3.2 Polarkoordinaten und exponentielle Darstellung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "3.2 Polarkoordinaten und exponentielle Darstellung"

Transkript

1 Polarkoordinaten und exponentielle Darstellung Ein Punkt z = a + bi der Gaußscen Zalenebene ist durc seine kartesiscen Koordinaten a und b eindeutig festgelegt. Man kann jedoc auc zwei andere Grössen zur Bescreibung von z wälen. Die Grössen r und ϕ nennt man Polarkoordinaten des Punktes z C. Die reelle Zal r ist der Abstand von z zum Ursprung in der Gaußscen Zalenebene und der Winkel ϕ zwiscen positiver x-acse und z nennt man das Argument von z. Das Argument von z ist eindeutigbestimmt, falls0 ϕ < 2π verlangtwird. EinekomplexeZalkannalsoentwederin kartesiscen Koordinaten (a, b) oder in Polarkoordinaten (r, ϕ) eindeutig bescrieben werden. Wie ängen die Polar- und die kartesiscen Koordinaten zusammen? Da r der Abstand des Punktes z = a+bi zum Urpsrung ist, gilt r = z = a 2 +b 2. z Damit liegt die komplexe Zal r auf dem Eineitskreis, denn z r = z r = 1. Der Realund der Imaginärteil von z sind demnac gegeben durc cosϕ, bzw. sinϕ. Das eisst, z r = cosϕ+isinϕ, und so z = r(cosϕ+isinϕ). Diese Darstellung nennt man Polarform der komplexen Zal z. Wie recnet man nun von den einen in die anderen Koordinaten um? (r,ϕ) (a,b): Seien r,ϕ die Polarkoordinanten von z, dann gilt z = a+bi mit a = rcosϕ und b = rsinϕ. (a,b) (r,ϕ): Sei z = a+bi, dann gilt r = z = a 2 +b 2 cosϕ = a r, sinϕ = b r

2 43 Mit Hilfe der Exponentialfunktion kann die Polarform einer komplexen Zal noc eleganter gescrieben werden. Dazu erweitern wir die Exponentialfunktion auf komplexe Zalen. Tatsäclic ist für jede komplexe Zal z die Potenzreie e z = k=0 wieder eine komplexe Zal. Wir aben also eine Funktion e z : C C. Wie im Reellen gilt e z+w = e z e w für alle z,w C und weiter ist e z = e z für alle z C. Wir betracten nun e z für die rein imaginäre Zal z = iϕ, d.. für ϕ R. Es gilt z k k! e iϕ 2 = e iϕ e iϕ = e iϕ e iϕ = e 0 = 1 undso e iϕ = 1. Dies bedeutet, dass e iϕ auf dem Eineitskreis in der Gaußscen Zalenebene liegt. Nun kann man zeigen, dass ϕ gerade das Argument (im Bogenmass) der komplexen Zal e iϕ ist. Es folgt, dass der Realteil von e iϕ gleic cosϕ und der Imaginärteil von e iϕ gleic sinϕ ist. Das eisst, es gilt die Eulersce Identität: e iϕ = cosϕ+isinϕ Als Spezialfall (ϕ = π) ergibt sic die wunderscöne Bezieung e iπ +1 = 0 Für z = r(cosϕ+isinϕ) eralten wir nun aus der Eulerscen Identität die exponentielle Darstellung z = r e iϕ, wobei r der Betrag und ϕ das Argument von z sind. Beispiel

3 44 Die Multiplikation und Division von komplexen Zalen in dieser Darstellung sind nun ganz einfac zu recnen und erst noc geometrisc interpretierbar! Satz 3.2 Seien z 1 = r 1 e iϕ 1 und z 2 = r 2 e iϕ 2 zwei komplexe Zalen. Dann gilt z 1 z 2 = r 1 r 2 e i(ϕ 1+ϕ 2 ) und z 1 z 2 = r 1 r 2 e i(ϕ 1 ϕ 2 ) Beispiel Die Multiplikation mit i entsprict also einer Dreung um 90 um den Ursprung der GaußscenZalenebene. AllgemeinentsprictdieMultiplikationmiteinerkomplexenZalz = re iϕ einer Drestreckung (mit dem Streckfaktor r und dem Drewinkel ϕ). 3.3 Potenzen und Wurzeln Potenzen komplexer Zalen werden wie im Reellen definiert, das eisst z 0 = 1, z 1 = z, z n = z n 1 z, und z n = 1 z n für alle n N. In der exponentiellen Darstellung ist das Potenzieren einfac: z = re iϕ = z n = r n e inϕ In Polarkoordinaten erält man z n = (r(cosϕ+isinϕ)) n = r n (cos(nϕ)+isin(nϕ). Es gilt somit die Formel von de Moivre (cosϕ+isinϕ) n = cos(nϕ)+isin(nϕ) für n Z.

4 45 Was sind nun die Lösungen der speziellen Gleicung z n = 1? Diese Gleicung at genau n versciedene (komplexe) Lösungen, nämlic ( ) ( ) 2πk 2πk z k = e i2πk n = cos +isin, k = 0,1,...,n 1. n n Die Zalen z k (k = 0,1,...,n 1) nennt man n-te Eineitswurzeln. In der Gaußscen Zalenebene liegen sie genau auf den Ecken des dem Eineitskreis einbescriebenen regelmässigen n-ecks, wobei die eine Ecke bei z = 1 liegt. Beispiele 1. z 4 = z 6 = 1. Die Lösungen sind z k = e iπ 3 k für k = 0,1,...,5. Nun können wir auc alle Lösungen der allgemeinen Gleicung z n = w, für w in C, bescreiben. Ist w = re iϕ, dann ist z 0 = n re iϕ n eine Lösung dieser Gleicung. Man erält alle n Lösungen, indem man z 0 mit allen n-ten Eineitswurzeln multipliziert. Das eisst, die Lösungen der Gleicung z n = w sind z 0,z 0 ζ,z 0 ζ 2,...,z 0 ζ n 1, wobei ζ = e i2π n. Beispiel Die Gleicung z 3 = 2 at die Lösungen 3 2, 3 2e i 2π 3, 3 2e i 4π 3 (d.. z 0 = 3 2 und ζ = e i2π 3 ).

