Mathematik für Chemiker I

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Mathematik für Chemiker I"

Transkript

1 Universität D U I S B U R G E S S E N Campus Essen, Matematik PD Dr. L. Strüngmann WS 007/08 Übungsmaterial sowie andere Informationen zur Veranstaltung unter: ttp:// Matematik für Cemiker I Dies ist eine möglice Musterlösung zur Weinactsklausur. Formulierungen und Lösungsansätze müssen weder übernommen werden noc sind sie verpflictend für andere Klausuren. Aufgabe 1.1 (Warm up) (a) Sei f : D f W f eine Funktion und x 0 D f. Definieren Sie in einer Formel, was es eißt, dass f stetig in x 0 ist. Erklären Sie Stetigkeit anand eines Bildes. (b) Geben Sie ein Beispiel für eine stetige Funktion. (c) Geben Sie ein Beispiel für eine Funtion f, die nict stetig in x 0 = 0 ist. (d) Zeigen Sie, dass f : IR IR mit f(x) = x + 4 differenzierbar ist und berecnen Sie die Ableitung f. (5P.) Lösung 1.1 a) Sei f : D f W f und x D f gegeben. f ist stetig in x, falls es für jedes ɛ > 0 ein δ > 0 gibt mit f( x) f(x) < ɛ für alle x D f mit x x < δ. Y-Acse f(x)+ ε f(x) f(x)- ε x-δ x x+ δ X-Acse

2 In Formeln: ɛ>0 δ>0 x Df x x < δ f( x) f(x) < ɛ. Bildlic bedeutet dies, je klein wir auc einen ɛ-sclauc S ɛ um f(x) legen, es existiert immer noc ein δ-sclauc S δ um x, so dass f( x) in S ɛ liegt für alle x S δ. b) Beispiele für stetige Funktionen sind etwa f(x) = c mit c IR, Polynome f(x) = a n x n + + a 1 x + a 0 mit n IN und a i IR oder aber trigonometrisce Funktionen f(x) = sin(x) oder f(x) = cos(x). c) Eine Funktion, die nict stetig in x 0 = 0 ist, ist etwa die Signum-Funktion f(x) = sign(x), denn ier gilt f(0) = 0, aber f(x) = 1 für x > 0 und f(x) = 1 für x < 0. d) Sei f(x) = x + 4. Eine Funktion ist differenzierbar, falls sie in jedem Punkt differenzierbar ist. Ist x 0 D f, so ist f in x 0 differenzierbar, falls lim 0 +) f(x 0 ) f(x existiert. 0 In diesem Fall gilt f (x 0 ) = lim. Im Beispiel ist f(x 0 + ) f(x 0 ) f(x 0 +) f(x 0 ) 0 = (x 0 + ) + 4 (x 0 + 4) = =. Somit existiert lim 0 f(x 0 +) f(x 0 ) = und es gilt f (x 0 ) = für alle x 0 D f, also f. Aufgabe 1. (Kombinatorik) Zur Erstellung einer Matematik-Klausur für Cemiker stet dem Dozenten eine Aufgabensammlung von 10 Aufgaben zur Verfügung. Eine ordentlice Klausur soll 6 (versciedene) Aufgaben entalten. Wieviele Möglickeiten at der Dozent, aus diesen 10 Aufgaben eine Klausur zu kombinieren? (3P.) Lösung 1. Dem Dozenten steen 10 Aufgaben zur Verfügung und es sollen 6 Aufgaben ausgwält werden. Da alle Aufgaben verscieden sein sollen und keine Aufgabe zweimal gewält werden kann entsprict dies einer Auswal one Wiederolung und one zurücklegen. Wir eralten also für die Anzal der möglicen Klausuren ( ) 10 = = = Aufgabe 1.3 (Felerrecnung) 5 7 soll mit der Näerung. = 1.4 möglicst gut (auf Stellen genau) berecnet werden. Wie get man vor? Zur Begründung müssen für die berecneten Größen die zugeörigen relativen Feler berecnet werden. (Tipp: Man berecne (5 7)(5 + 7) =?) (5P.)

