Automation-Letter Nr Prof. Dr. S. Zacher. Formelsammlung

Größe: px
Ab Seite anzeigen:

Download "Automation-Letter Nr Prof. Dr. S. Zacher. Formelsammlung"

Transkript

1 Automtion-Letter Nr Prof. Dr. S. Zcher Formelmmlung Eine weitere wichtige Größe de Regelkreie it Dämfung S. Zcher, M. Reuter: Regelungtechnik für Ingenieure, Seite 65, Sringer Vieweg Verlg, 4. Auflge, Coyright S. Zcher

2 Abtrct, Urheberrecht- und Hftunghinwei Der Dämfunggrd (kurz: die Dämfung) it ein Regelgüte-Kriterium eine Regelkreie. Die nderen Regelgütekriterien ind: Auregelzeit Anregelzeit Mximle Überchwingweite (kurz: Überchwingung) Bleibende Regeldifferenz bzw. tticher Fehler Nchfolgend wird gezeigt, wie die Dämfung u verchiedenen Formen der mthemichen Bechreibung eine dynmichen Sytem betimmt werden knn. E werden die Zummenhänge zwichen Dämfung und Srungntwort, zwichen Dämfung und Poltellen owie zwichen Dämfung und Koeffizienten de chrkteritichen Polynom de gechloenen Regelkreie gezeigt. Die Berechnung von Dämfung wird nhnd drei Beiielen verdeutlicht. Abchließend wird m Beiiel einer PC-Fetltte gezeigt, wie die Übertrgungfunktion, die Dämfung und die Srungntwort nch der gegebenen Differentilgleichung betimmt und mit MALAB imuliert werden. Die vorliegende Formelmmlung it l Hilfe beim Regelungtechnik-Studium konziiert. Dmit knn mn einfch und chnell die Dämfung direkt u einem chrkteritichen Polynom ermitteln. Die vorliegende Publiktion unterliegt der Urheberrecht. Alle Rechte ind bei Dr, S. Zcher vorbehlten. All right re by the uthor, Dr. S. Zcher, reerved. Die Weiterentwicklung oder Nutzung der Publiktion ohne Referenz uf Urheber it nicht zugelen. No ue of thi ubliction without reference on the uthor. Für die Anwendung der vorliegenden Publiktion in der Indutrie, im Lborbetrieb und in nderen rktichen Fällen owie für eventuelle Schäden, die u unvolltändigen oder fehlerhften Angben über d dynmiche Syteme ergeben können, übernimmt der Autor keine Hftung. For the rcticl ue of the reult of thi ubliction tke the uthor no reonibility. 5 Coyright S. Zcher

3 I N H A L. Logrithmiche Dekrement Seite 3. Logrithmiche Dekrement und Dämfung.Seite 4 3. Übertrgungfunktion..Seite 6 4. Eigenfrequenz und Dämfung..Seite 7 5. Poltellen, Eigenfrequenz und Dämfung..Seite 9 6. Übergngverhlten Seite 7. Poltellen, Übergngverhlten und Dämfung.Seite 8. Dämfung und chrkteritiche Polynom.Seite 9. Chrkteritiche Polynome Seite 3. Zummenfung: chrkteritiche Polynome, Dämfung und Poltellen Seite 4 6 Beiiel..Seite Beiiel..Seite Beiiel..Seite 7 Beiiel Fetltte.Seite Coyright S. Zcher 3

4 . Logrithmiche Dekrement Eine eriodiche Schwingung knn durch d logrithmiche Dekrement chrkteriiert werden, nämlich, durch d Verhlten zwichen zwei ncheinnder folgenden Amlituden X(t) und X(t+): X ( t) X ( t ) e e ln X ( t) X ( t ) e e e it die Abklingkontnte Wenn xk und xk+n die mximle und die minimle Amlituden einer Schwingung ind und n die Anzhl der Hlbwellen it, dnn gilt die folgende Formel für logrithmiche Dekrement: n x ln x k k n -4 Coyright S. Zcher 4

5 . Logrithmicher Dekrement und Dämfung Bei beknntem zeitlichen Verluf knn eine Schwingung durch eine ndere Größe chrkteriiert werden, nämlich, durch die Dämfung, die u dem logrithmichen Dekrement ermittelt werden knn: n x ln x k k n 4 Setzt mn in diee Formel den Wert de logrithmichen Dekrement ein dnn ergibt ich die Beziehung zwichen der Dämfung und der Anzhl der Hlbwellen n: X ( t) ln X ( t ) x ln x k k n -4 Coyright S. Zcher 5 n gilt nur für < <,5

6 3. Übertrgungfunktion Für Entwurf eine Regelkreie it die Betimmung der Dämfung u der Differentilgleichung oder Übertrgungfunktion beonder wichtig. Die Übertrgungfunktion eine nichtchwingungfähige Sytem. Ordnung knn wie folgt überchrieben werden: In llgemeiner Form gilt für nichtchwingungfähige owie für chwingungfähige Syteme. Ordnung: G S ( ) K P -4 Coyright S. Zcher 6

7 -4 Coyright S. Zcher 7 Beiiel: 4. Eigenfrequenz und Dämfung,, Eigenfrequenz: Dämfung: Chrkteritiche Gleichung:, j, e e j, e it Abklingkontnte e it Eigenfrequenz

8 4. Eigenfrequenz und Dämfung Beiiel: Abhängig von Dämfunggrd len ich folgende Fälle untercheiden: negtiv reell eriodich negtiv reell eriodicher Grenzfll Konjugiert mit negtiven Reellteilen bklingende Schwingung imginär ungedämfte Schwingung -4 Coyright S. Zcher 8

9 5. Poltellen, Eigenfrequenz und Dämfung Au dem Zummenhng zwichen Koeffizienten de chrkteritichen Polynom und Poltellen, j folgt:, j mit tg R ( ) ( ) tg Im 45 tg R Im 9 tg Im R Re Re Re -4 Coyright S. Zcher 9

10 6. Übergngverhlten D Übergngverhlten eine Sytem. Ordnung in llgemeiner Form G S ( ) K hängt entcheidend von einen Poltellen b: PS, 4 Die Poltellen können reell, imginär oder komlex konjugiert ein. Wichtig für d Übergngverhlten eine Sytem. Ordnung it uch, ob die Relteile von Polen oitiv oder negtiv ind: Bei oitiven reellen eilen Re > it d Sytem intbil, Bei negtiven reellen eilen Re< it d Sytem tbil Coyright S. Zcher

