by-sa

Mathematik I. Vorlesung 27. Differenzierbare Funktionen. In diesem Abschnitt betrachten wir Funktionen f :D K, wobei D K eine offene Menge in K ist.

Mathematik I. Vorlesung 27. Differenzierbare Funktionen. In diesem Abschnitt betrachten wir Funktionen f :D K, wobei D K eine offene Menge in K ist. Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 27 Differenzierbare Funktionen In diesem Abschnitt betrachten wir Funktionen, wobei D K eine offene Menge in K ist. Definition 27.1. Sei

Mehr

Analysis I. Vorlesung 12. Stetige Funktionen. Den Abstand zwischen zwei reellen (oder komplexen) Zahlen x und x bezeichnen

Analysis I. Vorlesung 12. Stetige Funktionen. Den Abstand zwischen zwei reellen (oder komplexen) Zahlen x und x bezeichnen Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 12 Stetige Funktionen Den Abstand zwischen zwei reellen (oder komplexen) Zahlen x und x bezeichnen wir mit d(x,x ) := x x. Bei einer Funktion

Mehr

Analysis I. Vorlesung 19

Analysis I. Vorlesung 19 Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 19 In dieser Vorlesung untersuchen wir mit Mitteln der Differentialrechnung, wann eine Funktion f: I R, wobei I R ein Intervall ist, (lokale)

Mehr

Eigenschaften stetiger Funktionen Buch Kap. 2.5

Eigenschaften stetiger Funktionen Buch Kap. 2.5 Eigenschaften stetiger Funktionen Buch Kap. 2.5 Satz 2.6: (Nullstellensatz) Ist f : [a, b] R stetig und haben f (a) und f (b) unterschiedliche Vorzeichen, so besitzt f in (a, b) mindestens eine Nullstelle.

Mehr

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a:

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a: Fläcen im Raum Grap und Scnittkurven Im ganzen Artikel bezeicnet D eine Teilmenge des R 2 und eine skalarwertige Funktion in zwei Veränderlicen. Der Grap f : D R 2 R : (x, y) z = f(x, y) G = { (x, y, z)

Mehr

Analysis 1. Torsten Wedhorn. f(x) f( x) x x. (2) Die Funktion f heißt auf D differenzierbar, falls f in jedem Punkt x D differenzierbar ist.

Analysis 1. Torsten Wedhorn. f(x) f( x) x x. (2) Die Funktion f heißt auf D differenzierbar, falls f in jedem Punkt x D differenzierbar ist. Analysis Torsten Wedorn 8 Differentiation (A) Differenzierbare Funktionen (B) Recenregeln für die Ableitung (C) Lokale Extrema und Mittelwertsatz (D) Ableitung und Monotonie (E) Der Satz von l Hospital

Mehr

Ableitung und Mittelwertsätze

Ableitung und Mittelwertsätze Ableitung und Mittelwertsätze Definition. Sei I R ein Intervall und f : I R. ) f eißt differenzierbar an 0 I, wenn der Grenzwert eistiert. f() f( 0 ) lim 0 0 = f ( 0 ) = lim 0 f( 0 + ) f( 0 ) Ist dabei

Mehr

8. Differentiation. f(x) f(x 0 ) =: f,x0 (x) lim

8. Differentiation. f(x) f(x 0 ) =: f,x0 (x) lim 8. Differentiation Sei I R ein Intervall. Eine Funktion f : I R eißt in x 0 I differenzierbar (Steno: diffbar), wenn der für x I, x x 0 erklärte Differenzenquotient f(x) f(x 0 ) =: f,x0 (x) nac x 0 stetig

Mehr

Analysis I. Vorlesung 13. Gleichmäßige Stetigkeit

Analysis I. Vorlesung 13. Gleichmäßige Stetigkeit Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 13 Gleichmäßige Stetigkeit Die Funktion f: R + R +, x 1/x, ist stetig. In jedem Punkt x R + gibt es zu jedem ǫ > 0 ein δ > 0 mit f(u (x,δ))

Mehr

Funktionentheorie A. K. Hulek

Funktionentheorie A. K. Hulek Funktionenteorie A K. Hulek 1 Holomorpe Funktionen Die wictigsten Objekte dieser Vorlesung sind die olomorpen Funktionen. Es sei U C offen, f : U C eine Abbildung und z 0 U ein Punkt. Definition (i Die

