Mathematische Grundlagen der Ökonomie Übungsblatt 13

Größe: px
Ab Seite anzeigen:

Download "Mathematische Grundlagen der Ökonomie Übungsblatt 13"

Transkript

1 Matematisce Grundlagen der Ökonomie Übungsblatt 13 Abgabe Donnerstag 4. Februar, 10:15 in H = 0 Punkte Mit Lösungsinweisen zu einigen Aufgaben 51. Ire Bekannte Dido möcte, dass aus einem günstig erstandenen 400 Meter langen Zaun eine recteckige Weide mit möglicst großem Fläceninalt für ire Lieblingspferde errictet wird. Ire Wiese ist groß genug, um jedes Recteck mit bis zu vierundert Metern Umfang aufzunemen (sie at sofort erkannt, dass dazu 100 auf 00 Meter genügen), so dass dies keine Einscränkung darstellt. Obwol kaum jemand an der offensictlicen Lösung zweifeln würde, ist es ratsam, jeder unnötigen Diskussion mit Hilfe eines matematiscen Beweises zuvorzukommen oder besser noc mit zwei Beweisen. Löse die Frage also einmal mit der Einsetzmetode und einmal mit der Metode von Lagrange (Josep-Louis Lagrange, ). Ein dreieckige Weide wäre zweifellos ungewönlicer. Bezeicnet man die Seitenlängen mit 0 < a,b,c < U/, so ist der Umfang U = a + b + c und die Fläce nac der Heronscen Fläcenformel ( )( )( ) f (a,b,c) = a b c. Bestimme mit dem Ansatz von Lagrange die kritiscen Punkte. Die Länge und Breite der Weide seien mit a und b bezeicnet. Die zu maimierende Fläce ist also f (a,b) = ab. Der Umfang ist durc die Länge des Zaunes auf U := 400 = (a + b) festgelegt. Im ersten Scritt der Einsetzmetode löst man die Nebenbedingung U = (a+b) nac b (oder bei vertauscten Rollen nac b) auf und erält b = U/ a. Damit muss nun im zweiten Scritt die Funktion g(a) := f (a, U/ a) = a U/ a maimiert werden. Die Ableitungen sind g (a) = U/ a g (a) = < 0. Die Randpunkte des zulässigen Bereices a [0,U/] können keine Maimalstelle sein, denn dort ist die Fläce Null. Im Innern gibt es nur einen Kandidaten für eine Etremstelle, und dies ist die Nullstelle der ersten Ableitung. Da stetige Funktionen auf kompakten Intervallen mindestens eine globale Maimal- und Minimalstelle aben, muss dort sogar das globale Maimum liegen. Dieses ist bei a := U/4 und die zugeörige Fläce ist g(a ) = U /8 U /16 = U /16 = (U/4). Also werden die Pferde eine Fläce von Quadratmeter (ein Hektar) zur Verfügung aben und die Weide wird ein Quadrat mit 100 Metern Seitenlänge sein.

2 g(a) = 00a a a Nac Lagrange definiert man zunäcst die Hilfsfunktion F(a,b,λ) : = f (a,b) + λ(a + b U/) = ab + λ(a + b U/). Diese zeicnet sic dadurc aus, dass sie für alle (a, b), die die Nebenbedingung a + b = U/ erfüllen, unabängig von λ der eigentlic zu maimierenden Funktion f (a,b) entsprict. Mit dem selben Argument wie vorer eistiert eine Maimalstelle und dafür kommt nur einer der kritiscen Punkte in Frage. Also bestimmen wir diese mit Lagrange. Die partiellen Ableitungen sollen verscwinden, also 0 = F a (a,b,λ) = b + λ 0 = F b (a,b,λ) = a + λ 0 = F λ (a,b,λ) = a + b U/. Aus den ersten beiden Gleicungen folgt a = λ = b. Setzen wir dies in die letzte Gleicung (die wie üblic nur noc einmal die Nebenbedingung wiedergibt) ein, eralten wir 0 = a + a U/ bzw. a = U/4. Dies ist in der Tat das gleice Ergebnis wie mit der Einsetzmetode. Betracten wir nun den Fall einer dreieckingen Weide. Die Lagrangefunktion ist F(a,b,c,λ) = f (a,b,c) + λ(a + b + c U) ( )( )( ) = a b c + λ(a + b + c U). Die partiellen Ableitungen sollen verscwinden, d.. wir möcten die Lösung

3 des folgenden Gleicungssystems finden: ( U b )( U c ) U 0 = F a (a,b,c,λ) = ( U U a )( U b )( U c ) + λ ( U a )( U c ) U 0 = F b (a,b,c,λ) = ( U U a )( U b )( U c ) + λ ( U a )( U b ) U 0 = F c (a,b,c,λ) = ( U U a )( U b )( U c ) + λ 0 = F λ (a,b,bλ) = a + b + c U. Aus den ersten drei Gleicungen folgt ( )( ) U b c = U ( )( ) a c ( )( ) U b c = U ( )( ) a b Da 0 < a,b,c < U/ sind die Faktoren ( U a ), ( U a ) und ( U a ) alle > 0, so dass ( ) ( ) b = a ( ) ( ) c = a Damit eralten wir a = b = c, das Dreieck mit der größten Fläce bei gegebenem Umfang ist also ein gleicseitiges Dreieck mit a = b = c = U/3 (aus der Nebenbedingung a + b + c U = 0). 5. Gesuct ist eine Minimumstelle der Funktion f (,y) = ( + 1) + (y + 1) unter der Nebenbedingung g(,y) := y 3 = 0. (a) Löse die Nebenbedingung nac y auf und beacte dabei, dass die Nebenbedingung 0 erzwingt. Setze dies in die zu minimierende Funktion ein und zeige, dass diese dann strikt wacsend in auf [0, ) ist, woraus folgt, dass das einzige lokale und globale Minimum bei (,y) = (0,0) liegt. (b) Versuce nun den Ansatz von Lagrange. Erfüllt der Punkt (,y) = (0,0) das entsteende Gleicungssystem? Was gesciet mit den partiellen Ableitungen der Funktion g aus der Nebenbedingung in diesem Punkt? Zunäcst die Einsetzmetode: Die Nebenbedingung verlangt y = 3. Da y 0, muss also auc 3 0 und somit 0 gelten. Unter dieser Voraussetzung ist y = 3/. Es sind also zwei Fälle zu untersucen: y = 3/ und y = 3/. 3