5 46 4 Differentiation Alle elementaren Funktionen (und damit auc Summen, Produkte und Quotienten davon) sind in irem Definitionsbereic nict nur stetig, sondern sogar differenzierbar. Mit Hilfe der Ableitung können wir ire Maxima und Minima bestimmen, die Nullstellen näerungsweise berecnen sowie kompliziertere Funktionen durc einfacere Funktionen bescreiben. 4.1 Die Ableitung einer Funktion Der Begriff der Ableitung ist aus einem praktiscen Problem entstanden. Nemen wir an, wir faren mit dem Auto von Basel nac Cur. Für die rund 200km lange Strecke benötigen wir 2,5 Stunden. Wie scnell sind wir gefaren, d.. wie gross war unsere Gescwindigkeit? Nun, Gescwindigkeit ist gleic Weg durc Zeit, genauer: zurückgelegter Weg durc verstricene Zeitspanne. Für unsere Gescwindigkeit folgt also Gescwindigkeit = 200km 2,5 = 80 km. Dies ist unsere mittlere oder durcscnittlice Gescwindigkeit. Sei allgemein s(t) der zurückgelegte Weg zum Zeitpunkt t. Geen wir vom zurückgelegten Weg s(t 0 ) zu einem Zeitpunkt t 0 aus, dann können wir die mittlere Gescwindigkeit wärend der folgenden Zeitspanne (d.. von t 0 bis t 0 +) berecnen als s(t 0 +) s(t 0 ) Nun wollen wir aber wissen, wie gross unsere Gescwindigkeit zu einem bestimmten Zeitpunkt war. Wie kann die momentane Gescwindigkeit zu einem genauen Zeitpunkt t 0 berecnet werden? Die Idee ist, die momentane Gescwindigkeit durc mittlere Gescwindigkeiten anzunäern. Beispiel Nemen wir an, wir aben bei der Raststätte Heidiland eine Pause eingelegt. Der anscliessende Anfarvorgang kann durc die Wegfunktion s(t) = t 2 bescrieben werden. Wie gross ist dann unsere Gescwindigkeit nac genau 3 Sekunden nac dem Anfaren? Wir betracten also den Zeitpunkt t 0 = 3 und lassen die Zeitspanne immer kleiner werden. Zeitspanne 1 0, 1 0, 01 0, 001. mittlere Gescwindigkeit s(t 0 +) s(t 0 ) 7 6,1 6,01 6,001 Wir erkennen, dass sic für 0 die momentane Gescwindigkeit 6 m s näert. Allgemein berecnet sic die momentane Gescwindigkeit zur Zeit t 0 durc s(t 0 +) s(t 0 ) lim. 0 Diese Idee der Näerung get auf Isaac Newton ( ) zurück. Doc damals kannte man noc keine präzise Definition des Grenzwerts. Diese wurde erst im 19. Jarundert eingefürt. Heute nennen wir diesen Grenzwert die Ableitung der Funktion s(t).

6 47 Definition Sei f : D R eine reelle Funktion. Dann eisst f an der Stelle x 0 D differenzierbar, wenn der Grenzwert lim 0 existiert. Er eisst Ableitung (oder Differentialquotient) von f in x 0 und wird mit f (x 0 ) bezeicnet. Der Ausdruck wird Differenzenquotient genannt. Andere Notationen: Für die Ableitung sind auc die folgenden Screibweisen üblic: f (x 0 ) = df dx (x 0) = df. dx x=x0 Ist die (Weg-)Funktion s(t) abängig von der Zeit t, dann wird speziell in der Pysik die Ableitung mit ṡ(t) bezeicnet. Anstelle von ist auc x üblic, bzw. x = x 0 + x. Damit ist = f(x 0 + x) f(x 0 ) = f(x) f(x 0 ) = f und man erält für f (x 0 ) die äquivalenten Screibweisen f(x 0 + x) f(x 0 ) f(x) f(x 0 ) f lim = lim = lim = lim 0 x 0 x x x 0 x x 0 x 0 x. Geometrisce Deutung Der Differenzenquotient ist gleic der Steigung der Sekante durc die Punkte P = (x 0,f(x 0 )) und Q = (x 0 +,f(x 0 +)) auf dem Grapen von f. Für 0 (d.. lässt man Q gegen P wandern) get die Sekante in die Tangente an den Grapen von f in x 0 über. Die Ableitung f (x 0 ) bescreibt also die Steigung der Tangente an den Funktionsgrapen an der Stelle x 0 (was auc als Steigung des Funktionsgrapen in x 0 bezeicnet wird).

