Student Project. Tight Binding Model. verfasst von. Peter WRIESNIK Mat.Nr

Größe: px
Ab Seite anzeigen:

Download "Student Project. Tight Binding Model. verfasst von. Peter WRIESNIK Mat.Nr"

Transkript

1 Studet Project Tight Bidig Model verfasst vo Peter WRIESNIK Mat.Nr im Rahme der Übuge Molekül- ud Festkörperphysik a der Techische Uiversität Graz ud betreut vo Rolad Resel Istitute of Solid State Physics Graz Uiversity of Techology Graz, August 2011

2 Ihaltsverzeichis 1 Theoretische Grudlage Herleitug der Tight-Bidig-Näherug Awedug der Näherug auf ei kokretes Potetial Numerische Auswertug

3 Kapitel 1 Theoretische Grudlage 1.1 Herleitug der Tight-Bidig-Näherug Dem Tight-Bidig-Modell zur Berechug der Elektroebadstruktur i Festkörper liegt die Idee zugrude dass bei eiem periodische Potetial die Gesamtwellefuktio als Liearkombiatio vo atomare Wellefuktioe φ A geschriebe werde. Es zeigt sich, dass es sivoll ist, diese Eizelwellefuktioe als stark a ihre eigee atomare Potetiale V A gebude azusehe, d.h dass sie weig Wechselwirkug mit dem restliche Kristallpotetial zeige, wodurch die Rechug stark erleichtert wird. Die Gesamtwellefuktio ψ(k, x) muss die Eigewertgleichug 1 Hψ = [ ] 2 2m 2 + V (x) ψ(k, x) = E(k)ψ(k, x) (1.1) erfülle. V (x) stellt hier das periodische Gitterpotetial dar ud ka geschriebe werde als V (x) = N V A (x a) (1.2) =1 wobei N die Azahl der Potetiale ud a de Abstad zwische diese 1 Die gesamte Berechug erfolgt hier i der Ortsraumbasis, d.h. Impulsoperatore sid durch Ableituge ud Ortsoperatore durch die Ortsvektore zu ersetze. Außerdem wird die gesamte Berechug zur Vereifachug 1-dimesioal durchgeführt. Sämtliche Überleguge gelte jedoch i 3 Dimesioe aalog. 3

4 darstellt. ψ(k, x) wird u als Liearkombiatio ψ(k, x) = 1 e ika φ A (x a) (1.3) N agesetzt. Diese Fuktioe erfülle das Bloch-Theorem ud sid somit als Lösuge vo Glg. 1.1 zulässig. Die atomare Wellefuktioe φ A (x) seie bekat oder zumidest durch die atomare Eigewertgleichuge H A ()φ(x) = Eφ A (x) (1.4) mit H A () = 2 2m 2 + V A (x a) (1.5) berechebar. H A () beschreibt hier ei Teilche, für welches das Potetial V A a der Stelle x = a agegebe werde ka. Dieses wird i der hier durchgeführte Berechug die Form eies edlich tiefe Potetialtopfs aufweise. Für die weitere Betrachtug wird das Potetial mittels eier Hilfstrasformatio V (x) = V A (x a) + h (x) (1.6) h (x) = V (x) V A (x a) (1.7) umgeschriebe. h (x) bezeichet die Differez zwische dem -te Atompotetial ud dem Gesamtpotetial a der Stelle x. Somit ka der Gesamthamiltooperator aus Glg. 1.1 geschriebe werde als H = H A () + h (x) = 2 2m 2 + V A (x a) + h (1.8) mit H A () als dem Hamiltooperator für das -te Eizelpotetial. Eisetze dieser Beziehug i Glg. 1.1 ud Verwede vo 1.3 ergibt 4

5 [ ] 2 2m 2 + V A (x a) + h (x) e ik a φ A (x a) = = E(k) e ik a φ A (x a) (1.9) Hier kommt u die grudlegede Idee hiter der Tight-Bidig-Approximatio zum Trage: Die eizele atomare Wellefuktioe φ A (x) sid stark a ihre jeweilige Potetiale gebude, d.h. sie falle ausreiched schell ach auße hi ab. Mathematisch bedeutet dies, dass i der Doppelsumme auf der like Seite vo Glg. 1.9 die Ausdrücke V A (x a) φ(x a) ud h (x) φ(x a) für verschwidet kleie Beitrage aufweise, die verachlässigt werde köe. Dies etspricht eiem Gleichsetze vo =. Nach Subtraktio vo E A e ika φ(x a) erhält ma [ ] 2 2m 2 + V A (x a) E A e ika φ A (x a) = e ika h (x)φ A (x a) + [ ] E(k) E A e ika φ A (x a) (1.10) Die like Seite i Glg verschwidet, da ja jede Wellefuktio φ A eie Eigezustad des atomare Hamiltooperators darstellt. Somit bleibt [ ] E(k) EA e ika φ A (x a) = e ika h (x)φ A (x a) (1.11) Multiplikatio mit φ A (x) ud aschließede Itegratio ergibt E(k) E A = e ika e ika φ A (x)φ A(x a)h (x)dx φ A (x)φ A(x a)dx (1.12) Es ist hier sivoll, die Abkürzuge h() = φ A(x)φ A (x a)h (x)dx (1.13) 5

6 bzw. I() = φ A(x)φ A (x a)dx (1.14) eiführe. Somit lässt sich Glg als E(k) E A = e ika h() e ika I() (1.15) schreibe. Obiger Ausdruck ka zwar exakt ausgewertet werde, dies ist jedoch icht immer auf aalytischem Wege möglich. Da bei der Tight-Bidig- Approximatio ur Wechselwirkuge zwische ächste Nachbar berücksichtigt werde, werde i de Summe ur Ateile mit 1 berücksichtigt. Falls die atomare Wellefuktioe reellwertig sid, was hier der Fall ist, gilt außerdem h(1) = h( 1) sowie I(1) = I( 1). Aus der Normierug folgt I(0) = 1. Somit ergibt sich E(k) E A = h(0) + h(1) (eika + e ika ) h(0) + 2h(1)cos(ka) 1 + I(1) (e ika + e ika ) = 1 + 2I(1)cos(ka) (1.16) 1.2 Awedug der Näherug auf ei kokretes Potetial Im Folgede soll die kokrete Form vo Glg für eie periodische Aeiaderreihug edlich tiefer Potetialtöpfe besproche werde. I 1.16 trete lediglich die Ausdrücke h 1 (x) ud h 1 (x) auf. Diese sid ach 1.7 h 1 (x) = V (x) V A (x a) (1.17) bzw. h 1 = V (x) V A (x + a) (1.18) 6

