Hallo Welt! für Fortgeschrittene. Geometrie I. Philipp Erhardt. 19. Juli Philipp Erhardt Geometrie I 19. Juli / 27

Größe: px
Ab Seite anzeigen:

Download "Hallo Welt! für Fortgeschrittene. Geometrie I. Philipp Erhardt. 19. Juli Philipp Erhardt Geometrie I 19. Juli / 27"

Transkript

1 Hallo Welt! für Fortgeschrittene Geometrie I Philipp Erhardt 19. Juli 2011 Philipp Erhardt Geometrie I 19. Juli / 27

2 Gliederung 1 Grundlagen 2 CCW 3 Punkt-in-Polygon 4 Pick s Theorem 5 Konvexe Hülle Philipp Erhardt Geometrie I 19. Juli / 27

3 Gliederung 4 Pick s Philipp Erhardt Theorem Geometrie I 19. Juli / 27 1 Grundlagen Begriffe Schnitt Lot Abstand Polygone 2 CCW 3 Punkt-in-Polygon

4 Grundlagen Punkte P: Koordinaten (x P, y P, z P ) Vektoren Schreibweise: AB := B A Philipp Erhardt Geometrie I 19. Juli / 27

5 Grundlagen Skalarprodukt A B = x A x B + y A y B + z A z B A B = A B cos(φ) A B = 0 A, B sind zueinander senkrecht Philipp Erhardt Geometrie I 19. Juli / 27

6 Grundlagen Kreuzprodukt 3D: A B = y A z B z A y B z A x B x A z B x A y B y A x B 2D: A B = x A y B y A x B = A B sin(φ) A B ist die Fläche des Parallelogramms, das von A und B aufgespannt wird. Der Ergebnisvektor steht senkrecht auf A und B. Philipp Erhardt Geometrie I 19. Juli / 27

7 Geraden Gegeben: 2 Punkte (P 1, P 2 ) auf der gesuchten Geraden Geradengleichung Ax + By = C, A = y 2 y 1 B = x 1 x 2 C = A x 1 + B y 1 Philipp Erhardt Geometrie I 19. Juli / 27

8 Geraden Gegeben: 2 Geraden der Form Ax + By = C Schnittpunkt S zweier Geraden det = A 1 B 2 A 2 B 1 falls det = 0 sind die Geraden parallel x S = (B 2 C 1 B 1 C 2 )/det y S = (A 1 C 2 A 2 C 1 )/det Sonderfall: Strecken Schnittpunkt liegt auf der Strecke [PQ]: min(x P, x Q ) x S max(x P, x Q ) min(y P, y Q ) y S max(y P, y Q ) Philipp Erhardt Geometrie I 19. Juli / 27

9 Geraden Gegeben: Gerade G der Form Ax + By = C Punkt P Lotgerade zu G durch den Punkt P Bx + Ay = D D = B x P + A y P Philipp Erhardt Geometrie I 19. Juli / 27

10 Grundlagen Gegeben: Punkte (A, B) auf der Geraden Punkt C Abstand Punkt-Linie d = AB AC AB wegen Fläche = Grundlinie Höhe = AB d Kreuzprodukt! Philipp Erhardt Geometrie I 19. Juli / 27

11 Grundlagen Gegeben: Endpunkte (A, B) der Strecke Punkt C Abstand Punkt-Liniensegment AB BC > 0 d = BC BA AC > 0 d = AC sonst siehe vorherige Folie Skalarprodukt! Philipp Erhardt Geometrie I 19. Juli / 27

12 Polygone Definition Ein Polygon (P 0, P 1,..., P N 1 ) ist die Figur, die durch zyklisches Verbinden ihrer Eckpunkte entsteht. Besondere Typen: regelmäßig (alle Seiten und Winkel gleich) überschlagen (Kanten überschneiden sich) einfach (keine Kanten überschneiden sich) konvex (alle Innenwinkel kleiner als 180 ) konkav (mindestens ein Innenwinkel größer als 180 )... Philipp Erhardt Geometrie I 19. Juli / 27