3 Lösung 1.3 Es ist 5 7 = Würden wir direkt 5 7 mit der Näerung. = 1.4 ausrecnen, so eralten wir 5 7. = 0. Wir benutzen daer den Hinweis. Es ist (5 7)(5 + 7) = 1, also gilt 5 7 = 1 5. Mit unserer Näerung eralten +7 wir also 5 7 =. 1 = Dies ist eine Näerung bis auf zwei Stellen genau. Für 14 die relativen Feler ergibt sic nämlic nac Vorlesung 1 δ( ) =. δ(1)+δ(5 +7) = δ(5 +7) max{δ(5), δ( ), δ(7)} = δ( ) 10. Aufgabe 1.4 (Zerfallsgesetze) Eine radioaktive Substanz zerfällt gemäß des Gesetzes M(t) = M 0 e αt (α > 0), wobei M(t) die Masse der Substanz zur Zeit t ist. (a) 8 kg der Substanz sind in Stunden auf 1 kg zerfallen. Wie lange dauert es, bis nur noc 0. kg übrig bleibt? (b) Wie lange dauert es, bis von einer beliebigen Menge der Substanz ein Drittel verscwunden ist? Lösung 1.4 Die Substanz zerfällt nac dem Gesetz M(t) = M 0 exp( αt) mit α > 0. (8P.) a) Sei M(t 0 ) = M 0 exp( αt 0 ) = 8, d.. zum Zeitpunkt t 0 aben wir 8 kg der Substanz. Da nac Stunden nur noc 1 kg der Substanz übrig sind, folgt M(t 0 + ) = M 0 exp( α(t 0 + )) = 1. Damit gilt 8 1 = M 0 exp( αt 0 ) M 0 exp( α(t 0 + )) = exp( αt 0 ( α(t 0 + )) = exp(α). Wir eralten α = ln(8), also α = ln(8). Angenommen, es ist nun M(t 0 + x) = 0., dann folgt analog 8 0. = exp(αx) und somit 40 = exp(αx). Wir eralten x = ln(40) α also nur noc 0. kg der Substanz übrig. = ln(40) ln(8) = 3, 54. Nac 3, 54 Stunden ist b) Wann gilt M(t 0 + x) = M(t 3 0), d.. wann sind 1 der Substanz zerfallen? Genau 3 dann, wenn M 0 exp( α(t 0 + x)) = 3 M 0 exp( αt 0 ). Wir eralten 3 exp( α(t 0 + x)) = exp( αt 0 ) und somit = exp( αx). Also gilt x = 3 ln(/3) = 0, 389. Nac 0, 389 Stunden sind also nur noc der Substanz übrig. ln(8) 3

4 Aufgabe 1.5 (Grenzwerte) Bestimmen Sie die folgenden Grenzwerte (a) lim x 0 ln(1 + x ) ln(1 + 3x ), (b) lim x 0 x sin( 1 x ), (c) lim x x sin( 1 x ). (9P.) Lösung 1.5 ln(1 + x ) a) Es gilt lim zu berecnen. Da die Grenzwerte von Zäler und Nenner x 0 ln(1 + 3x ) jeweils 0 sind, dürfen wir die Regel von L Hôspital anwenden und eralten ln(1 + x ) lim x 0ln(1 + 3x ) = lim 4x(1 + 3x ) x 06x(1 + x ) = lim 4(1 + 3x ) x 06(1 + x ) = 4 6 = 3. b) Da x sin( 1 ) x für alle x gilt, folgt lim x sin( 1) = 0. x x 0 x c) Wir screiben lim x sin( 1 x 0 x ) = lim sin( 1) x x 0 und wenden die Regel von L Hôspital an. Es folgt 1 x lim x sin( 1 x x ) = lim cos( 1) 1 x x x 1 x = lim x cos( 1 x ) = 1 Aufgabe 1.6 (Kurvendiskussion) Füren Sie eine Kurvendiskussion für f : D f W f mit x f(x) = 4(1 e x ) durc. Diese sollte entalten: Bestimmung des Definitionsbereices und des Wertebereices, Definitionslücken, Nullstellen, die ersten drei Ableitungen, Extrema, Monotonie- Veralten, Wendepunkte, Grenzwerte für x bzw. x und Skizze des Grapen von f. (15P.) Lösung 1.6 Sei f : D f W f gegeben durc f(x) = 4(1 exp( x)). Definitionsbereic: Da die Exponentialfunktion auf ganz IR definiert ist, folgt D f = IR. Den Wertebereic werden wir später bestimmen, nacdem wir die Funktion weiter

5 diskutiert aben. Definitionslücken: Keine. Nullstellen: Es gilt f(x) = 0 genau dann, wenn 4(1 exp( x)) = 0 (1 exp( x)) = 0 1 exp( x) = 0 1 = exp( x) ln(1) = x x = 0. Die Nullstellenmenge von f ist also Nst(f) = {0}. Ableitungen: Wir berecnen zunäcst f. Es ist f (x) = 4 (1 exp( x))( exp( x))( 1) = 8 exp( x)(1 exp( x)). Für die zweite Ableitung eralten wir f (x) = 8 exp( x) exp( x) 8 exp( x)(1 exp( x)) = 8 exp( x)( exp( x) 1). Scließlic gilt f (x) = 8 exp( x)( exp( x)) 8 exp( x)( exp( x) 1) = 8 exp( x)(1 4 exp( x)). Extrema und Monotonieveralten: Für die Extrema berecnen wir zunäcst die Nullstellen der ersten Ableitung, ein notwendiges Kriterium für eine Extremalstelle. Es ist f (x) = 0 8 exp( x)(1 exp( x)) = 0 exp( x) = 1 x = 0. In x 0 = 0 könnte also eine Extremalstelle vorliegen. Als inreicendes Kriterium muss jedoc noc überprüft werden, ob f in x 0 einen Vorzeicenwecsel durcmact oder aber ob f (x 0 ) 0 ist. Ist x < 0, so gilt exp( x) > 1, also ist f (x) = 8 exp( x)(1 exp( x)) < 0 und f ist somit streng monoton fallend im Intervall ], 0[. Umgekert,ist x > 0, so gilt exp( x) < 1 und daer f (x) > 0. f ist also streng monoton steigend im Intervall ]0, [. Damit aben wir gezeigt, dass in x 0 = 0 eine Extremalstelle vorliegt und zwar ein lokales Minimum (0, 0). Alternativ folgt dies auc aus f (0) = 8 > 0. Wendepunkte und Krümmungsveralten: Um die Wendepunkte zu bestimmen müssen wir zunäcst die Nullstellen der zweiten Ableitung f ausrecnen. Es ist f (x) = 0 8 exp( x)( exp( x) 1) = 0 exp( x) = 1 x = ln( 1 ).