7 V A wird hier als ei edlich tiefer Potetialtopf der Breite 2b ageschriebe: V A = { V 0 für x < b 0 sost (1.19) Die Eigefuktioe dieser Potetialtype 2 habe die Form φ a := exp(κ a x) für < x b φ + A = α φ b := exp( κ ab) cos(k a x) b < x < b cos(κ a b) φ c := exp( κ a x) b x < (1.20) als symmetrische Lösug. I der weitere Rechug wird lediglich diese behadelt. Die atisymmetrische Lösug ergibt sich zu exp(κ a x) für < x b φ A = α exp( κ ab) si(k a x) b < x < b si(κ a b) exp( κ a x) b x < (1.21) α diet der Normierug. Im Folgede wird es sivoll sei, diese stückweise defiierte Eigefuktioe mit φ a, φ b ud φ c zu bezeiche. κ a bzw. k a häge vo der Eergie ud Potetialtiefe ab. Es gelte die implizite Beziehuge κ 2 a = 2m E (1.22) 2 k 2 a = 2m 2 (V 0 E ) (1.23) mit V 0 > 0. Zwische k a ud κ a gilt der Zusammehag k a ta(k a b) = κ a. Diese Gleichug lässt sich aalytisch icht löse. Uter Verwedug vo κ 2 a + k 2 a = 2m 2 V 0 ist jedoch eie umerische Behadlug möglich. 2 vgl. hierzu Glg i [Noltig, 2009] 7

8 Eisetze dieser Wellefuktio i die Ausdrücke für h(0), h(1) ud I(1) liefert i ausgeschriebeer Form h(0) = φ A (x) φ A (x)h 0dx = 2 V 0 a+b a b φ a (x) 2 dx } {{ } I 0 (1.24) h(1) = φ A (x) φ A (x a)h 1dx = V 0 b b φ b (x) φ a (x a)dx = h( 1) } {{ } I 1 (1.25) b = 2 b I(1) = φ b (x) φ a (x a)dx + } {{ } I 1 a b b φ A (x) φ A (x a)dx = φ c (x) φ a (x a)dx = I( 1) } {{ } I 2 (1.26) Diese Itegrale ergebe mit der Wellefuktio 3 aus Glg I 0 = α 2 a+b a b e 2κax dx = α 2 (e4bκa 1) e 2κa(a+b) 2κ a (1.27) b I 1 = α 2 b e κab cos(κ a b) cos(k ax) e κa(x a) dx = ( = α 2 e κab cos(κ a b) e κa(a+b) ka (e 2bκa + 1)si(bk a ) + κ a (e 2bka 1)cos(bk a ) ) ka 2 + κ 2 a (1.28) 3 Gelöst wurde diese Itegrale uter Verwedug vo Mathematica. 8

9 I 2 = α 2 a b b e κaa dx = α 2 e κaa (a 2b) (1.29) Mit diese Abkürzuge lässt sich Glg als E(k) = E A + 2V 0I 0 2V 0 I 1 cos(ka) 1 + (2I 1 + I 2 )cos(ka) (1.30) schreibe. 1.3 Numerische Auswertug Nach dieser Vorarbeit ka schließlich die Eergie E(k) i der Tight-Bidig- Näherug berechet werde. Notwedig hierzu sid jedoch och Werte für k a ud κ a. Hierzu wird die Beziehug k a ta(k a b) = κ a ausgeutzt. Aufgrud der umerische Heragehesweise müsse Werte für die Form des Potetialtopfs festgelegt werde. Diese seie a = 0.1m b = 0.02m V 0 = 1eV (1.31) Mit diese Werte ergibt die Gleichug k 2 a ta 2 (k a b) = 2m 2 V 0 k 2 a (1.32) die Näherugslösuge 4 k a = m 1 ud κ a = m 1. Diese köe i Glg eigesetzt werde. Ma erhält E(k) = cos(0.1k) cos(0.1k) (1.33) mit k i m 1 ud E(k) i ev. 4 Diese wurde uter Verwedug vo WolframAlpha bestimmt. 9

10 Abbildug 1.1: Verlauf der Eergie i Abhägigkeit der Wellezahl k 10

11 Literaturverzeichis [Noltig, 2009] Noltig, W. (2009). Grudkurs Theoretische Physik 5/1: Quatemechaik - Grudlage. Spriger-Verlag Berli Heidelberg, 7. editio. 11

Konzept der Quantenmechanik

Konzept der Quantenmechanik REFLEXION AM POTENTIALWALL Numerische Lösug der Schrödigergleichug i eier Dimesio. Übugseiheit H. Leeb Eiführug i die Dateverarbeitug Kozept der Quatemechaik Bei der Beschreibug mikroskopischer System

Mehr

FormelnfürdieAnzahlmöglicherQuadrateaufn*nSpielfeldern

FormelnfürdieAnzahlmöglicherQuadrateaufn*nSpielfeldern Modrago Formel Herleitug, Azahl Quadrate ud Differeze 01.doc 1 FormelfürdieAzahlmöglicherQuadrateauf*Spielfelder Mit Erläuteruge zur Ableitug der Formel vo Dr. Volker Bagert Berli, 11.03.010 Ihaltsverzeichis

Mehr

( ), der genau auf der Geraden ( ) 2 ( ) #( ) 8. Lineare Regression. = f i. Nach der Summe der kleinsten. mx i

( ), der genau auf der Geraden ( ) 2 ( ) #( ) 8. Lineare Regression. = f i. Nach der Summe der kleinsten. mx i 8. Lieare Regressio 8.1. Die Methode der kleiste Quadrate Regressiosgerade bzw. Ausgleichsgerade sid eie Auswertug vo statistische Messdate. Ziel dieses Verfahres ist es, Beziehuge zwische zwei Merkmale

Mehr

Quantenmechanik I. Musterlösung 12.