13 Polygone Erinnerung: Kreuzprodukt A B = A B sin(φ) Die Fläche des Parallelogramms, das von den beiden Vektoren aufgespannt wird Fläche eines einfachen Polygons area := 0 FOR i = 1 TO N - 2 area += (P[i] - P[0]) x (P[i + 1] - P[0]) RETURN area / 2 Philipp Erhardt Geometrie I 19. Juli / 27

14 Polygone Fläche nach obiger Formel ist gerichtet area < 0: Punkte sind im Uhrzeigersinn area > 0: Punkte sind gegen den Uhrzeigersinn area = 0: Punkte sind kollinear P 1 P 3 P 2 P 0 Philipp Erhardt Geometrie I 19. Juli / 27

15 Gliederung 1 Grundlagen 2 CCW 3 Punkt-in-Polygon 4 Pick s Theorem 5 Konvexe Hülle Philipp Erhardt Geometrie I 19. Juli / 27

16 CCW CCW (Counterclockwise) ccw(p 0, P 1, P 2 ) sei der Sonderfall N = 3 der Flächenberechnung. Viele Probleme lassen sich auf diese Operation zurückführen. Bedeutung von ccw(p 0, P 1, P 2 ) > 0: P 1 P die Punkte liegen gegen den 2 P 0 Uhrzeigersinn P 2 liegt links von der Gerade (P 0, P 1 ) Philipp Erhardt Geometrie I 19. Juli / 27

17 Gliederung 1 Grundlagen 2 CCW 3 Punkt-in-Polygon allgemein konvexe Polygone 4 Pick s Theorem 5 Konvexe Hülle Philipp Erhardt Geometrie I 19. Juli / 27

18 Punkt-in-Polygon Problem: Liegt der Punkt Q im Polygon? Wähle P so, dass er außerhalb des Polygons liegt Betrachte [PQ] Bei jedem Schnitt mit dem Polygon wechselt der Punkt die Seite Anzahl der Wechsel gerade Q liegt außerhalb Anzahl der Wechsel ungerade Q liegt innerhalb Philipp Erhardt Geometrie I 19. Juli / 27

19 Punkt-in-Polygon Sonderfälle Bei konkaven Polygonen treten unschöne Situationen auf: eine Kante des Polygons liegt in [PQ] [PQ] schneidet einen Eckpunkt des Polygons Für konvexe Polygone geht es deutlich einfacher und schneller Philipp Erhardt Geometrie I 19. Juli / 27

20 Punkt-in-Polygon Idee für konvexe Polygone Die Liste der Punkte liegt per se nach dem Winkel sortiert vor. Suche (binär) die Strecke [P 0 P i ], für die der Punkt Q gerade rechts oder darauf liegt: CCW (P 0, P m, Q) > 0: für P i gilt: i > m Sonst: i m Prüfe, ob Q im Dreieck (P 0, P i 1, P i ) liegt (CCW) Aufwand Dank binärer Suche: O(logN) Philipp Erhardt Geometrie I 19. Juli / 27

21 Gliederung 1 Grundlagen 2 CCW 3 Punkt-in-Polygon 4 Pick s Theorem 5 Konvexe Hülle Philipp Erhardt Geometrie I 19. Juli / 27

22 Pick s Theorem Gegeben: Polygon, dessen Eckpunkte ganzzahlige Koordinaten haben Satz von Pick Der Flächeninhalt des Polygons ist A = I + R 2 1 I : Anzahl der Gitterpunkte im Inneren des Polygons R: Anzahl der Gitterpunkte auf dem Rand Philipp Erhardt Geometrie I 19. Juli / 27

23 Pick s Theorem Anzahl der Gitterpunkte auf dem Rand R := 0 FOR EACH Edge e R += gcd( e.dx, e.dy ) RETURN R Die Fläche ist bekannt (Algorithmus siehe oben) mit dem Satz von Pick lässt sich die Anzahl der inneren Punkte bestimmen Philipp Erhardt Geometrie I 19. Juli / 27