Mehr

Analysis I. Vorlesung 20. Konvexe Funktionen

Analysis I. Vorlesung 20. Konvexe Funktionen Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 20 Konvexe Funktionen Eine konvexe Teilmenge. Eine nichtkonvexe Teilmenge. Definition 20.1. Eine Teilmenge T R n heißt konvex, wenn mit

Mehr

Ableitungsfunktionen und Ableitungsregeln

Ableitungsfunktionen und Ableitungsregeln Ableitungsfunktionen und Ableitungsregeln Ableitung einer Funktion f an einer Stelle, Begriff der Ableitungsfunktion Bilden einiger Ableitungsfunktionen Ableitungsregeln und Möglickeiten irer Herleitung

Mehr

(1) gegeben. Für x a (und stetige f ) nähert sich (x,f(x)) dem Punkt (a,f(a)), und die Sekante

(1) gegeben. Für x a (und stetige f ) nähert sich (x,f(x)) dem Punkt (a,f(a)), und die Sekante 88 III. Grundlagen der Differential - und Integralrecnung III. Grundlagen der Differential- und Integralrecnung 8. Differenzierbare Funktionen 88 9. Maima und Minima 93 0. Mittelwertsätze und Anwendungen

Mehr

Ein immer wiederkehrendes Konzept in der Mathematik ist die Zurückführung auf Bekanntes, beziehungsweise auf besonders

Ein immer wiederkehrendes Konzept in der Mathematik ist die Zurückführung auf Bekanntes, beziehungsweise auf besonders Vorlesung 14 Differentialrecnung Ein immer wiedererendes Konzept in der Matemati ist die Zurücfürung auf Beanntes, bezieungsweise auf besonders einface Fälle. Besonders einfac sind lineare Funtionen in

Mehr

Die Ableitung einer Funktion

Die Ableitung einer Funktion Die Ableitung einer Funktion I. Definition der Ableitung Definition. Sei I R ein Intervall und f : I R. 1) f eißt differenzierbar an x 0 I, wenn der Grenzwert f(x) f(x 0 ) lim = f (x 0 ) x x 0 x x 0 existiert.

Mehr

3.2 Polarkoordinaten und exponentielle Darstellung

3.2 Polarkoordinaten und exponentielle Darstellung 42 3.2 Polarkoordinaten und exponentielle Darstellung Ein Punkt z = a + bi der Gaußscen Zalenebene ist durc seine kartesiscen Koordinaten a und b eindeutig festgelegt. Man kann jedoc auc zwei andere Grössen

Mehr

Mathematik I. Vorlesung 20 Ein metrischer Raum ist dadurch ausgezeichnet, dass es in ihm eine Abstandsfunktion gibt, und dass dadurch zwei Punkte

Mathematik I. Vorlesung 20 Ein metrischer Raum ist dadurch ausgezeichnet, dass es in ihm eine Abstandsfunktion gibt, und dass dadurch zwei Punkte Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 20 Ein metrischer Raum ist dadurch ausgezeichnet, dass es in ihm eine Abstandsfunktion gibt, und dass dadurch zwei Punkte näher zueinander

Mehr

Analysis I. 8. Beispielklausur mit Lösungen

Analysis I. 8. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 8. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Eine Ordnungsrelation auf einer Menge I. (2)

Mehr

5. Übungsblatt zur Analysis II

5. Übungsblatt zur Analysis II Facbereic Matematik Prof. Dr. R. Farwig C. Komo J. Prasiswa R. Sculz SS 009 8.05.009 5. Übungsblatt zur Analysis II Gruppenübung Aufgabe G (Differenzierbarkeit Gegeben sei die Funktion f : R R mit f(x,

Mehr

5 Differenzialrechnung für Funktionen einer Variablen

5 Differenzialrechnung für Funktionen einer Variablen 5 Differenzialrecnung für Funktionen einer Variablen Ist f eine ökonomisce Funktion, so ist oft wictig zu wissen, wie sic die Funktion bei kleinen Änderungen verält. Bescreibt etwa f einen Wacstumsprozess,