Quantenmechanik I. Musterlösung 12. Quatemechaik I. Musterlösug 1. Herbst 011 Prof. Reato Reer Übug 1. Ster-Gerlach (19). Ei Strahl aus ugeladee Teilche mit Spi s = 1 läuft etlag der x-achse ud durchquert ei i z-richtug stark ihomogees Magetfeld.

Mehr

Halbleiter II. x 1 2 e ax dx = Γ ( ) verwendet werden. Außerdem gilt. 1. intrinsische Halbleiter. 4π 2 ( 2m. k b T ) a

Halbleiter II. x 1 2 e ax dx = Γ ( ) verwendet werden. Außerdem gilt. 1. intrinsische Halbleiter. 4π 2 ( 2m. k b T ) a Übuge zu Materialwisseschafte I Prof. Alexader Holleiter Übugsleiter: Jes Repp / ric Parziger Kotakt: jes.repp@wsi.tum.de / eric.parziger@wsi.tum.de Blatt 4, Besprechug:28.-3..23 Halbleiter II. itrisische

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Statistik ud Wahrscheilichkeitsrechug Übug 6 3.03.20 Ihalt der heutige Übug Aufgabe D.7: Reche mit Zufallsvariable Erwartugswert- ud Variazoperator Statistik ud Wahrscheilichkeitsrechug

Mehr

5.4.2 Die empirische Verteilungsfunktion als Ausgangspunkt

5.4.2 Die empirische Verteilungsfunktion als Ausgangspunkt Tests 9 5.4 Der Kolmogorov Smirov Test Grudlage für de Kolmogorov Smirov Apassugs Test ist ei Satz vo Kolmogorov, die asymptotische Verteilug eier Statistik Δ betreffed. Aus Δ ergibt sich durch Modifikatio

Mehr

4 Schwankungsintervalle Schwankungsintervalle 4.2

4 Schwankungsintervalle Schwankungsintervalle 4.2 4 Schwakugsitervalle Schwakugsitervalle 4. Bemerkuge Die bekate Symmetrieeigeschaft Φ(x) = 1 Φ( x) bzw. Φ( x) = 1 Φ(x) für alle x R überträgt sich auf die Quatile N p der Stadardormalverteilug i der Form

Mehr

Übungen zur Analysis 3

Übungen zur Analysis 3 Mathematisches Istitut der Uiversität Müche Prof Dr Fraz Merkl Witersemester 0/04 Blatt 9 050 Übuge zur Aalysis 9 addichte eier Gleichverteilug Die Gleichverteilug auf dem Dreieck ist das Maß : {(a, b)

Mehr

Höhere Mathematik 3. Kapitel 12 Differenzengleichungen, z-transformation. Prof. Dr.-Ing. Dieter Kraus

Höhere Mathematik 3. Kapitel 12 Differenzengleichungen, z-transformation. Prof. Dr.-Ing. Dieter Kraus Höhere Mathematik 3 Kapitel 1 Differezegleichuge, z-trasformatio Prof. Dr.-Ig. Dieter Kraus Höhere Mathematik 3 Kapitel 1 Ihaltsverzeichis 1 Differezegleichuge, -Trasformatio...1-1 1.1 Eiführug i Differezegleichuge...1-1

Mehr

Tutoren: Jinming Lu, Konrad Schönleber

Tutoren: Jinming Lu, Konrad Schönleber Näherugsmethode Tutore: Jimig Lu, Korad Schöleber 9.0.09 Nur weige quatemechaische Probleme (z.b. der harmoische Oszillator dieser ist jedoch oft selbst eie Näherug) lasse sich exakt löse, es ist somit

Mehr

Meßwerte in der Quantenmechanik

Meßwerte in der Quantenmechanik Meßwerte i der Quatemechaik w a s m i s s t m a d e e i g e t l i c h a e i e m W e l l e p a k e t?? 4. Postulat der Quatemechaik: (. Teil W e eie igefuktio zum Operator F ist, da führt die Messug vo

Mehr

Prof. Dr. Peter Vogl, Thomas Eissfeller, Peter Greck. Übung in Thermodynamik und Statistik 4B Blatt 3 (Abgabe Di 22. Mai 2012 in Vorlesung)

Prof. Dr. Peter Vogl, Thomas Eissfeller, Peter Greck. Übung in Thermodynamik und Statistik 4B Blatt 3 (Abgabe Di 22. Mai 2012 in Vorlesung) TU Müche Physik Departmet, T33 http://www.wsi.tum.de/t33 Teachig Prof. Dr. Peter Vogl, Thomas Eissfeller, Peter Greck Übug i Thermodyamik ud Statistik 4B Blatt 3 Abgabe Di. Mai i Vorlesug. Mikrokaoische

Mehr

Tests statistischer Hypothesen

Tests statistischer Hypothesen KAPITEL 0 Tests statistischer Hypothese I der Statistik muss ma oft Hypothese teste, z.b. muss ma ahad eier Stichprobe etscheide, ob ei ubekater Parameter eie vorgegebee Wert aimmt. Zuerst betrachte wir

Mehr

2.7. Potentialbarrieren

2.7. Potentialbarrieren .7. Potetialbarriere Der Tueleffekt spielt eie och größere Rolle bei der Potetialbarriere. Wie i Abbildug.7- dargestellt, hadelt es sich bei der Barriere gewissermaße um eie auf de Kopf gestellte Potetialtopf,

Mehr

So lösen Sie die Gleichung für den Korrelationskoeffizienten

So lösen Sie die Gleichung für den Korrelationskoeffizienten 8. Lieare Regressio 8.1. Die Methode der kleiste Quadrate Regressiosgerade bzw. Ausgleichsgerade sid eie Auswertug vo statistische Messdate. Dabei sid Datepukte ( x 1, y 1 ),( x 2, y 2 ), ( x, y ) gegebe.