4 Im ersten Fall liefert Einsetzen in die zu minimierende Funktion fürt auf die Suce nac Minimumstellen der Funktion () = f (,y()) der Form Die Ableitung ist () = y + y + 1 = / + 1 () = / > 0 da 0 Die Minimumstelle einer wacsende Funktion ist am linken Rand des Definitionsbereices, also bei = 0 und aus der Nebenbedingung folgt dann auc y = 0. Im zweiten Fall eralten wir die Funktion mit erster Ableitung () = / = 3 () = / + 1 ( / ) > 0 da 0 Die letzte Ungleicung folgt z.b. aus der Abscätzung 1/ +1 für 0. Auc in diesem Fall ist das Minimum bei (,y) = (0,0). Das globale Minimum der Funktion ergibt sic nun eigentlic aus dem Vergleic der Funktionswerte in beiden Fällen. Da die Minimumstellen ier aber übereinstimmen, folgt sofort, dass (, y) = (0, 0) eine globale Minimumstelle unter der gegebenen Nebenbedingung ist, der Funktionswert an dieser Stelle ist f (0,0) =. Nun der Versuc mit Lagrange: Die Lagrangefunktion ist F(,y,λ) = f (,y) + λg(,y) = ( + 1) + (y + 1) + λ ( y 3) Die partiellen Ableitungen sollen verscwinden, also 0 = F (,y,λ) = ( + 1) λ3 0 = F y (,y,λ) = (y + 1) + λy 0 = F λ (,y,λ) = y + 3. Obwol wir wissen, dass sic bei (, y) = (0, 0) ein Minimum befindet, lösen diese Werte das Gleicungssystem nict. So etwas kann vorkommen, wenn beide partiellen Ableitungen der Funktion g(, y) aus der Nebenbedingung g(, y) = 0 an einer Etremstelle verscwinden. (Man beacte, wie dadurc der Einfluss des Lagrangeparameters λ auf das Gleicungssystem gestört wird.) Da eine solce Situation eer selten auftritt, wird die Möglickeit ires Vorliegens mancmal überseen. 53. Es seien folgende Funktionen definiert f (,y) = c ( a b + (1 a)y b) d g(,y) = b y c mit b,c,,y > 0 (,y) = e +y mit a [0,1];b,c,d,,y > 0 4

5 Berecne die partiellen Elastizitäten und deren Summe. Welce der Funktionen sind omogen? Die partiellen Ableitungen sind f (,y) = cd ( a b + (1 a)y b) d 1 ab b 1 f y (,y) = cd ( a b + (1 a)y b) d 1 (1 a)by b 1 g (,y) = b b 1 y c g y (,y) = c b y c 1 (,y) = e +y y (,y) = e +y Die partiellen Elastizitäten sind damit ε f, (,y) = f (,y) f (,y) = d ( a b + (1 a)y b) 1 ab b y ε f,y (,y) = f (,y) f y(,y) = d ( a b + (1 a)y b) 1 (1 a)by b ε g, (,y) = g(,y) g (,y) = b y ε g,y (,y) = g(,y) g y(,y) = c ε, (,y) = (,y) (,y) = y ε,y (,y) = (,y) y(,y) = y Anwendung der Recenregel für Pozenzen zeigt, dass die ersten beiden Funktionen omogen sind: f vom Grade bd und g vom Grade b+c. In diesen beiden Fällen stimmt die Summe der partiellen Elastizitäten wie von der Teorie vorausgesagt mit dem Homogenitätsgrad überein. 54. Es seien f (,y) und g(,y) zwei Funktionen, beide omogen vom Grade r. Neme an, die partiellen Elastizitäten beider Funktionen eistieren. Was wissen wir über die Summe der Elastizitäten der Funktion (,y) = f (,y) + g(,y)? Die Summe ist ebenfalls omogen vom Grade r und desalb ist die Summe der Elastizitäten gleic r. Um zu seen, dass die Summe zweier Funktionen die beide omogen vom selben Grade r sind wieder eine vom Grade r omogene Funktion ergibt, recnet man einfac (a,ay) = f (a,ay) + g(a,ay) = a r f (,y) + a r g(,y) = a r( f (,y) + g(,y) ) = a r (,y). 5

6 55. Es seien f () und g() zwei strikt positive und differenzierbare Funktionen. Ire Elastizitäten seien mit ε f () und ε g () bezeicnet, diejenige der Funktion () = f () + g() mit ε () = ε f +g (). Zeige, dass ε f +g () = f ()ε f () + g()ε g () f () + g() Die Ableitung der Funktion ist nac der Ableitungsregel für Summen () = f () + g (). Die Elastizität der Funktion ist folglic ε () = () () = f () + g () f () + g() = f ()ε f () + g()ε g (). f () + g() 56. Die Preiselastizität der Nacfrage nac einem Matematikbuc wird auf 0.5 gescätzt. Der Preis soll um 10% gesenkt werden. Welce Auswirkungen auf die Nacfrage sind zu erwarten? Nac der Definition des Grenzwertes ist und damit (es sei f () 0 und 0) f () = lim 0 f ( + ) + f () ε f () = f () f () = lim 0 f (+)+f () f () Nemen wir nun an, der Bruc im Grenzwert würde sic für 0 in einer Umgebung von 0 nur wenig ändern, so könnten wir für diese annemen, dass ungefär ε f () f (+)+f () f () Umgestellt eralten wir bzw. ( + 1) ε f () f (+) f () ε f ( + ) f () 1 f () 1. Daer kommt (unter den getroffenen Annamen) die Interpretation der Elastizität als ein Maß für die relative Änderung der Funktionswerte im Verältnis zur relativen Änderung des Arguments. In unserem Beispiel könnte man also vermuten, dass sic bei einer Preisänderung von 10% die Nacfrage um ( 0.5)( 10%) = 5% ändert (eröt). Ob / = 0.1 = 10% noc klein genug ist, um der Näerung zu vertrauen, sei daingestellt. 6