Mehr

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient Differenzenquotient Sei f : R R eine Funktion. Der Quotient Kapitel 7 Differentialrecnung f f 0 + f 0 f f 0 0 eißt Differenzenquotient an der Stelle 0. f, f Sekante 0, f 0 f 0 Josef Leydold Matematik für

Mehr

4 Differenzierbarkeit

4 Differenzierbarkeit 4 Differenzierbarkeit 16 4 Differenzierbarkeit Wir wollen nun Differenzierbarkeit von Funktionen mehrerer Veränderlicher definieren Dazu führen wir zunächst den Begriff der partiellen Ableitung ein Definition

Mehr

Vorkurs Mathematik Herbst Skript Teil VI

Vorkurs Mathematik Herbst Skript Teil VI Vorkurs Matematik Herbst 2009 M. Carl E. Bönecke Skript Teil VI. Stetigkeit Definition. Eine Funktion f : R R eißt stetig im Punkt p, wenn für alle konvergente Folgen x : N R, n x n mit gleicen Grenzwert

Mehr

1 Differentiation im Komplexen

1 Differentiation im Komplexen 1 Differentiation im Komplexen 1.1 Definition und einface Eigenscaften Die folgende Definition der komplexen Differenzierbarkeit mittels der komplexen Division ist eine folgenreice Verscärfung der Differentiation

Mehr

Repetitorium Analysis I für Physiker

Repetitorium Analysis I für Physiker Micael Scrapp Ubungsblatt 3 Lösungen Tecnisce Universität Müncen Repetitorium Analysis I für Pysiker Analysis I Aufgabe Wir definieren zunäcst die Funktion g(t) = 2 0 f(t)t 2 dt Die Menge B = g (], 5[)ist

Mehr

Mathematik I. k=0 c k(x a) k bilden die Teilpolynome n k=0 c k(x a) k polynomiale Approximationen für die Funktion f

Mathematik I. k=0 c k(x a) k bilden die Teilpolynome n k=0 c k(x a) k polynomiale Approximationen für die Funktion f Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 30 Zu einer konvergenten Potenzreihe f(x) = c k(x a) k bilden die Teilpolynome n c k(x a) k polynomiale Approximationen für die Funktion

Mehr

Übungsaufgaben zur Kursarbeit

Übungsaufgaben zur Kursarbeit Übungsaufgaben zur Kursarbeit I) Tema Funktionen. Gib jeweils die maximale Definitionsmenge der Funktion an f(x) = (x ) D f = R (x) = x D = {x R /x } g(x) = (x ) D = {x R /x } g k(x) = x D = {x R /x >

Mehr

Vorlesung Analysis I WS 07/08

Vorlesung Analysis I WS 07/08 Vorlesung Analysis I WS 07/08 Erich Ossa Vorläufige Version 07/12/04 Ausdruck 8. Januar 2008 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Elementare Logik.................................. 1 1.1.A Aussagenlogik................................

Mehr

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel VI. Differenzierbare Funktionen in einer Veränderlichen

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel VI. Differenzierbare Funktionen in einer Veränderlichen Version 01.02. Januar 2007 MIA Analysis einer reellen Veränderlichen WS 06/07 Kurzfassung Martin Schottenloher Kapitel VI. Differenzierbare Funktionen in einer Veränderlichen In diesem Kapitel werden differenzierbare

Mehr

Analysis II. Vorlesung 35. Der Abschluss in einem metrischen Raum

Analysis II. Vorlesung 35. Der Abschluss in einem metrischen Raum Prof. Dr. H. Brenner Osnabrück SS 2015 Analysis II Vorlesung 35 Der Abschluss in einem metrischen Raum Definition 35.1. Sei (M,d) ein metrischer Raum und T M eine Teilmenge. Ein Punkt a M heißt Berührpunkt

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 6. Übung: Woche vom bis

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 6. Übung: Woche vom bis Übungsaufgaben 6. Übung: Woche vom 17. 11. bis 21. 11. 2014 Heft Ü1: 9.1 (d,n,t); 9.2 (b,h,i); 9.3 (b,e); 9.4 (b,e,f) Übungsverlegung (einmalig!): Gruppe VIW 02 nach Mo., 5. DS; WIL C 204 (für Mittwoch,