Mehr

Positiv denken! Lösungen

Positiv denken! Lösungen Schülerzirkel Mathematik Fakultät für Mathematik. Uiversität Regesburg Positiv deke! Lösuge Aufgabe 1 (GMAMQM (ur für die Klasse 7/8) [ Pukte]). Seie a, b reelle Zahle. 1. Sei a 0 ud b 0. Zeige, dass a

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übuge zur Lieare Algebra 1 Lösuge Witersemester 009/010 Uiversität Heidelberg Mathematisches Istitut Lösuge Blatt 8 Dr D Vogel Michael Maier Aufgabe 33 Gehe wir aalog zu Algorithmus vor: v 1 M(4,K) A :=

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Istitut für Techologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 3/4 Prof. Dr. J. Schmalia Blatt 7 Dr. P. P. Orth Abgabe ud Besprechug 3..3. Tayloretwicklug I 5 + 5 + 5 + 5

Mehr

Repetitionsaufgaben Potenzfunktionen

Repetitionsaufgaben Potenzfunktionen Repetitiosaufgabe Potezfuktioe Ihaltsverzeichis A) Vorbemerkuge/Defiitio 1 B) Lerziele 1 C) Etdeckuge (Graphe) 2 D) Zusammefassug 7 E) Bedeutug der Parameter 7 F) Aufgabe mit Musterlösuge 9 A) Vorbemerkuge

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

Folgen explizit und rekursiv Ac

Folgen explizit und rekursiv Ac Folge explizit ud rekursiv Ac 03-08 Folge sid Fuktioe, bei dee atürliche Zahle ( 0; ; ; ) reelle Zahle a() zugeordet werde. Ma schreibt dafür : a() bzw. a. Für die Folge schreibt ma auch < a >. Folge köe

Mehr

Proseminar Lineare Algebra WS 2016/17

Proseminar Lineare Algebra WS 2016/17 Prosemiar Lieare Algebra WS 2016/17 Bachelorstudium Lehramt Sekudarstufe (Allgemeibildug) Lehramtsstudium Uterrichtsfach Mathematik Kapitel 0: Grudlage 1. Wie sid die Begriffe Vereiigug, Durchschitt ud

Mehr

Vorkurs Grundlagen für das Mathematikstudium Lösungen 2: Binomialreihen, Exponential- und Logarithmusfunktion

Vorkurs Grundlagen für das Mathematikstudium Lösungen 2: Binomialreihen, Exponential- und Logarithmusfunktion Uiversität Zürich, 3. September 0 Vorurs Grudlage für das Mathematistudium Lösuge : Biomialreihe, Expoetial- ud Logarithmusfutio Lösug zu Aufgabe Seie x, y > 0 ud a > 0. Da gilt: a log a z z für alle z

Mehr

Analysis II für M, LaG und Ph, WS07/08 Übung 2, Lösungsskizze

Analysis II für M, LaG und Ph, WS07/08 Übung 2, Lösungsskizze Gruppeübug Aalysis II für M, LaG ud Ph, WS7/8 Übug, Lösugsskizze G 4 (Zum warm werde). Begrüde die vo Physiker beliebte Näheruge si(x) x, cos(x) ud ta(x) x für kleie x R. Dies folgt direkt aus der Tayloretwicklug

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

Wallis-Produkt, Gammafunktion und n-dimensionale Kugeln

Wallis-Produkt, Gammafunktion und n-dimensionale Kugeln Wallis-Produkt, Gammafuktio ud -dimesioale Kugel Thomas Peters Thomas Mathe-Seite www.mathe-seite.de 6. Oktober 3 Das Ziel dieses Artikels ist es, Formel für das Volume ud die Oberfläche vo -dimesioale

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Sebastia Schwarz WS 04/05 5..04 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 9. Übugsblatt

Mehr

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung .3. Prozetuale Häufigkeitsverteilug (HV) Die prozetuale Häufigkeitsverteilug erlaubt de Vergleich vo Auswertuge, dee uterschiedliche Stichprobegröße zugrude liege. Es köe auch uterschiedliche Stichprobegröße

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

Für eine n n-matrix A müssen wir die Gleichung. lösen. Falls (A λi) invertierbar ist, dann ist. Dann ist aber λ kein Eigenwert.

Für eine n n-matrix A müssen wir die Gleichung. lösen. Falls (A λi) invertierbar ist, dann ist. Dann ist aber λ kein Eigenwert. Geschlossees Leotief-Modell Ei Leotief-Modell für eie Volkswirtschaft heißt geschlosse, we der Kosum gleich der Produktio ist, d.h. we Kapitel 5 Eigewerte V x = x Es hadelt sich dabei um eie Spezialfall

Mehr

4. Der Weierstraßsche Approximationssatz

4. Der Weierstraßsche Approximationssatz H.J. Oberle Approximatio WS 213/14 4. Der Weierstraßsche Approximatiossatz Wir gebe i diesem Abschitt eie ostrutive Beweis des Weierstraßsche Approximatiossatzes, der mit de so geate Berstei-Polyome (Felix

Mehr

Tutorium Mathematik ITB1(B), WI1(B)

Tutorium Mathematik ITB1(B), WI1(B) Tutorium Mathematik ITB(B), WI(B) Aufgabeblatt F Aufgabe zum Kapitel Fuktioe Prof Dr Peter Plappert Fachbereich Grudlage Aufgabe : Bestimme Sie jeweils de maimal mögliche Defiitiosbereich D ma a) f ( =

Mehr

II.2 Mathematisches Handwerkszeug

II.2 Mathematisches Handwerkszeug II.2 Mathematisches Hadwerkszeug 2.1 Vektorraum der quadratitegrierbare Fuktioe Eie Fuktio f = f(x) heißt quadratitegrierbar, we das Itegral vo bis + eie edliche Wert hat: f(x) 2 dx < (1) Für ei eifache

Mehr

Proseminar: Mathematisches Problemlösen. Ungleichungen 2. Pierre Schmidt. Vortragstermin: 19. Juni Fakultät für Mathematik

Proseminar: Mathematisches Problemlösen. Ungleichungen 2. Pierre Schmidt. Vortragstermin: 19. Juni Fakultät für Mathematik Prosemiar: Mathematisches Problemlöse Ugleichuge Pierre Schmidt Vortragstermi: 19. Jui 015 Übugsleiteri: Dr. Natalia Griberg Fakultät für Mathematik Karlsruher Istitut für Techologie Ihaltsverzeichis 1

Mehr

Analysis 1 für Informatiker und Statistiker Beispielslösungen, Woche 13

Analysis 1 für Informatiker und Statistiker Beispielslösungen, Woche 13 Mathematisches Istitut der LMU WS 016/17 Prof. Dr. S. Morozov Olie am: Dr. H. Hogreve 1. 01. 017 Aalysis 1 für Iformatiker ud Statistiker Beispielslösuge, Woche 1 1.1 (a Um festzustelle, ob die utestehede