11 7. Poltellen, Übergngverhlten und Dämfung Die Dämfung zeigt, wie ich die Amlituden von zwei ncheinnder folgenden Hlbwellen untercheiden. ufklingende Schwingung ungedämfte Schwingung Gedämfte Schwingung Aeriodicher Grenzfll Aeriodicher Fll < = < = > x(t) x(t) x(t) x(t) x(t) t t t t t Im Im Im Im Im Re Re Re Re Re Zwei komlexe Pole mit Re> ufklingende Schwingung Zwei imginäre Pole mit Re= ungedämfte Schwingung Zwei komlexe Pole mit Re< Gedämfte Schwingung Zwei gleiche reelle Pole mit Re< Aeriodicher Grenzfll Zwei reelle Pole mit Re< Aeriodicher Fll -4 Coyright S. Zcher

12 -4 Coyright S. Zcher 8. Dämfung und chrkteritiche Polynom Für d chrkteritiche Polynom in llgemeiner Form, 4 mit Poltellen knn die Dämfung nch der folgenden Formel betimmt werden:

13 -4 Coyright S. Zcher 3 9. Chrkteritiche Polynome Beknnt ind verchiedene Formen de chrkteritichen Polynom:

14 . Dämfung-Formel für verchiedene chrkteritiche Polynome Zummenfung: chrkteritiche Polynome, Dämfung und Poltellen c,, c,, ), c (,,, c, -4 Coyright S. Zcher 4

15 . Dämfung-Formel für verchiedene chrkteritiche Polynome Beiiel: 6 c , c , 6 j, c,3,3 3 9, j, 6,, j c 3 9, 6 j, -4 Coyright S. Zcher 5

16 . Dämfung-Formel für verchiedene chrkteritiche Polynome Beiiel: 8 9 c , 4 6 c 9, , c, 4 6 5, ( ), gilt für gilt für gilt für, 4 7, c j , ( ) 4 7,, Coyright S. Zcher 6

17 . Dämfung-Formel für verchiedene chrkteritiche Polynome 8 4 Beiiel: 4 8 8, ( ) c 4 8 j,, ( ) c 4 8 j, -4 Coyright S. Zcher 7

18 . Dämfung-Formel für verchiedene chrkteritiche Polynome Beiiel: Fetltte Eine PC-Fetltte wird mit der folgenden DGL bechrieben: x( t) x ( t) x( t) b y( t) Y wobei ind: =, =,4 = b =,5. ) Betimmen Sie die Übertrgungfunktion der Regeltrecke. b) Wie groß it der Dämfunggrd der Regeltrecke? c) Betimmen Sie die Srungntwort x(t) der Regeltrecke, wenn die Stellgröße y(t) runghft um yˆ geändert wird. X Simulieren Sie die Strecke mit MALAB und rüfen Sie die Löung! -4 Coyright S. Zcher 8

19 . Dämfung-Formel für verchiedene chrkteritiche Polynome ) Übertrgungfunktion x( t) x ( t) x( t) b y( t ) Beiiel: Fetltte ( ) b x t ( ) ( ) x t x t y( t),,,4 b,5,4, 5, x( t),4 x ( t) x( t),5 y( t) G S ( ),,5, Coyright S. Zcher 9

20 -4 Coyright S. Zcher,4,,5 ) ( S G b) Dämfunggrd ) ( PS S K G,4,,4,,6 3,6 - Beiiel: Fetltte. Dämfung-Formel für verchiedene chrkteritiche Polynome

21 . Dämfung-Formel für verchiedene chrkteritiche Polynome Beiiel: Fetltte c) Srungntwort MALAB-Skrit: G = tf (.5, [.,.4, ]); % b =,5; =,; % =,4; = ; t = :.:.; % von t = bi t = mit t =. = t'; x = te (G, ); lot (, x, k ); grid; - 3,6,6 d d d ec 3,4,ec 3,6,6 3, Coyright S. Zcher

Eine weitere wichtige Größe ist Dämpfung

Eine weitere wichtige Größe ist Dämpfung Automtion-Letter Nr. Prof. Dr. S. Zcher Eine weitere wichtige Größe it Dämfung S. Zcher, M. Reuter: Regelungtechnik für Ingenieure, Seite 65, Sringer Vieweg Verlg, 4. Auflge, 4 www.zcher-utomtion.de -5

Mehr

Automation-Letter Nr Prof. Dr. S. Zacher

Automation-Letter Nr Prof. Dr. S. Zacher Automtion-Letter Nr. 5 06.2.205 Prof. Dr. S. Zcher Hinweie ur Digitliierung von nlogen Simulink-Modellen Model Dicretier electively replce continuou Simulink lock with dicrete equivlent. Dicretition i

Mehr

Zeitverhalten und Stabilität linearer dynamischer Systeme

Zeitverhalten und Stabilität linearer dynamischer Systeme Regelung- und Steuerungtechnik Zeitverhlten und Stbilität linerer dynmicher Syteme J Höcht, R Göhl, W Englberger 84-6, 744 Inhltverzeichni: Lernziele und Hilfen zur Durchrbeitung de exte Stbilität eine

Mehr

mathphys-online Abschlussprüfung Berufliche Oberschule 2010 Mathematik 12 Technik - A II - Lösung Teilaufgabe 1.0 ax 1 mit f a ( x)

mathphys-online Abschlussprüfung Berufliche Oberschule 2010 Mathematik 12 Technik - A II - Lösung Teilaufgabe 1.0 ax 1 mit f a ( x) Abchluprüfung Berufliche Oberchule Mthemti Techni - A II - Löung Teilufgbe. Gegeben ind die reellen Funtionen f mit f ( x) unbhängigen Definitionmenge ID f IR \ {}. x x x in der vom Prmeter IR Teilufgbe.