24 Gliederung 1 Grundlagen 2 CCW 3 Punkt-in-Polygon 4 Pick s Theorem 5 Konvexe Hülle Jarvis march Graham Scan Philipp Erhardt Geometrie I 19. Juli / 27

25 Konvexe Hülle Definition Die konvexe Hülle ist die kleinste konvexe Menge, die alle gegebenen Punkte enthält. Algorithmen Jarvis march (Gift wrapping) Graham scan Größen: N: Anzahl der Punkte H: Anzahl der Punkte auf der konvexen Hülle Philipp Erhardt Geometrie I 19. Juli / 27

26 Jarvis march Algorithmus Startpunkt: Punkt mit kleinstem y-wert (liegt garantiert auf der konvexen Hülle) Bezogen auf die Horizontale durch den aktuellen Punkt: Suche den Punkt mit dem kleinsten Winkel und füge ihn zum Ergebnispolygon hinzu Wiederhole, bis wieder der Startpunkt erreicht ist Philipp Erhardt Geometrie I 19. Juli / 27

27 Jarvis march Aufwand Startpunkt suchen: O(N) Nachfolgersuche: O(N) für jeden Punkt auf der Hülle Gesamt: O(N) + O(NH) = O(NH) Verbesserungsansatz: Punkte nur einmal am Anfang nach dem Winkel sortieren Graham Scan Philipp Erhardt Geometrie I 19. Juli / 27

28 Graham Scan Algorithmus Startpunkt: Punkt mit kleinstem y-wert Sortiere Punkte nach dem Winkel zur Horizontalen durch den Startpunkt Entferne Punkte, falls sie den gleichen Winkel, aber einen kleineren Abstand haben Sukzessive die Punkte durchgehen: Bildet die neue Kante einen Winkel > 180 (CCW): verwerfe den letzten Punkt Sonst gehört der Punkt zur konvexen Hülle Philipp Erhardt Geometrie I 19. Juli / 27

29 Graham Scan P 2 P 1 P 3 P 2 P 1 P 3 P 1 P 0 P 0 P 0 P 3 P 1 P 3 P 1 P 2 P 4 P 0 P 4 P 0 Philipp Erhardt Geometrie I 19. Juli / 27

30 Graham Scan Aufwand Startpunkt suchen: O(N) Punkte nach dem Winkel sortieren: O(NlogN) Nachfolgersuche: O(1) für jeden Punkt in der Liste Gesamt: O(N) + O(NlogN) + O(N 1) = O(NlogN) Weitere Verbesserungen: Zahl der zu durchsuchenden Knoten minimieren Anzahl der arithmetischen Operationen minimieren (z.b. theta-funktion statt atan2 mit gleichem Verhalten, nur die Ordnung, nicht der tatsächliche Winkel, ist interessant) Philipp Erhardt Geometrie I 19. Juli / 27

31 Zusammenfassung 1 Grundlegendes elementare Beziehungen Punkt-Gerade, Gerade-Gerade CCW: Auf welcher Seite einer Gerade liegt der Punkt? 2 Polygone Fläche Punkt-in-Polygon: konkav und konvex 3 Algorithmen Satz von Pick: wie viele Gitterpunkte liegen im Polygon? Konvexe Hülle Philipp Erhardt Geometrie I 19. Juli / 27

32 Quellen Geometrie-Templates aus Hallo Welt -Folien (2006, 2008, 2009) Wikipedia (Satz von Pick, Gift wrapping algorithm, Graham scan) Philipp Erhardt Geometrie I 19. Juli / 27

Geometrie I. Sebastian Redinger Informatik 2 Programmiersysteme Martensstraße Erlangen

Geometrie I. Sebastian Redinger Informatik 2 Programmiersysteme Martensstraße Erlangen Geometrie I Sebastian Redinger 01.07.2015 Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Gliederung Grundlagen CCW Polygone Picks Theorem Konvexe Hülle - Graham Scan - Jarvis March 2 Gliederung