7 48 Auf diese Interpretation der Ableitung stiess unabängig von Newton Gottfried Wilelm Leibniz ( ), als er sic fragte, wie man die Steigung einer Kurve (insbesondere eines Funktionsgrapen) in einem Punkt erklären kann. Definition Eine Funktion f : D R eisst differenzierbar (in D), falls f in allen x D differenzierbar ist. Die Funktion f : D R, die jedem x D die Zal f (x) zuordnet, eisst Ableitung von f. Anscaulic geseen ist eine Funktion differenzierbar, wenn sic an jedem Punkt des Grapen in eindeutiger Weise eine Tangente anlegen lässt. Eine Funktion ist also insbesondere an einer Stelle nict differenzierbar, wenn sie dort einen Sprung mact, eine Polstelle at oder oszilliert; das eisst, wenn sie dort nict stetig ist. Es kann aber auc Stellen geben, an welcen die Funktion wol stetig ist, jedoc nict differenzierbar, beispielsweise wenn die Funktion einen Knick mact. x 0 x 0 x 0 unstetig, nict differenzierbar in x 0 stetig, stetig, nict differenzierbar differenzierbar in x 0 in x 0 Beispiele 1. Sei f(x) = c eine konstante Funktion. Dann ist = c c = 0 und damit f (x 0 ) = 0 für alle x 0 R. 2. Sei f(x) = x 2.

8 49 3. Sei f(x) = x = x 1 2. Indem man den Differenzenquotienten gescickt erweitert, erält man Es folgt = ( x 0 + x 0 ) ( x 0 ++ x 0 ) ( x 0 ++ x 0 ) = 1 x0 ++ x 0 f 1 (x 0 ) = lim 0 x0 ++ = 1 x 0 2 = 1 1 x 0 2 x 2 Bemerkung Es gilt allgemein für jede reelle Zal r, dass f(x) = x r = f (x) = rx r Sei f(x) = x. Diese Funktion ist differenzierbar in allen x R, ausser in x 0 = 0. In x 0 = 0 existiert der Differentialquotient nict, denn aber lim = 0 lim = 0 Tatsäclic erkennt man dies direkt am Grapen von f, denn in x 0 = 0 mact er einen Knick und es ist unmöglic, ier eine Tangente auf eindeutige Weise anzulegen. Um für eine konkrete Funktion f die Ableitung f zu bestimmen, sind die folgenden Ableitungsregeln ser nützlic. Satz 4.1 (a) Seien f,g differenzierbar. Dann sind auc f + g, λf für λ R, f g und f g (überall wo g(x) 0) differenzierbar. (i) Es gilt (ii) Es gilt die Produktregel (iii) Es gilt die Quotientenregel (b) Ist f(x) = (f +g) = f +g und (λf) = λf für alle λ R. (f g) = f g +f g. ( ) f = f g f g g g 2. a k x k eine auf dem (offenen) Intervall I konvergente Potenzreie, dann ist k=0 f auf I differenzierbar und es gilt für alle x I. f (x) = ka k x k 1 k=1

9 50 Beispiele 1. Sei f(x) = e x. Mit Hilfe von Satz 4.1 folgt Also gilt (e x ) = e x. 2. Sei f(x) = cosx und g(x) = sinx. Wir erinnern uns, dass cosx gleic dem Realteil von e ix und sinx gleic dem Imaginärteil von e ix ist. Nun gilt Es folgt, dass und cosx = 1 x2 2! + x4 4! + = k=0 ( 1) k x2k (2k)! sinx = x x3 3! + x5 5! + = ( 1) k x 2k+1 (2k +1)!. Für die Ableitungen können wir nac Satz 4.1 gliedweise ableiten. Wir eralten k=0 3. Sei f(x) = tanx = sinx. Mit der Quotientenregel folgt cosx

7.2. Ableitungen und lineare Approximation

7.2. Ableitungen und lineare Approximation 7.. Ableitungen und lineare Approximation Eindimensionale Ableitungen und Differentialquotienten einer Funktion bekommt man bekanntlic als Limes von Differenzenquotienten f ( a) = f ( a + ) f( a ) = x

Mehr

6. Die Exponentialfunktionen (und Logarithmen).

6. Die Exponentialfunktionen (und Logarithmen). 6- Funktionen 6 Die Eponentialfunktionen (und Logaritmen) Eine ganz wictige Klasse von Funktionen f : R R bilden die Eponentialfunktionen f() = c ep( ) = c e, ier sind, c feste reelle Zalen (um Trivialfälle

Mehr

Linear. Halbkreis. Parabel

Linear. Halbkreis. Parabel Vom Parabolspiegel zur Ableitungsfunktion Im Folgenden get es darum erauszufinden, was ein Parabolspiegel ist und wie er funktioniert. Das fürt uns auf wictige Fragen eines Teilgebietes der Matematik,

Mehr

ANALYSIS Differenzialrechnung Kapitel 1 5

ANALYSIS Differenzialrechnung Kapitel 1 5 TELEKOLLEG MULTIMEDIAL ANALYSIS Differenzialrecnung Kapitel 5 Ferdinand Weber BRmedia Service GmbH Inaltsverzeicnis Jedes Kapitel beginnt mit der Seitenzal.. Das Tangentenproblem. Steigung einer Geraden

Mehr

Musterlösung zu Übungsblatt 1

Musterlösung zu Übungsblatt 1 Prof. R. Pandaripande J. Scmitt, C. Scießl Funktionenteorie 23. September 16 HS 2016 Musterlösung zu Übungsblatt 1 Aufgabe 1. Sei F ein Körper, der R als einen Unterkörper entält. Das eisst R ist eine

Mehr

Rudolphs Schlitten. Aufgabe. Autor: Jochen Ricker

Rudolphs Schlitten. Aufgabe. Autor: Jochen Ricker Rudolps Sclitten Autor: Jocen Ricker Aufgabe Endlic ist es wieder soweit: Weinacten stet vor der Tür! Diesmal at der Weinactsmann sic ein ganz besonderes Gescenk für seine Rentiere einfallen lassen. Sie