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 17 Potenzreihen Definition 17.1. Es sei (c n ) n N eine Folge von reellen Zahlen und x eine weitere reelle Zahl. Dann heißt

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit A Analysis, Woche 9 Mehrdimensionale Differentialrechnung I A 9. Differenzierbarkeit A3 =. (9.) Definition 9. Sei U R m offen, f : U R n eine Funktion und a R m. Die Funktion f heißt differenzierbar in

Mehr

Á 5. Differenzierbarkeit

Á 5. Differenzierbarkeit Á. Differenzierbarkeit Materialien zur Vorlesung Elementare Analysis, Wintersemester 3 4 Materialien zur Vorlesung Elementare Analysis, Wintersemester 3 4 . Differenzierbarkeit Zur Berecnung der Steigung

Mehr

HM I Tutorium 9. Lucas Kunz. 19. Dezember 2018

HM I Tutorium 9. Lucas Kunz. 19. Dezember 2018 HM I Tutorium 9 Lucas Kunz 19. Dezember 2018 Inhaltsverzeichnis 1 Theorie 2 1.1 Definition der Ableitung............................ 2 1.2 Ableitungsregeln................................ 2 1.2.1 Linearität................................

Mehr

Produktregel (Ableitung von f g)

Produktregel (Ableitung von f g) Produktregel (Ableitung von f g) f f g 0 f 0 g g 0 Wir aben die Hoffnung, dass die Ableitung von f g mit Hilfe der Ableitungen von f und g ermittelt werden kann. f ( 0 ) = lim 0 f( 0 +) f( 0 ) g ( 0 )

Mehr

Analysis I. 8. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 8. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 8. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching April 9, 207 Grenzwerte Korollar 5.2.2 (Bernoulli-de l Hôpital) Seien f, g : [a, b] R stetig und differenzierbar

Mehr

3 Differenzierbarkeit und Ableitung (Differentialrechnung I)

3 Differenzierbarkeit und Ableitung (Differentialrechnung I) 3 Differenzierbarkeit und Ableitung (Differentialrechnung I) 31 Differenzierbarkeit und Ableitung von Funktionen einer Variablen Definition 31 Es sei M R, f : M R und a M Wenn der Funktionsgrenzwert f(x)

Mehr

Schülerbuchseite 8 11

Schülerbuchseite 8 11 Scülerbucseite 8 I Sclüsselkonzept: Ableitung Funktionen Seite 8 Die andere Person muss nict notwendig dieselbe Strecke gefaren sein, nur weil sie denselben Farpreis bezalt at. Es gibt versciedene Verbindungen,

Mehr

= (Differenzenquotient).

= (Differenzenquotient). Micael Bulmann Matematik > Analysis > Ableitungen > Änderungsrate Von der mittleren zur momentanen Änderungsrate Für zwei versciedene Punkte P( 1 y 1 und Q( y auf der Zalenebene ergibt sic die Steigung

Mehr

Analysis I. Vorlesung 13. Der Zwischenwertsatz

Analysis I. Vorlesung 13. Der Zwischenwertsatz Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 13 Der Zwischenwertsatz Wir interessieren uns dafür, was unter einer stetigen Abbildung f: R R mit einem Intervall passiert. Der Zwischenwertsatz

Mehr

Wir halten in einem s t Diagramm das Anfahren eines Autos fest. Wir nehmen an, dass zwischen Weg und Zeit der einfache Zusammenhang

Wir halten in einem s t Diagramm das Anfahren eines Autos fest. Wir nehmen an, dass zwischen Weg und Zeit der einfache Zusammenhang . Die Momentangeschwindigkeit eines Autos Wir halten in einem s t Diagramm das Anfahren eines Autos fest. Wir nehmen an, dass zwischen Weg und Zeit der einfache Zusammenhang s(t) = t gilt. Im s t Diagramm

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel IV SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 4 Injektive und surjektive Abbildungen Definition 4.1. Es seien L und M Mengen und es sei eine Abbildung. Dann heißt F F