Mehr

Geometrie 1. Christian Bay Christian Bay Geometrie / 46

Geometrie 1. Christian Bay Christian Bay Geometrie / 46 Geometrie 1 Christian Bay 02.07.2013 Christian Bay Geometrie 1 02.07.2013 1 / 46 Inhaltsverzeichnis Grundlagen CCW Polygone Picks Theorem Konvexe Hülle Christian Bay Geometrie 1 02.07.2013 2 / 46 Geometrie

Mehr

Geometrie I. Polygone. Dominik Huber Hallo Welt! für Fortgeschrittene. Informatik 2 Programmiersysteme Martensstraße Erlangen

Geometrie I. Polygone. Dominik Huber Hallo Welt! für Fortgeschrittene. Informatik 2 Programmiersysteme Martensstraße Erlangen Geometrie I Polygone Dominik Huber 28.5.2018 Hallo Welt! für Fortgeschrittene Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Gliederung Wiederholung Analytische Geometrie Abstand Punkt

Mehr

Hallo Welt für Fortgeschrittene

Hallo Welt für Fortgeschrittene Hallo Welt für Fortgeschrittene Geometrie I Markus Götze Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Gliederung Grundlagen Polygone ccw Pick's Theorem Konvexe Hülle Hallo Welt für Fortgeschrittene

Mehr

Hallo Welt für Fortgeschrittene. Geometrie I. Lukas Batz. Informatik 2 Programmiersysteme Martensstraße Erlangen

Hallo Welt für Fortgeschrittene. Geometrie I. Lukas Batz. Informatik 2 Programmiersysteme Martensstraße Erlangen Hallo Welt für Fortgeschrittene Geometrie I Lukas Batz Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Gliederung Grundlagen Vektoren Geradengleichungen Skalar- und Kreuzprodukt Abstand

Mehr

Geometrie I. Tobias Langer Tobias Langer Geometrie I / 59

Geometrie I. Tobias Langer Tobias Langer Geometrie I / 59 Geometrie I Tobias Langer 02.07.2010 Tobias Langer Geometrie I 02.07.2010 1 / 59 1 Schulgeometrie Punkte & Geraden Dreieck Kreis Polygon 2 Schnitt von Geraden und Strecken 3 Punkt in Polygon Tobias Langer

Mehr

Geometrie 1. Roman Sommer. Informatik 2 Programmiersysteme Martensstraße Erlangen

Geometrie 1. Roman Sommer. Informatik 2 Programmiersysteme Martensstraße Erlangen Geometrie 1 Roman Sommer Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Grundlagen Punkte, Vektoren Schreibweise: Skalar: Vektor: Komponente: Punkt: (spitzer) Winkel zw. zwei Vektoren:

Mehr

Geometrie I. Laura Lawniczak Hallo Welt -Seminar - LS 2

Geometrie I. Laura Lawniczak Hallo Welt -Seminar - LS 2 Geometrie I Laura Lawniczak 12.07.2017 Hallo Welt -Seminar - LS 2 Inhalt Grundlagen Abstandsberechnung Punkt-Gerade Punkt-Segment CCW Polygone Punkt in Polygon Pick s Theorem Konvexe Hülle 12.07.2017 Laura

Mehr

July 04, Geometrie I. Hallo Welt! für Fortgeschrittene. Daniel Uebler

July 04, Geometrie I. Hallo Welt! für Fortgeschrittene. Daniel Uebler July 04, 2012 Geometrie I Hallo Welt! für Fortgeschrittene Daniel Uebler Einleitung Einleitung Algorithmische Geometrie Die algorithmische Geometrie ist der Zweig der Informatik, der Algorithmen zum Lösen

Mehr

Geometrie. Hallo Welt! für Fortgeschrittene Simon Kuhnle. 11. Juli

Geometrie. Hallo Welt! für Fortgeschrittene Simon Kuhnle. 11. Juli Geometrie Hallo Welt! für Fortgeschrittene 2008 Simon Kuhnle sisikuhn@stud.informatik.uni-erlangen.de 11. Juli 2008 Simon Kuhnle Geometrie 11.07.2008 1 / 33 Übersicht Übersicht 1 Grundlagen 2 ccw 3 Konvexe