Mehr

Tangenten an Funktionsgraphen (Differenzialrechnung) Aufgaben ab Seite 4

Tangenten an Funktionsgraphen (Differenzialrechnung) Aufgaben ab Seite 4 Klasse / Augaben ab Seite 4 rundlagen und Begrie der Dierenzialrecnung Die Zeicnungen und Erklärungen sind etwas ausürlicer als notwendig u versciedene Screibweisen und Darstellungen auzuzeigen. Steigung

Mehr

Differenzieren kurz und bündig

Differenzieren kurz und bündig mate online Skripten ttp://www.mate-online.at/skripten/ Differenzieren kurz und bündig Franz Embacer Fakultät für Matematik der Universität Wien E-mail: franz.embacer@univie.ac.at WWW: ttp://omepage.univie.ac.at/franz.embacer/

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Aufgabe 2 Wetterstation Aufgabe aus der scriftlicen Abiturprüfung Hamburg 05. In einer Wetterstation wird die Aufzeicnung eines Niedersclagmessgeräts vom Vortag (im Zeitraum von 0 Ur bis Ur) ausgewertet.

Mehr

Numerische Simulation von Differential-Gleichungen der Himmelsmechanik

Numerische Simulation von Differential-Gleichungen der Himmelsmechanik Numerisce Simulation von Differential-Gleicungen der Himmelsmecanik Teilnemer: Max Dubiel (Andreas-Oberscule) Frank Essenberger (Herder-Oberscule) Constantin Krüger (Andreas-Oberscule) Gabriel Preuß (Heinric-Hertz-Oberscule)

Mehr

Mathematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz

Mathematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz Matematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz Cristian Leibold 7. Oktober 2014 Folgen Allgemeines zu Folgen Monotonie und Bescränkteit Grenzwerte und Konvergenz Summen und Reien

Mehr

Á 4. Differenzierbarkeit, Stetigkeit

Á 4. Differenzierbarkeit, Stetigkeit Á 4. Differenzierbarkeit, Stetigkeit Historisc ist der Begriff der Differenzierbarkeit lange vor dem der Stetigkeit entwickelt worden. Untersciedlice Definitionen der Differenzierbarkeit werden von Gottfried

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Zwischenwertsatz Gegeben: f : [a, b] R stetig Dann gilt: f(a) < f(b) y [f(a), f(b)] x [a, b] mit f(x) = y 9.1. Grundbegriffe

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Mathematik für Molekulare Biologen

Mathematik für Molekulare Biologen Skriptum zur Vorlesung Matematik für Molekulare Biologen Cristian Scmeiser 1 Contents 1 Einleitung 1 2 Zalensysteme, Grundrecnungsarten 2 3 Komplexe Zalen, Polynome 5 4 Die Polardarstellung, Winkelfunktionen

Mehr

Manfred Burghardt. Allgemeine Hochschulreife und Fachhochschulreife in den Bereichen Erziehung, Gesundheit und Soziales

Manfred Burghardt. Allgemeine Hochschulreife und Fachhochschulreife in den Bereichen Erziehung, Gesundheit und Soziales Manfred Burgardt Allgemeine Hocsculreife und Facocsculreife in den Bereicen Erzieung, Gesundeit und Soziales Version /4 Inaltsverzeicnis I Inaltsverzeicnis Inaltsverzeicnis... I Die Ableitungsfunktion

Mehr

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2.

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2. Tangentensteigung Gegeben ist die Funktion () =. Um die Steigung der Tangente im Punkt P( ) zu bestimmen, ermitteln wir zunäcst die Steigung der Sekante durc P( ) und Q( ). Q soll so beweglic sein, dass

Mehr

Multiplikation und Division in Polarform

Multiplikation und Division in Polarform Multiplikation und Division in Polarform 1-E1 1-E Multiplikation und Division in Polarform: Mathematisches Rüstzeug n m b b = b n+m bn bm = bn m ( b n )m = b n m Additionstheoreme: cos 1 = cos 1 cos sin

Mehr

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

Übungen zur Vorlesung Differential und Integralrechnung II (Unterrichtsfach) -Bearbeitungsvorschlag-

Übungen zur Vorlesung Differential und Integralrechnung II (Unterrichtsfach) -Bearbeitungsvorschlag- MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN D. Rost, M. Gebert SS 015 Blatt 9 19.6.015 Übungen zur Vorlesung Differential und Integralrecnung II (Unterrictsfac) -Bearbeitungsvorsclag- 1. Sei n N 0.

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 3. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 3. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Cristop Scmoeger Heiko Hoffmann SS 24 Höere Matematik II für die Facrictung Informatik Lösungsvorscläge zum 3. Übungsblatt Aufgabe 9 a) Bestimmen

Mehr

Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur

Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur Aufgabe 1: Die Skulptur Um die Höe einer Skulptur zu bestimmen, die auf einem Sockel stet, stellt sic eine Person (Augenöe 1,70 m) in einer Entfernung von 10 m mit dem Rücken zur Skulptur und ält sic einen

Mehr

Einstieg in die Differenzialrechnung

Einstieg in die Differenzialrechnung Lern-Online.net Matematikportal Dierenzialrecnung (Einstieg) Einstieg in die Dierenzialrecnung Einstiegsbeispiel: Der ideale Kasten Augabenstellung: Ein DIN-A4-Blatt soll zu einem (deckellosen) Kasten

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen Stetigkeit von Funktionen Definition. Es sei D ein Intervall oder D = R, x D, und f : D R eine Funktion. Wir sagen f ist stetig wenn für alle Folgen (x n ) n in D mit Grenzwert x auch die Folge der Funktionswerte

Mehr

Übungsaufgaben zu Analysis 2 Lösungen von Blatt V vom 07.05.15. f(x, y) = 2(x + y) + xy + 3x 2, g(x, y) = xy + e xy.