Mehr

Vorkurs Mathematik für Ingenieure WS 2016/2017 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: b h

Vorkurs Mathematik für Ingenieure WS 2016/2017 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: b h Prof. Dr. J. Pnnek Dynmics in Logistics Vorkurs Mthemtik für Ingenieure WS 206/207 Übung 3 Aufgbe : Trigonometrie () Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Mehr

Regelungstechnik I (WS 17/18) Übung 5

Regelungstechnik I (WS 17/18) Übung 5 Regelungtechnik I (WS 17/18) Übung 5 Prof. Dr. Ing. habil. Thoma Meurer, Lehrtuhl für Regelungtechnik Aufgabe 1. Gegeben it die Übertragungfunktion der Regeltrecke ĝ() = 2 3 +.1 ( + 1). Betimmen Sie mittel

Mehr

Regelungstechnik (A)

Regelungstechnik (A) Intitut für Elektrotechnik und Informationtechnik Aufgabenammlung zur Regelungtechnik (A) Prof. Dr. techn. F. Gauch Dipl.-Ing. C. Balewki Dipl.-Ing. R. Berat 08.01.2014 Übungaufgaben in Regelungtechnik

Mehr

Lösungen zu Übungs-Blatt Differentialgleichungen 2. Ordnung und PBZ

Lösungen zu Übungs-Blatt Differentialgleichungen 2. Ordnung und PBZ Prof.Dr. B.Grabowki Mathematik III/MST Übung Löungen Löungen zu Übung-Blatt Differentialgleichungen. Ordnung und PBZ Zu Aufgabe ) Geben Sie jeweil mindeten eine Löung folgender Differentialgleichung an

Mehr

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: Prof. Dr. J. Pnnek Dynmics in Logistics Vorkurs Mthemtik für Ingenieur Innen WS 207/208 Übung 3 Aufgbe : Trigonometrie () Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Mehr

Quadratische Funktionen und p-q-formel

Quadratische Funktionen und p-q-formel Arbeitsblätter zum Ausdrucken von softutor.com Qudrtische Funktionen und -q-formel Gib den Vorfktor und die Anzhl der Schnittstellen mit der -Achse n. x 3 Beschreibe die Reihenfolge beim Umformen einer

Mehr

Automation-Letter Nr Prof. Dr. S. Zacher. Hinweise zur Streckenidentifikation und Reglereinstellung nach Schwarze / Latzel

Automation-Letter Nr Prof. Dr. S. Zacher. Hinweise zur Streckenidentifikation und Reglereinstellung nach Schwarze / Latzel Automation-Letter Nr. 24 14.05.2018 Prof. Dr. S. Zacher Hinweise zur Streckenidentifikation und Reglereinstellung nach Schwarze / Latzel Das von Schwarze entwickelte Zeit-Prozentkennlinien-Verfahren lässt

Mehr

Exponential- und Logarithmusfunktion

Exponential- und Logarithmusfunktion Mthemtik I und II für Ingenieure (IAM) Version.3/..003.0.5 Eponentil- und Logrithmusfunktion Definition.0.0: Sei +, dnn ist die llgemeine Form einer Eponentilfunktion f: + gegeben durch die Funktionsgleichung

Mehr

Ergänzung Kpiel 5. Whl der Führunggröße Whl der Führunggröße für Lgeregelungen Biher wurde mei on einem prungförmigen Verluf der Führunggröße w( ugegngen. Viele regelungechniche Anwendungen weien uch ein

Mehr

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i,

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i, Präsenz-Aufgben 1. 1. Schreiben Sie z in der Form z α + βi mit α,β R. Aus der Vorlesung ist beknnt: i i i 1, i 1 1 i i i i i 1 i. () i 15 i 1 i (i ) 7 i ( 1) 7 i i i 15 + ( 1)i, (b) i 15 1 i 15 () 1 i

Mehr

Aufgabe 1 mit Lösung. Stelle x x + 2a x 2a VZW EPArt Wert

Aufgabe 1 mit Lösung. Stelle x x + 2a x 2a VZW EPArt Wert Aufgbe mit Lösung 4 ( 8 ) ( 4 8 ) f x = x x x + x= f x Achsensymmetrie + =. 4 lim x x + : Fll = c+ d 0! < 0 + x ±... Extrempunkte = = =. NB: f ( x) ( 4x 6 x) x( x ) x( x ) x MESt ( f ) { ;0;}. HB: 0 =

Mehr

2. Laborpraktikum. Abbildung 1: Gleichstrommotor Quanser QET

2. Laborpraktikum. Abbildung 1: Gleichstrommotor Quanser QET Prof. Dr.-Ing. Jörg Raich Dipl.-Ing. Stephanie Geit Fachgebiet Regelungyteme Fakultät IV Elektrotechnik un Informatik Techniche Univerität Berlin Integrierte Lehrverantaltung Grunlagen er Regelungtechnik

Mehr

Automation-Letter Nr Prof. Dr. S. Zacher. Ein neues Konzept der modellbasierten Regelung ohne Regeldifferenz

Automation-Letter Nr Prof. Dr. S. Zacher. Ein neues Konzept der modellbasierten Regelung ohne Regeldifferenz Automation-Letter Nr. 33 7.07.207 Prof. Dr. S. Zacher Ein neue Konzept der modellbaierten Regelung ohne Regeldifferenz Mit dem Begriff Antiytem-Approach it in [42] eine Schaltung au zwei identichen Blöcken

Mehr

( ) 2. Aufgabe 1: Frequenzkennlinien und BODE-Diagramm Z = Verlauf der Betragskennlinie. a) Übergang zum Frequenzgang. b) Betrag des Frequenzganges

( ) 2. Aufgabe 1: Frequenzkennlinien und BODE-Diagramm Z = Verlauf der Betragskennlinie. a) Übergang zum Frequenzgang. b) Betrag des Frequenzganges Aufgbe : requenzkennlinien und BODE-Digrmm Verluf der Bergkennlinie Übergng zum requenzgng T, jω jω Tjω b Berg de requenzgnge jω A ω jω jω A A ω ω Tj Tjω ω Tω Tω c db-kennlinie ω 0log A ω ω 0log Tω ω 0.log

Mehr

K T 1 s + 1. G S (s) = G S (s) = 1 2s + 1. T n s + 1 T n s. G R (s) = K R. G R (s) = 2s + 1 s. F ω (s) = 1/s 1 + 1/s = 1

K T 1 s + 1. G S (s) = G S (s) = 1 2s + 1. T n s + 1 T n s. G R (s) = K R. G R (s) = 2s + 1 s. F ω (s) = 1/s 1 + 1/s = 1 Aufgabe : a) Au und K = und T = 2 folgt: Mit und K R = 2, T n = 2 : G S () = K T G S () = 2 G R () = K R T n T n G R () = 2 G 0 () = G R ()G S () = F ω () = / + / = b) Y () = F ω ()W() Die Sprungantwort