Mehr

Geometrische Algorithmen Einige einfache Definitionen: Ist ein Punkt in einem Polygon? Punkt-in-Polygon-Problem. Das Punkt-in-Polygon-Problem

Geometrische Algorithmen Einige einfache Definitionen: Ist ein Punkt in einem Polygon? Punkt-in-Polygon-Problem. Das Punkt-in-Polygon-Problem Geometrische Algorithmen Einige einfache Definitionen: Punkt: im n-dimensionalen Raum ist ein n-tupel (n Koordinaten) Gerade: definiert durch zwei beliebige Punkte auf ihr Strecke: definiert durch ihre

Mehr

M. Pester 29. Ein konvexes d-polytop ist eine begrenzte d-dimensionale polyedrale Menge. (d = 3 Polyeder, d = 2 Polygon)

M. Pester 29. Ein konvexes d-polytop ist eine begrenzte d-dimensionale polyedrale Menge. (d = 3 Polyeder, d = 2 Polygon) M. Pester 29 6 Konvexe Hülle 6.1 Begriffe Per Definition ist die konvexe Hülle für eine Menge S von lich vielen Punkten die kleinste konvexe Menge, die S enthölt (z.b. in der Ebene durch ein umspannes

Mehr

Geometrische Algorithmen

Geometrische Algorithmen Geometrische Algorithmen Thomas Röfer Motivation Scan-line-Prinzip Konvexe Hülle Distanzprobleme Voronoi-Diagramm Rückblick Manipulation von Mengen Vorrangwarteschlange Heap HeapSort swap(a, 0, 4) 1 5

Mehr

Konvexe Hülle. Konvexe Hülle. Mathematik. Konvexe Hülle: Definition. Mathematik. Konvexe Hülle: Eigenschaften. AK der Algorithmik 5, SS 2005 Hu Bin

Konvexe Hülle. Konvexe Hülle. Mathematik. Konvexe Hülle: Definition. Mathematik. Konvexe Hülle: Eigenschaften. AK der Algorithmik 5, SS 2005 Hu Bin Konvexe Hülle Konvexe Hülle AK der Algorithmik 5, SS 2005 Hu Bin Anwendung: Computergraphik Boundary Kalkulationen Geometrische Optimierungsaufgaben Konvexe Hülle: Definition Mathematik Konvex: Linie zwischen

Mehr

Abitur 2011 G8 Musterabitur Mathematik Geometrie VI

Abitur 2011 G8 Musterabitur Mathematik Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur G8 Musterabitur Mathematik Geometrie VI In einem kartesischen Koordinatensystem ist ein Würfel W der Kantenlänge gegeben. Die Eckpunkte G ( ) und D ( ) legen

Mehr

1993 III Aufgabe. In einem kartesischen Koordinatensystem sind die Gerade

1993 III Aufgabe. In einem kartesischen Koordinatensystem sind die Gerade 993 III Aufgabe In einem kartesischen Koordinatensystem sind die Gerade = g : X mit R sowie die beiden Punkte A( -) und C(- 2 ) gegeben. A und C bestimmen die Gerade h..a) Begründen Sie, dass der Mittelpunkt

Mehr

Lage zweier Ebenen. Suche alle Punkte von E 1 die in E 2 enthalten sind. Setze also die Parameterform von E 1 in die Koordinatenform von E 2.

Lage zweier Ebenen. Suche alle Punkte von E 1 die in E 2 enthalten sind. Setze also die Parameterform von E 1 in die Koordinatenform von E 2. LAGE Lage zweier Ebenen Suche alle Punkte von E die in E 2 enthalten sind. Setze also die Parameterform von E in die Koordinatenform von E 2. B = E : X E 2 : x + x 2 + x 3 = Parameterform (PF) in Koordinatenform

Mehr

Zusammenfassung der Analytischen Geometrie

Zusammenfassung der Analytischen Geometrie Zusammenfassung der Analytischen Geometrie 1. Rechnen mit Vektoren (Addition, Subtraktion, S-Multiplikation, Linearkombinationen) 1. Gegeben sind die Punkte A(2-6 ) und B(-1 14-4), 4 4 sowie die Vektoren