6 In x 1 = ln( 1 ) könnte also ein Wendepunkt von f liegen. Als inreicendes Kriterium müssen wir ier noc nacprüfen, ob f (x 1 ) 0 ist oder ob f einen Vorzeicenwecsel in x 1 durcmact. Es ist f (x 1 ) = 4,also liegt in x 1 tatsäclic ein Wendepunkt vor. Da f (x) > 0 ist für x < x 1 muss f im Intervall ], ln( 1 )[ linksgekrümmt sein und da f (x) < 0 ist für x > x 1, ist f im Intervall ] ln( 1 ), [ rectsgekrümmt. Grenzwertveralten: Es ist lim f(x) = lim 4(1 x x exp( x)) = 4 und lim f(x) = lim 4(1 x x exp( x)) =. Wertebereic: Aus der obigen Diskussion ergibt sic als Wertebreic für f die Menge der nict negativen reellen Zalen W f = {x IR : x 0}. Grap: 4 f(x)=4(1-exp(-x))^ 0 -ln(1/)

Differenzierbare Funktionen

Differenzierbare Funktionen Kapitel 5 Differenzierbare Funktionen In diesem Kapitel widmen wir uns dem Begriff der Differenzierbarkeit und entwickeln die Eigenscaften differenzierbarer Funktionen. Darüberinaus wollen wir auc unsere

Mehr

Mathematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz

Mathematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz Matematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz Cristian Leibold 7. Oktober 2014 Folgen Allgemeines zu Folgen Monotonie und Bescränkteit Grenzwerte und Konvergenz Summen und Reien

Mehr

Übungsaufgaben zu Analysis 2 Lösungen von Blatt V vom 07.05.15. f(x, y) = 2(x + y) + xy + 3x 2, g(x, y) = xy + e xy.

Übungsaufgaben zu Analysis 2 Lösungen von Blatt V vom 07.05.15. f(x, y) = 2(x + y) + xy + 3x 2, g(x, y) = xy + e xy. Prof. Dr. Moritz Kaßmann Fakultät für Matematik Sommersemester 015 Universität Bielefeld Übungsaufgaben zu Analysis Lösungen von Blatt V vom 07.05.15 Aufgabe V.1 + Punkte) Gegeben seien die Funktionen

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: M. Boßle, B. Krinn Ü. Okur, M. Wie Blatt 7 Gruppenübung zur Vorlesung Höere Matematik 2 Sommersemester 202 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungsinweise zu en Hausaufgaben: Aufgabe H 58. Differenzierbarkeit

Mehr

Einführung der Trigonometrischen Funktionen

Einführung der Trigonometrischen Funktionen Einfürung der Trigonometriscen Funktionen Andreas Kovacs H03550L JKU Linz andreas.kovacs@ aon.at Cristian Punzengruber H035596L JKU Linz cunzengruber@ gm.at. Juni 004 Kurzfassung Diese Arbeit andelt von

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2.

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2. Tangentensteigung Gegeben ist die Funktion () =. Um die Steigung der Tangente im Punkt P( ) zu bestimmen, ermitteln wir zunäcst die Steigung der Sekante durc P( ) und Q( ). Q soll so beweglic sein, dass

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Aufgabe 2 Wetterstation Aufgabe aus der scriftlicen Abiturprüfung Hamburg 05. In einer Wetterstation wird die Aufzeicnung eines Niedersclagmessgeräts vom Vortag (im Zeitraum von 0 Ur bis Ur) ausgewertet.

Mehr

13. Übungsblatt zur Mathematik I für Maschinenbau

13. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 3. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 00/ 07.0.-.0. Aufgabe G Stetigkeit) a) Gegeben

Mehr

6. Die Exponentialfunktionen (und Logarithmen).

6. Die Exponentialfunktionen (und Logarithmen). 6- Funktionen 6 Die Eponentialfunktionen (und Logaritmen) Eine ganz wictige Klasse von Funktionen f : R R bilden die Eponentialfunktionen f() = c ep( ) = c e, ier sind, c feste reelle Zalen (um Trivialfälle

Mehr

Mathematik n 1

Mathematik n 1 Prof. Dr. Matthias Gerdts Dr. Sven-Joachim Kimmerle Wintertrimester 0 Mathematik + Übung 6 Besprechung der Aufgaben ) - ) des Übungsblatts am jeweils ersten Übungstermin zwischen Montag, 7..0 und Donnerstag,

