5.1 Gruppe paralleler Kräfte 5.2 Körperschwerpunkt 5.3 Flächenschwerpunkt. 5. Schwerpunkt. Prof. Dr. Wandinger 1. Statik TM 1.5-1

Größe: px
Ab Seite anzeigen:

Download "5.1 Gruppe paralleler Kräfte 5.2 Körperschwerpunkt 5.3 Flächenschwerpunkt. 5. Schwerpunkt. Prof. Dr. Wandinger 1. Statik TM 1.5-1"

Transkript

1 5.1 Gruppe paralleler Kräfte 5.2 Körperschwerpunkt 5.3 Flächenschwerpunkt 5. Schwerpunkt Prof. Dr. Wandinger 1. Statik TM 1.5-1

2 5.1 Gruppe paralleler Kräfte G 1 G 2 G R G i G n P x x 1 S x S Gesucht: Angriffspunkt, Betrag und Richtung der resultierenden Einzelkraft G R Prof. Dr. Wandinger 1. Statik TM 1.5-2

3 5.1 Gruppe paralleler Kräfte Gleiche Kraft: Die Richtung von G R stimmt mit der Richtung der Kräfte G i überein. n Betrag von G R : G R =G 1 G 2 G = n G i i=1 Gleiches Moment um Bezugspunkt P: n x S G = R i=1 x i G i x S = 1 n G R i=1 x i G i Der Punkt S heißt Kräftemittelpunkt oder Schwerpunkt. Prof. Dr. Wandinger 1. Statik TM 1.5-3

4 5.1 Gruppe paralleler Kräfte Die Summe der Momente der einzelnen Kräfte bezüglich des Schwerpunkts ist Null: n M S = i=1 n x S x i G i =x S i=1 n G i i=1 n x i G i =x S G R i=1 x i G i =0 Prof. Dr. Wandinger 1. Statik TM 1.5-4

5 5.2 Körperschwerpunkt Δm i z G S Die Schwerkraft ist ein paralleles Kraftfeld. Die resultierende Gewichtskraft greift im Massenschwerpunkt an. z S y S x S y x Prof. Dr. Wandinger 1. Statik TM 1.5-5

6 5.2 Körperschwerpunkt Gewichtskraft G: G= g m i =mg Massenschwerpunkt: x i g m i =x S G=x S mg y i g m i = y S G= y S mg z i g m i =z S G=z S mg Ergebnis: x S = 1 m x i m i y S = 1 m y i m i z S = 1 m z i m i Das Moment der Gewichtskraft um den Schwerpunkt verschwindet. Prof. Dr. Wandinger 1. Statik TM 1.5-6

7 5.2 Körperschwerpunkt Mit der Massendichte ρ gilt: m i = i V i Der Grenzübergang zu infinitesimalen Volumenelementen ΔV i führt auf: x S = 1 m V x dv y S = 1 m V y dv z S = 1 m V z dv Prof. Dr. Wandinger 1. Statik TM 1.5-7

8 5.2 Körperschwerpunkt Homogene Körper: Bei einem homogenen Körper ist die Massendichte konstant: =const. m= V Der Massenschwerpunkt stimmt mit dem Volumenschwerpunkt überein: x S = 1 V V x dv, y S = 1 V V y dv, z S = 1 V V z dv Die Werte sind für viele Körper tabelliert. Prof. Dr. Wandinger 1. Statik TM 1.5-8

9 5.2 Körperschwerpunkt Symmetrien: Bei Körpern mit einer Symmetrieebene liegt der Schwerpunkt in der Symmetrieebene. Bei Körpern mit zwei Symmetrieebenen liegt der Schwerpunkt auf der Schnittgeraden der Symmetrieebenen. Bei Körpern mit drei Symmetrieebenen liegt der Schwerpunkt im Schnittpunkt der Symmetrieebenen. Prof. Dr. Wandinger 1. Statik TM 1.5-9

10 5.2 Körperschwerpunkt Prof. Dr. Wandinger 1. Statik TM

11 5.2 Körperschwerpunkt Prof. Dr. Wandinger 1. Statik TM

12 5.2 Körperschwerpunkt Zusammengesetzte Körper: Der Schwerpunkt kann aus den Massen und Schwerpunktskoordinaten der Teilkörper berechnet werden: Wenn alle Teilkörper homogen sind und die gleiche Massendichte haben, dann gilt: x S = 1 m x Si m i x S = 1 V x Si V i y S = 1 m y Si m i y S = 1 V y Si V i z S = 1 m z Si m i z S = 1 V z Si V i Prof. Dr. Wandinger 1. Statik TM

13 5.2 Körperschwerpunkt Beispiel: Der Körper besteht aus einem homogenen Quader und einem homogenen Zylinder. z d h Beide Teilkörper haben die gleiche Massendichte. b Abmessungen: c a = 6cm, b = 5cm, c = 2cm d = 4cm, h = 8cm x a y Prof. Dr. Wandinger 1. Statik TM

