7. Natürliche Exponential- und Logarithmusfunktion 7.1 Die natürliche Exponentialfunktion

Größe: px
Ab Seite anzeigen:

Download "7. Natürliche Exponential- und Logarithmusfunktion 7.1 Die natürliche Exponentialfunktion"

Transkript

1 7. Natürlice Eponential- und Logaritmusfunktion 7. Die natürlice Eponentialfunktion Wiederolung 0. Klasse: allgemeine Eponentialfunktion f() = a bekannt (a )' = lim = lim a a a = a lim a Ziel: f f = lim a a = lim a a a Finde eine Basis a, so dass lim =, dann gilt nämlic: (a )' = a, das eißt Funktion und Ableitung sind identisc. also: lim a = > Für ser kleine soll gelten a a = = / /+ /.. a = + bzw. a = (+) / Wir lassen nun gegen 0 geen und eralten: (+) / 2 0, 2, ,0 2, , ,000 2, , , Merke: Der Grenwert lim (+) / = 2, eißt euler'sce Zal e. Die Eponentialfunktion mit der Basis e eißt natürlice Eponentialfunktion oder e-funktion f() = e. Ire Ableitung ist gleic der Funktion selbst: (e ) = e f() = e => Stammfunktion F() = e + c Natürlice Eponential- und Logaritmusfunktion Seite von 8

2 Grenzwerte mit e-funktion und Potenzfunktion Merke: Die e-funktion nimmt für viel stärker zu als jede Potenzfunktion. lim lim n e = 0 e n = e gewinnt! Aufgaben:. Leite ab: a) f() = -2e b) f() = e - 2 c) f() = + e d) f() = e e) f() = 2 e f) f() = 2 + e g) f() = e + e ) f() = e e i) f() = + e j) f() = e k) f() = sin + e l) f() = cos e 2. Ermittle das Veralten der Funktion f für - und für. Gib, falls möglic den Limes an. a) f() = e n b) f() = 3 e c) f() = d) f() = cos e e 3 Natürlice Eponential- und Logaritmusfunktion Seite 2 von 8

3 e) f() = e - f) f() = 3 e Lösungen:. Leite ab: a) f() = -2e f '() = -2e b) f() = e 2 f '() = e c) f() = + e f '() = + e d) f() = e f '() = e + e = (+) e e) f() = 2 e f '() = 2 e + 2 e = (2+) e f) f() = 2 + e f '() = 2 + e g) f() = e + e f '() = e ) f() = e e f '() = e i) f() = + e f '() = 0,5-0,5 + e j) f() = e f '() = 0,5-0,5 e + e k) f() = sin + e f '() = cos + e l) f() = cos e f '() = -sin e + cos e = (-sin +cos ) e 2. Ermittle das Veralten der Funktion f für - und für. Gib, falls möglic den Limes an. a) f() = e n ( ) lim f() = ; ( - ) lim f() = 0 b) f() = 3 e ( ) lim f() = ; ( - ) lim f() = 0 c) f() = cos e ( ) lim f() = 0 ; ( - ) lim f() = eistiert nict! d) f() = e 3 ( ) lim f() = ; ( - ) lim f() = 0 e) f() = e - ( ) lim f() = 0 ; ( - ) lim f() = f) f() = 3 e ( ) lim f() = 0 ; ( - ) lim f() = - Natürlice Eponential- und Logaritmusfunktion Seite 3 von 8

4 7.2 Die natürlice Logaritmusfunktion Man erält die Umkerfunktion(vgl. s()), indem man die ursprünglice Funktion(vgl. f()) an der Winkelalbierenden des I. und II. Quadranten(vgl. u()) spiegelt. Bei der Spiegelung vertauscen sic die Koordinaten: Wd: > aus (-2 / 0,4) wird (0,4 / -2) f() = e > aus (- / 0,4) wird (0,4 / -) y =e > aus (0 / ) wird ( / 0) y => = e y > aus ( / 2,7) wird (2,7 / ) y = log e > aus (0,5 /,6) wird (,6 / 0,5) >Funktion der Umkerfunktion Merke: Die Umkerfunktion zur e-funktion ist die natürlice Logaritmusfunktion: f() = log e = ln => D f = R + Sie at die Ableitung: f'() = (=> >0) Begründung: e ln = => e ln (ln )' = ln e = =>(ln )' = = e ln Natürlice Eponential- und Logaritmusfunktion Seite 4 von 8

5 Recenregeln für natürlice Logaritmen: Es sei u > 0, v > 0 und r beliebig. Beim Logaritmieren gilt die......produktregel: ln(u v) = ln u + ln v...quotientenregel: ln u = ln u ln v v...potenzregel: ln u r = r ln u Wictige Beispiele: ) e = 5 => = ln 5,6 2) ln =7 => = e 7 096,6 3) e ln 3 = 3 4) e -ln 2 = 2 5) ln e 3 = 3 6) ln e -5 = -5 7) e /2 ln 9 = 9 = 3 8) e ln 6 ln 2 = 3 Ableitung der allgemeinen Eponentialfunktion f() = a = (e ln a ) = e ln a => f'() = e ln a ln a = a ln a (a )' = a ln a Beispiel: (2 )' = 2 ln a Ableitung der allgemeinen Logaritmusfunktion f() = log a = f'() = ln a ln ln a = ln a ln (log a ) = ln a Natürlice Eponential- und Logaritmusfunktion Seite 5 von 8

6 Vergleic: Grenzwerte mit e-funktion und Potenzfunktion vs. Logaritmusfunktion => Lamarsciger ln : lim n ln = lim ln n = 0 ln ist der Verlierer Aufgaben:. Vereinface mitilfe der Logaritmiscen Recenregeln, aber one Tascenrecner. a) ln 2 b) ln a 3 c) ln e d) ln e) ln e f) ln e g) ln 3 e ) ln (e ) 2. Gib jeweils den maimalen Definitionsbereic an und differenziere: a) f() = + ln b) f() = ln c) f() = ln 2 d) f() = (ln ) 2 e) f() = ln (-) f) f() = ln g) f() = ln ) f() = ln Natürlice Eponential- und Logaritmusfunktion Seite 6 von 8