Mehr

IV. Stetige Funktionen. Grenzwerte von Funktionen

IV. Stetige Funktionen. Grenzwerte von Funktionen IV. Stetige Funktionen. Grenzwerte von Funktionen Definition. Seien X und Y metrische Räume und E X sowie f : X Y eine Abbildung und p ein Häufungspunkt von E. Wir schreiben lim f(x) = q, x p falls es

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

Stetigkeit. Definitionen. Beispiele

Stetigkeit. Definitionen. Beispiele Stetigkeit Definitionen Stetigkeit Sei f : D mit D eine Funktion. f heißt stetig in a D, falls für jede Folge x n in D (d.h. x n D für alle n ) mit lim x n a gilt: lim f x n f a. Die Funktion f : D heißt

Mehr

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zu Ableitung, Extrem- und Wendepunkten, Interpretation von Grapen von Ableitungsfunktionen, Tangenten und Normalen (Bearbeitungszeit: 90 Minuten) Gymnasium J Alexander Scwarz www.mate-aufgaben.com

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr

Übungen zur Vorlesung Differential und Integralrechnung II (Unterrichtsfach) -Bearbeitungsvorschlag-

Übungen zur Vorlesung Differential und Integralrechnung II (Unterrichtsfach) -Bearbeitungsvorschlag- MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN D. Rost, M. Gebert SS 015 Blatt 9 19.6.015 Übungen zur Vorlesung Differential und Integralrecnung II (Unterrictsfac) -Bearbeitungsvorsclag- 1. Sei n N 0.

Mehr

Differenzieren kurz und bündig

Differenzieren kurz und bündig mate online Skripten ttp://www.mate-online.at/skripten/ Differenzieren kurz und bündig Franz Embacer Fakultät für Matematik der Universität Wien E-mail: franz.embacer@univie.ac.at WWW: ttp://omepage.univie.ac.at/franz.embacer/

Mehr

Die komplexe Exponentialfunktion und die Winkelfunktionen

Die komplexe Exponentialfunktion und die Winkelfunktionen Die komplexe Exponentialfunktion und die Winkelfunktionen In dieser Zusammenfassung werden die für uns wichtigsten Eigenschaften der komplexen und reellen Exponentialfunktion sowie der Winkelfunktionen

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 3. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 3. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Cristop Scmoeger Heiko Hoffmann SS 24 Höere Matematik II für die Facrictung Informatik Lösungsvorscläge zum 3. Übungsblatt Aufgabe 9 a) Bestimmen

Mehr

Musterlösung zu Übungsblatt 1

Musterlösung zu Übungsblatt 1 Prof. R. Pandaripande J. Scmitt, C. Scießl Funktionenteorie 23. September 16 HS 2016 Musterlösung zu Übungsblatt 1 Aufgabe 1. Sei F ein Körper, der R als einen Unterkörper entält. Das eisst R ist eine

Mehr

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C Kapitel 5. Die trigonometrischen Funktionen 5.1. Die komplexen Zahlen 5.. Folgen und Reihen in C 5.10. Definition. Eine Folge (c n n N komplexer Zahlen heißt konvergent gegen c C, falls zu jedem ε > 0

Mehr

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 25.02.2004 Aufgabe 5 Gegeben ist die Funktion f(x) = 2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 06.08.2003 Aufgabe 5 Gegeben ist

Mehr

Linear. Halbkreis. Parabel

Linear. Halbkreis. Parabel Vom Parabolspiegel zur Ableitungsfunktion Im Folgenden get es darum erauszufinden, was ein Parabolspiegel ist und wie er funktioniert. Das fürt uns auf wictige Fragen eines Teilgebietes der Matematik,

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

Lösungen zu Aufgabenblatt 7P

Lösungen zu Aufgabenblatt 7P Analysis Prof. Dr. Peter Becker Fachbereich Informatik Sommersemester 205 9. Mai 205 Lösungen zu Aufgabenblatt 7P Aufgabe (Stetigkeit) (a) Für welche a, b R sind die folgenden Funktionen stetig in x 0

Mehr

6.2 Die Regeln von de l Hospital. Ausgangsfrage: Wie berechnet man den Grenzwert. Beispiel: Sei f(x) = x 2 und g(x) = x. Dann gilt. lim.

6.2 Die Regeln von de l Hospital. Ausgangsfrage: Wie berechnet man den Grenzwert. Beispiel: Sei f(x) = x 2 und g(x) = x. Dann gilt. lim. 6.2 Die Regeln von de l Hospital Ausgangsfrage: Wie berechnet man den Grenzwert falls g(x), beide Funktionen gegen Null konvergieren, d.h. = g(x) = 0 beide Funktionen gegen Unendlich konvergieren, d.h.