Mehr

Automation-Letter Nr Prof. Dr. S. Zacher. Ein modellbasierter Regler nach dem ASA-Prinzip

Automation-Letter Nr Prof. Dr. S. Zacher. Ein modellbasierter Regler nach dem ASA-Prinzip Automation-Letter Nr. 7 2.0.206 Prof. Dr.. Zacher Ein modellbaierter Regler nach dem AA-Prinzip Nach dem Antiytem-Approach [42] wird antelle de konventionellen Regler eine dynamiche chaltung au einer gewünchten

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sytemtheorie eil - Zeitkontinuierliche Signale und Syteme - Muterlöungen Manfred Strohrmann Urban Brunner Inhalt Muterlöungen - Laplace-ranformation zeitkontinuierlicher Signale... 3. Berechnung der Laplace-ranformierten

Mehr

Jan Auffenberg. Die Lösung der Bewegungsgleichung eines einzelnen Pendels liefert wie in Versuch M1 betrachtet die Eigenfrequenz der Pendel zu:

Jan Auffenberg. Die Lösung der Bewegungsgleichung eines einzelnen Pendels liefert wie in Versuch M1 betrachtet die Eigenfrequenz der Pendel zu: Protokoll zu Veruch M: Gekoppelte Pendel. Einleitung Im folgenden Veruch werden Schwingungen von durch eine weiche Feder gekoppelten Pendeln unterucht, deren Schwingungebenen eich ind. Die chwache Kopplung

Mehr

Klausurvorbereitungsausfgaben für die Feiertage Analysis II im WS 2013/2014

Klausurvorbereitungsausfgaben für die Feiertage Analysis II im WS 2013/2014 Institut für Mthemtik Freie Universität Berlin C. Hrtmnn, A. Ppke Wer spricht von Siegen, Überleben ist lles. Riner Mri Rilke Lösung zu Klusurvorbereitungsusfgben für die Feiertge Anlysis II im WS 23/24

Mehr

Maschine Motor ω (t) 1 c. ω (t) 2

Maschine Motor ω (t) 1 c. ω (t) 2 Aufgabe 1: Modellbildung (20 Punkte) Machine Motor ω (t) 1 c ω (t) 2 r J Ein drehzahlgeregelter Motor gibt die Drehfrequenz ω 1 (t) au und treibt über eine tordierbare Welle mit der Torionteifigkeit c

Mehr

2010 A I Lösung. a IR. 1.1 Ermitteln Sie in Abhängigkeit von a die Anzahl, Lage und Vielfachheiten der Nullstellen von f P 4. so, dass der Punkt.

2010 A I Lösung. a IR. 1.1 Ermitteln Sie in Abhängigkeit von a die Anzahl, Lage und Vielfachheiten der Nullstellen von f P 4. so, dass der Punkt. 00 A I Lösung.0 Gegeben sind die reellen Funktionen f : x x x x mit ID f IR.. Ermitteln Sie in Abhängigkeit von die Anzhl, Lge und Vielfchheiten der Nullstellen von f. IR und ( BE) f x x x x 0 x 0; x ;

Mehr

Übungsmaterial. Lösen von Anfangswertproblemen mit Laplacetransformation

Übungsmaterial. Lösen von Anfangswertproblemen mit Laplacetransformation Prof. Dr. W. Roenheinrich 30.06.2009 Fachbereich Grundlagenwienchaften Fachhochchule Jena Übungmaterial Löen von Anfangwertproblemen mit Laplacetranformation Nachtehend ind einige Anfangwertprobleme zu

Mehr

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) =

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) = Es seien U R n offen und ψ : U R n stetig differenzierbr. Weiter sei f : U R zweiml stetig differenzierbr. Kennzeichnen Sie whre Aussgen mit W und flsche Aussgen mit F. F Flls dψ(x) ein Isomorphismus für

Mehr

Diplomhauptprüfung. "Regelung linearer Mehrgrößensysteme" 17. März Aufgabenblätter

Diplomhauptprüfung. Regelung linearer Mehrgrößensysteme 17. März Aufgabenblätter Diplomhauptprüfung "Regelung linearer Mehrgrößenyteme" 7. Mär 008 Aufgabenblätter Die Löungen owie der volltändige und nachvolliehbare Löungweg ind in die dafür vorgeehenen Löungblätter einutragen. Nur

Mehr

Probeklausur Mathematik für Ingenieure C3

Probeklausur Mathematik für Ingenieure C3 Deprtment Mthemtik Dr. rer. nt. Lrs Schewe Mthis Sirvent Wintersemester 013/014 Probeklusur Mthemtik für Ingenieure C3 Anmerkungen zur Klusur: Die Arbeitszeit wird 90 Minuten betrgen. Sie können sämtliche

Mehr

Differentialgleichungen Gewöhnliche Differentialgleichungen

Differentialgleichungen Gewöhnliche Differentialgleichungen Differentilgleichungen Gewöhnliche Differentilgleichungen ( n) + + +... ++ Eplizite Form: (Gleichung lässt sich nch höchster Ableitung uflösen Implizite Form: + 0 Lösung: Durch eine Funktion Lösungsweg:

Mehr

3 Bode-Verfahren Bestimmung von K R Anhebung der Phasenreserve durch ein Lead Glied Frequenzgang/Bode Diagramm...

3 Bode-Verfahren Bestimmung von K R Anhebung der Phasenreserve durch ein Lead Glied Frequenzgang/Bode Diagramm... Inhaltverzeichni Regleraulegung mittel Pol-Nulltellen-Kompenation. Eigenchaften der Regeltrecke..................... Betimmung der Reglervertärkung de PID-Regler........ 3.3 Eigenchaften der geregelten

Mehr

Zustandsregler für lineare Single-Input-Single-Output-Systeme

Zustandsregler für lineare Single-Input-Single-Output-Systeme Schweizeriche Geellchft für Automtik Aocition Suie pour L Automtique Swi Societ for Automtic Control SGA/ASSPA/SSAC LernModul Nr. Oktober 995 Zutndregler für linere Single-Input-Single-Output-Steme Methodik