7 3. Es sei ɛ R. Bestimme zur Funktion f die Stammfunktion F. a) f() = 2 b) f() = c) f() = d) f() = e) f() = f) f() = g) f() = ) f() = Lösungen:. Vereinface mitilfe der Logaritmiscen Recenregeln, aber one Tascenrecner. a) ln 2 = ln 2 b) ln a 3 = 3 ln a c) ln e = 2 ln e = 0,5 d) ln = ln ln = -ln e) ln e = ln ln e = - f) ln e = ln 2 ln e = -0,5 g) ln 3 e = ln e /3 = ) ln (e ) = ln e + ln 3 ln e = 3 Natürlice Eponential- und Logaritmusfunktion Seite 7 von 8

8 2. Gib jeweils den maimalen Definitionsbereic an und differenziere: a) f() = + ln => D f = R + f '() = + b) f() = ln => D f = R + f '() = c) f() = ln 2 => D f = R + /{0} f '() = d) f() = (ln ) 2 => D f = R + f '() = 2 (ln ) e) f() = ln (-) => D f = R - f '() = f) f() = ln => D f = R + f '() = ln (-) = g) f() = ln => D f = [ ; ] f '() = 2 (ln )-0,5 ) f() = ln => D f = R + f '() = 2-0,5 ln + 0,5 3. Es sei ɛ R. Bestimme zur Funktion f die Stammfunktion F. a) f() = 2 F() = + c b) f() = F() = ln + c c) f() = 3 F() = 3 ln + c d) f() = 2 e) f() = 2 f) f() = 2 2 g) f() = 2 ) f() = F() = ln(+2) + c F() = + 2 ln + c F() = ln + ( 2 F() = + ln(+) + c F() = ln(+) + c ) + c Natürlice Eponential- und Logaritmusfunktion Seite 8 von 8

Mathematik für Chemiker I

Mathematik für Chemiker I Universität D U I S B U R G E S S E N Campus Essen, Matematik PD Dr. L. Strüngmann WS 007/08 Übungsmaterial sowie andere Informationen zur Veranstaltung unter: ttp://www.uni-due.de/algebra-logic/struengmann.stml

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und en Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 008/009 Anweseneitsaufgaben Übung 4 Einleitung Es soll darauf ingewiesen werden, daß es in der Woce vor der Klausur

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: M. Boßle, B. Krinn Ü. Okur, M. Wie Blatt 7 Gruppenübung zur Vorlesung Höere Matematik 2 Sommersemester 202 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungsinweise zu en Hausaufgaben: Aufgabe H 58. Differenzierbarkeit

Mehr

6. Die Exponentialfunktionen (und Logarithmen).

6. Die Exponentialfunktionen (und Logarithmen). 6- Funktionen 6 Die Eponentialfunktionen (und Logaritmen) Eine ganz wictige Klasse von Funktionen f : R R bilden die Eponentialfunktionen f() = c ep( ) = c e, ier sind, c feste reelle Zalen (um Trivialfälle

Mehr

Weg zur e-funktion. Zur Einstimmung werden einige Wachstumsverläufe skizziert. 1. Exponentielles Wachstum. 2. Begrenztes (beschränktes) Wachstum

Weg zur e-funktion. Zur Einstimmung werden einige Wachstumsverläufe skizziert. 1. Exponentielles Wachstum. 2. Begrenztes (beschränktes) Wachstum Weg zur e-funktion Zur Einstimmung werden einige Wacstumsverläufe skizziert.. Eponentielles Wacstum. Begrenztes (bescränktes) Wacstum Wacstumsverläufe. Logistisces Wacstum. Vergiftetes Wacstum Eponentielles

Mehr

Beweise zum Ableiten weiterer Funktionen

Beweise zum Ableiten weiterer Funktionen Arbeitsblatt A: Eponentialfunktionen Satz (Ableitung von Eponentialfunktionen) Für alle gilt: () f () = e f ' () = e () f () = a f ' () = a ln (a) mit a + f() = e grafisches Differenzieren: Ergänze die

Mehr

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient Differenzenquotient Sei f : R R eine Funktion. Der Quotient Kapitel 7 Differentialrecnung f f 0 + f 0 f f 0 0 eißt Differenzenquotient an der Stelle 0. f, f Sekante 0, f 0 f 0 Josef Leydold Matematik für

Mehr

4.3.2 Ableitungsregeln

4.3.2 Ableitungsregeln Vorbereitungskurs auf die Aufnameprüfung der ETH: Matematik 4.3.2 Ableitungsregeln Der Differentialquotient [s. 43] zur Definition der Ableitung beinaltet eine Grenzwertbildung Limes), welce meist dadurc

Mehr

Herleitungen von elementaren Ableitungsregeln

Herleitungen von elementaren Ableitungsregeln Herleitungen von elementaren Ableitungsregeln by Nictnäerdefiniert 5..003-6..003 Index. Differenzenquotient. Faktorregel 3. Konstantenregel 4. Summenregel 5. Produktregel 6. Quotientenregel 7. Potenzregel

Mehr

4.7. Prüfungsaufgaben zu Exponential- und Logarithmusfunktionen

4.7. Prüfungsaufgaben zu Exponential- und Logarithmusfunktionen .. Prüfungsaufgaben zu Eponential- und Logarithmusfunktionen Aufgabe : Funktionsanpassung bei Eponentialfunktionen () Bestimme die Gleichung der Eponentialfunktion f() = c a, deren Schaubild durch die

Mehr

e-funktion und natürlicher Logarithmus

e-funktion und natürlicher Logarithmus e-funktion und natürlicer Logaritmus. Die Differentialgleicung y=y' Gibt es eine Funktion, die mit irer Ableitung identisc ist, d.. dass f = f ' für alle gilt? Wenn die Ableitung trigonometriscer Funktionen