Mehr

LMU MÜNCHEN. Mathematik für Studierende der Biologie Wintersemester 2016/17. GRUNDLAGENTUTORIUM 5 - Lösungen. Anmerkung

LMU MÜNCHEN. Mathematik für Studierende der Biologie Wintersemester 2016/17. GRUNDLAGENTUTORIUM 5 - Lösungen. Anmerkung LMU MÜNCHEN Mathematik für Studierende der Biologie Wintersemester 2016/17 GRUNDLAGENTUTORIUM 5 - Lösungen Anmerkung Es handelt sich hierbei um eine Musterlösung so wie es von Ihnen in einer Klausur erwartet

Mehr

7.2. Ableitungen und lineare Approximation

7.2. Ableitungen und lineare Approximation 7.. Ableitungen und lineare Approximation Eindimensionale Ableitungen und Differentialquotienten einer Funktion bekommt man bekanntlic als Limes von Differenzenquotienten f ( a) = f ( a + ) f( a ) = x

Mehr

Numerische Simulation von Differential-Gleichungen der Himmelsmechanik

Numerische Simulation von Differential-Gleichungen der Himmelsmechanik Numerisce Simulation von Differential-Gleicungen der Himmelsmecanik Teilnemer: Max Dubiel (Andreas-Oberscule) Frank Essenberger (Herder-Oberscule) Constantin Krüger (Andreas-Oberscule) Gabriel Preuß (Heinric-Hertz-Oberscule)

Mehr

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16)

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) 1 Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) Kapitel 7: Konvergenz und Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0 KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 03/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 0. Übungsblatt Aufgabe

Mehr

Tangenten an Funktionsgraphen (Differenzialrechnung) Aufgaben ab Seite 4

Tangenten an Funktionsgraphen (Differenzialrechnung) Aufgaben ab Seite 4 Klasse / Augaben ab Seite 4 rundlagen und Begrie der Dierenzialrecnung Die Zeicnungen und Erklärungen sind etwas ausürlicer als notwendig u versciedene Screibweisen und Darstellungen auzuzeigen. Steigung

Mehr

Manfred Burghardt. Allgemeine Hochschulreife und Fachhochschulreife in den Bereichen Erziehung, Gesundheit und Soziales

Manfred Burghardt. Allgemeine Hochschulreife und Fachhochschulreife in den Bereichen Erziehung, Gesundheit und Soziales Manfred Burgardt Allgemeine Hocsculreife und Facocsculreife in den Bereicen Erzieung, Gesundeit und Soziales Version /4 Inaltsverzeicnis I Inaltsverzeicnis Inaltsverzeicnis... I Die Ableitungsfunktion

Mehr

Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur

Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur Aufgabe 1: Die Skulptur Um die Höe einer Skulptur zu bestimmen, die auf einem Sockel stet, stellt sic eine Person (Augenöe 1,70 m) in einer Entfernung von 10 m mit dem Rücken zur Skulptur und ält sic einen

Mehr

Da der Nenner immer positiv ist, folgt. g (x) > 0 2x(2 x) > 0 0 < x < 2 g (x) < 0 2x(2 x) < 0 x < 0 oder x > 2

Da der Nenner immer positiv ist, folgt. g (x) > 0 2x(2 x) > 0 0 < x < 2 g (x) < 0 2x(2 x) < 0 x < 0 oder x > 2 Da der Nenner immer positiv ist, folgt g (x) > 0 x( x) > 0 0 < x < g (x) < 0 x( x) < 0 x < 0 oder x > Also ist g auf (0,) streng monoton wachsend sowie auf (,0) und auf (, ) strengmonotonfallend.außerdemistg

Mehr

Rudolphs Schlitten. Aufgabe. Autor: Jochen Ricker

Rudolphs Schlitten. Aufgabe. Autor: Jochen Ricker Rudolps Sclitten Autor: Jocen Ricker Aufgabe Endlic ist es wieder soweit: Weinacten stet vor der Tür! Diesmal at der Weinactsmann sic ein ganz besonderes Gescenk für seine Rentiere einfallen lassen. Sie

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

Analysis II WS 11/12 Serie 9 Musterlösung

Analysis II WS 11/12 Serie 9 Musterlösung Analysis II WS / Serie 9 Musterlösung Aufgabe Bestimmen Sie die kritischen Punkte und die lokalen Extrema der folgenden Funktionen f : R R: a fx, y = x + y xy b fx, y = cos x cos y Entscheiden Sie bei

Mehr

11 Logarithmus und allgemeine Potenzen

11 Logarithmus und allgemeine Potenzen Logarithmus und allgemeine Potenzen Bevor wir uns mit den Eigenschaften von Umkehrfunktionen, und insbesondere mit der Umkehrfunktion der Eponentialfunktion ep : R R + beschäftigen, erinnern wir an den

Mehr

Mathematik für Wirtschaftswissenschaften I Wintersemester 2015/16 Universität Leipzig. Lösungvorschläge Präsenzaufgaben Serien 1-10

Mathematik für Wirtschaftswissenschaften I Wintersemester 2015/16 Universität Leipzig. Lösungvorschläge Präsenzaufgaben Serien 1-10 Mathematik für Wirtschaftswissenschaften I Wintersemester 05/6 Universität Leipzig Lösungvorschläge Präsenzaufgaben Serien -0 Inhaltsverzeichnis Serie Serie 5 3 Serie 8 4 Serie 9 5 Serie 3 6 Serie 6 7