Mehr

Hallo Welt für Fortgeschrittene

Hallo Welt für Fortgeschrittene Hallo Welt für Fortgeschrittene Geometrie II Benjamin Zenke Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Inhalt Closest Pair Divide & Conquer Bereichssuche Gitterverfahren k-d-tree Sweep-Line-Algorithmen

Mehr

Grundwissen Abitur Geometrie 15. Juli 2012

Grundwissen Abitur Geometrie 15. Juli 2012 Grundwissen Abitur Geometrie 5. Juli 202. Erkläre die Begriffe (a) parallelgleiche Pfeile (b) Vektor (c) Repräsentant eines Vektors (d) Gegenvektor eines Vektors (e) Welcher geometrische Zusammenhang besteht

Mehr

Demo für

Demo für Aufgabensammlung Mit ausführlichen Lösungen Geradengleichungen und lineare Funktionen Zeichnen von Geraden in vorgefertigte Koordinatensysteme Aufstellen von Geradengleichungen Schnitt von Geraden Die

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/36 Datenstrukturen und Algorithmen Vorlesung 20: (K33) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://moves.rwth-aachen.de/teaching/ss-15/dsal/

Mehr

Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle. zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung "Algorithmische Geometrie"):

Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle. zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung Algorithmische Geometrie): Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung "Algorithmische Geometrie"): 1 Erzeugung des Voronoi-Diagramms (siehe Vorlesung "Algorithmische

Mehr

Algorithmische Geometrie, SoSe 2005 Skriptmitschrift vom 29. April 2005

Algorithmische Geometrie, SoSe 2005 Skriptmitschrift vom 29. April 2005 Algorithmische Geometrie, SoSe 2005 Skriptmitschrift vom 29. April 2005 Antonia Wittmers Igor Savchenko Konvexe Hüllen Inkrementeller Algorithmus für die konvexe Hülle Dabei heißt inkrementeller Algorithmus,

Mehr

Lernunterlagen Vektoren in R 2

Lernunterlagen Vektoren in R 2 Die Menge aller reellen Zahlen wird mit R bezeichnet, die Menge aller Paare a 1 a 2 reeller Zahlen wird mit R 2 bezeichnet. Definition der Menge R 2 : R 2 { a 1 a 2 a 1, a 2 R} Ein Zahlenpaar a 1 a 2 bezeichnet

Mehr

Geometrie 2. Julian Fischer Julian Fischer Geometrie / 30

Geometrie 2. Julian Fischer Julian Fischer Geometrie / 30 Geometrie 2 Julian Fischer 6.7.2009 Julian Fischer Geometrie 2 6.7.2009 1 / 30 Themen 1 Bereichssuche und kd-bäume 1 Bereichssuche 2 kd-bäume 2 Divide and Conquer 1 Closest pair 2 Beispiel: Points (IOI

Mehr

2.1. Konvexe Hülle in 2D

2.1. Konvexe Hülle in 2D Wir wollen die konvexe Hülle einer Menge von Punkten P = {p 1,..., p n } in der Ebene R 2 bestimmen. y y x x Def. 21: Eine Teilmenge S der Ebene ist konvex gdw für jedes Paar das Liniensegment pq in S

Mehr

Lernkarten. Analytische Geometrie. 6 Seiten

Lernkarten. Analytische Geometrie. 6 Seiten Lernkarten Analytische Geometrie 6 Seiten Zum Ausdrucken muss man jeweils eine Vorderseite drucken, dann das Blatt wenden, nochmals einlegen und die Rückseite drucken. Am besten druckt man die Karten auf

Mehr

Abitur 2017 Mathematik Geometrie VI

Abitur 2017 Mathematik Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur 7 Mathematik Geometrie VI Gegeben sind die beiden bezüglich der x x 3 -Ebene symmetrisch liegenden Punkte A( 3 ) und B( 3 ) sowie der Punkt C( ). Teilaufgabe