Übungsaufgaben zu Analysis 2 Lösungen von Blatt V vom 07.05.15. f(x, y) = 2(x + y) + xy + 3x 2, g(x, y) = xy + e xy. Prof. Dr. Moritz Kaßmann Fakultät für Matematik Sommersemester 015 Universität Bielefeld Übungsaufgaben zu Analysis Lösungen von Blatt V vom 07.05.15 Aufgabe V.1 + Punkte) Gegeben seien die Funktionen

Mehr

Kraft F in N Dehnung s in m

Kraft F in N Dehnung s in m . Klausur Pysik Leistungskurs Klasse 7. 9. 00 Dauer: 90 in. Wilel T., ein junger, talentierter Bogenscütze darf sic einen neuen Bogen kaufen. Er kann den Bogen it axial 50 N spannen und seine Are reicen

Mehr

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen Kapitel 7 Funktionentheorie In diesem Kapitel geht es meistens um Funktionen, die auf einem Gebiet G C definiert sind und komplexe Werte annehmen. Nach Lust, Laune und Bedarf wird C mit R identifiziert,

Mehr

= 4. = 2 π. s t. Lösung: Aufgabe 1.a) Der Erdradius beträgt 6.371km. Aufgabe 1.b) Das Meer nimmt 71% der Erdoberfläche ein.

= 4. = 2 π. s t. Lösung: Aufgabe 1.a) Der Erdradius beträgt 6.371km. Aufgabe 1.b) Das Meer nimmt 71% der Erdoberfläche ein. Aufgabe : Die Die ist der fünftgrößte der neun Planeten unseres Sonnensystems und wiegt 5,98* 0 4 kg. Sie ist zwiscen 4 und 4,5 Millionen Jaren alt und bewegt sic auf einer elliptiscen Ban in einem durcscnittlicen

Mehr

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11.

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11. Teil Gleicungen mit Unbekannten mit Textaufgaben und 3 Gleicungen mit Unbekannten Datei Nr. 80 Stand. April 0 Lineare Gleicungssysteme INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 80 Gleicungssysteme Vorwort

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 12 1. Dezember 2009 Kapitel 3. Differenzialrechnung einer Variablen (Fortsetzung) Satz 19. Es seien M und N zwei nichtleere Teilmengen von R,

Mehr

Was haben Beschleunigungs-Apps mit der Quadratur des Kreises zu tun?

Was haben Beschleunigungs-Apps mit der Quadratur des Kreises zu tun? Was aben Bescleunigungs-Apps mit der Quadratur des Kreises zu tun? Teilnemer: Jonatan Geuter Leonard Hackel Paul Hagemann Maximilian Kuc Amber Lucas Tobias Tieme Tobias Tiesse Niko Wolf Gruppenleiter:

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Herleitungen von elementaren Ableitungsregeln

Herleitungen von elementaren Ableitungsregeln Herleitungen von elementaren Ableitungsregeln by Nictnäerdefiniert 5..003-6..003 Index. Differenzenquotient. Faktorregel 3. Konstantenregel 4. Summenregel 5. Produktregel 6. Quotientenregel 7. Potenzregel

Mehr

Komplexe Zahlen (Seite 1)

Komplexe Zahlen (Seite 1) (Seite 1) (i) Motivation: + 5 = 3 hat in N keine Lösung Erweiterung zu Z = 2 3 = 2 hat in Z keine Lösung Erweiterung zu Q = 2 / 3 ² = 2 hat in Q keine Lösung Erweiterung zu R = ± 2 ² + 1 = 0 hat in R keine

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

Komplexe Zahlen. Rainer Hauser. Januar 2015

Komplexe Zahlen. Rainer Hauser. Januar 2015 Komplexe Zahlen Rainer Hauser Januar 015 1 Einleitung 1.1 Zahlen und Operationen auf Zahlen Addiert man mit Eins als erster gegebener Zahl beginnend sukzessive Eins zu einer bereits gefundenen Zahl, so

Mehr

Mathematik - Oberstufe

Mathematik - Oberstufe www.mate-aufgaben.com Matematik - Oberstufe Aufgaben und Musterlösungen zu Ableitungen, Tangenten, Normalen Zielgruppe: Oberstufe Gymnasium Scwerpunkt: Differenzenquotient, Differenzialquotient, Ableitung,

Mehr

Differenzialrechnung

Differenzialrechnung Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =

Mehr

Mechanik 1.Gleichförmige Bewegung 1

Mechanik 1.Gleichförmige Bewegung 1 Mecanik 1.Gleicförige Bewegung 1 1. Geradlinige, gleicförige Bewegung (Bewegung it kontanter Gecwindigkeit) Zeit: 1 Unterricttunde 45 Minuten 2700 Sekunden 1 Sculjar entält etwa 34 Doppeltunden 68 Unterricttunden

Mehr

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen

Mehr

5.2 Von der durchschnittlichen zur momentanen Änderungsrate

5.2 Von der durchschnittlichen zur momentanen Änderungsrate 5.2 Von der durcscnittlicen zur momentanen Änderungsrate Was dic erwartet Kommt Zeit, kommt Rat, Die Zeit eilt alle Wunden. Fast alles ändert sic mit der Zeit. Nict immer ist der gerade vorliegende Zustand

Mehr

Erste Schularbeit Mathematik Klasse 7A G am

Erste Schularbeit Mathematik Klasse 7A G am Erste Schularbeit Mathematik Klasse 7A G am 12.11.2015 SCHÜLERNAME: Punkte im ersten Teil: Punkte im zweiten Teil: Davon Kompensationspunkte: Note: Notenschlüssel: Falls die Summe der erzielten Kompensationspunkte

Mehr

Differenzenquotient. f(x) Differenzialrechnung. Gegeben sei eine Funktion f(x). 197 Wegener Math/5_Differenzial Mittwoch 04.04.