Mehr

4. DIE ABLEITUNG (DERIVATIVE)

4. DIE ABLEITUNG (DERIVATIVE) 31 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Aufgabe 98 12.12.2012 Untersuchen Sie die Funktion f W R! R mit f.x/

Mehr

Kraft F in N Dehnung s in m

Kraft F in N Dehnung s in m . Klausur Pysik Leistungskurs Klasse 7. 9. 00 Dauer: 90 in. Wilel T., ein junger, talentierter Bogenscütze darf sic einen neuen Bogen kaufen. Er kann den Bogen it axial 50 N spannen und seine Are reicen

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

Höhere Mathematik 1 Übung 9

Höhere Mathematik 1 Übung 9 Aufgaben, die in der Präsenzübung nicht besprochen wurden, können in der darauf folgenden übung beim jeweiligen übungsleiter bzw. bei der jeweiligen übungsleiterin abgegeben werden. Diese Abgabe ist freiwillig

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: A. Kirchhoff, T. Pfrommer, M. Kutter, Dr. I. Rybak. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester Prof. Dr. M. Stroppel Prof. Dr. A. Sändig Lösungshinweise zu den Hausaufgaben: Aufgabe H.

Mehr

Musterlösung zu Blatt 12 der Vorlesung Analysis I WS08/09

Musterlösung zu Blatt 12 der Vorlesung Analysis I WS08/09 Musterlösung zu Blatt 1 der Vorlesung Analysis I WS08/09 Schriftliche Aufgaben Aufgabe 1. Beweisskizze a): Wir benutzen die Stetigkeit von sin und cos und sin π/) = 1, sinπ/) = 1, cos π/) = cosπ/) = 0,

Mehr

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden

Mehr

Herleitungen von elementaren Ableitungsregeln

Herleitungen von elementaren Ableitungsregeln Herleitungen von elementaren Ableitungsregeln by Nictnäerdefiniert 5..003-6..003 Index. Differenzenquotient. Faktorregel 3. Konstantenregel 4. Summenregel 5. Produktregel 6. Quotientenregel 7. Potenzregel

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen Stetigkeit von Funktionen Definition. Es sei D ein Intervall oder D = R, x D, und f : D R eine Funktion. Wir sagen f ist stetig wenn für alle Folgen (x n ) n in D mit Grenzwert x auch die Folge der Funktionswerte

Mehr

8.3 Lösen von Gleichungen mit dem Newton-Verfahren

8.3 Lösen von Gleichungen mit dem Newton-Verfahren 09.2.202 8.3 Lösen von Gleichungen mit dem Newton-Verfahren Beispiel: + 2 e Diese Gleichung kann nicht nach aufgelöst werden, da die beiden nicht zusammengefasst werden können. e - - 2 0 Die gesuchten

Mehr

Leitfaden a tx t

Leitfaden a tx t Leitfaden -0.7. Potenz-Reihen. Definition: Es sei (a 0, a, a 2,...) eine Folge reeller Zahlen (wir beginnen hier mit dem Index t 0). Ist x R, so kann man die Folge (a 0, a x, a 2 x 2, a 3 x 3,...) und

Mehr

ANALYSIS Differenzialrechnung Kapitel 1 5

ANALYSIS Differenzialrechnung Kapitel 1 5 TELEKOLLEG MULTIMEDIAL ANALYSIS Differenzialrecnung Kapitel 5 Ferdinand Weber BRmedia Service GmbH Inaltsverzeicnis Jedes Kapitel beginnt mit der Seitenzal.. Das Tangentenproblem. Steigung einer Geraden

Mehr

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 203/4 Blatt 20.0.204 Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag 4. a) Für a R betrachten wir die Funktion

Mehr

Mathematik M 1/Di WS 2001/02 1. Sei f : D R eine Funktion mit nichtleerem Definitionsbereich D. Sei a D. f heißt stetig in a, falls gilt

Mathematik M 1/Di WS 2001/02 1. Sei f : D R eine Funktion mit nichtleerem Definitionsbereich D. Sei a D. f heißt stetig in a, falls gilt Mathematik M 1/Di WS 2001/02 1 b) Stetigkeit Sei f : D R eine Funktion mit nichtleerem Definitionsbereich D Sei a D f heißt stetig in a, falls gilt lim f() = f(a) a f heißt stetig auf D, wenn f in jedem

Mehr

Á 4. Differenzierbarkeit, Stetigkeit

Á 4. Differenzierbarkeit, Stetigkeit Á 4. Differenzierbarkeit, Stetigkeit Historisc ist der Begriff der Differenzierbarkeit lange vor dem der Stetigkeit entwickelt worden. Untersciedlice Definitionen der Differenzierbarkeit werden von Gottfried

Mehr

Charaktere. 1 Wiederholung. 2 Charaktere verschiedener Darstellungen. 1.1 Zerlegung von Darstellungen. 1.2 Schursches Lemma