7 Ergänzung: Eine weitere Interpretation der Elastizität liefert die folgende eakte Aussage im Stil des Mittelwertsatzes. Es seien a, > 0 und es sei f eine auf dem Intervall zwiscen und a differenzierbare und einscließlic der Intervallränder strikt positive und stetige Funktion. Die Elastizität der Funktion f sei mit ε f bezeicnet. Dann eistiert ein ξ = ξ,a zwiscen und a so dass f (a) = a ε f (ξ) f (). Wir kennen bereits einen Spezialfall dieser Aussage: Die Elastizität omogener Funktionen ist konstant gleic dem Grad der Homogenität. (Bei Funktionen mererer Variablen gilt dies für die Summe der Elastizitäten.) Hier seen wir, dass die Elastizität in änlicer Weise wie der Homogenitätsgrad bei omogenen Funktionen ein Maß dafür ist, wie empfindlic eine Funktion auf relative Änderungen des Arguments reagiert. Ein Beweis sei im folgenden skizziert. Definiere y = ln(), b = ln(a) und (y) = lnf (e y ). Dann ist (y) = ey f (e y ) f (e y ) = ε f (e y ). Nac dem Zwiscenwertsatz eistiert ein ζ zwiscen y = ln() und y + b = ln(a) mit (ζ)b = (y + b) (y). Setzen wir die Definitionen ein, so folgt die Eistenz von ξ = e ζ zwiscen = e y und a = e y+b mit ε f (ξ)ln(a) = lnf (a) lnf (). Daraus folgt unter Anwendung der Eponentialfunktion a ε f (ξ) = f (a)/f () und somit die Beauptung. Oder auc die äquivalente Aussage ε f (ξ) = lnf (a) lnf () ln(a) ln(). Wenden diese Aussage auf das Beispiel an und geen davon aus, dass die Elastizität im Bereic der Preisänderung gleic bleibt. Ver-0.9-fact sic der Preis, so erwarten wir dann eine Absatzänderung um den Faktor

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: M. Boßle, B. Krinn Ü. Okur, M. Wie Blatt 7 Gruppenübung zur Vorlesung Höere Matematik 2 Sommersemester 202 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungsinweise zu en Hausaufgaben: Aufgabe H 58. Differenzierbarkeit

Mehr

Manfred Burghardt. Allgemeine Hochschulreife und Fachhochschulreife in den Bereichen Erziehung, Gesundheit und Soziales

Manfred Burghardt. Allgemeine Hochschulreife und Fachhochschulreife in den Bereichen Erziehung, Gesundheit und Soziales Manfred Burgardt Allgemeine Hocsculreife und Facocsculreife in den Bereicen Erzieung, Gesundeit und Soziales Version /4 Inaltsverzeicnis I Inaltsverzeicnis Inaltsverzeicnis... I Die Ableitungsfunktion

Mehr

6. Die Exponentialfunktionen (und Logarithmen).

6. Die Exponentialfunktionen (und Logarithmen). 6- Funktionen 6 Die Eponentialfunktionen (und Logaritmen) Eine ganz wictige Klasse von Funktionen f : R R bilden die Eponentialfunktionen f() = c ep( ) = c e, ier sind, c feste reelle Zalen (um Trivialfälle

Mehr

ANALYSIS Differenzialrechnung Kapitel 1 5

ANALYSIS Differenzialrechnung Kapitel 1 5 TELEKOLLEG MULTIMEDIAL ANALYSIS Differenzialrecnung Kapitel 5 Ferdinand Weber BRmedia Service GmbH Inaltsverzeicnis Jedes Kapitel beginnt mit der Seitenzal.. Das Tangentenproblem. Steigung einer Geraden

Mehr

10.4 Funktionen von mehreren Variablen

10.4 Funktionen von mehreren Variablen 10.4 Funktionen von mehreren Variablen 87 10.4 Funktionen von mehreren Variablen Veranschaulichung von Funktionen eine Variable wei Variablen f() oder = f() (, ) f(, ) oder = f(, ) D(f) IR; Darstellung

Mehr

Differentialrechnung

Differentialrechnung Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 205/6 7 Differentialrechnung / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f () f ( 0) 0 heißt

Mehr

RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51

RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51 RWTH Aacen, Lerstul für Informatik IX Kapitel 3: Sucen in Mengen - Datenstrukturen und Algoritmen - 51 Sucbäume Biser betractete Algoritmen für Suce in Mengen Sortierte Arrays A B C D - Nur sinnvoll für

Mehr

Matura2016-Lösung. Problemstellung 1

Matura2016-Lösung. Problemstellung 1 Matura-Lösung Problemstellung. Die Funktion f( = + 9k + müsste bei = den Wert annehmen, also gilt + 9k + = k =. Wir betrachten den Bereich mit positiven Werten. Dann gilt: f ( = 8 + 8 = = ; = Bei liegt

Mehr

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11.

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11. Teil Gleicungen mit Unbekannten mit Textaufgaben und 3 Gleicungen mit Unbekannten Datei Nr. 80 Stand. April 0 Lineare Gleicungssysteme INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 80 Gleicungssysteme Vorwort

Mehr

Was haben Beschleunigungs-Apps mit der Quadratur des Kreises zu tun?

Was haben Beschleunigungs-Apps mit der Quadratur des Kreises zu tun? Was aben Bescleunigungs-Apps mit der Quadratur des Kreises zu tun? Teilnemer: Jonatan Geuter Leonard Hackel Paul Hagemann Maximilian Kuc Amber Lucas Tobias Tieme Tobias Tiesse Niko Wolf Gruppenleiter:

Mehr

Wochenplan Woche vom...

Wochenplan Woche vom... Wocenplan Woce vom... Temenübersict Arbeitsblatt 1 Holzylinder Inalt, Scwerpunkte des Temas Volumenberecnungen und Masseberecnung für den Holzylinder Kontrolle Arbeitsblatt Netze von, Oberfläcenberecnung,

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

2.6 Stetigkeit und Grenzwerte

2.6 Stetigkeit und Grenzwerte 2.6 Stetigkeit und Grenzwerte Anschaulich gesprochen ist eine Funktion stetig, wenn ihr Graph sich zeichnen lässt, ohne den Stift abzusetzen. Das ist natürlich keine präzise mathematische Definition und

Mehr

Wirtschaftsmathematik-Klausur vom 03.07.2014 und Finanzmathematik-Klausur vom 11.07.2014 und

Wirtschaftsmathematik-Klausur vom 03.07.2014 und Finanzmathematik-Klausur vom 11.07.2014 und Wirtschaftsmathematik-Klausur vom 03.07.2014 und Finanzmathematik-Klausur vom 11.07.2014 und Bearbeitungszeit: W-Mathe 60 Minuten, F-Mathe 45 Minuten Aufgabe 1 a) Gegeben ist das folgende Gleichungssystem:

Mehr

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene

Mehr

Analytische Geometrie

Analytische Geometrie nalytisce Geometrie. Vektoren Mitte einer Strecke B M B Verbindunsvektor B B B Mittelwert der zwei Ortsvektoren ( 6 ) B( 5 ) m B ( a + b) M( ( ) ( + 5) ( + 6) M( ) Spitze nfan: B b a ( 6 ) B( 5 ) 6 B Scwerpunkt

Mehr

Steuerliche Spendenanreize: Ein Reformvorschlag. Ludwig von Auer Andreas Kalusche. Research Papers in Economics No. 7/10