Mehr

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA Mittwoc: Ableiten, Kurvendiskussionen, Optimieren, Folgen und Reien Betracte auf einem Hügel einen Weg, dessen Seitenansict

Mehr

3.2 Polarkoordinaten und exponentielle Darstellung

3.2 Polarkoordinaten und exponentielle Darstellung 42 3.2 Polarkoordinaten und exponentielle Darstellung Ein Punkt z = a + bi der Gaußscen Zalenebene ist durc seine kartesiscen Koordinaten a und b eindeutig festgelegt. Man kann jedoc auc zwei andere Grössen

Mehr

Tangenten an Funktionsgraphen (Differenzialrechnung) Aufgaben ab Seite 4

Tangenten an Funktionsgraphen (Differenzialrechnung) Aufgaben ab Seite 4 Klasse / Augaben ab Seite 4 rundlagen und Begrie der Dierenzialrecnung Die Zeicnungen und Erklärungen sind etwas ausürlicer als notwendig u versciedene Screibweisen und Darstellungen auzuzeigen. Steigung

Mehr

r 11 r 12 r 13 0 r 22 r r 33 l ik r kj die Gleichungen: k= (II) 2 (I) = 3 2 1

r 11 r 12 r 13 0 r 22 r r 33 l ik r kj die Gleichungen: k= (II) 2 (I) = 3 2 1 Tecnisce Universität Berlin Wintersemester 004/005 Fakultät II; Institut für Matematik Prof. Dr. G. Bärwolff/C. Mense.0.005 Probeklausur zur LV Numerik für Informatiker en Aufgabe a Berecnen Sie die LU-Zerlegung

Mehr

Übungsaufgaben zur Kursarbeit

Übungsaufgaben zur Kursarbeit Übungsaufgaben zur Kursarbeit I) Tema Funktionen. Gib jeweils die maximale Definitionsmenge der Funktion an f(x) = (x ) D f = R (x) = x D = {x R /x } g(x) = (x ) D = {x R /x } g k(x) = x D = {x R /x >

Mehr

Differenzial- und Integralrechnung V

Differenzial- und Integralrechnung V Differenzial- un Integralrecnung V Rainer Hauser Dezember 2013 1 Einleitung 1.1 Rationale Funktionen Rationale Funktionen sin Funktionen in er Form von Brücen, eren Zäler un Nenner Polynome sin. Durc vollstäniges

Mehr

Produktregel (Ableitung von f g)

Produktregel (Ableitung von f g) Produktregel (Ableitung von f g) f f g 0 f 0 g g 0 Wir aben die Hoffnung, dass die Ableitung von f g mit Hilfe der Ableitungen von f und g ermittelt werden kann. f ( 0 ) = lim 0 f( 0 +) f( 0 ) g ( 0 )

Mehr

Mathematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz

Mathematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz Matematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz Cristian Leibold 7. Oktober 2014 Folgen Allgemeines zu Folgen Monotonie und Bescränkteit Grenzwerte und Konvergenz Summen und Reien

Mehr

Einstiegsphase Analysis (Jg. 11)

Einstiegsphase Analysis (Jg. 11) Einstiegspase Analysis (Jg. 11) Ac Geradengleicungen: Eine Gerade g verlaufe durc P(-3/-2) und Q(4/3). Eine Gerade gee durc R(1/y) und stee senkrect auf g. Zeicne diese Geraden und stelle ire Gleicungen

Mehr

7.2. Ableitungen und lineare Approximation

7.2. Ableitungen und lineare Approximation 7.. Ableitungen und lineare Approximation Eindimensionale Ableitungen und Differentialquotienten einer Funktion bekommt man bekanntlic als Limes von Differenzenquotienten f ( a) = f ( a + ) f( a ) = x

Mehr

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2.

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2. Tangentensteigung Gegeben ist die Funktion () =. Um die Steigung der Tangente im Punkt P( ) zu bestimmen, ermitteln wir zunäcst die Steigung der Sekante durc P( ) und Q( ). Q soll so beweglic sein, dass

Mehr

Ist die Funktion f auf dem Intervall a; b definiert, dann nennt man. f(b) f(a) b a

Ist die Funktion f auf dem Intervall a; b definiert, dann nennt man. f(b) f(a) b a . Einführung in die Differentialrechnung ==================================================================. Differenzenquotient und mittlere Änderungsrate ------------------------------------------------------------------------------------------------------------------

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 3. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 3. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Cristop Scmoeger Heiko Hoffmann SS 24 Höere Matematik II für die Facrictung Informatik Lösungsvorscläge zum 3. Übungsblatt Aufgabe 9 a) Bestimmen

Mehr

- 1 - Eine Funktion f(x) heißt differenzierbar an der Stelle x 0, wenn der Grenzwert (siehe Kap. 3)

- 1 - Eine Funktion f(x) heißt differenzierbar an der Stelle x 0, wenn der Grenzwert (siehe Kap. 3) - 1-4 Differentialrechnung 4.1 Ableitung einer Funktion Eine Funktion f() ist in einer Umgebung definiert. Abb.: Differenzenquotient Man kann immer einen Quotienten bilden, ( + ) f ( + h) f ( ) f h f +

Mehr

Ein immer wiederkehrendes Konzept in der Mathematik ist die Zurückführung auf Bekanntes, beziehungsweise auf besonders

Ein immer wiederkehrendes Konzept in der Mathematik ist die Zurückführung auf Bekanntes, beziehungsweise auf besonders Vorlesung 14 Differentialrecnung Ein immer wiedererendes Konzept in der Matemati ist die Zurücfürung auf Beanntes, bezieungsweise auf besonders einface Fälle. Besonders einfac sind lineare Funtionen in