Charaktere. 1 Wiederholung. 2 Charaktere verschiedener Darstellungen. 1.1 Zerlegung von Darstellungen. 1.2 Schursches Lemma Caraktere 1 Wiederolung 1.1 Zerlegung von Darstellungen Jede Darstellung läßt sic Zelegen in V = V a1 1 V a Wobei die V i irreduzible Darstellungen von G sind und a i N. Die Sätze der Carakterteorie liefern

Mehr

6 Übungsaufgaben. 6.1 Übungsaufgaben zu Kapitel ÜBUNGSAUFGABEN

6 Übungsaufgaben. 6.1 Übungsaufgaben zu Kapitel ÜBUNGSAUFGABEN 0 6 ÜBUNGSAUFGABEN 6 Übungsaufgaben In diesem Kapitel sind Übungsaufgaben zusammengestellt, die den Stoff der Vorlesung vertiefen und die für Prüfungen erforderliche Praxis und Schnelligkeit vermitteln

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen 9 Stetigkeit von Funktionen Definition 9.1 : Sei D R oder C und f : D R, C. f stetig in a D : ε > 0 δ > 0 mit f(z) f(a) < ε für alle z D, z a < δ. f stetig auf D : f stetig in jedem Punkt a D. f(a) ε a

Mehr

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also Festlegung Definitionsbereich 11.1 Festlegung Definitionsbereich Festlegung: Wir betrachten Funktionen f : D Ñ R, deren Definitionsbereich eine endliche Vereinigung von Intervallen ist, also z.b. D ra,

Mehr

11. Übungsblatt zur Mathematik I für Maschinenbau

11. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 200/ 2.0.-28.0. Aufgabe G (Grenzwertberechnung)

Mehr

Lösungen zur Klausur A Grundkurs Mathematik für Wirtschaftswissenschaft

Lösungen zur Klausur A Grundkurs Mathematik für Wirtschaftswissenschaft Lösungen zur Klausur A Grundkurs Mathematik für Wirtschaftswissenschaft Wintersemester 29/21 16.2.21 Aufgabe A.1. Betrachten Sie die Polynomfunktion p : R R, welche durch die Abbildungsvorschrift p(x)

Mehr

Differenzialrechnung

Differenzialrechnung Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =

Mehr

Mitschrift Mathematik, Vorlesung bei Dan Fulea, 2. Semester

Mitschrift Mathematik, Vorlesung bei Dan Fulea, 2. Semester Mitschrift Mathematik, Vorlesung bei Dan Fulea, 2. Semester Christian Nawroth, Erstellt mit L A TEX 23. Mai 2002 Inhaltsverzeichnis 1 Vollständige Induktion 2 1.1 Das Prinzip der Vollstandigen Induktion................

Mehr

GF MA Differentialrechnung A2

GF MA Differentialrechnung A2 Kurvendiskussion Nullstellen: Für die Nullstellen x i ( i! ) einer Funktion f gilt: Steigen bzw. Fallen: f ( x i ) = 0 f '( x) > 0 im Intervall I f ist streng monoton wachsend in I f '( x) < 0 im Intervall

Mehr

Numerische Ableitung

Numerische Ableitung Numerische Ableitung Die Ableitung kann angenähert werden durch den Differentenquotient: f (x) f(x + h) f(x) h oder f(x + h) f(x h) 2h für h > 0, aber h 0. Beim numerischen Rechnen ist folgendes zu beachten:

Mehr

Taylorentwicklung von Funktionen einer Veränderlichen

Taylorentwicklung von Funktionen einer Veränderlichen Taylorentwicklung von Funktionen einer Veränderlichen 17. Januar 2013 KAPITEL 1. MATHEMATISCHE GRUNDLAGEN 1 Kapitel 1 Mathematische Grundlagen 1.1 Stetigkeit, Differenzierbarkeit und C n -Funktionen Der

Mehr

Repetitorium Mathe 1

Repetitorium Mathe 1 Übungsaufgaben Skript Repetitorium Mathe 1 WS 2014/15 25./26.01. und 31.01./01.02.2015 Inhaltsverzeichnis 1 Bruchrechnung 2 2 Zahlsysteme 2 3 Arithmetisches und geometrisches Mittel 2 4 Wachstum 2 5 Lineare

Mehr

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW Universität Bonn, Institut für Angewandte Mathematik Dr. Antje Kiesel WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW 08.03.2013 Matrikelnummer Platz Name Vorname 1 2 3 4 5 6

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Funktionen. Mathematik-Repetitorium

Funktionen. Mathematik-Repetitorium Funktionen 4.1 Funktionen einer reellen Veränderlichen 4.2 Eigenschaften von Funktionen 4.3 Die elementaren Funktionen 4.4 Grenzwerte von Funktionen, Stetigkeit Funktionen 1 4. Funktionen Funktionen 2

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Zwischenwertsatz Gegeben: f : [a, b] R stetig Dann gilt: f(a) < f(b) y [f(a), f(b)] x [a, b] mit f(x) = y 9.1. Grundbegriffe