Mehr

16. Differentialquotient, Mittelwertsatz

16. Differentialquotient, Mittelwertsatz 16. Differentialquotient, Mittelwertsatz Gegeben sei eine stetige Funktion f : R R. Wir suchen die Gleichung der Tangente t an die Kurve y = f(x) im Punkt (x, f(x ), x R. Das Problem dabei ist, dass vorderhand

Mehr

Kapitel 6 Folgen und Stetigkeit

Kapitel 6 Folgen und Stetigkeit Kapitel 6 Folgen und Stetigkeit Mathematischer Vorkurs TU Dortmund Seite 76 / 226 Definition 6. (Zahlenfolgen) Eine Zahlenfolge (oder kurz: Folge) ist eine Funktion f : 0!. Statt f(n) schreiben wir x n

Mehr

Analysis II. Vorlesung 37. Differenzierbare Kurven

Analysis II. Vorlesung 37. Differenzierbare Kurven Prof. Dr. H. Brenner Osnabrück SS 2015 Analysis II Vorlesung 37 Differenzierbare Kurven Eine Animation des Graphen der trigonometrischen Parametrisierung des Einheitskreises. Die grünen Punkte sind Punkte

Mehr

Differenzierbarkeit. Wir betrachten zuerst die Differenzierbarkeit reellwertiger Funktionen.

Differenzierbarkeit. Wir betrachten zuerst die Differenzierbarkeit reellwertiger Funktionen. Differenzierbarkeit Wir betracten zuerst die Differenzierbarkeit reellwertiger Funktionen. Definition. Sei f : R n R und x 0 D(f) ein innerer Punkt. Dann eißt f differenzierbar an x 0, wenn es einen Vektor

Mehr

differenzierbare Funktionen

differenzierbare Funktionen Kapitel IV Differenzierbare Funktionen 18 Differenzierbarkeit und Rechenregeln für differenzierbare Funktionen 19 Mittelwertsätze der Differentialrechnung mit Anwendungen 20 Gleichmäßige Konvergenz von

Mehr

Kapitel 3: Differentiation

Kapitel 3: Differentiation 7 ABBILDUNGEN UND KOORDINATENFUNKTIONEN 35 Kapitel 3: Differentiation Wir beginnen mit einigen Vorbetrachtungen. In diesem Kapitel soll die Differentialrechnung für Funktionen von n reellen Veränderlichen

Mehr

Thema 5 Differentiation

Thema 5 Differentiation Thema 5 Differentiation Definition 1 Sei f : D R. Dann ist f im Punkt x 0 differenzierbar, falls f(x) f(x 0 ) x x 0 x x 0 auf der Menge D \ {x 0 } existiert. Der Limes ist dann die Ableitung von f im Punkt

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 16 Der Zwischenwertsatz Wir interessieren uns dafür, was unter einer stetigen Abbildung f :R R mit einem Intervall passiert.

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. Dezember 2011)

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

Brückenkurs Rechentechniken

Brückenkurs Rechentechniken Brückenkurs Rechentechniken Dr. Jörg Horst Technische Universität Dortmund Fakultät für Mathematik SS 2014 1 Vollständige Induktion Vollständige Induktion 2 Funktionenfolgen Punktweise Konvergenz Gleichmäßige

Mehr

Der Hauptsatz der Differential und Integralrechnung

Der Hauptsatz der Differential und Integralrechnung Der Hauptsatz der Differential und Integralrecnung Micael Karkulik, Stepan Scmeissl Präsentation für Logik als Arbeitssprace ê Präsentationstecnik 2 Inalt: 1.0 Zusammenfassung 2.0 Einleitung 3.0 Der Hauptsatz

Mehr

Vorkurs Mathematik. Vorlesung 4. Abbildungen

Vorkurs Mathematik. Vorlesung 4. Abbildungen Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Vorkurs Mathematik Vorlesung 4 Abbildungen Definition 4.1. Seien L und M zwei Mengen. Eine Abbildung F von L nach M ist dadurch gegeben, dass jedem Element der

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen Stetigkeit von Funktionen Definition. Es sei D ein Intervall oder D = R, x D, und f : D R eine Funktion. Wir sagen f ist stetig wenn für alle Folgen (x n ) n in D mit Grenzwert x auch die Folge der Funktionswerte