14 5.2 Körperschwerpunkt Volumen: Quader: V Q =a b c=60 cm 3 Zylinder: V Z = 4 d 2 h=100,53 cm 3 Gesamt: V =V Q V Z =160,53cm 3 Schwerpunkt: Symmetrie: x S = y S =0 cm Quader: z QS = c =1 cm 2 Zylinder: z ZS =c h =6 cm 2 Gesamt: z S = z QS V Q z ZS V Z V =4,13 cm Prof. Dr. Wandinger 1. Statik TM

15 5.2 Körperschwerpunkt Beispiel: Gelochte Platte y 2,5 y S 2 1,5 S 1 6 Ø2 10 x 2 z Alle Maße in cm Prof. Dr. Wandinger 1. Statik TM

16 5.2 Körperschwerpunkt Volumen: Platte: V 1 =6 10 2=120 Loch: V 2 = = 2 Gesamt: V =120 2 =113,7 Gesamt: x S 1 V 1 =5 120=600 x S 2 V 2 = 7,5 2 = 47,12 x S = ,12 113,7 =4,863 Schwerpunkt: Symmetrie: Platte: Loch: z S =1 x S 1 =5, y S 1 =3 x S 2 =10 2,5=7,5 y S 2 =6 1,5=4,5 y S 1 V 1 =3 120=360 y S 2 V 2 = 4,5 2 = 28,27 y S = ,27 113,7 =2,918 Prof. Dr. Wandinger 1. Statik TM

17 5.3 Flächenschwerpunkt Homogene dünne Scheibe mit konstanter Dicke t : y Volumen: y S S A V =t A y da Volumenelement: dv =t da x x S x Prof. Dr. Wandinger 1. Statik TM

18 5.3 Flächenschwerpunkt Koordinaten des Schwerpunkts: x S = 1 V V x dv = 1 At A x t da= 1 A A x da y S = 1 V V y dv = 1 A t A y t da= 1 A A y da Flächenschwerpunkt: Der Punkt mit den Koordinaten x S = 1 A A x da, y S = 1 A A y da wird als Flächenschwerpunkt bezeichnet. Prof. Dr. Wandinger 1. Statik TM

19 5.3 Flächenschwerpunkt Statische Momente: Die Integrale S y = A x da, S x = A y da heißen statische Momente oder Flächenmomente erster Ordnung. Sie spielen in der Theorie der Balkenbiegung eine wichtige Rolle. Statische Momente bezüglich des Schwerpunkts sind Null. Achsen durch den Schwerpunkt heißen Schwerachsen. Symmetrieachsen sind Schwerachsen. Prof. Dr. Wandinger 1. Statik TM

20 5.3 Flächenschwerpunkt Beispiel: Dreieck Fläche: y A= 1 2 a h h y da b Flächenelement: da=b y dy Breite: b y =a a h y=a 1 y h a x Prof. Dr. Wandinger 1. Statik TM

21 5.3 Flächenschwerpunkt Statisches Moment um die x-achse: S x = A h y da= 0 =a h2 2 h2 3 = 1 6 a h2 a y 1 y h h dy=a 0 y y 2 h dy=a [ y=h y2 2 y3 3 h ]y=0 y-koordinate des Schwerpunkts: y S = S x A = 1 6 a h2 1 2 a h = 1 3 h Prof. Dr. Wandinger 1. Statik TM

22 5.3 Flächenschwerpunkt Der Abstand des Schwerpunkts von den anderen beiden Seiten berechnet sich ebenso. Ergebnis: Der Schwerpunkt des Dreiecks liegt im Schnittpunkt der Parallelen zu den Seiten, deren Abstand von den Seiten 1/3 der jeweiligen Höhe beträgt. S Prof. Dr. Wandinger 1. Statik TM

23 5.3 Flächenschwerpunkt Zusammengesetzte Flächen: Der Schwerpunkt kann aus den Flächen und den Koordinaten der Schwerpunkte der Teilflächen berechnet werden: x S = 1 A x Si A i, y S = 1 A y Si A i Die Koordinaten der Schwerpunkte elementarer Flächen sind tabelliert. Prof. Dr. Wandinger 1. Statik TM

24 5.3 Flächenschwerpunkt Beispiel: y y S A S 2 A S 1 A x Maße in cm x Prof. Dr. Wandinger 1. Statik TM

25 5.3 Flächenschwerpunkt Fläche 1: A 1 =4 cm 3 cm=12cm 2 x S 1 =1,5cm y S 1 =2cm Gesamt: Fläche 2: A 2 =2cm 6 cm=12cm 2 x S 2 =3 cm y S 2 = 4 1 cm=5cm A=12cm 2 12cm 2 =24 cm 2 x S = 1,5cm 12cm2 3cm 12cm 2 24cm 2 y S = 2cm 12cm2 5cm 12cm 2 24cm 2 = = cm=2,25cm cm=3,5cm Prof. Dr. Wandinger 1. Statik TM

26 5.3 Flächenschwerpunkt Beispiel: U-Profil Gegeben: a = 2cm y Gesucht: S y s a 5a Koordinaten des Schwerpunkts Symmetrie: x S = 0 a x 8a Prof. Dr. Wandinger 1. Statik TM

27 5.3 Flächenschwerpunkt 8a A 1 = S 1 5a - A 2 S 2 4a 6a Prof. Dr. Wandinger 1. Statik TM