Differenzenquotient. f(x) Differenzialrechnung. Gegeben sei eine Funktion f(x). 197 Wegener Math/5_Differenzial Mittwoch 04.04. Gegeben sei eine Funktion f(). Differenzialrechnung Differenzenquotient f() 197 Wegener Math/5_Differenzial Mittwoch 04.04.2007 18:38:45 1 Differenzenquotient Gesucht ist die Tangente an der Stelle, wobei

Mehr

Formelsammlung zum Starterstudium Mathematik

Formelsammlung zum Starterstudium Mathematik Formelsammlung zum Starterstudium Mathematik Universität des Saarlandes ¼ Version.3 Inhaltsverzeichnis. Potenzgesetze. Vollständige Induktion 3. Betragsgleichungen, Betragsungleichungen 4 4. Folgen und

Mehr

Komplexe Zahlen und konforme Abbildungen

Komplexe Zahlen und konforme Abbildungen Kapitel 1 Komplexe Zahlen und konforme Abbildungen 1.0 Geometrie der komplexen Zahlen Die Menge C der komplexen Zahlen, lässt sich mithilfe der bijektiven Abbildung C := {x + iy : x,y R}, C z = x + iy

Mehr

Kapitel 6 Folgen und Stetigkeit

Kapitel 6 Folgen und Stetigkeit Kapitel 6 Folgen und Stetigkeit Mathematischer Vorkurs TU Dortmund Seite 76 / 226 Definition 6. (Zahlenfolgen) Eine Zahlenfolge (oder kurz: Folge) ist eine Funktion f : 0!. Statt f(n) schreiben wir x n

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Summen, Exponentialfunktion, Ableitung Prof. Dr. Achim Klenke http://www.aklenke.de 2. Vorlesung: 04.11.2011 1/46 Inhalt 1 Summen und Produkte Summenzeichen Produktzeichen

Mehr

Physik I Übung 7, Teil 2 - Lösungshinweise

Physik I Übung 7, Teil 2 - Lösungshinweise Pysik I Übung 7, Teil - Lösungsinweise Stefan Reutter SoSe 0 Moritz Kütt Stand:.06.0 Franz Fujara Aufgabe Clausius- Klappermann Clapeyron Revisited (Vorsict, Aufgabe vom Cef!) Da sic Prof. Fujara wie immer

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Aufgabe 98 12.12.2012 Untersuchen Sie die Funktion f W R! R mit f.x/

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

Thema aus dem Bereich Analysis Differentialrechnung I. Inhaltsverzeichnis

Thema aus dem Bereich Analysis Differentialrechnung I. Inhaltsverzeichnis Thema aus dem Bereich Analysis - 3.9 Differentialrechnung I Inhaltsverzeichnis 1 Differentialrechnung I 5.06.009 Theorie+Übungen 1 Stetigkeit Wir werden unsere Untersuchungen in der Differential- und Integralrechnung

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: M. Boßle, B. Krinn Ü. Okur, M. Wie Blatt 7 Gruppenübung zur Vorlesung Höere Matematik 2 Sommersemester 202 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungsinweise zu en Hausaufgaben: Aufgabe H 58. Differenzierbarkeit

Mehr

2.6 Der komplexe Logarithmus und allgemeine Potenzen

2.6 Der komplexe Logarithmus und allgemeine Potenzen 2.6 Der komplexe Logarithmus und allgemeine Potenzen Ziel: Umkehrung der komplexen Exponentialfunktion fz) = expz). Beachte: Die Exponentialfunktion expz) ist für alle z C erklärt, und es gilt Dexp) =

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zu Ableitung, Extrem- und Wendepunkten, Interpretation von Grapen von Ableitungsfunktionen, Tangenten und Normalen (Bearbeitungszeit: 90 Minuten) Gymnasium J Alexander Scwarz www.mate-aufgaben.com

Mehr

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik 2008-06- Klssenrbeit 5 Klsse 0c Mtemtik Lösung Version 2008-06-4 Cindy t 3000 geerbt. ) Den Betrg will sie so nlegen, dss sie in 20 Jren doppelt so viel Geld t. Berecne, zu welcem Zinsstz sie ds Geld nlegen

Mehr

Leitfaden a tx t

Leitfaden a tx t Leitfaden -0.7. Potenz-Reihen. Definition: Es sei (a 0, a, a 2,...) eine Folge reeller Zahlen (wir beginnen hier mit dem Index t 0). Ist x R, so kann man die Folge (a 0, a x, a 2 x 2, a 3 x 3,...) und

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.