Mehr

Aufgabe 1 (6 Punkte) rad/s. Technische Mechanik & Fahrzeugdynamik Prof. Dr.-Ing. habil. Bestle 27. März 2014

Aufgabe 1 (6 Punkte) rad/s. Technische Mechanik & Fahrzeugdynamik Prof. Dr.-Ing. habil. Bestle 27. März 2014 Techniche Mechnik & Fhrzegdynmik TM III Prof. Dr.-Ing. hbil. Betle 27. März 24 Prüfngklr Techniche Mechnik III Afgbe (6 Pnkte) Von einem Schwingngytem it der folgende Amplitdenfreqenzgng beknnt: Fmiliennme

Mehr

Testklausur Mathematik Studiengang Informationstechnik Berufsakademie in Horb

Testklausur Mathematik Studiengang Informationstechnik Berufsakademie in Horb Richtzeit pro Seite: Erte und letzte Seite je 4 min., Andere Seiten je 8 min. Gemtzeit: 6 min. Vereinfchen Sie folgende Audrücke durch Auklmmern, Aumultiplizieren bzw. Kürzen: 4 5 ln( ) + ln( ) in + 6in

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung

Mehr

Automation-Letter Nr Prof. Dr. S. Zacher. Optionen eines modellbasierter Reglers nach dem Antisystem-Approach

Automation-Letter Nr Prof. Dr. S. Zacher. Optionen eines modellbasierter Reglers nach dem Antisystem-Approach Automation-Letter Nr. 8 2.0.206 Prof. Dr.. Zacher Optionen eine modellbaierter Regler nach dem Antiytem-Approach Da bedeutende Ziel dieer Arbeit it, da Zuammenwirken zwei reeller trecken Regel- und chattentrecke,

Mehr

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration Integrieren Regeln (f() + g())d = f()d + g()d c f()d = c f()d b f()d = f()d b Einige Integrle die mn uswendig kennen sollte s d = s + s+ + C (für s ) d = ln + C cos d = sin + C sin d = cos + C sinh d =

Mehr

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9 D-MAVT/D-MATL Anlysis I HS 26 Dr. Andres Steiger Lösung - Serie 9. MC-Aufgben (Online-Abgbe). Es sei f die Funktion f() = e + 7. Welche der folgenden Funktionen sind Stmmfunktionen von f? () g() = 2 2

Mehr

8.4 Integrationsmethoden

8.4 Integrationsmethoden 8.4 Integrtionsmethoden 33 8.4 Integrtionsmethoden Die Integrtion von Funktionen erweist sich in prktischen Fällen oftmls schwieriger ls die Differenzition. Während sich ds Differenzieren durch Anwendung

Mehr

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i Funktionentheorie Komplexe Kurvenintegrle Themen des Tutoriums m 24.6.25: Jede komplexe Funktion f : D C knn mn drstellen ls f(x + iy) = u(x, y) + iv(x, y), wobei u und v reellwertige Funktionen uf R 2

Mehr

g) Bestimmen Sie für Fan-In = 4 die Anzahl der Gatterlaufzeiten der Carry-Look- Ahead-Einheit von den Eingängen zu den Ausgängen C 3, GG 0 und PP 0.

g) Bestimmen Sie für Fan-In = 4 die Anzahl der Gatterlaufzeiten der Carry-Look- Ahead-Einheit von den Eingängen zu den Ausgängen C 3, GG 0 und PP 0. 3.5 Crry-Look-Ahed 149 g) Betimmen Sie für Fn-In 4 die Anzhl der Gtterlufzeiten der Crry-Look- Ahed-Einheit von den Eingängen zu den Augängen C 3, GG 0 und PP 0. 2T Ppo T GG. 2T h) Skizzieren Sie für Fn-In

Mehr

fa x = VZW fa bei x x Extremstelle von fa 1 Stelle 3 x + 2a 3 x 2a VZW PA Wert

fa x = VZW fa bei x x Extremstelle von fa 1 Stelle 3 x + 2a 3 x 2a VZW PA Wert Die Veröffentlichung dieser Lösung geschieht ohne inhltliche Prüfung durch die Bezirksregierung Düsseldorf und den Mthe-Treff. Die Lösung stmmt nicht vom Originlutor der Aufgbe, sondern von einem Leser

Mehr

Analyse zeitkontinuierlicher Systeme im Frequenzbereich

Analyse zeitkontinuierlicher Systeme im Frequenzbereich Übung 3 Analye zeitkontinuierlicher Syteme im Frequenzbereich Diee Übung bechäftigt ich mit der Analye von Sytemen im Frequenzbereich. Die beinhaltet da Rechnen mit Übertragungfunktionen, den Begriff der

Mehr

6.4 Die Cauchysche Integralformel

6.4 Die Cauchysche Integralformel Die Cuchysche Integrlformel 6.4 39 Abb 6 Integrtionswege im Fresnelintegrl r ir 2 r 6.4 Die Cuchysche Integrlformel Aus dem Cuchyschen Integrlst folgt eine fundmentle Formel für die Drstellung einer holomorphen

Mehr

ÜBUNG 4.: GEKRÜMMTE STÄBE

ÜBUNG 4.: GEKRÜMMTE STÄBE ÜUG 4: GEKÜTE STÄE ufgbe 1: Schnittgößen und Spnnungveteilung gekümmte Stäbe y Löung: K Gegeben: bmeungen und eltung eine im ild dgetellten m uechnitt eingepnnten Stbe mit Keiquechnitt: d ufgbe: ) etimmung

Mehr

Zusatzmaterial zur Mathematik I für E-Techniker Übung 10

Zusatzmaterial zur Mathematik I für E-Techniker Übung 10 Mthemtik I für E-Techniker C. Erdmnn WS /, Univerität Rotock,. Vorleungwoche Zutzmteril zur Mthemtik I für E-Techniker Übung Uneigentliche Integrle Die Funktion f ei für x definiert und in jedem Intervll

Mehr

Einstellregeln nach Ziegler-Nichols Entwurf mit Hilfe von Gütefunktionalen Wurzelortskurven-Verfahren

Einstellregeln nach Ziegler-Nichols Entwurf mit Hilfe von Gütefunktionalen Wurzelortskurven-Verfahren 6. Allgemeine Struktur 6. Gleichungen de egelkreie 6.3 Standardregler 6.4 Entwurf linearer egelungyteme Eintellregeln nach Ziegler-Nichol Entwurf mit Hilfe von Gütefunktionalen Wurzelortkurven-Verfahren