28 5.3 Flächenschwerpunkt Fläche 1: Fläche 2: A 1 =40a 2, y S 1 =2,5a A 2 =24a 2, y S 2 =2a Gesamt: y S = 2,5a 40a2 2a 24a 2 40a 2 24a 2 = a= a=3,25a y S =6,5cm Prof. Dr. Wandinger 1. Statik TM

K U R S S T A T I K / F E S T I G K E I T S L E H R E

K U R S S T A T I K / F E S T I G K E I T S L E H R E BAULEITER HOCHBAU K U R S S T A T I K / F E S T I G K E I T S L E H R E QUERSCHNITTSWERTE ) Schwerpunktsbestimmungen ) Trägheitsmoment 3) Widerstandsmoment 4) Das statische Moment 5) Beispiele von Querschnittstabellen

Mehr

7) QUERSCHNITTSWERTE

7) QUERSCHNITTSWERTE BAULEITER HOCHBAU S T A T I K / F E S T I G K E I T S L E H R E 7) QUERSCHNITTSWERTE 1) Einleitung ) Schwerpunkt 3) Trägheitsmoment 4) Widerstandsmoment 5) Das statische Moment 6) Beispiele von Querschnittstabellen

Mehr

2. Trägheitstensor. Prof. Dr. Wandinger 3. Kinetik des starren Körpers Dynamik

2. Trägheitstensor. Prof. Dr. Wandinger 3. Kinetik des starren Körpers Dynamik 2. Trägheitstensor Der Drall hängt ab von der Verteilung der Masse und der Geschwindigkeit über den örper. Die Geschwindigkeitsverteilung ergibt sich aus der Überlagerung einer Translation und einer Rotation.

Mehr

2. Flächenträgheitsmomente

2. Flächenträgheitsmomente . Flächenträgheitsmomente.1 Definitionen. Zusammengesette Querschnitte.3 Hauptachsen Prof. Dr. Wandinger 3. Balken TM 3.-1 .1 Definitionen Flächenträgheitsmomente: Die ur Berechnung der Spannungen eingeführten

Mehr

2. Flächenträgheitsmomente

2. Flächenträgheitsmomente . Flächenträgheitsmomente.1 Definitionen. Zusammengesette Querschnitte.3 Hauptachsen Prof. Dr. Wandinger 3. Balken TM 3.-1 .1 Definitionen Flächenträgheitsmomente: Die ur Berechnung der Spannungen eingeführten

Mehr

Übung zu Mechanik 1 Seite 19

Übung zu Mechanik 1 Seite 19 Übung zu Mechanik 1 Seite 19 Aufgabe 33 Bestimmen Sie die Lage des Flächenschwerpunktes für den dargestellten Plattenbalkenquerschnitt! (Einheit: cm) Aufgabe 34 Betimmen Sie die Lage des Flächenschwerpunktes

Mehr

4.9 Der starre Körper

4.9 Der starre Körper 4.9 Der starre Körper Unter einem starren Körper versteht man ein physikalische Modell von einem Körper der nicht verformbar ist. Es erfolgt eine Idealisierung durch die Annahme, das zwei beliebig Punkte

Mehr

3. Allgemeine Kraftsysteme

3. Allgemeine Kraftsysteme 3. Allgemeine Kraftsysteme 3.1 Parallele Kräfte 3.2 Kräftepaar und Moment 3.3 Gleichgewicht in der Ebene Prof. Dr. Wandinger 1. Statik TM 1.3-1 3.1 Parallele Kräfte Bei parallelen Kräften in der Ebene

Mehr

Geometrische Anwendung des Integrals: Schwerpunkt eines homogenen Rotationskörpers

Geometrische Anwendung des Integrals: Schwerpunkt eines homogenen Rotationskörpers http://www.fotocommunity.de/search?q=table&index=fotos&options=ytoyontzoju6inn0yxj0ijtpoja7czo3oijkaxnwbgf5ijtzojg6ijizmjy4oduwijt9/pos/13 Geometrische Anwendung des Integrals: Schwerpunkt eines homogenen

Mehr

3. Trägheitstensor. Starrkörperdynamik Prof. Dr. Wandinger. 2. Der starre Körper

3. Trägheitstensor. Starrkörperdynamik Prof. Dr. Wandinger. 2. Der starre Körper 3. Trägheitstensor Im Beispiel der rollenden Scheibe hängt der Drall linear von der Winkelgeschwindigkeit ab. Bei der Berechnung des Dralls treten Integrale über die Geometrie des starren örpers auf. Es

Mehr

Trägheitsmomente spielen damit bei Drehbewegungen eine ähnliche Rolle wie die Masse bei Translationsbewegungen.