Steuerliche Spendenanreize: Ein Reformvorschlag. Ludwig von Auer Andreas Kalusche. Research Papers in Economics No. 7/10 Steuerlice Spendenanreize: Ein Reformvorsclag Ludwig von Auer Andreas Kalusce Researc Papers in Economics No. 7/10 Steuerlice Spendenanreize: Ein Reformvorsclag Ludwig von Auer 1 Universität Trier Andreas

Mehr

5. PLANIMETRIE, STEREOMETRIE

5. PLANIMETRIE, STEREOMETRIE 5. PLANIMETRIE, STEREOMETRIE 5.1. Planimetrie Die Planimetrie oder auc ebene Geometrie bescäftigt sic mit den in einer Ebene liegenden geometriscen Figuren. Im folgenden Abscnitt sollen die wictigsten

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Numerische Simulation in der Luft- und Raumfahrttechnik

Numerische Simulation in der Luft- und Raumfahrttechnik Numerisce Simulation in der Luft- und Raumfarttecnik Dr. Felix Jägle, Prof. Dr. Claus-Dieter Munz (IAG) Universität Stuttgart Pfaffenwaldring, 70569 Stuttgart Email: felix.jaegle@iag.uni-stuttgart.de Inalt

Mehr

Die Bauteile 1,2,3 sind gelenkig miteinander verbunden, in A und B gelagert und durch das Gewicht G 1 der Scheibe 1 belastet.

Die Bauteile 1,2,3 sind gelenkig miteinander verbunden, in A und B gelagert und durch das Gewicht G 1 der Scheibe 1 belastet. Aufgabe S1 F10 Die auteile 1,2,3 sind gelenkig miteinander verbunden, in A und gelagert und durc das Gewict G 1 der Sceibe 1 belastet. Annamen: Die Gelenke seien reibungsfrei. Das Material der Sceibe 1

Mehr

V E K TO R A NALYSIS TEIL I SIEGFRIED PETRY

V E K TO R A NALYSIS TEIL I SIEGFRIED PETRY V E K TO R A NALYSIS TEIL I SIEGFRIED PETRY Fassung vom 5 Januar 013 1 I n a l t 1 Grundbegriffe 3 Vektorfunktionen 3 1 Screibweise und Definition 3 Ableitung einer Vektorfunktion 3 3 Differentiationsregeln

Mehr

Herleitungen von elementaren Ableitungsregeln

Herleitungen von elementaren Ableitungsregeln Herleitungen von elementaren Ableitungsregeln by Nictnäerdefiniert 5..003-6..003 Index. Differenzenquotient. Faktorregel 3. Konstantenregel 4. Summenregel 5. Produktregel 6. Quotientenregel 7. Potenzregel

Mehr

Vitamine auf Weltreise

Vitamine auf Weltreise Konzipiert vom Förderverein NaturGut Opoven Vitamine auf Weltreise Zielgruppe: Klasse 2-3 Fac: Dauer: Sacunterrict 90 Minuten Temenbereic: Zusammenang Ernärung und Klimawandel 20 % der Kinder sind zu dick,

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Schriftliche Prüfung Schuljahr: 2008/2009 Schulform: Gymnasium. Mathematik

Schriftliche Prüfung Schuljahr: 2008/2009 Schulform: Gymnasium. Mathematik Ministerium für Bildung, Jugend und Sport Prüfungen am Ende der Jargangsstufe 10 Scriftlice Prüfung Sculjar: 2008/2009 Sculform: Matematik Allgemeine Arbeitsinweise Die Prüfungszeit beträgt 160 Minuten.

Mehr

Veranstaltung. Logistik und Materialfluss (Lagerlogistik), Sommersemester 2013

Veranstaltung. Logistik und Materialfluss (Lagerlogistik), Sommersemester 2013 Veranstaltung Logistik und Materialfluss (Lagerlogistik), Sommersemester 203 Übung 4: Tema: Statisce Losgröße Andler Modell Los (lot) : Menge eines Produktes, die one Unterbrecung gefertigt wird. Losgröße(lotsize):

Mehr

2 Stetigkeit und Differenzierbarkeit

2 Stetigkeit und Differenzierbarkeit 2.1) Sei D R. a) x 0 R heißt Häufungspunkt von D, wenn eine Folge x n ) n N existiert mit x n D,x n x 0 und lim n x n = x 0. D sei die Menge der Häufungspunkte von D. b) x 0 D heißt innerer Punkt von D,

Mehr

T H E R M O H A L I N E S A U F T R I E B S K R A F T W E R K. Ein neuer Kraftwerkstyp. von. Sabrina Berens. Alice Knauf WEIRD SCIENCE CLUB DARMSTADT

T H E R M O H A L I N E S A U F T R I E B S K R A F T W E R K. Ein neuer Kraftwerkstyp. von. Sabrina Berens. Alice Knauf WEIRD SCIENCE CLUB DARMSTADT T H E R M O H A L I N E S A U F T R I E B S K R A F T W E R K Ein neuer Kraftwerkstyp von Sabrina Berens Alice Knauf WEIRD SCIENCE CLUB DARMSTADT an der Lictenbergscule Europascule, MINT-Excellence Center,

Mehr

Die Funktion f sei (zumindest) in einem Intervall I = [a, b] definiert und dort hinreichend oft differenzierbar. f(x 0 ) f(x)

Die Funktion f sei (zumindest) in einem Intervall I = [a, b] definiert und dort hinreichend oft differenzierbar. f(x 0 ) f(x) 3.2.4. Analyse von Funktionen Die Funktion f sei (zumindest) in einem Intervall I = [a, b] definiert und dort hinreichend oft differenzierbar. Begriffe: Die Funktion f hat in x 0 I eine stationäre Stelle,

Mehr

Mathematik für Wirtschaftswissenschaftler. gehalten von Claus Diem

Mathematik für Wirtschaftswissenschaftler. gehalten von Claus Diem Mathematik für Wirtschaftswissenschaftler gehalten von Claus Diem Übungen Die Seminare / Übungsgruppen / Tutorien finden wöchentlich statt. Alle zwei Wochen am Montag wird ein Übungsblatt ausgegeben. Dies

Mehr

Hilfe zum neuen Online-Shop

Hilfe zum neuen Online-Shop Hilfe zum neuen Online-Sop Hier finden Sie umfassend bescrieben, wie Sie sic in unserem neuen Sop zurectfinden. Wenn Sie Fragen zur Kunden-Nr., Kunden-ID oder zum Passwort aben, rufen Sie uns bitte an:

Mehr

ZUKUNFT BILDEN. Die Bildungsinitiative der Region. Februar 2015. Journalistische Darstellungsformen. Teil 3

ZUKUNFT BILDEN. Die Bildungsinitiative der Region. Februar 2015. Journalistische Darstellungsformen. Teil 3 ZUKUNFT Februar 2015 Journalistisce Darstellungsformen Teil 3 Das Projekt zur Bildungsförderung für Auszubildende getragen von starken Partnern Initiatoren: Förderer und Stiftungspartner: INHALT Journalistisce

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Physik III Übung 6 - Lösungshinweise

Physik III Übung 6 - Lösungshinweise Pysik III Übung 6 - Lösungsinweise Stefan Reutter WiSe 2012 Moritz Kütt Stand: 20.12.2012 Franz Fujara Aufgabe 1 [H] Rettungsscwimmen Eine Rettungsscwimmerin siet besorgt einer Gruppe Jugendlicer zu, die

Mehr

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba.