Mehr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr ZAHLENFOLGEN Teil 2 Arithmetische ud geometrische Folge Die wichtigste Theorieteile ud gaz ausführliches Traiig Datei Nr. 4002 Neu Überarbeitet Stad: 7. Juli 206 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Has Walser Mathematik für Naturwisseschafte Modul 0 Regressiosgerade ud Korrelatio Has Walser: Modul 0, Regressiosgerade ud Korrelatio ii Ihalt Die Regressiosgerade.... Problemstellug.... Berechug der

Mehr

Übungen mit dem Applet Taylor-Entwickung von Funktionen

Übungen mit dem Applet Taylor-Entwickung von Funktionen Taylor-Etwickug vo Fuktioe Übuge mit dem Applet Taylor-Etwickug vo Fuktioe Ziele des Applets... Mathematischer Hitergrud... 3 Vorschläge für Übuge... 3 3. Siusfuktio si(...3 3. Cosiusfuktio cos(...4 3.3

Mehr

n 2(a + bx i y i ) = 0 und i=1 n 2(a + bx i y i )x i = 0 i=1 gilt. Aus diesen beiden Gleichungen erhalten wir nach wenigen einfachen Umformungen

n 2(a + bx i y i ) = 0 und i=1 n 2(a + bx i y i )x i = 0 i=1 gilt. Aus diesen beiden Gleichungen erhalten wir nach wenigen einfachen Umformungen Regressio Dieser Text rekapituliert die i der Aalsis ud Statistik wohlbekate Methode der kleiste Quadrate, auch Regressio geat, zur Bestimmug vo Ausgleichsgerade Regressiosgerade ud allgemei Ausgleichpolome.

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Modulabschlussprüfung Analysis Musterlösung

Modulabschlussprüfung Analysis Musterlösung Bergische Uiversität Wuppertal Fachbereich C Mathematik ud Naturwisseschafte Prof. Dr. N. Shcherbia SoSe 204 Modulabschlussprüfug Aalysis 2.07.204 Musterlösug. Utersuche Sie folgede Reihe auf Kovergez

Mehr

Wahrscheinlichkeit & Statistik Musterlösung Serie 13

Wahrscheinlichkeit & Statistik Musterlösung Serie 13 ETH Zürich FS 2013 D-MATH Has Rudolf Küsch Koordiator Blaka Horvath Wahrscheilichkeit & Statistik Musterlösug Serie 13 1. a) Die Nullhypothese lautet dass das echte Medikamet höchstes gleich gut ist wie

Mehr

e - Die zeitunabhängige S-Glg. für den (unendlich hohen) Potentialtopf Blaue und violette Laserdioden: Eine Vielzahl von Potentialtöpfen

e - Die zeitunabhängige S-Glg. für den (unendlich hohen) Potentialtopf Blaue und violette Laserdioden: Eine Vielzahl von Potentialtöpfen Die zeituabhägige S-Glg. für de (uedlich hohe) Potetialtopf Diese Situatio ist äherugsweise i Halbleiterlaser gegebe:

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum. Übugsblatt

Mehr

9. ENDLICH ERZEUGTE MODULN UND GANZHEIT

9. ENDLICH ERZEUGTE MODULN UND GANZHEIT Algebra 2 Daiel Plauma Techische Uiversität Dortmud Sommersemester 2017 9. ENDLICH ERZEUGTE MODULN UND GANZHEIT Arbeitsblatt: Der Satz vo Cayley-Hamilto ud Aweduge Lese Sie de Text sorgfältig ud löse Sie

Mehr

Höhere Analysis. Lösungen zu Aufgabenblatt 6. Die Funktion f sei auf ( π, π] definiert durch f(x) = x und wird 2π-periodisch fortgesetzt.

Höhere Analysis. Lösungen zu Aufgabenblatt 6. Die Funktion f sei auf ( π, π] definiert durch f(x) = x und wird 2π-periodisch fortgesetzt. Fachbereich Iformatik Sommersemester 8 Prof. Dr. Peter Becker Höhere Aalysis Lösuge zu Aufgabeblatt 6 Aufgabe (Fourierreihe) 3+5 Pukte Die Fuktio f sei auf (, π] defiiert durch f(x) x ud wird π-periodisch

Mehr

+ a 3 cos (3ωt) + b 3 sin (3ωt)

+ a 3 cos (3ωt) + b 3 sin (3ωt) Fourier-Reihe Wir gehe aus vo eier gegebee periodische Fuktio f (t). Die Fuktio hat die Fudametalperiode ( Schwigugsdauer ) ud damit die Grud-Kreisfrequez ω = π. Zeit t Periode Die Fuktio f (t) soll zerlegt

Mehr

D-HEST, Mathematik III HS 2015 Prof. Dr. E. W. Farkas R. Bourquin und M. Sprecher. Lösung 1

D-HEST, Mathematik III HS 2015 Prof. Dr. E. W. Farkas R. Bourquin und M. Sprecher. Lösung 1 D-HEST, Mathematik III HS 15 Prof. Dr. E. W. Farkas R. Bourqui ud M. Sprecher Lösug 1 Das erste Kapitel der Vorlesug behadelt die Theorie der Fourier-Reihe. Bearbeite Sie bitte folgede Frage olie bis Diestag,

Mehr

Numerische Lineare Algebra - Theorie-Blatt 2

Numerische Lineare Algebra - Theorie-Blatt 2 Prof Dr Stefa Fuke Uiversität Ulm MSc Adreas Batle Istitut für Numerische Mathematik Dipl-Math oec Klaus Stolle Witersemester 04/05 Numerische Lieare Algebra - Theorie-Blatt Lösug (Abgabe am 04 vor der

Mehr

1 Lösungen zu Analysis 1/ 12.Übung

1 Lösungen zu Analysis 1/ 12.Übung Lösuge ausgewählter Beispiele zu Aalysis I, G. Bergauer, Seite Lösuge zu Aalysis / 2.Übug. Eileitug Gleichmäßige Kovergez ist eie starke Eigeschaft eier Fuktioefolge. Formuliert ma sie für Netze, statt

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Thermodynamik von Legierungen

Thermodynamik von Legierungen Thermodyamik vo Legieruge Ei System verädert sich solage, bis es das thermodyamische Gleichgewicht erreicht hat, wobei die Eistellug des Gleichgewichtes kietisch möglich sei muß. Das thermodyamische Gleichgewicht