Mehr

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA Mittwoc: Ableiten, Kurvendiskussionen, Optimieren, Folgen und Reien Betracte auf einem Hügel einen Weg, dessen Seitenansict

Mehr

Herleitungen von elementaren Ableitungsregeln

Herleitungen von elementaren Ableitungsregeln Herleitungen von elementaren Ableitungsregeln by Nictnäerdefiniert 5..003-6..003 Index. Differenzenquotient. Faktorregel 3. Konstantenregel 4. Summenregel 5. Produktregel 6. Quotientenregel 7. Potenzregel

Mehr

Vorlesung für Schüler

Vorlesung für Schüler Universität Siegen Facbereic Matematik Vorlesung für Scüler 1.12.2 Emmy-Noeter-Campus Prof. Dr. H. J. Reinardt Computerlösungen dynamiscer Probleme Zusammenfassung Es werden zunäcst einface dynamisce Probleme

Mehr

f(f 1 (w)) = w f 1 (f(z)) = z Abbildung 21: Eine Funktion und ihre Umkehrfunktion

f(f 1 (w)) = w f 1 (f(z)) = z Abbildung 21: Eine Funktion und ihre Umkehrfunktion Mathematik für Naturwissenschaftler I 2.8 2.8 Umkehrfunktionen 2.8. Definition Sei f eine Funktion. Eine Funktion f heißt Umkehrfunktion, wenn f (w) = z für w = f(z). f darf nicht mit f(z) = (f(z)) verwechselt

Mehr

Kapitel 7 Differentialrechnung

Kapitel 7 Differentialrechnung Kapitel 7 Differentialrechnung 245 Kapitel 7.1 Grundbegriffe 246 Der Differentialquotient und das Integral sind die Kernbegriffe der Analysis. Ableitung und Integralbegriff werden durch gewisse Grenzwerte

Mehr

Lösungen zu delta 10 H

Lösungen zu delta 10 H Kann ic das noc? Lösungen zu den Seiten 6 und 7. a) T () = ( ) + ( + ) + = = + + 4 + 4 + + = = + + 6 b) T () = ( + a) a(a + ) = = + a + a a a = = c) T () = ( ) ( + ) ( ) = = 4 + 9 6 4 = = d) T 4 () = (

Mehr

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit 10 Aus der Analysis Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit Zahlenfolgen Ein unendliche Folge reeller Zahlen heißt Zahlenfolge. Im Beispiel 2, 3, 2, 2 2, 2

Mehr

Analysis I. 3. Beispielklausur mit Lösungen

Analysis I. 3. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 3. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine Abbildung F von einer Menge L in eine

Mehr

Analysis II. Vorlesung 44. Partielle Ableitungen

Analysis II. Vorlesung 44. Partielle Ableitungen Prof. Dr. H. Brenner Osnabrück SS 2015 Analysis II Vorlesung 44 Sei f: K n K eine durch Partielle Ableitungen (x 1,...,x n ) f(x 1,...,x n ) gegebene Abbildung. Betrachtet man für einen fixierten Index

Mehr

Ist die Funktion f auf dem Intervall a; b definiert, dann nennt man. f(b) f(a) b a

Ist die Funktion f auf dem Intervall a; b definiert, dann nennt man. f(b) f(a) b a . Einführung in die Differentialrechnung ==================================================================. Differenzenquotient und mittlere Änderungsrate ------------------------------------------------------------------------------------------------------------------

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Vorlesung Mathematik für Ingenieure (Wintersemester 2008/09) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 9. November 2008) Die

Mehr

Mathematik für Chemiker I

Mathematik für Chemiker I Universität D U I S B U R G E S S E N Campus Essen, Matematik PD Dr. L. Strüngmann WS 007/08 Übungsmaterial sowie andere Informationen zur Veranstaltung unter: ttp://www.uni-due.de/algebra-logic/struengmann.stml

Mehr

5.2. ABLEITUNGEN BEKANNTER FUNKTIONEN 105. f(x) = O(g(x)) für x x 0, f(x) < M g(x). f(x) g(x)

5.2. ABLEITUNGEN BEKANNTER FUNKTIONEN 105. f(x) = O(g(x)) für x x 0, f(x) < M g(x). f(x) g(x) 5.2. ABLEITUNGEN BEKANNTER FUNKTIONEN 105 Definition 5.2.4 (Landau Symbole (Fortsetzung)) Wir sagen f(x) = O(g(x)) für x falls es ein K > a ein M R + gibt, so dass für alle x > K gilt f(x) < M g(x), f(x)