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba. Die Eindeutigkeit nach Satz 3 ergibt schließlich (5). (6) folgt aus (2) und () wegen Aussage (7) ergibt sich aus () und (6). 0 = log b = log b ( a a) = log b a +log ba. 3 Reihen 3. Konvergenz und Divergenz

Mehr

Der einfache Dampfprozess Clausius Rankine Prozess Seite 1 von 8

Der einfache Dampfprozess Clausius Rankine Prozess Seite 1 von 8 Der einface Dapfproze Clauiu Rankine Proze Seite von 8 darin ind e die Exergie, b die Anergie und U die Ugebungteperatur Wie vergleicen zunäct den Carnot cen η C Prozewirkunggrad it de Clauiu-Rankine Prozewirkunggrad

Mehr

a) Die Zerlegung des Gesamteffekts in Einkommens- und Substitutionseffekt + t) erhöht. Die Budgetgerade dreht sich

a) Die Zerlegung des Gesamteffekts in Einkommens- und Substitutionseffekt + t) erhöht. Die Budgetgerade dreht sich IV Die Teorie des Hausalts Mikroökonomie II WS 005/06 3 Einkommens- und Substitutionseffekte Version vom 805 3 Einkommens- und Substitutionseffekte In diesem Abscnitt wird die Frage beandelt, wie sic im

Mehr

Binäre Suchbäume. 6. Binäre Suchbäume. Einfügen in binären Suchbäumen

Binäre Suchbäume. 6. Binäre Suchbäume. Einfügen in binären Suchbäumen 6. Binäre Sucbäume Natürlice binäre Sucbäume - Begriffe und Definitionen - Grundoperationen: Einfügen, sequentielle Suce, direkte Suce, öscen - Bestimmung der mittleren Zugriffskosten Balancierte Binärbäume

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

20 REAKTIONSKINETIK 2: ARRHENIUS-GLEICHUNG UND THEORIE DES ÜBERGANGSZUSTANDS

20 REAKTIONSKINETIK 2: ARRHENIUS-GLEICHUNG UND THEORIE DES ÜBERGANGSZUSTANDS -- 0 REKIONSKINEIK : RRHENIUS-GLEICHUNG UND HEORIE DES ÜERGNGSZUSNDS 0. Die rrenius-gleicung Die rrenius-gleicung bescreibt, wie Gescwindigeitsonstanten von der eperatur abängen. rrenius selbst atte 889

Mehr

Die wichtigsten Lehrbücher bei HD. Höhere Mathematik. Ein Begleiter durch das Studium. Bearbeitet von Karlheinz Spindler

Die wichtigsten Lehrbücher bei HD. Höhere Mathematik. Ein Begleiter durch das Studium. Bearbeitet von Karlheinz Spindler Die wictigsten Lerbücer bei HD Höere Matematik Ein Begleiter durc das Studium Bearbeitet von Karleinz Spindler Nacdruck 2010. Buc. 893 S. Hardcover ISBN 978 3 8171 1872 4 Format (B x L): 22 x 28,5 cm Weitere

Mehr

Wenn die einzelnen Variablen Elemente der reellen Zahlen sind, also reellen Funktion.

Wenn die einzelnen Variablen Elemente der reellen Zahlen sind, also reellen Funktion. FernUNI Hagen WS 00/0 Dierentialrechnung bei Fkt. mit mehreren Variablen In der Ökonomie sowie in vielen anderen Anwendungsbereichen der Mathematik ist eine beobachtete Größe häuig von mehreren Variablen

Mehr

Übung zur Vorlesung Einführung in die Betriebswirtschaftliche Steuerlehre

Übung zur Vorlesung Einführung in die Betriebswirtschaftliche Steuerlehre Mercator Scool of Management Prof. Dr. Volker Breitecker, StB Dr. Marco Tönnes, StB SS 2007 Übung zur Vorlesung Einfürung in die Betriebswirtscaftlice Steuerlere Grundlagen: 1. Zur Erzielung von Einnamen

Mehr

Kapitel 3: Die Nachfrage

Kapitel 3: Die Nachfrage Kapitel 3: Die Nachfrage Hauptidee: Die Nachfrage beschreibt, wie sich der Konsum ändert, wenn Preise und/oder Einkommen variieren. 3.1 Nachfrage Die Nachfrage d eines Konsumenten beschreibt das optimale

Mehr

Überblick. Kapitel 7: Anwendungen der Differentialrechnung

Überblick. Kapitel 7: Anwendungen der Differentialrechnung Überblick Kapitel 7: Anwendungen der Differentialrechnung 1 Beispiel 1: Kapitel 7.1: Implizites Differenzieren 1 Beispiel 1: Steigung der Tangente Kapitel 7.1: Implizites Differenzieren 2 Beispiel 1: Steigung

Mehr

TURBOVAC i Turbomolekular-Pumpen

TURBOVAC i Turbomolekular-Pumpen TURBOVAC i Turbomolekular-Pumpen Ein großer Scritt für die Welt des Vakuums Es ist noc nie so einfac gewesen, Ire Prozesse zu optimieren. TURBOVAC (T) 350-450 i ermöglict Inen die Optimierung Irer Abpumpzeiten

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 reelle Es gibt Mathematik mit Grenzwert (Analysis) und Mathematik ohne Grenzwert (z.b Algebra). Grenzwerte existieren sicher nur dann, wenn der Zahlbereich vollständig ist, also keine Lücken aufweist

Mehr

Analysis I. 11. Beispielklausur mit Lösungen

Analysis I. 11. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 11. Beispielklausur mit en Aufgabe 1. Definiere die folgenden kursiv gedruckten) Begriffe. 1) Ein angeordneter Körper. ) Eine Folge in

Mehr

Um vorerst bei den geometrischen Aufgaben zu bleiben, stelle dir folgendes Problem vor:

Um vorerst bei den geometrischen Aufgaben zu bleiben, stelle dir folgendes Problem vor: Erkläre bitte Extremwertaufgaben... Extremwertaufgaben Sobald man verstanden hat, was ein Extremwert einer Funktion ist (ein lokales Maximum oder Minimum) stellt sich die Frage Und was mach ich damit??.