Mehr

Gaußsches Integral und Stirling-Formel

Gaußsches Integral und Stirling-Formel Gaußsches Itegral ud Stirlig-Formel Lemma. Gaußsches Itegral Es gilt für alle a > : e ax dx π a Beweis: Wir reche: e dx ax e ax dx e ay dy e ax e ay dx dy mit dem Satz vo Fubii e ax +y dx dy. Nu verwede

Mehr

1.2. Taylor-Reihen und endliche Taylorpolynome

1.2. Taylor-Reihen und endliche Taylorpolynome 1.. aylor-reihe ud edliche aylorpolyome 1..1 aylor-reihe Wir köe eie Fuktio f() i eier Umgebug eies Puktes o gut durch ihre agete i o: t o () = f(o) + f (o) (-o) aäher: Wir sehe: Je weiter wir vo o weg

Mehr

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden Folge ud Reihe Folge Eie Folge ist eie Abbildug der atürliche Zahle N = {0, 1,,...} i die Mege der (zumidest i de meiste Fälle) reelle Zahle R. I diesem Fall ka ma sich eie Folge als Pukte i eiem Koordiatesystem

Mehr

Das kollektive Risikomodell. 12. Mai 2009

Das kollektive Risikomodell. 12. Mai 2009 Kirill Rudik Das kollektive Risikomodell 12. Mai 2009 4.1 Eileitug Wir betrachte i diesem Kapitel die Gesamtforderuge im Laufe eies Jahres. Beim Abschluss eies Versicherugsvertrages weiß der Versicherer

Mehr

Anwendungen der Wahrscheinlichkeit II. Markovketten

Anwendungen der Wahrscheinlichkeit II. Markovketten Aweduge der Wahrscheilichkeit II 1. Fragestelluge Markovkette Markovkette sid ei häufig verwedetes Modell zur Beschreibug vo Systeme, dere Verhalte durch eie zufällige Übergag vo eiem Systemzustad zu eiem

Mehr

Wirksamkeit, Effizienz

Wirksamkeit, Effizienz 3 Parameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische Verteilugsaahme mit Parameterraum Θ. 1 Seie θ ud θ erwartugstreue

Mehr

Übungen zur Analysis I WS 2008/2009

Übungen zur Analysis I WS 2008/2009 Mathematisches Istitut der Uiversität Heidelberg Prof. Dr. E. Freitag /Thorste Heidersdorf Übuge zur Aalysis I WS 008/009 Blatt 3, Lösugshiweise Die folgede Hiweise sollte auf keie Fall als Musterlösuge

Mehr

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen Thema Fit i Mathe Musterlösuge 1 April Klassestufe 10 Wurzelfuktioe Uter der -te Wurzel eier icht-egative Zahl (i Zeiche: ) versteht ma die icht-egative Zahl, die mal mit sich selber multipliziert, die

Mehr

Zahlentheoretische Identitäten und die Eisensteinreihe vom Gewicht 2. Inhaltsverzeichnis

Zahlentheoretische Identitäten und die Eisensteinreihe vom Gewicht 2. Inhaltsverzeichnis Zahletheoretische Idetitäte ud die Eisesteireihe vom Gewicht 2 Vortrag zum Semiar zur Fuktioetheorie II, 3.2.203 Lukas Schürhoff Ihaltsverzeichis Wiederholug ud Vorbereitug 2 2 Zahletheoretische Idetitäte

Mehr

1 Einführende Worte 2

1 Einführende Worte 2 Sara Adams Semiarvortrag Rekursive Fuktioe - WS 2004/05 1 Sara Adams Semiarvortrag Rekursive Fuktioe - WS 2004/05 2 1 Eiführede Worte Semiar Grudlegede Algorithme Auflösug vo Rekursioe 1.1 Beispiele Bevor

Mehr

Stochastisches Integral

Stochastisches Integral Kapitel 11 Stochastisches Itegral Josef Leydold c 26 Mathematische Methode XI Stochastisches Itegral 1 / 2 Lerziele Wieer Prozess ud Browsche Bewegug Stochastisches Itegral Stochastische Differetialgleichug

Mehr

8. Gewöhnliche Differentialgleichungen (ODE)

8. Gewöhnliche Differentialgleichungen (ODE) 8 Gewöhliche Differetialgleichuge (ODE) 81 Motivatio Eidimesioale (1d) Bewegug eies Teilches (Masse m, keie Reibug) im Potezial U() U() E klassisch: Ermittle die Bahkurve/Trajektorie (t) des Massepukts

Mehr

Kapitel 2. Terme. oder (x + 1)(x 1) = x 2 1

Kapitel 2. Terme. oder (x + 1)(x 1) = x 2 1 Kapitel 2 Terme Josef Leydold Auffrischugskurs Mathematik WS 207/8 2 Terme / 74 Terme Ei mathematischer Ausdruck wie B R q q (q ) oder (x + )(x ) x 2 heißt eie Gleichug. Die Ausdrücke auf beide Seite des

Mehr

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel Zahlefolge Teil 3 Reihe Reihe Arithmetische Reihe Geometrische Reihe Datei Nr. 4003 (Neu bearbeitet ud erweitert) Jui 005 Friedrich W. Buckel Iteretbibliothek für Schulmathematik Ihalt Defiitio eier Reihe

Mehr

Variationstheoreme und ihre Anwendungen

Variationstheoreme und ihre Anwendungen Variatiostheoreme ud ihre Aweduge Berhard Wallmeyer 14.12.2011 Westfälische Wilhelms-Uiversität Müster BSc Physik Semiar zur Theorie der Atome, Kere ud kodesierte Materie Ihaltsverzeichis 1 Eiführug 3

Mehr

AT AB., so bezeichnet man dies als innere Teilung von

AT AB., so bezeichnet man dies als innere Teilung von Teilverhältisse Aus der Geometrie der Dreiecke ket ma die Aussage, dass der Schwerpukt T eies Dreiecks die Seitehalbierede im Verhältis : teilt. Für die Strecke AT ud TM gilt gemäß der Abbildug AT : TM

Mehr

Übungen Abgabetermin: Freitag, , 10 Uhr THEMEN: Testtheorie

Übungen Abgabetermin: Freitag, , 10 Uhr THEMEN: Testtheorie Uiversität Müster Istitut für Mathematische Statistik Stochastik WS 203/204, Blatt Löwe/Heusel Aufgabe (4 Pukte) Übuge Abgabetermi: Freitag, 24.0.204, 0 Uhr THEMEN: Testtheorie Die Sollstärke der Rohrwäde

Mehr

Die vollständige Induktion - Lösungen 1. Aufgabe: Sind die folgenden Aussageformen in N allgemeingültig?