Mehr

Analysis: Exponentialfunktionen Analysis

Analysis: Exponentialfunktionen Analysis www.mathe-aufgaben.com Analysis: Eponentialfunktionen Analysis Klausur zu Eponentialfunktionen ohne Wachstum (Ableitung, Stammfunktion, Fläche, Rotationsvolumen, Etremwertaufgabe) Gymnasium ab J Aleander

Mehr

Analysis: Ableitung, Änderungsrate,Tangente Analysis Klausur zu Ableitung, Änderungsrate, Tangente Gymnasium Klasse 10

Analysis: Ableitung, Änderungsrate,Tangente Analysis Klausur zu Ableitung, Änderungsrate, Tangente Gymnasium Klasse 10 Analysis Klausur zu Ableitung, Änderungsrate, Tangente Gymnasium Klasse 10 Aleander Scwarz www.mate-aufgaben.com Dezember 01 1 Teil 1: one Hilfsmittel Aufgabe 1: Ermittle die Steigung von f() = + 4 an

Mehr

Natürliche Exponential- und Logarithmusfunktion. Kapitel 5

Natürliche Exponential- und Logarithmusfunktion. Kapitel 5 Natürliche Eponential- und Logarithmusfunktion Kapitel . Die natürliche Eponentialfunktion und ihre Ableitung 48 Arbeitsaufträge. Individuelle Lösungen Jahr 908 90 90 930 90 960 970 990 000 00 in Sekunden

Mehr

Mathematik I. J. Hellmich

Mathematik I. J. Hellmich Matematik I J. Hellmic Stuttgart Sommer 008 Autor: Dr. Jürgen Hellmic 7070 Tübingen Matematik I c Jürgen Hellmic Alle Recte vorbealten, auc die der fotomecaniscen Wiedergabe und der Speicerung in elektroniscen

Mehr

Mathematik Klassenarbeit Nr. 3. Die Ableitungsfunktion, Eigenschaften und Anwendungen

Mathematik Klassenarbeit Nr. 3. Die Ableitungsfunktion, Eigenschaften und Anwendungen 0. Für Pflict- und Walteil gilt: saubere und übersictlice Darstellung, klar ersictlice Recenwege, Antworten in ganzen Sätzen und Zeicnungen mit spitzem Bleistift bringen dir bis zu 3 Punkte. /3 1. Erkläre

Mehr

Skript für die Oberstufe und das Abitur 2011 Baden-Württemberg - allg. Gymnasium

Skript für die Oberstufe und das Abitur 2011 Baden-Württemberg - allg. Gymnasium Skript für die Oberstufe und das Abitur 011 Baden-Württemberg - allg. Gymnasium Analysis (Lerbuc) (Tascenrecner Teas Instruments und Sarp) Dipl.-Mat. Aleander Scwarz Im Weinberg 9 7489 Cleebronn E-Mail:

Mehr

Die Exponentialfunktion und ihre Verwandschaft

Die Exponentialfunktion und ihre Verwandschaft Die Exponentialfuntion und ire Verwandscaft Pilipp-Andreas Kaufmann 6. August 06 Inaltsverzeicnis Die Exponentialfuntion. Wie findet man nun so eine Folgenvorscrift?........................ Die Eigenscaften

Mehr

Einführung in die Differentialrechnung

Einführung in die Differentialrechnung Einfürung in die Differentialrecnung J. Sperling Uni-Rostock, WS 2015/2016 Inaltsverzeicnis 1 Differentialrecnung 3 1.1 Zur Gescicte.......................................... 3 1.2 Notation und Definition.....................................

Mehr

Á 4. Differenzierbarkeit, Stetigkeit

Á 4. Differenzierbarkeit, Stetigkeit Á 4. Differenzierbarkeit, Stetigkeit Historisc ist der Begriff der Differenzierbarkeit lange vor dem der Stetigkeit entwickelt worden. Untersciedlice Definitionen der Differenzierbarkeit werden von Gottfried

Mehr

Differential- und Integralrechnung. Biostatistik, WS 2010/2011. Inhalt. Nochmal: Exponentielles Wachstum. Matthias Birkner

Differential- und Integralrechnung. Biostatistik, WS 2010/2011. Inhalt. Nochmal: Exponentielles Wachstum. Matthias Birkner Biostatistik, WS 200/20 Differential- und Integralrecnung Mattias Birkner ttp://www.matematik.uni-mainz.de/~birkner/biostatistik0/ 2..200 Inalt Ableitung Änderung und Steigung Recenregeln Anmerkungen 2

Mehr

5.2. ABLEITUNGEN BEKANNTER FUNKTIONEN 105. f(x) = O(g(x)) für x x 0, f(x) < M g(x). f(x) g(x)

5.2. ABLEITUNGEN BEKANNTER FUNKTIONEN 105. f(x) = O(g(x)) für x x 0, f(x) < M g(x). f(x) g(x) 5.2. ABLEITUNGEN BEKANNTER FUNKTIONEN 105 Definition 5.2.4 (Landau Symbole (Fortsetzung)) Wir sagen f(x) = O(g(x)) für x falls es ein K > a ein M R + gibt, so dass für alle x > K gilt f(x) < M g(x), f(x)

Mehr

Vertauschen von Limiten

Vertauschen von Limiten Vertauscen von Limiten W. Herfort December 28, 25 Contents Die Mutter aller Sclacten 2 2 Anwendungen in Beispielen 2 2. Vertauscen von GW in ANA 2................... 2 2.. Aufgabe............................