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 10. dt. Welche der folgenden Aussagen ist richtig? t3 + 2

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 10. dt. Welche der folgenden Aussagen ist richtig? t3 + 2 D-MAVT/D-MATL Anlysis I HS 7 Dr. Andres Steiger Lösung - Serie.. Sei f(x) : () f() . x (c) f( ) . Die Funktion g : t t + ist, dss ds Integrl b dt. Welche der folgenden Aussgen

Mehr

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf:

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf: Aufgbe : ) Lösen Sie die folgenden Gleichungen nch uf: = kein Problem einfch die Wurel iehen und ds ± nicht vergessen.. = = ±, b) + 5 = 0 Hier hben wir bei jedem Ausdruck ein, lso können wir usklmmern:

Mehr

R. Brinkmann Seite f 2 ( x)

R. Brinkmann  Seite f 2 ( x) R. Brinkmnn http://brinkmnn-du.de Seite 08.0.0 Löungen linere Funktionen Teil XII Ergebnie: E Aufgbe f = + ;P( );D = { 0 6} Die Gerde mit der Funktion f () wird von einer zweiten Gerden mit der Funktion

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Differentialgleichungen

Differentialgleichungen Differentilgleichungen Eine elementre Einführung Oliver Psson 4. September 2006 Inhltsverzeichnis 1 Einführung 2 1.1 Definition.................................... 2 1.1.1 Terminologie..............................

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

Wachstum und Entwicklung

Wachstum und Entwicklung Wchstum und Entwicklung Sommersemester 28 Institut für Genossenschftswesen im Centrum für Angewndte Wirtschftsforschung Universität Münster 1 Gliederung.) Gliederung, Mthemtische Vorbemerkungen 1.) Wchstumstheoretische

Mehr

T2 Quantenmechanik Lösungen 5

T2 Quantenmechanik Lösungen 5 T Quntenmechnik Lösungen 5 LMU München, WS 17/18 5.1. Whrscheinlichkeitsstromichte Prof. D. Lüst / Dr. A. Schmi-My version: 13. 11. Es sei P b t ie Whrscheinlichkeit ein Teilchen zur Zeit t im Intervll

Mehr

Anhang D: Stabilität t linearer Systeme

Anhang D: Stabilität t linearer Systeme Anhng D: Stbilität t linerer Systeme (- / ) Im{G o (jω) Re{G o (jω) ω FHD Prof. Dr.-Ing. Gernot Freitg Seite Regelungstechnik - Stbilitätskriterien tskriterien Aufgbe: Entwurf stbiler Regelkreise Problem:

Mehr

1. Stegreifaufgabe aus der Physik Lösungshinweise

1. Stegreifaufgabe aus der Physik Lösungshinweise . Stegreifufgbe us der Physik Lösungshinweise Gruppe A Aufgbe Ds.Newtonsche Gesetz lässt sich zum Beispiel so formulieren: Wirkt uf einen Körper keine Krft (oder ist die Summe ller Kräfte null) so bleibt

Mehr

41 Normierte Räume über dem Körper der komplexen Zahlen

41 Normierte Räume über dem Körper der komplexen Zahlen 41 Normierte Räume über dem Körper der komplexen Zhlen 411 Rechenregeln für komplexe pseudonormierte Räume 412 Stetigkeits-, Differenzierbrkeits- und Integrierbrkeitskriterien für Abbildungen in einen

Mehr

Kapitel 7. Integralrechnung für Funktionen einer Variablen

Kapitel 7. Integralrechnung für Funktionen einer Variablen Kpitel 7. Integrlrechnung für Funktionen einer Vriblen In diesem Kpitel sei stets D R, und I R ein Intervll. 7. Ds unbestimmte Integrl (Stmmfunktion) Es sei f : I R eine Funktion. Eine differenzierbre

Mehr

von f im Punkt P ( 2 4) x x x Hilfsmittelfreier Teil. Beispielaufgabe 1 zur Analysis Gegeben ist die Funktion f mit der Gleichung

von f im Punkt P ( 2 4) x x x Hilfsmittelfreier Teil. Beispielaufgabe 1 zur Analysis Gegeben ist die Funktion f mit der Gleichung Hilfsmittelfreier Teil. Beispielufgbe zur Anlysis Gegeben ist die Funktion f mit der Gleichung f ( x ) = x + x x. Die zeigt den Grphen der Funktion f. () Berechnen ie lle Nullstellen der Funktion f. ()

Mehr

2. Funktionen in der Ökonomie

2. Funktionen in der Ökonomie FHW, ZSEBY, ANALYSIS - - Funktionen in der Ökonomie Beispiele: qudrtische Funktionen, Eponentilfunktion Qudrtische Funktionen Einfchste qudrtische Funktion: y = Allgemeine qudrtische Funktion: y = + b

Mehr

Höhere Mathematik für Ingenieure , Uhr

Höhere Mathematik für Ingenieure , Uhr Studiengng: Mtrikelnummer: 3 5 6 Z Punkte Note Prüfungsklusur zum Modul Höhere Mthemtik für Ingenieure 0. 7. 05, 8.00 -.00 Uhr Zugelssene Hilfsmittel: A-Blätter eigene, hndschriftliche Ausrbeitungen ber

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick uf die letzte Vorlesung 1. Ljpunov-Funktion 2. Rndwertprobleme 3. Lösbrkeit und Eindeutigkeit Ausblick uf die heutige Vorlesung 1. Vritionsrechnung 2. Brchistochrone 3. Euler-Lgrnge Gleichung

Mehr

3. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner

3. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner 3. Mthemtik-Schulrbeit für die 5. Klsse Autor: Gottfried Gurtner Arbeitszeit: 75 Minuten Lernstoff: Mthemtische Grundkompetenzen: AG.1 Einfche Terme und Formeln ufstellen, umformen und im Kontext deuten

Mehr

Quadratische Gleichungen und Funktionen

Quadratische Gleichungen und Funktionen Qudrtische Gleichungen und Funktionen Bei einer udrtischen Gleichung kommt die Unbeknnte Vrible mindestens einml in der.potenz vor, ber in keiner höheren Potenz. b c udrtischer Anteil linerer Anteil konstnter