Trägheitsmomente spielen damit bei Drehbewegungen eine ähnliche Rolle wie die Masse bei Translationsbewegungen. Anwendungen der Integralrechnung 1 1 Trägheitsmomente 1. 1 Einleitung, Definition Körper fallen im Vakuum gleich schnell und sie gleiten auf einer reibungsfreien schiefen Ebene gleich schnell. Sie rollen

Mehr

0,6 m. 0,4m. Gegeben seien die obigen drei auf den Balken wirkenden Kräfte mit:

0,6 m. 0,4m. Gegeben seien die obigen drei auf den Balken wirkenden Kräfte mit: Kurs: Statik Thema: Resultierende bestimmen Aufgabe 1) Wo liegt bei der Berechnung der Resultierenden der Unterschied zwischen Kräften mit einem gemeinsamen Angriffspunkt und Kräften mit unterschiedlichen

Mehr

4. Das Verfahren von Galerkin

4. Das Verfahren von Galerkin 4. Das Verfahren von Galerkin 4.1 Grundlagen 4.2 Methode der finiten Elemente 4.3 Beispiel: Stab mit Volumenkraft Prof. Dr. Wandinger 3. Prinzip der virtuellen Arbeit FEM 3.4-1 4.1 Grundlagen Das Verfahren

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

2.7 Gravitation, Keplersche Gesetze

2.7 Gravitation, Keplersche Gesetze 2.7 Gravitation, Keplersche Gesetze Insgesamt gibt es nur vier fundamentale Wechselwirkungen: 1. Gravitation: Massenanziehung 2. elektromagnetische Wechselwirkung: Kräfte zwischen Ladungen 3. starke Wechselwirkung:

Mehr

Schwerpunkt homogener ebenen Flächen: Teil 1

Schwerpunkt homogener ebenen Flächen: Teil 1 Fragment, Celle Schwerpunkt homogener ebenen Flächen: Teil E Ma Lubov Vassilevskaya Schwerpunkt einer homogenen ebenen Fläche Die Koordinaten des Schwerpunktes lassen sich mit Hilfe der folgenden Doppelintegrale

Mehr

Raum- und Flächenmessung bei Körpern

Raum- und Flächenmessung bei Körpern Raum- und Flächenmessung bei Körpern Prismen Ein Prisma ist ein Körper, dessen Grund- und Deckfläche kongruente Vielecke sind und dessen Seitenflächen Parallelogramme sind. Ist der Winkel zwischen Grund-

Mehr

Kräftepaar und Drehmoment

Kräftepaar und Drehmoment Kräftepaar und Drehmoment Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Kräftepaar

Mehr

Körperberechnung. Würfel - Einheitswürfel. Pyramide. - Oberfläche - Volumen. - Oberfläche. - Volumen. Kegel. Quader. - Oberfläche - Volumen

Körperberechnung. Würfel - Einheitswürfel. Pyramide. - Oberfläche - Volumen. - Oberfläche. - Volumen. Kegel. Quader. - Oberfläche - Volumen Körperberechnung Würfel - Einheitswürfel - Oberfläche - Volumen Quader - Oberfläche - Volumen - zusammengesetzte Körper Prisma - Oberfläche Zylinder - Oberfläche Pyramide - Oberfläche - Volumen Kegel -

Mehr

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik Aufgaben zur Statik S 1. Seilkräfte 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn Am Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. Addition

Mehr

Experimentalphysik für ET. Aufgabensammlung

Experimentalphysik für ET. Aufgabensammlung Experimentalphysik für ET Aufgabensammlung 1. Drehbewegung Ein dünner Stab der Masse m = 5 kg mit der Querschnittsfläche A und der Länge L = 25 cm dreht sich um eine Achse durch seinen Schwerpunkt (siehe

Mehr

Integralrechnung für Funktionen mehrerer Variabler

Integralrechnung für Funktionen mehrerer Variabler Inhaltsverzeichnis 9 Integralrechnung für Funktionen mehrerer ariabler 36 9. Integration über ebene Bereiche in kartesischen Koordinaten.............. 36 9. Integration über ebene Bereiche in Polarkoordinaten..................

Mehr

c) Der Umfang einer quadratförmigen Rabatte misst 60,4 m. Wie lange ist eine Seitenlänge?

c) Der Umfang einer quadratförmigen Rabatte misst 60,4 m. Wie lange ist eine Seitenlänge? 13.3 Übungen zur Flächenberechnung 13.3.1 Übungen Quadrat Berechnen Sie für diese Quadrate das gesuchte Maß, geben Sie das Resultat in der verlangten Einheit an. a) l 4,8 dm, A? cm 2, U? m A l 2 4,8 2

Mehr

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1 3. Impuls und Drall Die Integration der Bewegungsgleichung entlang der Bahn führte auf die Begriffe Arbeit und Energie. Die Integration der Bewegungsgleichung bezüglich der Zeit führt auf die Begriffe

Mehr

Hans-Jürgen Frieske. Technische Mechanik Statik. Modul Flächenschwerpunkt

Hans-Jürgen Frieske. Technische Mechanik Statik. Modul Flächenschwerpunkt Hans-Jürgen Frieske Technische Mechanik Statik Modul Flächenschwerpunkt Statik 5.4 - Flächenschwerpunkt 5 Es liegt von der Statik her ein Zwei-Kräfte-Problem vor. Es gilt in der STTIK der Zwei-Kräfte-Satz.