Mehr

( ), und legen deshalb eine Ebene fest. Als Aufpunkt dient ein beliebiger Punkt von g oder h, als Spannvektoren

( ), und legen deshalb eine Ebene fest. Als Aufpunkt dient ein beliebiger Punkt von g oder h, als Spannvektoren Lösungen zur analytiscen Geometrie, Buc S. 9f. a) E in die Parameterform umwandeln: x = x + x + Wäle: x = ; x = x = + E : X = x x x = + + = + In F einsetzen: + + = + = = In E einsetzen: s: X = + + ( )

Mehr

Anwendungen der Potenzreihenentwicklung: Approximation, Grenzwerte; Wachstum

Anwendungen der Potenzreihenentwicklung: Approximation, Grenzwerte; Wachstum Anwendungen der Potenzreienentwicklung: Approximation, Grenzwerte; Wacstum Lokale Näerung einer Funktion durc ganzrationale Funktionen Ganzrationale Funktionen aben viele angeneme Eigenscaften. Man weiß

Mehr

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x. Skripten für die Oberstufe Kurvendiskussion x 3 f (x) x f (x)dx = e x H. Drothler 0 www.drothler.net Kurvendiskussion Zusammenfassung Seite Um Funktionsgraphen möglichst genau zeichnen zu können, werden

Mehr

5. Übungsblatt zur Analysis II

5. Übungsblatt zur Analysis II Facbereic Matematik Prof. Dr. R. Farwig C. Komo J. Prasiswa R. Sculz SS 009 8.05.009 5. Übungsblatt zur Analysis II Gruppenübung Aufgabe G (Differenzierbarkeit Gegeben sei die Funktion f : R R mit f(x,

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 9. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 9. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 203/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 9. Übungsblatt Aufgabe

Mehr

Mathematik für Molekulare Biologen

Mathematik für Molekulare Biologen Skriptum zur Vorlesung Matematik für Molekulare Biologen Cristian Scmeiser 1 Contents 1 Einleitung 1 2 Zalensysteme, Grundrecnungsarten 2 3 Komplexe Zalen, Polynome 5 4 Die Polardarstellung, Winkelfunktionen

Mehr

Aufgaben e-funktion. Gegeben sind die Funktionen f k (x) = x+k e x. a) Leite g(x) = 1 x k e x. ab.

Aufgaben e-funktion. Gegeben sind die Funktionen f k (x) = x+k e x. a) Leite g(x) = 1 x k e x. ab. Aufgaben e-funktion 7 6 5 4 3-3 - - 3 u 4 - Gegeben sind die Funktionen f k () = +k e. a) Leite g() = k e ab. b) Die Graphen von f und f 3, die -Achse und die Gerade = u (u > 0) begrenzen die Fläche A(u).

Mehr

1 Ableitungen. Hinweise und Lösungen:

1 Ableitungen. Hinweise und Lösungen: Hinweise und Lösungen: http://mathemathemathe.de/analsis/analsis-grundagen Ableitungen Übung.: Einfache Ableitungen - Bestimme die ersten Ableitungen a) f() = 7 + + 8 b) f() = a + a a K(t) = t t + 0 Übung.:

Mehr

V. Differentialrechnung

V. Differentialrechnung V.. Die Ableitung 97 V. Differentialrecnung Ausgeend von der Frage nac der Approximierbarkeit von Funktionen durc affine Funktionen, d.., Funktionen, deren Grap eine Gerade ist, werden wir in diesem Kapitel

Mehr

Musterlösungen zu Blatt 14

Musterlösungen zu Blatt 14 Musterlösungen zu Blatt 4 Aufgabe 79 Sei F eine Stammfunktion von f (eistiert, da f stetig ist). Dann ist b() a() f(t)dt = F (b()) F (a()) nach dem Hauptsatz der Differential- und Integralrechnung. Man

Mehr

Exakte Differenzialgleichungen

Exakte Differenzialgleichungen Exakte Differenzialleicunen In der nacfolenden Diskussion benötien wir die so. symmetrisce Darstellun einer Dl 1. Ordnun. Diese lautet (x, y) + (x, y)dy = 0. Dies entsprict im Falle (x, y) 0 der Dl y (x)

Mehr

Differenzierbare Funktionen

Differenzierbare Funktionen Kapitel 5 Differenzierbare Funktionen In diesem Kapitel widmen wir uns dem Begriff der Differenzierbarkeit und entwickeln die Eigenscaften differenzierbarer Funktionen. Darüberinaus wollen wir auc unsere

Mehr

Einführung der Trigonometrischen Funktionen

Einführung der Trigonometrischen Funktionen Einfürung der Trigonometriscen Funktionen Andreas Kovacs H03550L JKU Linz andreas.kovacs@ aon.at Cristian Punzengruber H035596L JKU Linz cunzengruber@ gm.at. Juni 004 Kurzfassung Diese Arbeit andelt von

Mehr

Definition, Funktionsgraph, erste Beispiele

Definition, Funktionsgraph, erste Beispiele 5. Vorlesung im Brückenkurs Mathematik 07 Reelle Funktionen Dr. Markus Herrich Markus Herrich Reelle Funktionen Definition, Funktionsgraph, erste Beispiele Markus Herrich Reelle Funktionen Definition Eine

Mehr

Formelsammlung spezieller Funktionen

Formelsammlung spezieller Funktionen Lehrstuhl A für Mathematik Aachen, en 70700 Prof Dr E Görlich Formelsammlung spezieller Funktionen Logarithmus, Eponential- un Potenzfunktionen Natürlicher Logarithmus Der Logarithmus ist auf (0, ) efiniert

Mehr

Mathematische Grundlagen der Ökonomie Übungsblatt 13

Mathematische Grundlagen der Ökonomie Übungsblatt 13 Matematisce Grundlagen der Ökonomie Übungsblatt 13 Abgabe Donnerstag 4. Februar, 10:15 in H3 6+4+5+++1 = 0 Punkte Mit Lösungsinweisen zu einigen Aufgaben 51. Ire Bekannte Dido möcte, dass aus einem günstig

Mehr

Reiner Winter. Exponential- und Logarithmusfunktion. Eine Einführung. f(x) = e x. e 2,718... f 1 (x) = ln x