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen Die ntürlichen Zhlen (zusmmen mit der Addition und der Multipliktion) wurden in Kpitel 3 xiomtisch eingeführt. Aus den ntürlichen Zhlen knn mn nun die gnzen Zhlen Z = {..., 2, 1, 0, 1, 2,...} die rtionlen

Mehr

6. Quadratische Gleichungen

6. Quadratische Gleichungen 6. Qudrtische Gleichungen 6. Vorbemerkungen Potenzieren und Wurzelziehen, somit uch Qudrieren und Ziehen der Qudrtwurzel, sind entgegengesetzte Opertionen. Sie heben sich gegenseitig uf. qudrieren Qudrtwurzel

Mehr

1 Folgen. 1. Februar 2016 ID 03/455. a) Folgende Folge ist gegeben: a n+1 = 7a n 12a n 1, a 0 = 1, a 1 = 0 (1) Charakteristisches Polynom:

1 Folgen. 1. Februar 2016 ID 03/455. a) Folgende Folge ist gegeben: a n+1 = 7a n 12a n 1, a 0 = 1, a 1 = 0 (1) Charakteristisches Polynom: Tutorium Ynnick Schrör Lösung zur Bonusklusur vom WS 1/13 Ynnick.Schroer@rub.de 1. Februr 016 ID 03/455 1 Folgen ) Folgende Folge ist gegeben: n+1 7 n 1 n 1, 0 1, 1 0 (1) Chrkteristisches Polynom: q 7q

Mehr

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte)

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte) Aufgben zur Anlytischen Mechnik SS 013 Bltt 10 - en Aufgbe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte Bestimmen Sie Eigenwerte λ 1 und λ sowie die Eigenvektoren v 1 und v der folgenden Mtrix:

Mehr

Kapitel 13. Taylorentwicklung Motivation

Kapitel 13. Taylorentwicklung Motivation Kpitel 13 Tylorentwicklung 13.1 Motivtion Sei D R offen. Sie erinnern sich: Eine in D stetig differenzierbre Funktion f : D R wird durch die linere Funktion g(x) = f() + f ()(x ) in einer Umgebung von

Mehr

Nr Prof. Dr. S. Zacher. Stabilitätsprüfung und Regler-Einstellung nach dem Zwei-Bode-Plots-Verfahren

Nr Prof. Dr. S. Zacher. Stabilitätsprüfung und Regler-Einstellung nach dem Zwei-Bode-Plots-Verfahren Automation-Letter Nr. 38 04.03.2018 Prof. Dr. S. Zacher Stabilitätsprüfung und Regler-Einstellung nach dem Zwei-Bode-Plots-Verfahren Die Konstruktion der negativ inversen Ortskurve ist recht unhandlich.

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

Analysis. Klausur zu e-funktionen (Produkt-/Kettenregel, momentane Änderungsrate) (Bearbeitungszeit: 90 Minuten) Gymnasium J1.

Analysis. Klausur zu e-funktionen (Produkt-/Kettenregel, momentane Änderungsrate) (Bearbeitungszeit: 90 Minuten) Gymnasium J1. Anlysis Klusur zu e-funktionen (Produkt-/Kettenregel, momentne Änderungsrte) (Berbeitungszeit: 90 Minuten) Gymnsium J Alender Schwrz www.mthe-ufgben.com Jnur 05 Pflichtteil - ohne Hilfsmittel Aufgbe :

Mehr

(3) a x a x a x... a x b n n 1. (2) a x a x a x... a x b n n n n (m) a x a x a x...

(3) a x a x a x... a x b n n 1. (2) a x a x a x... a x b n n n n (m) a x a x a x... LINEARE GLEICHUNGSSYSTEME () x x x... x b n n () x x x... x b n n () x x x... x b n n.............. (m) x x x... x b m m m mn n m Inhltsverzeichnis Kpitel Inhlt Seite Bestimmung von Funktionstermen Ds

Mehr

/LQHDUH*OHLFKXQJVV\VWHPH

/LQHDUH*OHLFKXQJVV\VWHPH /LQHDUH*OHLFKXQJVV\VWHPH (für Grund- und Leistungskurse Mthemtik) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nch dem Studium dieses Skripts sollten folgende Begriffe eknnt sein: Linere Gleichung; homogene

Mehr

Funktionsrealisierende physikalische Phänomene 5: INFORMATIONSVERARBEITUNG

Funktionsrealisierende physikalische Phänomene 5: INFORMATIONSVERARBEITUNG Fkultät Elektrotechnik und Informtiontechnik Lehrtuhl Automtiierungtechnik Prof. Klu Jnchek MS6 Funktionreliierende phyikliche Phänomene 5: INFORMAIONSVERARBEIUNG 6. Betimmende Phänomene Informtionverrbeitung

Mehr

9 Der Residuensatz mit Anwendungen

9 Der Residuensatz mit Anwendungen 36 9 Der Residuenstz mit Anwendungen 9. Definition: f : O C besitze für ε > in U ε ) O die Lurentreihe fz) = c n z ) n. Dnn heißt n= Res f := c S.?? = z = ε 2 ) fz)dz ds Residuum von f in. Andere Schreibweisen:

Mehr

Integralrechnung. Fakultät Grundlagen

Integralrechnung. Fakultät Grundlagen Integrlrechnung Fkultät Grundlgen März 2016 Fkultät Grundlgen Integrlrechnung Bestimmtes Integrl I n Teilintervlle: x 0 = < x 1 < x 2

Mehr

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen:

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen: Die Schwingungs-Differenilgleichung Freie ungedämpfe Schwingung eines Mssenpunes Federschwinger Bei Auslenung des Mssenpunes: Hooesches Gesez F - Federonsne Die Bewegungsgleichung lue dher: d m oder m

Mehr

Automation-Letter Nr Prof. Dr. S. Zacher. Modellbasierter Kompensationsregler mit einer überbrückten Regelstrecke

Automation-Letter Nr Prof. Dr. S. Zacher. Modellbasierter Kompensationsregler mit einer überbrückten Regelstrecke Automation-Letter Nr. 9 6.08.06 Prof. Dr.. Zacher odellbaierter Kompenationregler mit einer überbrückten egeltrecke Da Konzept der Kompenationregelung it ehr einfach, nämlich die Übertragungfunktion der