Mehr

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik 2008-06- Klssenrbeit 5 Klsse 0c Mtemtik Lösung Version 2008-06-4 Cindy t 3000 geerbt. ) Den Betrg will sie so nlegen, dss sie in 20 Jren doppelt so viel Geld t. Berecne, zu welcem Zinsstz sie ds Geld nlegen

Mehr

Ausbildungsberuf KonstruktionsmechanikerIn

Ausbildungsberuf KonstruktionsmechanikerIn KM 07U Projekt Einfce Pyrmide mit qudrtiscer Grundfläce Ausbildungsberuf KonstruktionsmecnikerIn Einstzgebiet/e: Metllbu Sciffbu Scweißen Projekt Gerde Pyrmide mit qudrtiscer Grundfläce Anm.: Blecstärke

Mehr

Differenzenquotient. f(x) Differenzialrechnung. Gegeben sei eine Funktion f(x). 197 Wegener Math/5_Differenzial Mittwoch 04.04.

Differenzenquotient. f(x) Differenzialrechnung. Gegeben sei eine Funktion f(x). 197 Wegener Math/5_Differenzial Mittwoch 04.04. Gegeben sei eine Funktion f(). Differenzialrechnung Differenzenquotient f() 197 Wegener Math/5_Differenzial Mittwoch 04.04.2007 18:38:45 1 Differenzenquotient Gesucht ist die Tangente an der Stelle, wobei

Mehr

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge 1 Mengensysteme Ein Mengensystem ist eine Familie von Teilmengen einer Grundmenge und damit eine Teilmenge der Potenzmenge der Grundmenge. In diesem Kapitel untersuchen wir Mengensysteme, die unter bestimmten

Mehr

Näherungsverfahren zur Berechnung von Nullstellen. Das Newtonsche Iterationsverahren

Näherungsverfahren zur Berechnung von Nullstellen. Das Newtonsche Iterationsverahren Näherungsverfahren zur Berechnung von Nullstellen Das Newtonsche Iterationsverahren. Dieses Verfahren der Nullstellenanäherung macht von der Tatsache Gebrauch, dass der Funktionsgraph einer differenzierbaren

Mehr

Repetitionsaufgaben: Quadratische Funktionen

Repetitionsaufgaben: Quadratische Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Quadratische Funktionen Zusammengestellt von Felix Huber, KSR Lernziele: - Sie wissen, dass der Graph einer quadratischen Funktion eine Parabel ist

Mehr

Numerische und stochastische Grundlagen der Informatik

Numerische und stochastische Grundlagen der Informatik Numerisce und stocastisce Grundlagen der Informatik Peter Bastian Universität Stuttgart, Institut für Parallele und Verteilte Systeme Universitätsstraße 38, D-70569 Stuttgart email: Peter.Bastian@ipvs.uni-stuttgart.de

Mehr

Übung 1: Angebot und Nachfrage

Übung 1: Angebot und Nachfrage Übung 1: Angebot und Nachfrage Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Intermdediate Microeconomics HS 11 Übung 1 1 / 21 2 / 21 Gleichgewicht in Wettbewerbsmärkten Aufgabe

Mehr

Reiner Winter. Exponential- und Logarithmusfunktion. Eine Einführung. f(x) = e x. e 2,718... f 1 (x) = ln x

Reiner Winter. Exponential- und Logarithmusfunktion. Eine Einführung. f(x) = e x. e 2,718... f 1 (x) = ln x Reiner Winter Eponential- und Logaritmusfunktion Eine Einfürung y 6 5 f() = e 4 3 e,78... -4-3 - - 3 4 4 y 3 f () = ln 3 4 5 6 7 8 9 0 - - -3-4 Inalt Einleitung. Die allgemeine Eponentialfunktion. Die

Mehr

Ist die Funktion f : R R injektiv, hat den Definitionsbereich D und den Wertebereich W, so ist f : D W bijektiv. Dann heißt

Ist die Funktion f : R R injektiv, hat den Definitionsbereich D und den Wertebereich W, so ist f : D W bijektiv. Dann heißt Ist die Funktion f : R R injektiv, hat den Definitionsbereich D und den Wertebereich W, so ist f : D W bijektiv. Dann heißt f 1 : W D, y wobei D mit f() = y die Umkehrfunktion zu f. Der Graph G f 1 = {(y,

Mehr

Analysis I. Vorlesung 9. Reihen

Analysis I. Vorlesung 9. Reihen Prof. Dr. H. Brenner Osnabrück WS 20/204 Analysis I Vorlesung 9 Reihen Wir haben in der siebten Vorlesung gesagt, dass man eine Dezimalentwicklung, also eine (unendliche) Ziffernfolge mit Ziffern zwischen

Mehr

1. Angebot und Nachfrage

1. Angebot und Nachfrage 1. Angebot und Nachfrage Georg Nöldeke WWZ, Universität Basel Intermediate Microeconomics, HS 12 1. Angebot und Nachfrage 1/39 2 / 39 1.1 Gleichgewicht in Wettbewerbsmärkten Wir betrachten einen Markt

Mehr

Approximation durch Taylorpolynome

Approximation durch Taylorpolynome TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni

Mehr

oder In den USA werden Geschwindigkeiten in miles per hour (mph) angegeben, 1 Meile = 1'609.34 m. 1 ist um 3.6% grösser. Strecke s v = 120/3.

oder In den USA werden Geschwindigkeiten in miles per hour (mph) angegeben, 1 Meile = 1'609.34 m. 1 ist um 3.6% grösser. Strecke s v = 120/3. Teorie Kineatik Kineatik (griec.: κíνεω (kineo) bewegen ; [Kino bewegte Bilder]) Lere on den Bewegungen. Die Kineatik becränkt ic auf die geoetrice Becreibung der Bewegungabläufe durc die Angabe on Ort,

Mehr

Höhere Mathematik III für Wirtschaftsinformatiker

Höhere Mathematik III für Wirtschaftsinformatiker TU Ilmenau Institut für Mathematik Prof. Dr. S. Vogel Höhere Mathematik III für Wirtschaftsinformatiker Funktionen von mehreren Variablen. Grenzwerte und Stetigkeit Betrachtet werden Funktionen f : D f

Mehr

mit der Anfangsbedingung y(a) = y0

mit der Anfangsbedingung y(a) = y0 Numersce Lösung von Dfferentalglecungen De n den naturwssenscaftlc-tecnscen Anwendungen auftretenden Dfferentalglecungen snd n den wengsten Fällen eplzt lösbar. Man st desalb auf Näerungsverfaren angewesen.