Reiner Winter. Exponential- und Logarithmusfunktion. Eine Einführung. f(x) = e x. e 2,718... f 1 (x) = ln x Reiner Winter Eponential- und Logaritmusfunktion Eine Einfürung y 6 5 f() = e 4 3 e,78... -4-3 - - 3 4 4 y 3 f () = ln 3 4 5 6 7 8 9 0 - - -3-4 Inalt Einleitung. Die allgemeine Eponentialfunktion. Die

Mehr

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert PN Einfürung in die Pysik für Cemiker Prof. J. Lipfert en zu Übungsblatt 7 WS 203/4 en zu Übungsblatt 7 Aufgabe Ballscleuder. Zwei Bälle werden übereinander und gleiczeitig fallen gelassen. Die Massen

Mehr

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a:

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a: Fläcen im Raum Grap und Scnittkurven Im ganzen Artikel bezeicnet D eine Teilmenge des R 2 und eine skalarwertige Funktion in zwei Veränderlicen. Der Grap f : D R 2 R : (x, y) z = f(x, y) G = { (x, y, z)

Mehr

Demo: Mathe-CD. Integration Flächenberechnungen. Sammlung von Trainingsaufgaben. Friedrich Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Demo: Mathe-CD. Integration Flächenberechnungen. Sammlung von Trainingsaufgaben. Friedrich Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Integration Flächenberechnungen Tet noch nicht fertig Vorabversion! Weitere Aufgaben folgen! Sammlung von Trainingsaufgaben Lösungen in 486 Datei Nr. 48 5 Stand 8. Dezember 008 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Binäre Suchbäume. 6. Binäre Suchbäume. Einfügen in binären Suchbäumen

Binäre Suchbäume. 6. Binäre Suchbäume. Einfügen in binären Suchbäumen 6. Binäre Sucbäume Natürlice binäre Sucbäume - Begriffe und Definitionen - Grundoperationen: Einfügen, sequentielle Suce, direkte Suce, öscen - Bestimmung der mittleren Zugriffskosten Balancierte Binärbäume

Mehr

Polynomiale Approximation. und. Taylor-Reihen

Polynomiale Approximation. und. Taylor-Reihen Polynomiale Approximation und Taylor-Reihen Heute gehts um die Approximation von glatten (d.h. beliebig oft differenzierbaren) Funktionen f nicht nur durch Gerade (sprich Polynome vom Grade 1) und Polynome

Mehr

L Hospitial - Lösungen der Aufgaben

L Hospitial - Lösungen der Aufgaben A ln - (Zähler und Nenner müssen gegen gehen, wenn gegen geht): Für geht der Zähler gegen ln Für geht der Nenner gegen - ( ln ) ' ( )' - L'Hospital darf angewendet werden Zähler und Nenner differenzieren

Mehr

122 KAPITEL 7. POTENZREIHEN

122 KAPITEL 7. POTENZREIHEN Kapitel 7 Potenzreien 7.1 Der Konvergenzradius Definition 7.1: (Komplexe Potenzreien) Eine Potenzreie um den Punt z 0 C ist eine Reie der Form a (z z 0 ), a, z, z 0 C. Dort, wo die Reie onvergiert, definiert

Mehr

Logik und Mengenlehre. Mengenlehre Aussagenlogik Prädikatenlogik Mengenalgebra Relationen Funktionen. Russelsche Antinomie Die freie Software R Quiz

Logik und Mengenlehre. Mengenlehre Aussagenlogik Prädikatenlogik Mengenalgebra Relationen Funktionen. Russelsche Antinomie Die freie Software R Quiz Logik und Mengenlere Mengenlere Aussagenlogik Prädikatenlogik Mengenalgebra Relationen Funktionen Russelsce Antinomie Die freie Software R Qui Mengenlere 1 Am Anfang war das Nicts Die leere Menge 2 entält

Mehr

Einführung in die Differentialrechnung

Einführung in die Differentialrechnung Reiner Winter Einfürung in die Differentialrecnung. Das Tangentenproblem als ein Grundproblem der Differentialrecnung Wir betracten im folgenden die quadratisce Normalparabel, d.. den Grapen GI f der Funktionsgleicung

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 10

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 10 RMG Haßfurt Grundwissen Mathematik Jahrgangsstufe 0 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 0 Wissen und Können. Berechnungen am Kreis Bogenmaß Das Bogenmaß ist das zu

Mehr

A U F G A B E N A N A L Y S I S. 11. Vorlesung Zeigen Sie, mit Hilfe der ɛ-δ -Sprache, daß die Funktion x, x 0, stetig bei x 0 = 5 ist.

A U F G A B E N A N A L Y S I S. 11. Vorlesung Zeigen Sie, mit Hilfe der ɛ-δ -Sprache, daß die Funktion x, x 0, stetig bei x 0 = 5 ist. A U F G A B E N A N A L Y S I S. Vorlesung. Zeigen Sie, mit Hilfe der ɛ-δ -Sprache, daß die Funktion, 0, stetig bei 0 = 5 ist. Lösung: Es sei 5 < ɛ. () Daraus folgt 5 ɛ < < 5 + ɛ () oder Folglich gilt

Mehr

Numerische Simulation von Differential-Gleichungen der Himmelsmechanik

Numerische Simulation von Differential-Gleichungen der Himmelsmechanik Numerisce Simulation von Differential-Gleicungen der Himmelsmecanik Teilnemer: Max Dubiel (Andreas-Oberscule) Frank Essenberger (Herder-Oberscule) Constantin Krüger (Andreas-Oberscule) Gabriel Preuß (Heinric-Hertz-Oberscule)

Mehr

1.2 Einfache Eigenschaften von Funktionen

1.2 Einfache Eigenschaften von Funktionen 1.2 Einfache Eigenschaften von Funktionen 1.2.1 Nullstellen Seien A und B Teilmengen von R und f : A B f : Df Wf eine Funktion. Eine Nullstelle der Funktion f ist ein 2 D f, für das f ( = 0 ist. (Eine