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl

Mehr

UNIVERSITAT SIEGEN. Klausur: Matr.Nr.:...:... Baustofflehre. Teilprüfung: Bitumenhaltige Bindemittel, Mineralstoffe, Asphaltmischgut, Herkunft

UNIVERSITAT SIEGEN. Klausur: Matr.Nr.:...:... Baustofflehre. Teilprüfung: Bitumenhaltige Bindemittel, Mineralstoffe, Asphaltmischgut, Herkunft UNVRSTAT SGN Therie und Prxi für Buingenieure vn mrgen Strßenbutehnik Lbrtrium für Strßenbutffe Prf. Dr.-lng. G. Steinhff 16. März 2005 Kluur: Butfflehre Teilprüfung: Bitumenhltige Bindemittel, Minerltffe,

Mehr

1. Experimentelle Anordnung, Ansatz

1. Experimentelle Anordnung, Ansatz Gekoppelte Pendel (Eigenwertproblem) (zum Teil nch F S Crwford Berkeley Physics Course, Bnd 3: Wves, Kpitel 14 und W Demtröder: Experimentlphysik 1 (Mechnik und Wärme), Kpitel 11) 1 Experimentelle Anordnung,

Mehr

Einfacher loop-shaping Entwurf

Einfacher loop-shaping Entwurf Intitut für Sytemtheorie technicher Prozee Univerität Stuttgart Prof. Dr.-Ing. F. Allgöwer 6.4.24 Regelungtechnik I Loophaping-Entwurf t http://www.it.uni-tuttgart.de/education/coure/rti/ Einfacher loop-haping

Mehr

1 Differentialrechnung

1 Differentialrechnung 1 Differentilrechnung 1.1 Ableitungen und Ableitungsregeln Nützliche Ableitungen 1. ( ) 1 = 1 x x 2 = x 2 2. Trigonometrische Funktionen: ( x) = 1 2 x [sin(x)] = cos(x) [cos(x)] = sin(x) 3. f(x) = e x

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederun 1. Motivtion / Grundlen 2. Sortierverfhren 3. Elementre Dtenstrukturen / Anwendunen 4. Bäume / Grphen 5. Hshin 6. Alorithmische Geometrie 3/1, Folie 1 2010 Prof. Steffen Lne - HD/FbI - Dtenstrukturen

Mehr

Integrationsmethoden

Integrationsmethoden Universität Perborn Dezember 8 Institut für Mthemtik C. Kiser Integrtionsmethoen Prtielle Integrtion (Prouktintegrtion) Unbestimmte Integrtion er Prouktregel (u v) () = u ()v() + u()v () liefert (u v)()

Mehr

4. Das quadratische Reziprozitätsgesetz.

4. Das quadratische Reziprozitätsgesetz. 4-1 Elementre Zhlentheorie 4 Ds udrtische Rezirozitätsgesetz Sei eine ungerde Primzhl, sei Z mit, 1 Frge: Wnn gibt es x Z mit x mod? Gibt es ein derrtiges x, so nennt mn einen udrtischen Rest modulo Legendre

Mehr

10ms tangential einem anderen Kind zuwirft? 15

10ms tangential einem anderen Kind zuwirft? 15 Hochchule Hnnover Kluur Phyik I im WS/4.0.04 Fkultät II - Abteilun Mchinenbu Zeit: 90 min Dozenten: Grünemier, Humnn, Kuhn, Otto, Pindru, Schrewe Hilfmittel: Erlubte Formelmmlunen und Tchenrechner Hinwei:

Mehr

( ) Gegeben sind die in IR definierten Funktionen f, g und h durch

( ) Gegeben sind die in IR definierten Funktionen f, g und h durch Hilfsmittelfreie Aufgben us dem Mthemtik-Pool zum Abitur 015 T. Wrncke m301 Abi015_M_Pool1_A1 Anlysis Gegeben sind die in IR definierten Funktionen f, g und h durch ( ) f = + 1, ( ) 3 g = + 1 und ( ) 4

Mehr

3. Ganzrationale Funktionen

3. Ganzrationale Funktionen 3. Gnzrtionle Funktionen ) Definitionen und Beispiele Definition: Eine gnzrtionle Funktion n-ten Grdes ht ls Definitionsterm ein Polynom n-ten Grdes, d.h. y = f() = n n n-1 n-1 1 0. n 0, i ( i = 1, n)

Mehr

44E - Abschätzung der Verformungen im Zustand II

44E - Abschätzung der Verformungen im Zustand II Programmvertriebgeechaft mbh Lange Wender 1 3446 Vemar BTS STATK-Bechreibung - Bautei: 44E Verformungen im Zutand Seite 1 44E - Abchätzung der Verformungen im Zutand (Stand:.05.009) Leitungumfang - Abchätzung

Mehr

f(ξ k )(x k x k 1 ) k=1

f(ξ k )(x k x k 1 ) k=1 Integrlrechnung Definition des bestimmten Integrls Die Integrtion ist die Umkehropertion zur Differentition. Grundufgbe der Integrlrechnung ist die Bestimmung von Flächen. Will mn beispielsweise den Inhlt

Mehr

Messtechnik Prüfungsklausur

Messtechnik Prüfungsklausur Lehrtuhl für Strömungmechnik und Strömungtechnik Metechnik Prüfungkluur 0.0.0 (Berbeitungzeit 90 min, keine Unterlgen ind erlubt.) Nme Vornme Mtrikelnr. Aufgbe berbeitet?* mx. Punkte erreichte Punkte 6

Mehr

Nullstellen quadratischer Gleichungen

Nullstellen quadratischer Gleichungen Nullstellen qudrtischer Gleichungen Rolnd Heynkes 5.11.005, Achen Nch y ufgelöst hen qudrtische Gleichungen die Form y = x +x+c. Zeichnet mn für jedes x uf der rechten Seite und ds drus resultierende y

Mehr

Repetitionsaufgaben Exponential-und Logarithmusfunktion

Repetitionsaufgaben Exponential-und Logarithmusfunktion Repetitionsufgben Eponentil-und Logrithmusfunktion Inhltsverzeichnis A) Vorbemerkungen B) Lernziele C) Eponentilfunktionen mit Beispielen 2 D) Aufgben Ep.fkt. mit Musterlösungen 6 E) Logrithmusfunktionen

Mehr