Die vollständige Induktion - Lösungen 1. Aufgabe: Sind die folgenden Aussageformen in N allgemeingültig? Start Mathematik Lektioe i Aalysis Aufgabe zur vollstädige Iduktio Die vollstädige Iduktio - Lösuge. Aufgabe: Sid die folgede Aussageforme i N allgemeigültig? a) We ei Vielfaches vo ist, da ist eie gerade

Mehr

3 Elemente der Komplexitätstheorie Definitionen und ein Beispiel Nichtdeterminismus und das P-NP-Problem... 57

3 Elemente der Komplexitätstheorie Definitionen und ein Beispiel Nichtdeterminismus und das P-NP-Problem... 57 Ihaltsverzeichis 1 Berechebarkeit ud Algorithme 7 1.1 Berechebarkeit................................. 7 1.1.1 LOOP/WHILE-Berechebarkeit................... 8 1.1.2 Turig-Maschie...........................

Mehr

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $ Mathematik für Iformatiker B, SS 202 Doerstag 4.6 $Id: reihe.tex,v.9 202/06/4 3:59:06 hk Exp $ 7 Reihe 7.4 Kovergezkriterie für Reihe 7.4. Alterierede Reihe Wir hatte gesehe das die harmoische Reihe divergiert,

Mehr

STUDIENMATERIAL Teil 9 für Studenten der Elektrotechnik/Informationstechnik UNENDLICHE REIHEN

STUDIENMATERIAL Teil 9 für Studenten der Elektrotechnik/Informationstechnik UNENDLICHE REIHEN Techische Uiversität Chemitz Fakultät für Mathematik Zahlereihe STUDIENMATERIAL Teil 9 für Studete der Elektrotechik/Iformatiostechik UNENDLICHE REIHEN Utersuche für folgede uedliche Reihe jeweils die

Mehr

Kapitel 5. Näherungsverfahren. 5.1 Variationsansatz

Kapitel 5. Näherungsverfahren. 5.1 Variationsansatz Kapitel 5 Näherugsverfahre Eie zetrale Aufgabe beim Löse quatemechaischer Probleme ist die Bestimmug der Eigewerte ud Eigevektore hermitescher Operatore, vor allem des Hamiltooperators Ĥ ψ = E ψ. 5.1 Es

Mehr

Prüfungsaufgaben der Abschlussprüfung an Realschulen in Bayern! mit ausführlichen Musterlösungen. und Querverweise auf Theoriedateien der Mathe-CD

Prüfungsaufgaben der Abschlussprüfung an Realschulen in Bayern! mit ausführlichen Musterlösungen. und Querverweise auf Theoriedateien der Mathe-CD Vektor-Geometrie Koordiategeometrie Prüfugsaufgabe uter Verwedug vo Abbildugsgleichuge Prüfugsaufgabe der Abschlussprüfug a Realschule i Bayer! mit ausführliche Musterlösuge ud Querverweise auf Theoriedateie

Mehr

Lösungen zu Übungsblatt 2 Signale, Codes und Chiffren II Sommersemester 2009 Übung vom 26. Mai 2009

Lösungen zu Übungsblatt 2 Signale, Codes und Chiffren II Sommersemester 2009 Übung vom 26. Mai 2009 Uiversität Karlsruhe TH Istitut für Kryptographie ud Sicherheit Willi Geiselma Vorlesug Marius Hillebrad Übug Lösuge zu Übugsblatt 2 Sigale, Codes ud Chiffre II Sommersemester 2009 Übug vom 26. Mai 2009

Mehr

Der Satz von Stone-Weierstraß. 1 Approximationssatz von Weierstraß

Der Satz von Stone-Weierstraß. 1 Approximationssatz von Weierstraß Der Satz vo Stoe-Weierstraß Vortrag zum Prosemiar Aalysis, 28.06.2010 Valetia Gerber, Sabria Kielma Aus der Vorlesug Aalysis I ud II kee wir das Kozept des Approximieres. Us wurde die Begriffe Taylor-

Mehr

Mathematische Probleme, SS 2015 Montag 1.6. $Id: convex.tex,v /06/01 09:26:03 hk Exp $

Mathematische Probleme, SS 2015 Montag 1.6. $Id: convex.tex,v /06/01 09:26:03 hk Exp $ athematische Probleme, 2015 otag 1.6 $Id: cove.te,v 1.19 2015/06/01 09:26:03 hk Ep $ 3 Kovegeometrie 3.2 Die platoische Körper I der letzte itzug habe wir mit de Vorarbeite zur Berechug der platoische

Mehr

Eine Parallelschaltung lässt sich

Eine Parallelschaltung lässt sich Stromversorgug Netzteil-Parallelschaltug Schaltetzteile parallel geschaltet Techische Details zur passive Stromaufteilug Ziel der Parallelschaltug vo Schaltetzteile (s) ist die Leistugserhöhug mittel der

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Methode der kleiste Quadrate KAPITEL 5: REGRESSIONSRECHNUNG Die Methode der kleiste Quadrate (MklQ) ist ei Verfahre zur Apassug eier Fuktio a eie Puktwolke. Agewadt wird sie beispielsweise, um eie Gesetzmäßigkeit

Mehr

Ableitungen der δ-funktion

Ableitungen der δ-funktion Ableituge der δ-fuktio . Der olekulare Hailto-Operator. Bor-Oppeheier Näherug KAPITEL : MOLEKULAE QUANTENMECHANIK Literatur: z.b: Jese, Itroductio to Coputatioal Cheistry, Wiley . Der olekulare Hailto-Operator

Mehr

7.2 Grundlagen der Wahrscheinlichkeitsrechnung

7.2 Grundlagen der Wahrscheinlichkeitsrechnung 7.2 Grudlage der Wahrscheilichkeitsrechug Ei Ereigis heißt i Bezug auf eie Satz vo Bediguge zufällig, we es bei der Realisierug dieses Satzes eitrete ka, aber icht ubedigt eitrete muss. Def. 7.2.: Ei Experimet

Mehr

Reelle Folgen. Definition. Eine reelle Folge ist eine Abbildung f : N R. liefert ( 7 9, 37

Reelle Folgen. Definition. Eine reelle Folge ist eine Abbildung f : N R. liefert ( 7 9, 37 Reelle Folge Der Begriff der Folge ist ei grudlegeder Baustei der Aalysis, weil damit u.a. Grezprozesse defiiert werde köe. Er beschreibt de Sachverhalt eier Abfolge vo Elemete, wobei die Reihefolge bzw.