Mehr

6. Binäre Suchbäume. Binäre Suchbäume

6. Binäre Suchbäume. Binäre Suchbäume 6. Binäre Sucbäume Natürlice binäre Sucbäume - Begriffe und Definitionen - Grundoperationen: Einfügen, sequentielle Suce, direkte Suce, öscen - Bestimmung der mittleren Zugriffskosten Balancierte Binärbäume

Mehr

43.1 Beispiel und Hinführung Ein Körper bewegt sich mit einer konstanten Geschwindigkeit von. . Zum Zeitpunkt t 0s beschleunigt er mit a 0,5

43.1 Beispiel und Hinführung Ein Körper bewegt sich mit einer konstanten Geschwindigkeit von. . Zum Zeitpunkt t 0s beschleunigt er mit a 0,5 4 Umkehrunktion 4. Beispiel und Hinührung Ein Körper bewegt sich mit einer konstanten Geschwindigkeit von v m s. Zum m Zeitpunkt t s beschleunigt er mit a,5. Der Beschleunigungsvorgang dauert 6 Sekunden.

Mehr

F u n k t i o n e n Zusammenfassung

F u n k t i o n e n Zusammenfassung F u n k t i o n e n Zusammenfassung Johann Carl Friedrich Gauss (*1777 in Braunschweig, 1855 in Göttingen) war ein deutscher Mathematiker, Astronom und Physiker mit einem breit gefächerten Feld an Interessen.

Mehr

PACKAGING DESIGN LIMBIC SCHMIDT SPIELE KNIFFEL MASTER

PACKAGING DESIGN LIMBIC SCHMIDT SPIELE KNIFFEL MASTER PAKAGING DESIGN LIMBI SHMIDT SPIELE KNIFFEL MASTER 16. Präsentation 03. Dezember 2014 Für alle Kniffel-Fans dürfte Einiges bei Kniffel Master scon bekannt sein. Der blaue Text kann daer von allen überspruen

Mehr

Kreis - Kugel Länge des Kreisbogens: Flächeninhalt des Kreissektors: Umrechnung ins Bogenmaß: α. α 360. b: Frequenz c: Phasenverschiebung 1,4 1,4 1,0

Kreis - Kugel Länge des Kreisbogens: Flächeninhalt des Kreissektors: Umrechnung ins Bogenmaß: α. α 360. b: Frequenz c: Phasenverschiebung 1,4 1,4 1,0 Wirsberg-Gmnasium Grundwissen Mathematik 0. Jahrgangsstufe Lerninhalte Fakten-Regeln-eispiele Kreis - Kugel Länge des Kreisbogens: Flächeninhalt des Kreissektors: Umrechnung ins ogenmaß: α b π r 0 α π

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.41 2018/05/08 15:50:54 k Exp $ 1 Analytisce Geometrie und Grundlagen 1.5 Abstände und Winkel Am Ende der letzten Sitzung atten wir eine metrisce Form des Stralensatzes ergeleiten, gegeben

Mehr

Analysis 1 Grundlagen und Differenzialrechnung

Analysis 1 Grundlagen und Differenzialrechnung Hans-Jürgen Dobner, Bernd Engelmann Analysis Grundlagen und Differenzialrechnung ISBN-: -446-45- ISBN-: 978--446-45-9 Leseprobe Weitere Informationen oder Bestellungen unter http://www.hanser.de/978--446-45-9

Mehr

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt Aufgaben für Analysis in der Oberstufe Robert Rothhardt 14. Juni 2011 2 Inhaltsverzeichnis 1 Modellierungsaufgaben 5 1.1 Musterabitur S60................................ 5 1.2 Musterabitur 3.1.4 B / S61..........................

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg : Gliederung 1 Folgen und Reihen 2 Komplexe Zahlen 3 Reelle Funktionen 4 Differenzieren 1 5 Differenzieren 2 6 Integration 7 Zinsen 8

Mehr

9. Differentialrechnung 133. t t. ist besser bekannt unter dem Namen Geschwindigkeit, abgekürzt mit v. Für die Einheit gilt bekanntlich km. 5.

9. Differentialrechnung 133. t t. ist besser bekannt unter dem Namen Geschwindigkeit, abgekürzt mit v. Für die Einheit gilt bekanntlich km. 5. 9. Differentialrecnung 33 9 Von derr Änderrungsrratte zurr Diifffferrenttiiallrrecnung 9.. Gerradensttei igung als Änderrungsrratte Beispiel 9. Das nebensteende Zeit- Weg-Diagramm zeigt eine gleicförmige

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 3

Technische Universität München Zentrum Mathematik. Übungsblatt 3 Technische Universität München Zentrum Mathematik Mathematik Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 3 Hausaufgaben Aufgabe 3. Zeigen Sie mit Hilfe der ɛ-δ-formulierung vgl.

Mehr

Prof. Dr. Rolf Linn

Prof. Dr. Rolf Linn Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen

Mehr

2 Ein Beispiel und der Haken an der Sache

2 Ein Beispiel und der Haken an der Sache Numerik I. Version: 9.02.08 2 Ein Beispiel und der Haken an der Sace In lineare Algebra I-II wurde gezeigt, wie durc das Gaußsce Verfaren lineare Gleicungssysteme gelöst werden. Das folgende einface Beispiel

Mehr

Klausur 12/I Thema: Integralrechnung Teil A (hilfsmittelfrei) 1. Eine Stammfunktion von f x =3 x 1 heißt:

Klausur 12/I Thema: Integralrechnung Teil A (hilfsmittelfrei) 1. Eine Stammfunktion von f x =3 x 1 heißt: mg.odt 5..9 Klausur /I A Thema: Integralrechnung Teil A (hilfsmittelfrei). Eine Stammfunktion von f = heißt: ln ln. Die erste Ableitung der Funktion f = lautet: 8 d beträgt: '. Die Funktion f = ³ 8 ist

Mehr

Funktionenklassen. Einiges, was wir bisher über Funktionen gelernt haben kann auf alle Funktionen übertragen werden.