Mehr

1. Zug und Druck in Stäben

1. Zug und Druck in Stäben 1. Zug und Druck in Stäben Stäbe sind Bauteile, deren Querschnittsabmessungen klein gegenüber ihrer änge sind: D Sie werden nur in ihrer ängsrichtung auf Zug oder Druck belastet. D Prof. Dr. Wandinger

Mehr

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15 5. Es sei Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 5 f(x, y) : x y, : x, y, x + y, y x. erechnen Sie f(x, y) d. Wir lösen diese Aufgabe auf zweierlei Art. Zuerst betrachten wir das Gebiet

Mehr

Kapitel D : Flächen- und Volumenberechnungen

Kapitel D : Flächen- und Volumenberechnungen Kapitel D : Flächen- und Volumenberechnungen Berechnung einfacher Flächen Bei Flächenberechnungen werden die Masse folgendermassen bezeichnet: = Fläche in m 2, dm 2, cm 2, mm 2, etc a, b, c, d = Bezeichnung

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1. Integration (Fortsetzung) 2. Existenz von Integralen auf Quadern und allgemeineren Mengen 3. Satz von Fubini 4. Berechnung von Integralen 5. Volumina 6. Normalgebiete

Mehr

Unregelmäßig geformte Scheibe Best.- Nr. MD02256

Unregelmäßig geformte Scheibe Best.- Nr. MD02256 Unregelmäßig geformte Scheibe Best.- Nr. MD02256 Momentenlehre Ziel Die unregelmäßig geformte Scheibe wurde gewählt, um den Statik-Kurs zu vervollständigen und um einige praktische Versuche durchzuführen.

Mehr

Flächenberechnungen mit Integralen. Aufgaben und Lösungen.

Flächenberechnungen mit Integralen. Aufgaben und Lösungen. Flächenberechnungen mit Integralen Aufgaben und Lösungen http://www.elearning-freiburg.de 2 Aufgabe 1: Gegeben sei die Funktion f = 2 + 4 + 4. f = 2 + 4 + 4 a) Berechnen Sie die Fläche, die die Kurve mit

Mehr

2.3.5 Dynamik der Drehbewegung

2.3.5 Dynamik der Drehbewegung 2.3.5 Dynamik der Drehbewegung 2.3.5.1 Drehimpuls Drehimpuls Betrachte einen Massepunkt m mit Geschwindigkeit v auf irgendeiner Bahn (es muss keine Kreisbahn sein); dabei ist r der Ort der Massepunkts,

Mehr

5. Kritische Drehzahl

5. Kritische Drehzahl Aufgabenstellung: 5. Kritische Drehzahl y y Ω c/4 c/4 m c/4 e z O O S c/4 x Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.5-1 Der starre Körper mit der Masse m dreht sich mit der konstanten Winkelgeschwindigkeit

Mehr

1. Die Wellengleichung

1. Die Wellengleichung 1. Die Wellengleichung Die Wellengleichung ist eine partielle Differenzialgleichung für das Schallfeld. Sie lässt sich durch Linearisierung aus der Massenbilanz, der Impulsbilanz und der Energiebilanz

Mehr

Ludwig Maximilians Universität München Fakultät für Physik. Lösungsblatt 8. Übungen E1 Mechanik WS 2017/2018

Ludwig Maximilians Universität München Fakultät für Physik. Lösungsblatt 8. Übungen E1 Mechanik WS 2017/2018 Ludwig Maximilians Universität München Fakultät für Physik Lösungsblatt 8 Übungen E Mechanik WS 27/28 Dozent: Prof. Dr. Hermann Gaub Übungsleitung: Dr. Martin Benoit und Dr. Res Jöhr Verständnisfragen

Mehr

Theoretische Physik 1 Mechanik

Theoretische Physik 1 Mechanik Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 Mechanik Skript zu Vorlesung 2: konservative Kräfte, Vielteilchensysteme und ausgedehnte Körper gehalten von: Markus

Mehr

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4. 4. Die ebene Platte 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.4-1 Schallabstrahlung einer unendlichen ebenen Platte: Betrachtet

Mehr

Serie 6. x 2 + y 2, 0 z 4.

Serie 6. x 2 + y 2, 0 z 4. Analysis D-BAUG Dr. Cornelia Busch FS 6 Serie 6. Wir betrachten drei verschiedene Flaschen in der Form eines Paraboloids P, eines Hyperboloids H und eines Kegels K. Diese sind wie folgt gegeben: P = {

Mehr

6 Mechanik des Starren Körpers

6 Mechanik des Starren Körpers 6 Mechanik des Starren Körpers Ein Starrer Körper läßt sich als System von N Massenpunkten m (mit = 1,...,N) auffassen, die durch starre, masselose Stangen miteinander verbunden sind. Dabei ist N M :=

Mehr

1 Kurvenuntersuchung /40

1 Kurvenuntersuchung /40 00 Herbst, (Mathematik) Aufgabenvorschlag B Kurvenuntersuchung /40 Die Tragflächen des berühmten Flugzeuges Junkers Ju-5 können an der Nahtstelle zum Flugzeugrumpf mithilfe der Funktionen f und g mit 8

Mehr

Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnungen mit Integralen

Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnungen mit Integralen Flächenberechnungen mit Integralen Aufgabe 1: Gegeben sei die Funktion = 44. = 44 Aufgaben und Lösungen a) Berechnen Sie die Fläche, die die Kurve mit den Koordinatenachsen einschließt. b) Berechnen Sie

Mehr

Probeklausur zur Theoretischen Physik I: Mechanik

Probeklausur zur Theoretischen Physik I: Mechanik Prof. Dr. H. Friedrich Physik-Department T3a Technische Universität München Probeklausur zur Theoretischen Physik I: Mechanik Montag, 2.7.29 Hörsaal 1 1:15-11:5 Aufgabe 1 (8 Punkte) Geben Sie möglichst

Mehr

Biegelinie

Biegelinie 3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 8

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 8 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 212/1 Vorlesung 8 Integration über ebene Bereiche Wir betrachten einen regulären Bereich in der x-y Ebene, der einfach zusammenhängend ist.