Mehr

Übungen Ingenieurmathematik

Übungen Ingenieurmathematik Übungen Ingenieurmathematik 1. Übungsblatt: Komplexe Zahlen Aufgabe 1 Bestimmen Sie Real- und Imaginärteil der folgenden komplexen Zahlen: a) z =(3+i)+(5 7i), b) z =(3 i)(5 7i), c) z =( 3+i)( 3+ 3 i),

Mehr

MATHEMATIK FÜR WIRTSCHAFTSWISSENSCHAFTLER MUSTERLÖSUNG 3. TEST

MATHEMATIK FÜR WIRTSCHAFTSWISSENSCHAFTLER MUSTERLÖSUNG 3. TEST Privatdozent Dr. C. Diem diem@math.uni-leipzig.de http://www.math.uni-leipzig.de/ diem/wiwi MATHEMATIK FÜR WIRTSCHAFTSWISSENSCHAFTLER MUSTERLÖSUNG 3. TEST Es folgt eine Musterlösung zusammen mit Anleitungen

Mehr

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $ $Id: stetig.tex,v 1.11 2012/06/26 15:40:18 hk Exp $ 9 Stetigkeit 9.1 Eigenschaften stetiger Funktionen Am Ende der letzten Sitzung hatten wir eine der Grundeigenschaften stetiger Funktionen nachgewiesen,

Mehr

27 Taylor-Formel und Taylor-Entwicklungen

27 Taylor-Formel und Taylor-Entwicklungen 136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen

Mehr

Physik I Übung 7, Teil 2 - Lösungshinweise

Physik I Übung 7, Teil 2 - Lösungshinweise Pysik I Übung 7, Teil - Lösungsinweise Stefan Reutter SoSe 0 Moritz Kütt Stand:.06.0 Franz Fujara Aufgabe Clausius- Klappermann Clapeyron Revisited (Vorsict, Aufgabe vom Cef!) Da sic Prof. Fujara wie immer

Mehr

Prof. Dr. Rolf Linn

Prof. Dr. Rolf Linn Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen

Mehr

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen Skript zur Analysis 1 Kapitel 3 Stetigkeit / Grenzwerte von Funktionen von Prof. Dr. J. Cleven Fachhochschule Dortmund Fachbereich Informatik Oktober 2003 2 Inhaltsverzeichnis 3 Stetigkeit und Grenzwerte

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Einstieg in die Differenzialrechnung

Einstieg in die Differenzialrechnung Lern-Online.net Matematikportal Dierenzialrecnung (Einstieg) Einstieg in die Dierenzialrecnung Einstiegsbeispiel: Der ideale Kasten Augabenstellung: Ein DIN-A4-Blatt soll zu einem (deckellosen) Kasten

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 2008/2009 Übung 11 Einleitung Es wird eine 15-minütige Mikroklausur geschrieben. i) Sei D R oderd C. Wann heißt

Mehr

2 Stetigkeit und Differenzierbarkeit

2 Stetigkeit und Differenzierbarkeit 2.1) Sei D R. a) x 0 R heißt Häufungspunkt von D, wenn eine Folge x n ) n N existiert mit x n D,x n x 0 und lim n x n = x 0. D sei die Menge der Häufungspunkte von D. b) x 0 D heißt innerer Punkt von D,

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

14. Landeswettbewerb Mathematik Bayern

14. Landeswettbewerb Mathematik Bayern 4. Landeswettbewerb Matematik Bayern Lösungsbeispiele für die Aufgaben der. Runde / Aufgabe David wirft einen besnderen Würfel und screibt jeweils die ben liegende Zal auf. Die Abbildung zeigt ein Netz

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts

Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts 1. Stetigkeit und Grenzwerte: (a) Aus der folgenden grafischen Darstellung von y 1 (x) = x 2/3 /(1 + x 2 ) ist

Mehr

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Übungsblatt Musterlösung Fachbereich Rechts- und Wirtschaftswissenschaften Wintersemester 06/7 Aufgabe (Definitionsbereiche) Bestimme

Mehr

g(x) = lim 6.2 Die Regeln von de l Hospital Ausgangsfrage: Wie berechnet man den Grenzwert Beispiel: Seif(x) = x 2 undg(x) = x.

g(x) = lim 6.2 Die Regeln von de l Hospital Ausgangsfrage: Wie berechnet man den Grenzwert Beispiel: Seif(x) = x 2 undg(x) = x. 6.2 Die Regeln von de l Hospital Ausgangsfrage: Wie berechnet man den Grenzwert falls x x 0 g(x), beide Funktionen gegen Null konvergieren, d.h. x x 0 = x x 0 g(x) = 0 beide Funktionen gegen Unendlich

Mehr

2. Teilklausur. Analysis 1

2. Teilklausur. Analysis 1 Universität Konstanz FB Mathematik & Statistik Prof. Dr. M. Junk Dipl.-Phys. Martin Rheinländer 2. Teilklausur Analysis 4. Februar 2006 4. Iteration Name: Vorname: Matr. Nr.: Hauptfach: Nebenfach: Übungsgruppen-Nr.:

Mehr