Mehr

Steuerliche Spendenanreize in Deutschland Eine empirische Analyse ihrer fiskalischen Effekte

Steuerliche Spendenanreize in Deutschland Eine empirische Analyse ihrer fiskalischen Effekte Steuerlice Spendenanreize in Deutscland Eine empirisce Analyse irer fiskaliscen Effekte Inauguraldissertation zur Erlangung des akademiscen Grades Doctor rerum politicarum vorgelegt und angenommen an der

Mehr

Zufallsvariablen: Die allgemeine Definition

Zufallsvariablen: Die allgemeine Definition KAPITEL 8 Zufallsvariablen: Die allgemeine Definition 8.1. Zufallsvariablen Bis zu diesem Zeitpunkt haben wir ausschließlich Zufallsvariablen mit endlich oder abzählbar vielen Werten (also diskrete Zufallsvariablen)

Mehr

1. Angebot und Nachfrage

1. Angebot und Nachfrage 1. Angebot und Nachfrage Georg Nöldeke WWZ, Universität Basel Intermediate Microeconomics, HS 11 1. Angebot und Nachfrage 1/40 2 / 40 1.1 Gleichgewicht in Wettbewerbsmärkten Wir betrachten einen Markt

Mehr

6.2 Die Regeln von de l Hospital. Ausgangsfrage: Wie berechnet man den Grenzwert. Beispiel: Sei f(x) = x 2 und g(x) = x. Dann gilt. lim.

6.2 Die Regeln von de l Hospital. Ausgangsfrage: Wie berechnet man den Grenzwert. Beispiel: Sei f(x) = x 2 und g(x) = x. Dann gilt. lim. 6.2 Die Regeln von de l Hospital Ausgangsfrage: Wie berechnet man den Grenzwert falls g(x), beide Funktionen gegen Null konvergieren, d.h. = g(x) = 0 beide Funktionen gegen Unendlich konvergieren, d.h.

Mehr

Arbeit = Kraft Weg. Formelzeichen: W Einheit: 1 N 1 m = 1 Nm = 1 J Joule ( dschul ) Beispiel: Flaschenzug. F zeigt.

Arbeit = Kraft Weg. Formelzeichen: W Einheit: 1 N 1 m = 1 Nm = 1 J Joule ( dschul ) Beispiel: Flaschenzug. F zeigt. Kraftwandler Die Energie al Eraltunggröße Ein Kraftwandler it eine mecanice Anordnung, die eine Kraft wirken lät, welce größer it al die Kraft, die aufgewendet wird (oder umgekert). Beipiel: lacenzug Aufgewendete

Mehr

VERSUCH 5: Spezifische Wärmekapazität

VERSUCH 5: Spezifische Wärmekapazität II. PHYSIKALISCHES INSTITUT DER UNIVERSITÄT GÖTTINGEN Friedric-Hund-Platz 1 37077 Göttingen VERSUCH 5: Spezifisce Wärmekapazität Sticworte Gertsen Westpal Stuart/Klages Kun Temperaturbegriff 5.1.1. 63,

Mehr

Informationen zur Kennzahlenanalyse und Unternehmensbewertung

Informationen zur Kennzahlenanalyse und Unternehmensbewertung Informationen zur Kennzalenanalyse und Unternemensbewertung Liquidität Kennzal Formel Sollwert Kommentar Cas Ratio (Liquiditätsgrad 1) ü 20-30% Widerspiegelt die Bezieung zwiscen Flüssigen Mitteln (inkl

Mehr

Lineare Algebra II 5. Übungsblatt

Lineare Algebra II 5. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,

Mehr

Medienmitteilung Rothenburg, 26. April 2013

Medienmitteilung Rothenburg, 26. April 2013 Pistor AG Medienmitteilung Rotenburg, 26. April 2013 Gescäftsjar 2012 Ausblick 2013 Pistor mit gutem Ergebnis Die Pistor ist gut unterwegs. Im Jar 2012 wurde mit dem Bau des neuen Tiefkülcenters erneut

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen Dr. Nico Düvelmeyer Freitag, 8. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 NLP Aufgabe KKT 2 Nachtrag

Mehr

Formelsammlung. Fachangestellte für Bäderbetriebe Meister für Bäderbetriebe. Inhalt

Formelsammlung. Fachangestellte für Bäderbetriebe Meister für Bäderbetriebe. Inhalt Forelsalung Facangestellte für Bäderbetriebe Meister für Bäderbetriebe Erstellt von Dipl.-Ing. (FH) Wolfgang Hetteric, BVS it Ergänzungen von Dipl.-Ing. (FH) Peter Vltavsky, BS Lindau Inalt llgeeine Mecanik...

Mehr

Mathematik für Wirtschaftsinformatiker

Mathematik für Wirtschaftsinformatiker Mathematik für Wirtschaftsinformatiker Alfred Müller, Martin Rathgeb Universität Siegen Wintersemester 2008/09 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Zahlbereiche.................................... 1 1.2

Mehr

Übung 1: Angebot und Nachfrage

Übung 1: Angebot und Nachfrage Übung 1: Angebot und Nachfrage Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Intermdediate Microeconomics HS 12 Übung 1 1 / 18 2 / 18 Zu Aufgaben 1 und 2 Worum geht es? Sie können

Mehr

Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS. Prof. Dr. M. Voigt

Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS. Prof. Dr. M. Voigt Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS Prof. Dr. M. Voigt 2. März 2015 II Inhaltsverzeichnis 5 Grundlagen 1 5.1 Funktionen einer Variablen...................... 1 5.2 spezielle Funktionen.........................