Mehr

Ebene & räumliche Bewegungen. Eine starre ebene Bewegung ist entweder eine. Translation: alle Punkte haben parallele Geschwindigk.

Ebene & räumliche Bewegungen. Eine starre ebene Bewegung ist entweder eine. Translation: alle Punkte haben parallele Geschwindigk. TechMech Zusammenfassung Ebene & räumliche Bewegungen Drehmoment M [Nm] Andreas Biri, D-ITET 31.07.13 1. Grundlagen Eine starre ebene Bewegung ist entweder eine Translation: alle Punkte haben parallele

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Wenn die Bahn des Massenpunkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort im Raum zu bestimmen. Es muss ein Ortsvektor angegeben werden. Prof.

Mehr

Trägheitsmoment - Steinerscher Satz

Trägheitsmoment - Steinerscher Satz Trägheitsmoment - Steinerscher Satz Gruppe 4: Daniela Poppinga, Jan Christoph Bernack Betreuerin: Natalia Podlaszewski 13. Januar 2009 1 Inhaltsverzeichnis 1 Theorieteil 3 1.1 Frage 2................................

Mehr

4. Wirbelsätze. ω= v. Er beschreibt die Drehung einer Strömung. Aus der für jedes Vektorfeld w gültigen Beziehung. ω=0

4. Wirbelsätze. ω= v. Er beschreibt die Drehung einer Strömung. Aus der für jedes Vektorfeld w gültigen Beziehung. ω=0 Wirbelvektor: Der Wirbelvektor ist definiert durch ω= v Er beschreibt die Drehung einer Strömung. Aus der für jedes Vektorfeld w gültigen Beziehung ( w )=0 folgt: ω=0 Wirbellinien sind Kurven, deren Tangente

Mehr

Physikalisches Pendel

Physikalisches Pendel Physikalisches Pendel Nach einer kurzen Einführung in die Theorie des physikalisch korrekten Pendels (ausgedehnte Masse) wurden die aus der Theorie gewonnenen Formeln in praktischen Messungen überprüft.

Mehr

Integration über allgemeine Integrationsbereiche.

Integration über allgemeine Integrationsbereiche. Integration über allgemeine Integrationsbereiche. efinition: Sei R n eine kompakte und messbare Menge. Man nennt Z = { 1,..., m } eine allgemeine Zerlegung von, falls die Mengen k kompakt, messbar und

Mehr

1. Impuls- und Drallsatz

1. Impuls- und Drallsatz 1. Impuls- und Drallsatz Impulssatz Bewegung des Schwerpunkts des örpers aufgrund vorgegebener räfte Drallsatz Drehung des örpers aufgrund vorgegebener Momente Prof. Dr. Wandinger 3. inetik des starren

Mehr

BESONDERE LEISTUNGSFESTSTELLUNG Schuljahr 2012/2013 MATHEMATIK

BESONDERE LEISTUNGSFESTSTELLUNG Schuljahr 2012/2013 MATHEMATIK Prüfungstag: Freitag, 24. Mai 2013 (HAUPTTERMIN) Prüfungsbeginn: 08:00 Uhr BESONDERE LEISTUNGSFESTSTELLUNG Schuljahr 2012/2013 MATHEMATIK Hinweise für die Teilnehmerinnen und Teilnehmer Bearbeitungszeit:

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

Übersicht der ausführlich gelösten Beispiele und Aufgaben

Übersicht der ausführlich gelösten Beispiele und Aufgaben Inhalt / Übersicht der ausführlich gelösten Beispiele und Aufgaben XIII Übersicht der ausführlich gelösten Beispiele und Aufgaben Beispiele Dachbinder-Konstruktion aus Fachwerk und Vollwandträger; Auflagerkräfte

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Punkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf einem

Mehr

Technische Mechanik. Statik

Technische Mechanik. Statik Hans Albert Richard Manuela Sander Technische Mechanik. Statik Lehrbuch mit Praxisbeispielen, Klausuraufgaben und Lösungen 4., überarbeitete und erweiterte Auflage Mit 263 Abbildungen ^ Springer Vieweg

Mehr

1. Querkraftschub in offenen Profilen

1. Querkraftschub in offenen Profilen 1. Querkrftschub in offenen Profilen 1.1 Schubfluss 1.2 Schubmittelpunkt Prof. Dr. Wndinger 5. Dünnwndige Profile TM 2 5.1-1 Geometrie: Die Profilkoordinte s wird entlng der Profilmittellinie gemessen.