Mehr

7.2. Ableitungen und lineare Approximation

7.2. Ableitungen und lineare Approximation 7.. Ableitungen und lineare Approximation Eindimensionale Ableitungen und Differentialquotienten einer Funktion bekommt man bekanntlic als Limes von Differenzenquotienten f ( a) = f ( a + ) f( a ) = x

Mehr

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 07 Dr. Anreas Steiger Lösung - Serie 3. MC-Aufgaben (Online-Abgabe). Es sei ie Funktion f : [0, ) [0, ) efiniert urc f() = ln( + ), wobei er Logaritmus ln zur Basis e ist. Welce

Mehr

Übersicht. 1. Motivation. 2. Grundlagen

Übersicht. 1. Motivation. 2. Grundlagen Übersicht 1. Motivation 2. Grundlagen 3. Analysis 3.1 Folgen, Reihen, Zinsen 3.2 Funktionen 3.3 Differentialrechnung 3.4 Extremwertbestimmung 3.5 Nichtlineare Gleichungen 3.6 Funktionen mehrerer Variabler

Mehr

Differential- und Integralrechnung. Biostatistik, WS 2010/2011. Inhalt. Nochmal: Exponentielles Wachstum. Matthias Birkner

Differential- und Integralrechnung. Biostatistik, WS 2010/2011. Inhalt. Nochmal: Exponentielles Wachstum. Matthias Birkner Biostatistik, WS 200/20 Differential- und Integralrecnung Mattias Birkner ttp://www.matematik.uni-mainz.de/~birkner/biostatistik0/ 2..200 Inalt Ableitung Änderung und Steigung Recenregeln Anmerkungen 2

Mehr

Musterlösung zu Übungsblatt 1

Musterlösung zu Übungsblatt 1 Prof. R. Pandaripande J. Scmitt, C. Scießl Funktionenteorie 23. September 16 HS 2016 Musterlösung zu Übungsblatt 1 Aufgabe 1. Sei F ein Körper, der R als einen Unterkörper entält. Das eisst R ist eine

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

Differenzierbarkeit im R n. Analysis III October 30, / 94

Differenzierbarkeit im R n. Analysis III October 30, / 94 Differenzierbarkeit im R n Analysis III October 30, 2018 36 / 94 Partielle Ableitungen Buch Kap. 5.5 Definition 5.23: (partielle Differenzierbarkeit) Sei die Funktion f : D R, D R n, wobei D eine offene

Mehr

25. Differenzierbarkeit im Mehrdimensionalen

25. Differenzierbarkeit im Mehrdimensionalen 25 Differenzierbarkeit im Mehrdimensionalen 317 25 Differenzierbarkeit im Mehrdimensionalen Wie im eindimensionalen Fall in Kapitel 10 wollen wir uns nach der Stetigkeit von Abbildungen jetzt mit der Differenzierbarkeit

Mehr

Mathematik für Anwender. Testklausur mit Lösungen

Mathematik für Anwender. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 4. Januar 0 Prof. Dr. H. Brenner Mathematik für Anwender Testklausur mit en Dauer: Zwei volle Stunden + 0 Minuten Orientierung, in denen noch nicht geschrieben werden

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

Analysis II. Vorlesung 47

Analysis II. Vorlesung 47 Prof. Dr. H. Brenner Osnabrück SS 2014 Analysis II Zu einer reellwertigen Funktion Vorlesung 47 interessieren wir uns wie schon bei einem eindimensionalen Definitionsbereich für die Extrema, also Maxima

Mehr

6.1 Die Ableitung einer reellwertigen Funktion

6.1 Die Ableitung einer reellwertigen Funktion 6 Differenzierbarkeit In diesem Kapitel sind alle Funktionen, sofern nicht anders angegeben, reellwertige Funktionen, die auf Intervallen definiert sind. Es bezeichnet I in diesem Kapitel stets ein Intervall.