Mehr

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS vo Rolf Waldi 1 Kapitel I. Elemetare Zahletheorie 1 Grudlegede Regel ud Prizipie Es wird vorausgesetzt, daß der Leser mit gaze Zahle reche ka ud

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8 Mathematisches Istitut der Uiversität Müche Prof Dr Peter Otte WiSe 203/4 Lösug 8 032203 Übuge zur Aalysis für Iformatiker ud Statistiker Lösug zu Blatt 8 Aufgabe 8 [8 Pukte] (a) Für alle N sei = (+) Wir

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 2008/09 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum 4. Übugsblatt

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

Nicht-Anwendbarkeit des Master- Theorems

Nicht-Anwendbarkeit des Master- Theorems Nicht-Awedbarkeit des Master- Theorems Beispiel: Betrachte die Rekursiosgleichug T () = 2T ( 2 ) + log. Es gilt sicherlich f () = Ω( log b a ) = Ω(), aber icht f () = Ω( log b a+ɛ ). Ma beachte, dass f

Mehr

Diplomvorprüfung Stochastik

Diplomvorprüfung Stochastik Uiversität Karlsruhe TH Istitut für Stochastik Prof. Dr. N. Bäuerle Name: Vorame: Matr.-Nr.: Diplomvorprüfug Stochastik 10. Oktober 2006 Diese Klausur hat bestade, wer midestes 16 Pukte erreicht. Als Hilfsmittel

Mehr

, h(1) =, h(2) = c. a) Säulendiagramm siehe Tafel- oder Folienskizze b) Ermittlung von c: Die Summe der relativen Häufigkeiten muss 1 sein: c = 4 9

, h(1) =, h(2) = c. a) Säulendiagramm siehe Tafel- oder Folienskizze b) Ermittlung von c: Die Summe der relativen Häufigkeiten muss 1 sein: c = 4 9 Techische Uiversität Müche SS 2006 Zetrum Mathematik Blatt 3 Prof. Dr. J. Hartl Dr. Haes Petermeier Dr. Corelia Eder Dipl.-Ig. Marti Nagel Höhere Mathematik 2 (Weihestepha). Jeder der Bewoher eies Stadtviertels

Mehr

Lerneinheit 2: Grundlagen der Investition und Finanzierung

Lerneinheit 2: Grundlagen der Investition und Finanzierung Lereiheit 2: Grudlage der Ivestitio ud Fiazierug 1 Abgrezug zu de statische Verfahre Durchschittsbetrachtug wird aufgegebe Zeitpukt der Zahlugsmittelbewegug explizit berücksichtigt exakte Erfassug der

Mehr

Beweis des ausgezeichneten numerischen Theorems über die Koeffizienten der Binomialpotenzen

Beweis des ausgezeichneten numerischen Theorems über die Koeffizienten der Binomialpotenzen Beweis des ausgezeichete umerische Theorems über die Koeffiziete der Biomialpoteze Leohard Euler p We dieser Charakter q die Koeffiziete der Potez x q bezeichet, der aus der Etwicklug des Bioms + x p etsteht,

Mehr

Aufgabe G 1.1. [Vollständige Induktion, Teleskopsumme] n k 3 = n N : k(k + 1) = 1 1

Aufgabe G 1.1. [Vollständige Induktion, Teleskopsumme] n k 3 = n N : k(k + 1) = 1 1 Istitut für Aalysis ud Algebra Mathematik I für Studierede der E-Techik Prof Dr Volker Bach WiSe 06/7 M Sc Birgit Komader M Sc Christoph Brauer Theme: Groe Übug - Lösuge Vollstädige Iduktio - Teleskopsumme

Mehr

4. Vektorräume mit Skalarprodukt

4. Vektorräume mit Skalarprodukt 4. Vektorräume mit Skalarprodukt Wiederholug: V=R x, y R: x= x x i x, y= y y, :R R R Skalarprodukt Stadardskalarprodukt lieare Abbildug mit 2 Argumete 4. Eigeschafte vo Skalarprodukte Def.: Es sei V ei

Mehr

Lösungen zum Übungsblatt 2

Lösungen zum Übungsblatt 2 Fakultät für Luft- ud Raumfahrttechik Istitut für Mathematik ud Recherawedug Partielle Differetialgleichuge II (ME), Prof. Dr. J. Gwier Übug: N. Ovcharova, K. Dvorsky 6. Jauar bis 9. Februar 011 Lösuge

Mehr

Fakultät und Binomialkoeffizient Ac

Fakultät und Binomialkoeffizient Ac Faultät ud Biomialoeffiziet Ac 2013-2016 Die Faultät (atürliche Zahl): Die Faultät Faultät ist so defiiert:! = 1 2 3... ( - 1) ; 0! = 1 Die reursive Defiitio ist: Falls = 0, da! = 1; sost! = ( - 1)! JAVA-Methode(iterativ):

Mehr

Übungen zur Modernen Theoretischen Physik I SS 14

Übungen zur Modernen Theoretischen Physik I SS 14 Karlsruher Istitut für Techologie Übuge zur Moere Theoretische Physik I SS 14 Istitut für Theoretische Festkörperphysik Prof. Dr. Ger Schö Lösuge zu Blatt 5 Dr. Areas Poeicke, Areas Heimes Besprechug 8.5.14

Mehr

6 Vergleich mehrerer unverbundener Stichproben

6 Vergleich mehrerer unverbundener Stichproben 6 Vergleich mehrerer uverbudeer Stichprobe 6.1 Die eifaktorielle Variazaalyse Die eifaktorielle Variazaalyse diet der Utersuchug des Eiflusses eier kategorieller (bzw. ichtmetrischer) Variable, die die

Mehr