Mehr

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle Anmerkung zur Notation Im folgenden werden folgende Ausdrücke äquivalent benutzt: r = x y = x 1 x 2 z x 3 1 Der Vektoroperator Definition: := e x x + e y y + e z z = x y z. Nabla ist ein Vektor, der als

Mehr

12. Flächenmomente. Umwelt-Campus Birkenfeld Technische Mechanik II

12. Flächenmomente. Umwelt-Campus Birkenfeld Technische Mechanik II Technische Mechanik 1. Flächenmomente Prof. Dr.-ng. T. Preußler Flächenmomente werden in der tatik ur Berechnung von pannungen infolge Biegung, chub und Torsion sowie bei tabilitätsuntersuchungen (Knicken,

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer

Mehr

Grundlagen der Physik 1 Lösung zu Übungsblatt 8

Grundlagen der Physik 1 Lösung zu Übungsblatt 8 Grundlagen der Physik 1 Lösung zu Übungsblatt 8 Daniel Weiss 1. Dezember 29 Inhaltsverzeichnis Aufgabe 1 - inhomogener hängender Balken 1 a) Seilkräfte...................................... 1 b) Schwerpunkt....................................

Mehr

3. Die Divergenz und die Quellen des elektrischen Feldes

3. Die Divergenz und die Quellen des elektrischen Feldes 3. Die Divergenz und die Quellen des elektrischen Feldes Das Gauß sche Gesetz V E d f = ɛ Q in = ɛ V ρ el dv stellte eine beachtliche Verbindung her zwischen dem elektrischen Feld E und seinen Quellen,

Mehr

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte]

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte] Übungen Theoretische Physik I (Mechanik) Blatt 9 (Austeilung am: 1.9.11, Abgabe am 8.9.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Biegelinie

Biegelinie 3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: 1; 2; 3; 4; Nimmt man auch die 0 hinzu, schreibt man: 0; 1; 2; 3; 4; Zahlenstrahl Je weiter rechts eine Zahl

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

sfg Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; }

sfg Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; } M 5.1 Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; } Nimmt man auch die 0 hinzu, schreibt man: N 0 = {0; 1; 2; 3; 4; } Zahlenstrahl 0 1 2 3 4

Mehr

Oberfläche von Körpern

Oberfläche von Körpern Definition Die Summe der Flächeninhalte der Flächen eines Körpers nennt man Oberflächeninhalt. Quader Der Oberflächeninhalt eines Quaders setzt sich folgendermaßen zusammen: O Q =2 h b+2 h l+2 l b=2 (h

Mehr

2. Definieren Sie die 2 Arten von Verzerrungen. Vorzeichenregeln.

2. Definieren Sie die 2 Arten von Verzerrungen. Vorzeichenregeln. FESTIGKEITSLEHRE 1. Definieren Sie den Begriff "Widerstandsmoment". Erläutern Sie es für Rechteck und doppelt T Querschnitt. Antwort Die Widerstandsmomente sind geometrische Kennzeichen des Querschnittes.

Mehr

3. Akustische Energie und Intensität

3. Akustische Energie und Intensität Aus der Energiebilanz lässt sich durch Berücksichtigung von Gliedern zweiter Ordnung eine Bilanzgleichung für die akustische Energie gewinnen. Etwas einfacher kann diese Energiegleichung aus der linearisierten

Mehr

Drehbewegungen (Rotation)

Drehbewegungen (Rotation) Drehbewegungen (Rotation) Drehungen (Rotation) Die allgemeine Bewegung eines Systems von Massepunkten lässt sich immer zerlegen in: und Translation Rotation Drehungen - Rotation Die kinematischen Variablen

Mehr

Polarisierung und Magnetisierung

Polarisierung und Magnetisierung Übung 2 Abgabe: 10.03. bzw. 14.03.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Polarisierung und Magnetisierung 1 Mathematische

Mehr

E1 Mechanik Lösungen zu Übungsblatt 2

E1 Mechanik Lösungen zu Übungsblatt 2 Ludwig Maimilians Universität München Fakultät für Physik E1 Mechanik en u Übungsblatt 2 WS 214 / 215 Prof. Dr. Hermann Gaub Aufgabe 1 Drehbewegung einer Schleifscheibe Es werde die Schleifscheibe (der

Mehr

2.3 Gekrümmte Oberflächen

2.3 Gekrümmte Oberflächen 2.3 Gekrümmte Oberflächen Jede Fläche im R 3 besitzt eine zweidimensionale Parameterdarstellung, so dass die Punkte der Fläche durch r(u, u 2 ) = x(u, u 2 )ê x + y(u, u 2 )ê y + z(u, u 2 )ê z beschrieben

Mehr

Massenträgheitsmomente homogener Körper

Massenträgheitsmomente homogener Körper http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine

Mehr

Vektorrechnung in der Physik und Drehbewegungen

Vektorrechnung in der Physik und Drehbewegungen Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen

Mehr

2. Der ebene Spannungszustand

2. Der ebene Spannungszustand 2. Der ebene Spannungszustand 2.1 Schubspannung 2.2 Dünnwandiger Kessel 2.3 Ebener Spannungszustand 2.4 Spannungstransformation 2.5 Hauptspannungen 2.6 Dehnungen 2.7 Elastizitätsgesetz Prof. Dr. Wandinger

Mehr

Physik 1, WS 2015/16 Musterlösung 8. Aufgabenblatt (KW 50)

Physik 1, WS 2015/16 Musterlösung 8. Aufgabenblatt (KW 50) Physik 1, WS 015/16 Musterlösung 8. Aufgabenblatt (KW 50) Aufgabe (Bleistift) Ein dünner Bleistift der Masse m und der Länge L steht zunächst mit der Spitze nach oben zeigend senkrecht auf einer Tischplatte.