Mehr

12 Übungen zu Gauß-Algorithmus

12 Übungen zu Gauß-Algorithmus Aufgaben zum Vorkurs B S. 2 Übungen zu Gauß-Algorithmus 2x x 2 = 7x +, 5x 2 = 7 Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: 2x x 2 = x +2x 2 = 2 2x x 2 = 7x +, 5x 2 =, 5 x 2x 2 = x +x 2 = 5 2x +x 2 = 4

Mehr

Übungen zur Vorlesung Algorithmische Geometrie

Übungen zur Vorlesung Algorithmische Geometrie Prof. Dr. E. Wanke Düsseldorf, 22. Juni 2016 S. Hoffmann, M.Sc. Übungen zur Vorlesung Algorithmische Geometrie Hinweise Programmieraufgaben: Alle vorgeschlagenen Programmieraufgaben können Sie in einer

Mehr

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans josef.coenen@web.de Abitour Analytische Geometrie Leistungskurs Aufgaben 1. Welche Lagebeziehungen zwischen

Mehr

Seminar. Algorithmische Geometrie

Seminar. Algorithmische Geometrie Seminar Algorithmische Geometrie WS 2000/2001 Thema: Konvexe Hülle Mirko Dennler 21439 Inhaltsverzeichnis Konvexe Hülle 1. Problemstellung 3 2. GRAHAMS SCAN 4-5 3. JARVIS' MARCH 5-6 4. QUICK HULL 6-7 5.

Mehr

Abitur 2013 Mathematik Geometrie V

Abitur 2013 Mathematik Geometrie V Seite 1 http://www.abiturloesung.de/ Seite Abitur 1 Mathematik Geometrie V Teilaufgabe b ( BE) Ein auf einer horizontalen Fläche stehendes Kunstwerk besitzt einen Grundkörper aus massiven Beton, der die

Mehr

a) Berechnen Sie einen Punkt D so, dass das Viereck ABCD eine Raute ist. (5 P) b) Kreuzen Sie an, welche Aussagen auf eine Raute zutreffen.

a) Berechnen Sie einen Punkt D so, dass das Viereck ABCD eine Raute ist. (5 P) b) Kreuzen Sie an, welche Aussagen auf eine Raute zutreffen. und Klausuren: P.. 0 Raute und Pyramide Gegeben sind die Punkte A( 8 4 ), B(7 8 7) und C(7 6 5). a) Berechnen Sie einen Punkt D so, dass das Viereck ABCD eine Raute ist. (5 P) b) Kreuzen Sie an, welche

Mehr

Algorithmische Geometrie

Algorithmische Geometrie Algorithmische Geometrie Martin Peternell TU Wien 31. Fortbildungstagung für Geometrie 2010, Strobl 1 Themen der Algorithmische Geometrie Entwurf von Algorithmen für geometrische Fragestellungen betreffend

Mehr

Abitur 2011 G9 Abitur Mathematik GK Geometrie VI

Abitur 2011 G9 Abitur Mathematik GK Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur G9 Abitur Mathematik GK Geometrie VI Auf dem Boden des Mittelmeeres wurde ein antiker Marmorkörper entdeckt, der ersten Unterwasseraufnahmen zufolge die

Mehr

Abitur 2016 Mathematik Geometrie V

Abitur 2016 Mathematik Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur Mathematik Geometrie V Betrachtet wird der abgebildete Würfel A B C D E F G H. Die Eckpunkte D, E, F und H dieses Würfels besitzen in einem kartesischen

Mehr

Abituraufgaben Analytische Geometrie Wahlteil 2016 BW

Abituraufgaben Analytische Geometrie Wahlteil 2016 BW Abituraufgaben Analytische Geometrie Wahlteil 216 BW Aufgabe B1.1 In einem Koordinatensystem be-schreiben die Punkte 15, 15 2 und 2 6 Eckpunkte der rechteckigen Nutzfläche einer Tribüne (alle Koordinatenangaben