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Differentialrechnung

Differentialrechnung Katharina Brazda 5. März 007 Inhaltsverzeichnis Motivation. Das Tangentenproblem................................... Das Problem der Momentangeschwindigkeit.......................3 Differenzenquotient und

Mehr

x 1 keinen rechtsseitigen Grenzwert x 0+ besitzen. (Analog existiert der linksseitige Grenzwert nicht.)

x 1 keinen rechtsseitigen Grenzwert x 0+ besitzen. (Analog existiert der linksseitige Grenzwert nicht.) Differentialrechnung 1 Grenzwerte Gegeben sei ein Intervall I R, a I {, } und f : I\{a} R. Die Funktion f kann sehr wohl auch an der Stelle x = a erklärt sein, wir wollen aber nur wissen wie sich die Funktion

Mehr

Analysis: Ableitung, Änderungsrate,Tangente 1 Analysis Ableitung, Änderungsrate, Tangente Teil 1 Gymnasium Klasse 10

Analysis: Ableitung, Änderungsrate,Tangente 1 Analysis Ableitung, Änderungsrate, Tangente Teil 1 Gymnasium Klasse 10 www.mate-aufgaben.com Analysis: Ableitung, Änderungsrate,Tangente Analysis Ableitung, Änderungsrate, Tangente Teil Gymnasium Klasse 0 Alexander Scwarz www.mate-aufgaben.com April 0 www.mate-aufgaben.com

Mehr

Á 4. Differenzierbarkeit, Stetigkeit

Á 4. Differenzierbarkeit, Stetigkeit Á 4. Differenzierbarkeit, Stetigkeit Historisc ist der Begriff der Differenzierbarkeit lange vor dem der Stetigkeit entwickelt worden. Untersciedlice Definitionen der Differenzierbarkeit werden von Gottfried

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Differenzierbarkeit. Klaus-R. Loeffler. 1 Hinführung, Definition und unmittelbare Folgerungen

Differenzierbarkeit. Klaus-R. Loeffler. 1 Hinführung, Definition und unmittelbare Folgerungen Differenzierbarkeit Klaus-R. Loeffler Inhaltsverzeichnis 1 Hinführung, Definition und unmittelbare Folgerungen 1 1.1 Hinführung.......................................... 1 1.2 Definition der Differenzierbarkeit..............................

Mehr

Differenzialrechnung Was du nach den Ferien kannst! Klasse 10

Differenzialrechnung Was du nach den Ferien kannst! Klasse 10 Differenzialrecnung Was du nac den Ferien kannst! Klasse 10 Zeicne die Tangenten an den Stellen x=-4, x=-1 und x=3 an den abgebildeten Funktionsgrap, und bestimme die Tangentengleicung. Zeicne die Sekanten

Mehr

Mathematik 1 Bachelorstudiengang Maschinenbau

Mathematik 1 Bachelorstudiengang Maschinenbau Mathematik 1 Bachelorstudiengang Maschinenbau Prof. Dr. Stefan Etschberger Hochschule Augsburg Sommersemester 2012 7. Differentialrechnung einer Veränderlichen 7.2. Differentialquotient und Ableitung

Mehr

19.2 Mittelwertsatz der Differentialrechnung

19.2 Mittelwertsatz der Differentialrechnung 19 Mittelwertsätze der Differentialrechnung mit Anwendungen 19.1 Satz von Rolle 19.2 Mittelwertsatz der Differentialrechnung 19.4 Globaler Wachstumssatz 19.6 Verallgemeinerter Mittelwertsatz der Differentialrechnung

Mehr

Analysis I. 1. Beispielklausur mit Lösungen

Analysis I. 1. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Das Bild einer Abbildung F: L M. (2) Eine Cauchy-Folge

Mehr

Mathematik LK 11 M2, AB 13 Funktionsuntersuchungen Lösung h h

Mathematik LK 11 M2, AB 13 Funktionsuntersuchungen Lösung h h Matematik LK 11 M2, AB 1 Funktionsuntersucungen Lösung 14.0.2016 Aufgabe 1: Gegeben ist die Funktion f (x)=x x 2 1.1 Berecne die ersten drei Ableitungsfunktionen der Funktion f mit Hilfe des Differentialquotienten,

Mehr