Mehr

V E K TO R A NALYSIS TEIL I SIEGFRIED PETRY

V E K TO R A NALYSIS TEIL I SIEGFRIED PETRY V E K TO R A NALYSIS TEIL I SIEGFRIED PETRY Fassung vom 5 Januar 013 1 I n a l t 1 Grundbegriffe 3 Vektorfunktionen 3 1 Screibweise und Definition 3 Ableitung einer Vektorfunktion 3 3 Differentiationsregeln

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

1 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 11

1 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 11 Inhalt A Differenzialrechnung 8 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 2 Ableitungsregeln 2 Potenzregel 2 Konstantenregel 3 Summenregel 4 Produktregel 4 Quotientenregel

Mehr

Charaktere. 1 Wiederholung. 2 Charaktere verschiedener Darstellungen. 1.1 Zerlegung von Darstellungen. 1.2 Schursches Lemma

Charaktere. 1 Wiederholung. 2 Charaktere verschiedener Darstellungen. 1.1 Zerlegung von Darstellungen. 1.2 Schursches Lemma Caraktere 1 Wiederolung 1.1 Zerlegung von Darstellungen Jede Darstellung läßt sic Zelegen in V = V a1 1 V a Wobei die V i irreduzible Darstellungen von G sind und a i N. Die Sätze der Carakterteorie liefern

Mehr

e-funktion und natürlicher Logarithmus

e-funktion und natürlicher Logarithmus e-funktion und natürlicer Logaritmus. Die Differentialgleicung y=y' Gibt es eine Funktion, die mit irer Ableitung identisc ist, d.. dass f = f ' für alle gilt? Wenn die Ableitung trigonometriscer Funktionen

Mehr

IV. Stetige Funktionen. Grenzwerte von Funktionen

IV. Stetige Funktionen. Grenzwerte von Funktionen IV. Stetige Funktionen. Grenzwerte von Funktionen Definition. Seien X und Y metrische Räume und E X sowie f : X Y eine Abbildung und p ein Häufungspunkt von E. Wir schreiben lim f(x) = q, x p falls es

Mehr

Mathematische Grundlagen der Ökonomie Übungsblatt 13

Mathematische Grundlagen der Ökonomie Übungsblatt 13 Matematisce Grundlagen der Ökonomie Übungsblatt 13 Abgabe Donnerstag 4. Februar, 10:15 in H3 6+4+5+++1 = 0 Punkte Mit Lösungsinweisen zu einigen Aufgaben 51. Ire Bekannte Dido möcte, dass aus einem günstig

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

Schriftliche Prüfung Schuljahr: 2008/2009 Schulform: Gymnasium. Mathematik

Schriftliche Prüfung Schuljahr: 2008/2009 Schulform: Gymnasium. Mathematik Ministerium für Bildung, Jugend und Sport Prüfungen am Ende der Jargangsstufe 10 Scriftlice Prüfung Sculjar: 2008/2009 Sculform: Matematik Allgemeine Arbeitsinweise Die Prüfungszeit beträgt 160 Minuten.

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 1, Montag vormittag Vektoralgebra Ein Vektor lässt sich geometrisch als eine gerichtete Strecke darstellen,

Mehr

2 Stetigkeit und Differenzierbarkeit

2 Stetigkeit und Differenzierbarkeit 2.1) Sei D R. a) x 0 R heißt Häufungspunkt von D, wenn eine Folge x n ) n N existiert mit x n D,x n x 0 und lim n x n = x 0. D sei die Menge der Häufungspunkte von D. b) x 0 D heißt innerer Punkt von D,

Mehr

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a Komplexe Zahlen. Bedarfsfrage Menge der natürlichen Zahlen = {,, 3,...} Aber: a + x = b ist nur lösbar, falls b > a (Peano-Axiome). Erweiterung: Menge der ganen Zahlen = {..., -3, -, -, 0,,, 3,...} a +

Mehr

Taylorentwicklung von Funktionen einer Veränderlichen

Taylorentwicklung von Funktionen einer Veränderlichen Taylorentwicklung von Funktionen einer Veränderlichen 17. Januar 2013 KAPITEL 1. MATHEMATISCHE GRUNDLAGEN 1 Kapitel 1 Mathematische Grundlagen 1.1 Stetigkeit, Differenzierbarkeit und C n -Funktionen Der

Mehr

Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts

Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts 1. Stetigkeit und Grenzwerte: (a) Aus der folgenden grafischen Darstellung von y 1 (x) = x 2/3 /(1 + x 2 ) ist

Mehr

Überholen mit konstanter Beschleunigung

Überholen mit konstanter Beschleunigung HTL Überolen mit konstanter Seite 1 von 7 Nietrost Bernard bernard.nietrost@tl-steyr.ac.at Überolen mit konstanter Bescleunigung Matematisce / Faclice Inalte in Sticworten: Modellieren kinematiscer Vorgänge;

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

Funktionen. Mathematik-Repetitorium

Funktionen. Mathematik-Repetitorium Funktionen 4.1 Funktionen einer reellen Veränderlichen 4.2 Eigenschaften von Funktionen 4.3 Die elementaren Funktionen 4.4 Grenzwerte von Funktionen, Stetigkeit Funktionen 1 4. Funktionen Funktionen 2

Mehr

Prof. Dr. Rolf Linn

Prof. Dr. Rolf Linn Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen

Mehr

Zahlen und Gleichungen

Zahlen und Gleichungen Kapitel 2 Zahlen und Gleichungen 21 Reelle Zahlen Die Menge R der reellen Zahlen setzt sich zusammen aus den rationalen und den irrationalen Zahlen Die Mengen der natürlichen Zahlen N, der ganzen Zahlen

Mehr

Folgen, Reihen, Grenzwerte u. Stetigkeit

Folgen, Reihen, Grenzwerte u. Stetigkeit Folgen, Reihen, Grenzwerte u. Stetigkeit Josef F. Bürgler Abt. Informatik HTA Luzern, FH Zentralschweiz HTA.MA+INF Josef F. Bürgler (HTA Luzern) Einf. Infinitesimalrechnung HTA.MA+INF 1 / 33 Inhalt 1 Folgen