Mehr

R 1. 3 x 1+9. y 1 (x) = x 2, y 2(x) = x 3, y 3(x) = p x

R 1. 3 x 1+9. y 1 (x) = x 2, y 2(x) = x 3, y 3(x) = p x Studiengang: ME/MB Semester: SS 9 Analysis II Serie: Thema: bestimmtes Integral. Aufgabe: Berechnen Sie den Wert der folgenden bestimmten Integrale: d) g) j) R (x e x )dx, b) R sinx cos7xdx, e) R e R p

Mehr

Trägheitsmoment (TRÄ)

Trägheitsmoment (TRÄ) Physikalisches Praktikum Versuch: TRÄ 8.1.000 Trägheitsmoment (TRÄ) Manuel Staebel 3663 / Michael Wack 34088 1 Versuchsbeschreibung Auf Drehtellern, die mit Drillfedern ausgestattet sind, werden die zu

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 9: Mehrdimensionale Integrale Prof. Dr. Erich Walter Farkas Mathematik I+II, 9. Mehrdim. Int. 1 / 39 1 Doppelintegrale 2 Prof.

Mehr

Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche. suggestive Notation. "Ausfluss pro Volumenelement"

Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche. suggestive Notation. Ausfluss pro Volumenelement Zusammenfassung: Satz v. Gauß Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche Volumen Rand des Volumens = Oberfläche Symbolisch: suggestive Notation Geometrische Definition der

Mehr

Modelllösungen. ( x) Schnittpunkte mit der x-achse: Schnittpunkt S. mit der y-achse: S y. = 24x. Damit ergeben sich die Tiefpunkte T

Modelllösungen. ( x) Schnittpunkte mit der x-achse: Schnittpunkt S. mit der y-achse: S y. = 24x. Damit ergeben sich die Tiefpunkte T Modelllösungen Der gewählte Lösungsansatz und weg muss nicht identisch mit dem in der Modelllösung sein. Sachlich richtige Alternativen werden mit entsprechender Punktzahl bewertet. Nr. a Schnittpunkte

Mehr

Rotationskurve einer Spiralgalaxie

Rotationskurve einer Spiralgalaxie Theorie Rotationskurve einer Spiralgalaxie Modell einer Spiralgalaxie Eine Spiralgalaxie ist grundsätzlich aus drei Komponenten aufgebaut: Scheibe, Bulge und Halo. Die Galaxien-Scheibe besteht vorwiegend

Mehr

Zusammenfassung: Flächenintegrale

Zusammenfassung: Flächenintegrale Zusammenfassung: Flächenintegrale Gerichtetes Flächenelement: "Fluss" durch Flächenelement: "Fläche über G": "Fluss" durch die Fläche : Für orthogonale Koordinaten: Betrag des Flächenelements: Richtung:

Mehr

Kapitel 8. Verbundquerschnitte

Kapitel 8. Verbundquerschnitte Kapitel 8 Verbundquerschnitte 8 8 Verbundquerschnitte 8.1 Einleitung... 279 8.2 Zug und Druck in Stäben... 279 8.3 Reine Biegung... 286 8.4 Biegung und Zug/Druck... 293 8.5 Zusammenfassung... 297 Lernziele:

Mehr

Übungsblatt 3 - Lösungen

Übungsblatt 3 - Lösungen Übungsblatt 3 - Lösungen zur Vorlesung EP2 (Prof. Grüner) im 2010 3. Juni 2011 Aufgabe 1: Plattenkondensator Ein Kondensator besteht aus parallelen Platten mit einer quadratischen Grundäche von 20cm Kantenlänge.

Mehr

Quadratische Funktionen

Quadratische Funktionen Quadratische Funktionen Aufgabe 1 Verschieben Sie die gegebenen Parabeln so, dass ihr Scheitelpunkt in S liegt. Gesucht sind die Scheitelpunktsform und die allgemeine Form der Parabelgleichung a) y = x²,

Mehr

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj Aufgabe 4 Zylinder nach oben offen Der dargestellte Zylinder A und der zugehörige bis zum Ventil reichende Leitungsabschnitt enthalten Stickstoff. Dieser nimmt im Ausgangszustand ein Volumen V 5,0 dm 3

Mehr

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Fakultät für Physik Wintersemester 2016/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 4 / 9.11.2016 1. May the force... Drei Leute A, B, C ziehen

Mehr

Potentialströmung und Magnuseffekt

Potentialströmung und Magnuseffekt Potentialströmung und Magnuseffekt (Zusammengefasst und ergänzt nach W Albring, Angewandte Strömungslehre, Verlag Theodor Steinkopff, Dresden, 3 Aufl 1966) Voraussetzungen Behandelt werden reibungs und

Mehr