Funktionenklassen. Einiges, was wir bisher über Funktionen gelernt haben kann auf alle Funktionen übertragen werden. R. Brinkmann http://brinkmann-du.de Seite 0.0.008 Einführung: Funktionenklassen Bisher haben wir nur ganzrationale Funktionen kennen gelernt. Sie gehören zu der Klasse der Rationalen Funktionen. In der

Mehr

Tutorium: Analysis und lineare Algebra

Tutorium: Analysis und lineare Algebra Tutorium: Analysis und lineare Algebra Vorbereitung der Abschlussklausur (Teil 2) Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Komplexe Zahlen 3 Komplexe Zahlen Komplexe Zahlen I Es sei

Mehr

Differenzieren kurz und bündig

Differenzieren kurz und bündig mate online Skripten ttp://www.mate-online.at/skripten/ Differenzieren kurz und bündig Franz Embacer Fakultät für Matematik der Universität Wien E-mail: franz.embacer@univie.ac.at WWW: ttp://omepage.univie.ac.at/franz.embacer/

Mehr

Differentialrechnung

Differentialrechnung 6 Differentialrecnung 6.1 Einfürung Newton und Leibniz Ableitung Maxima und Minima Newton sces Verfaren Die Differentialrecnung wurde von Newton (1643-1727) und von Leibniz (1646-1716) unabängig voneinander

Mehr

Universität Ulm Abgabe: Donnerstag,

Universität Ulm Abgabe: Donnerstag, Universität Ulm Abgabe: Donnerstag,.5.03 Prof. Dr. W. Arendt Stephan Fackler Sommersemester 03 Punktzahl: 0 Lösungen Elemente der Differenzialgleichungen: Blatt 4. Gradientenfelder. Welche der folgenden

Mehr

$Id: stetig.tex,v /02/10 17:31:38 hk Exp $ $Id: diffb.tex,v /02/10 17:50:21 hk Exp hk $

$Id: stetig.tex,v /02/10 17:31:38 hk Exp $ $Id: diffb.tex,v /02/10 17:50:21 hk Exp hk $ Mathematik für Ingenieure I, WS 008/009 Dienstag 0. $Id: stetig.te,v.5 009/0/0 7:3:38 hk Ep $ $Id: diffb.te,v. 009/0/0 7:50: hk Ep hk $ III. Analysis 3 Stetige Funktionen 3.4 Umkehrfunktionen Zum Abschluss

Mehr

dx nf(x 0). dx f(n 1) (x 0 ) = dn

dx nf(x 0). dx f(n 1) (x 0 ) = dn 4.3. Höhere Ableitungen, Konveität, Newtonverfahren 65 4.3 Höhere Ableitungen, Konveität, Newtonverfahren Ist f:i R differenzierbar auf einem Intervall I, so erhalten wir eine neue Funktion auf I, nämlich

Mehr

Linear. Halbkreis. Parabel

Linear. Halbkreis. Parabel Vom Parabolspiegel zur Ableitungsfunktion Im Folgenden get es darum erauszufinden, was ein Parabolspiegel ist und wie er funktioniert. Das fürt uns auf wictige Fragen eines Teilgebietes der Matematik,

Mehr

Lösungen der Aufgaben zu Kapitel 9

Lösungen der Aufgaben zu Kapitel 9 Lösungen der Aufgaben zu Kapitel 9 Abschnitt 9. Aufgabe a) Wir bestimmen die ersten Ableitungen von f, die uns dann das Aussehen der k-ten Ableitung erkennen lassen: fx) = x + e x xe x, f x) = e x e x

Mehr

Serie 4: Flächeninhalt und Integration

Serie 4: Flächeninhalt und Integration D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr. Ana Cannas Serie 4: Flächeninhalt und Integration Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom. und 4. Oktober.. Das Bild zeigt

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Sommersemester 0 Mathematik 3 für Informatik Hausaufgabenblatt Lösungshinweise ohne Garantie auf Fehlerfeiheit). Seien f ) = { {, falls, falls und f ) =. ln, falls a) Skizzieren

Mehr

Aufgabe 1. Version A Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an.

Aufgabe 1. Version A Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. Analysis I, WiSe 013/14, 04.0.014 (Ise 1 Aufgabe 1. Version A Multiple Choice (4 Punte. Kreuzen Sie die richtige(n Antwort(en an. a Welche der folgenden Aussagen über Folgen sind sinnvoll und wahr? jede

Mehr

Realschule Schüttorf November 2006 Mathematik Klasse 10 Wiederholung

Realschule Schüttorf November 2006 Mathematik Klasse 10 Wiederholung 1.) Ein Farradändler verkauft in einer Woce 8 Damen- und 1 Herrenfarräder für 589. Ein Damenfarrad ist 11 günstiger als ein Herrenfarrad. Berecne jeweils den Preis eines Damen- und den Preis eines Herrenfarrades!.)

Mehr

Partielle Ableitungen & Tangentialebenen. Folie 1

Partielle Ableitungen & Tangentialebenen. Folie 1 Partielle Ableitungen & Tangentialebenen Folie 1 Bei Funktionen mit einer Variable, gibt die Ableitung f () die Steigung an. Bei mehreren Variablen, z(,), gibt es keine eindeutige Steigung. Die Steigung

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 008/09 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

ZUKUNFT BILDEN. Die Bildungsinitiative der Region. Februar 2015. Journalistische Darstellungsformen. Teil 3

ZUKUNFT BILDEN. Die Bildungsinitiative der Region. Februar 2015. Journalistische Darstellungsformen. Teil 3 ZUKUNFT Februar 2015 Journalistisce Darstellungsformen Teil 3 Das Projekt zur Bildungsförderung für Auszubildende getragen von starken Partnern Initiatoren: Förderer und Stiftungspartner: INHALT Journalistisce

Mehr