Mehr

ETS-4308 I. Programmierhandbuch zum Elektronischen Telefon-System

ETS-4308 I. Programmierhandbuch zum Elektronischen Telefon-System ETS-4308 I Programmieranduc zum Elektroniscen Telefon-System Lieferumfang 1 Grundgerät ETS-4308 I 1 Erweiterungsmodul S 0 E-4308 (walweise als 1. int. S 0 -Port oder 2. ext. S 0 -Port steckar) 2 ISDN-Ansclusskael,

Mehr

Ausführliche Lösungen

Ausführliche Lösungen Bohner Ihlenburg Ott Deusch Mathematik für berufliche Gmnasien Jahrgangsstufen und Analsis und Stochastik Ausführliche Lösungen zu im Buch gekennzeichneten Aufgaben ab 5. Auflage 05 ISBN 978--80-8- Das

Mehr

8. Übungsblatt zur Mathematik I für Maschinenbau

8. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 8. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS / 6..-.. Aufgabe G (Matrixinversion mit Gauß-Algorithmus

Mehr

Substitutionselastizität

Substitutionselastizität Substitutionselastizität Grenzrate der Substitution Produktionsfunktion Q = Q(x,..., x n Isoquante: Menge aller Inputkombinationen, die zu einem festen Output Q führen. Die zum Outputniveau Q gehörige

Mehr

Energieformeln. Mechanische Energieformen (Kurzüberblick) Energie. Energieformen (auch nicht-mechanische) Energieumwandlung

Energieformeln. Mechanische Energieformen (Kurzüberblick) Energie. Energieformen (auch nicht-mechanische) Energieumwandlung Mecanice nergieforen (Kurzüberblick) nergie it augeprocen cwierig, den Begriff nergie in allgeeiner For zu erklären. Tatäclic it e ein Kuntbegriff, den ic die Pyiker augedact aben, u ein Syte in die unübercaubare

Mehr

Lernzettel Mathe Inhaltsverzeichnis

Lernzettel Mathe Inhaltsverzeichnis Lernzettel Mathe Inhaltsverzeichnis Aufgabe 1 - Vollständige Induktion 2 Aufgabe 2 - Grenzwertbestimmung 2 Aufgabe 3 - Lin/Log 2 Aufgabe 4 - Barwert/Endwert 3 Aufgabe 5 - Maximalstellen, steigend/fallend

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

Feng Shui. mehr Harmonie am Arbeitsplatz. Counterlife

Feng Shui. mehr Harmonie am Arbeitsplatz. Counterlife Counterlife STORY OF THE MONTH TEXT ALEXANDRA CHRISTEN BILDER ALEXANDRA CHRISTEN / ZVG WEBCODE 7106 An der Dorfstrasse 16 im zugeriscen Baar stet ein kleines Inselparadies. Mit einem Ceck-In- Scalter,

Mehr

Über die Diskretisierung und Regularisierung schlecht gestellter Probleme

Über die Diskretisierung und Regularisierung schlecht gestellter Probleme Über die Diskretisierung und Regularisierung sclect gestellter Probleme von Dipl. Mat. Robert Plato Vom Facbereic Matematik der Tecniscen Universität Berlin genemigte Dissertation zur Erlangung des akademiscen

Mehr

LAF Mathematik. Näherungsweises Berechnen von Nullstellen von Funktionen

LAF Mathematik. Näherungsweises Berechnen von Nullstellen von Funktionen LAF Mathematik Näherungsweises Berechnen von Nullstellen von Funktionen von Holger Langlotz Jahrgangsstufe 12, 2002/2003 Halbjahr 12.1 Fachlehrer: Endres Inhalt 1. Vorkenntnisse 1.1 Nicht abbrechende Dezimalzahlen;

Mehr

Demoseiten für

Demoseiten für Lineare Ungleichungen mit Variablen Anwendung (Vorübungen für das Thema Lineare Optimierung) Datei Nr. 90 bzw. 500 Stand 0. Dezember 009 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 90 / 500 Lineare Ungleichungen

Mehr

Mess- und Abrechnungskonzepte für den Elektro-Auto-Kraftstoff Measurement and Billing Concepts for Electric Vehicles

Mess- und Abrechnungskonzepte für den Elektro-Auto-Kraftstoff Measurement and Billing Concepts for Electric Vehicles Mess- und brecnungsonzepte für den Eletro-uto-Kraftstoff Measurement and Billing Concepts for Electric Veicles Tomi Engel, Deutsce Gesellscaft für Sonnenenergie e.v. (DGS), Müncen, tomi@objectfarm.org

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Zusammenfassung und Übungsblatt zu Steckbriefaufgaben

Zusammenfassung und Übungsblatt zu Steckbriefaufgaben Seite von 7 Bei einer Steckbriefaufgabe werden bestimmte Eigenschaften eines Funktionsgraphen vorgegeben und gesucht ist die Gleichung der Funktion, deren Graph die gewünschten Eigenschaften hat. Ans WBG

Mehr

Besonderer Kastensandwich für die gewichtsoptimierte, innovative Aussteifung großer WKA-Rotorblätter

Besonderer Kastensandwich für die gewichtsoptimierte, innovative Aussteifung großer WKA-Rotorblätter DEWI Magazin Nr. 22, Febr. 2003 esonderer Kastensandwic für die gewictsoptimierte, innovative ussteifung großer WK-Rotorblätter Zusammenfassung Leistungsfäige Windkraftanlagen erfordern bei gegebener lattspitzengescwindigkeit

Mehr

Kapitel 4. Reihen 4.1. Definition und Beispiele

Kapitel 4. Reihen 4.1. Definition und Beispiele Kapitel 4. Reihen 4.1. Definition und Beispiele Ist (a n ) eine Folge von Zahlen, so heißt der formale Ausdruck a ν = a 0 + a 1 + a 2 +... eine Reihe; die einzelnen a ν sind die Glieder dieser Reihe. Um

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

8 Konvergenzkriterien und Häufungswerte von Folgen in R

8 Konvergenzkriterien und Häufungswerte von Folgen in R 8 Konvergenzkriterien und Häufungswerte von Folgen in R 8.1 Konvergenz monotoner Folgen 8.2 Die Zahl e 8.3 Existenz monotoner Teilfolgen 8.4 Auswahlprinzip von Bolzano-Weierstraß 8.5 Konvergenzkriterium

Mehr

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1...

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1... Pflichtteil... Wahlteil Analsis 1... 6 Wahlteil Analsis... 9 Wahlteil Analsis 3... 13 Wahlteil Analtische Geometrie 1... 16 Wahlteil Analtische Geometrie... 3 Lösungen: 006 Pflichtteil Lösungen zur Prüfung

Mehr

Sterbetafeln für die Schweiz 1998/2003

Sterbetafeln für die Schweiz 1998/2003 Sterbetafeln für die Scweiz 1998/2003 Neucâtel, 2005 Die vom Bundesamt für Statistik (BFS) erausgegebene Reie «Statistik der Scweiz» gliedert sic in folgende Facbereice: 0 Statistisce Grundlagen und Übersicten

Mehr