Mehr

4 Funktionen und Änderungsraten

4 Funktionen und Änderungsraten 4.1 Änderungsraten grafisc erfasst Was dic erwartet Mit Funktionen und Grapen lassen sic viele Situationen und Vorgänge bescreiben bzw. modellieren. Bei der Interpretation der Grapen spielt oft das Änderungsveralten

Mehr

CLUB APOLLO 13, 13. Wettbewerb Aufgabe 2

CLUB APOLLO 13, 13. Wettbewerb Aufgabe 2 Der Auftrieb Diese Aufgabe wird vom Facbereic Pysik der eibniz Universität annover gestellt. Weitere Informationen zum Studiengang der Pysik findet ir unter ttp://www.pysik.uniannover.de/ CUB APOO 13,

Mehr

Komplexe Zahlen. Lernziele dieses Abschnitts sind:

Komplexe Zahlen. Lernziele dieses Abschnitts sind: KAPITEL 1 Komplexe Zahlen Lernziele dieses Abschnitts sind: (1) Analytische und geometrische Darstellung komplexer Zahlen, () Grundrechenarten fur komplexe Zahlen, (3) Konjugation und Betrag komplexer

Mehr

Mathematik anschaulich dargestellt

Mathematik anschaulich dargestellt Peter Dörsam Mathematik anschaulich dargestellt für Studierende der Wirtschaftswissenschaften 15. überarbeitete Auflage mit zahlreichen Abbildungen PD-Verlag Heidenau Inhaltsverzeichnis 1 Lineare Algebra

Mehr

konvergent falls Sei eine allgemeine ("gutmütige") Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in

konvergent falls Sei eine allgemeine (gutmütige) Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in C5 Funktionen: Reihenentwicklungen C5.1 Taylorreihen Brook Taylor (1685-1731) (Analysis-Vorlesung: Konvergenz von Reihen und Folgen) Grundlegende Frage: Wann / unter welchen Voraussetzungen lässt sich

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

67 Grenzwert einer Funktion f in x 0 x 0 [a, b] D(f)

67 Grenzwert einer Funktion f in x 0 x 0 [a, b] D(f) Grenzwerte Stetigkeit Differentiation einer Funktion (Uneigentliche) Grenzwerte von Zahlenfolgen Nrn. 43 47 67 Grenzwert einer Funktion f in x 0 x 0 [a, b] D(f) Die Zahl x 0 ist also als Grenzwert erreichbar

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

Das Goethe-Barometer Luftdruckmessungen mit einem historischen Gerät von Helmut Jena

Das Goethe-Barometer Luftdruckmessungen mit einem historischen Gerät von Helmut Jena Das Goete-Barometer uftdruckmessungen mit einem istoriscen Gerät von Helmut Jena Das Goete-Barometer als attraktiver und istoriscer uftdruck- Anzeiger fasziniert besonders den naturwissenscaftlic interessierten

Mehr

2 Komplexe Funktionen

2 Komplexe Funktionen 2 Komplexe Funktionen Wir betrachten komplexwertige Funktionen f einer komplexen Variablen. 2.1 Begriff und geometrische Deutung Definition: Eine komplexe Funktion ist eine Funktion, deren Definitions-

Mehr

Kapitel 6. Exponentialfunktion

Kapitel 6. Exponentialfunktion Kapitel 6. Exponentialfunktion 6.1. Potenzreihen In Kap. 4 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

Integralrechnung. Petra Grell, WS 2004/05

Integralrechnung. Petra Grell, WS 2004/05 Integralrechnung Petra Grell, WS 2004/05 1 Einführung Bei den Rechenoperationen, die wir im Laufe der Zeit kennengelernt haben, kann man feststellen, dass es immer eine Umkehrung gibt: + : log a aˆ So

Mehr

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden

Mehr

Reise nach Rio Klimadiagramme lesen

Reise nach Rio Klimadiagramme lesen Reise nac Rio Klimadiagramme lesen Maria will im Juli nac Brasilien fliegen und dort Urlaub macen. Um iren Koffer passend zu packen und Unternemungen planen zu können, suct sie im Internet zunäcst nac

Mehr

Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema

Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema In diesem Kapitel befassen wir uns mit der Ableitung von Funktionen f : R m R n. Allein die Schreibweise

Mehr

5 DIFFERENZIALRECHNUNG EINFÜHRUNG

5 DIFFERENZIALRECHNUNG EINFÜHRUNG M /, Kap V Einführung in die Differenzialrechnung S 5 DIFFERENZIALRECHNUNG EINFÜHRUNG Zielvorgabe für die Kapitel 5 bis 55: Wir wollen folgende Begriffe definieren und deren Bedeutung verstehen: Differenzenquotient,

Mehr

Inhaltsverzeichnis. 1 Lineare Algebra 12

Inhaltsverzeichnis. 1 Lineare Algebra 12 Inhaltsverzeichnis 1 Lineare Algebra 12 1.1 Vektorrechnung 12 1.1.1 Grundlagen 12 1.1.2 Lineare Abhängigkeit 18 1.1.3 Vektorräume 22 1.1.4 Dimension und Basis 24 1.2 Matrizen 26 1.2.1 Definition einer

Mehr

14 B Steigung. 1 Miss bei den drei Keilen die Winkel und Strecken und übertrage sie in die Tabelle. Berechne die Steigung.

14 B Steigung. 1 Miss bei den drei Keilen die Winkel und Strecken und übertrage sie in die Tabelle. Berechne die Steigung. Steigung 4 6 Arbeitseft+ Teste dic selbst Miss bei den drei Keilen die Winkel und Strecken und übertrage sie in die Tabelle. Berecne die Steigung. a a a Keil Keil 2 Keil 3 Keil Keil 2 Keil 3 Horizontale

Mehr