Mehr

Abitur 2010 Mathematik LK Geometrie V

Abitur 2010 Mathematik LK Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur Mathematik LK Geometrie V Gegeben sind in einem kartesischen Koordinatensystem des R der Punkt A( ) und die Menge der Punkte B k ( k) mit k R. Die Punkte

Mehr

1 lineare Gleichungssysteme

1 lineare Gleichungssysteme Hinweise und Lösungen: http://mathemathemathe.de/lineare-algebra-grundlagen 1 lineare Gleichungssysteme Übung 1.1: Löse das lineare Gleichungssystem: I 3x + 3y + 7z = 13 II 1x 2y + 2, 5z = 1, 5 III 4x

Mehr

Arbeitsblatt Mathematik 2 (Vektoren)

Arbeitsblatt Mathematik 2 (Vektoren) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Mathematik und Naturwissenschaften Arbeitsblatt Mathematik (Vektoren Dozent: - Brückenkurs Mathematik / Physik 6. Aufgabe Gegeben

Mehr

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt: Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Teil 7: Geometrische Algorithmen Martin Hofmann LFE Theoretische Informatik, Institut für Informatik, Ludwig-Maximilians Universität, München 16. April 2016 Martin Hofmann

Mehr

63.5 Das Vektorprodukt - Übungen (2)

63.5 Das Vektorprodukt - Übungen (2) Mathematik mit Mathcad MK.. Vektorprodukt_Ueb_.xmcd. Das Vektorprodukt - Übungen () Aufgaben () Gegeben sind zwei Vektoren a, die ein Parallelogramm aufspannen. () Gegeben sind die drei Eckpunkte A( -;

Mehr

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene Rechnen mit 1. im Koordinatensystem 1.1. Freie in der Ebene 1) Definition Ein Vektor... Zwei sind gleich, wenn... 2) Das ebene Koordinatensystem Wir legen den Koordinatenursprung fest, ferner zwei zueinander

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 03.12.2013 Algorithmische Geometrie: Schnitte von Strecken Sweep-Line INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Algorithmen und Datenstrukturen Wintersemester 2018/2019 Übung#5, Christian Rieck, Arne Schmidt

Algorithmen und Datenstrukturen Wintersemester 2018/2019 Übung#5, Christian Rieck, Arne Schmidt Institute of Operating Systems and Computer Networks Algorithms Group Algorithmen und Datenstrukturen Wintersemester 208/209 Übung#5, 3.2.208 Christian Rieck, Arne Schmidt Konvexe Hülle Konvexe Hülle:

Mehr

Abitur 2010 Mathematik GK Geometrie VI

Abitur 2010 Mathematik GK Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur Mathematik GK Geometrie VI In einem kartesischen Koordinatensystem mit Ursprung O sind die Punkte A( ), B( ) und die Gerade g : x = O A + λ, λ R, gegeben.

Mehr

Mathematik LK 12 M1, 3. KA LA I / Analytische Geometrie Lösung

Mathematik LK 12 M1, 3. KA LA I / Analytische Geometrie Lösung Mathematik LK M,. KA LA I / Analytische Geometrie Lösung 6..7 Aufgabe : Rechnen mit Vektoren Berechne... und vereinfache das Ergebnis so weit wie möglich. Falls der Term keinen gültigen Ausdruck darstellt,

Mehr

Algorithmische Geometrie: Delaunay Triangulierung (Teil 1)

Algorithmische Geometrie: Delaunay Triangulierung (Teil 1) Algorithmische Geometrie: Delaunay Triangulierung (Teil 1) Nico Düvelmeyer WS 2009/2010, 26.1.2010 Überblick 1 Motivation Interpolation von Höhendaten 2 Triangulierungen von ebenen Punktmengen 3 Delaunay

Mehr

Durchschnitte und Sichtbarkeit

Durchschnitte und Sichtbarkeit Durchschnitte und Sichtbarkeit Elmar Langetepe University of Bonn Algorithmische Geometrie Durchschnitte 11.05.15 c Elmar Langetepe SS 15 1 Durchschnitt von Halbgeraden/Konvexe Hülle Algorithmische Geometrie

Mehr

Aufgabenkomplex 5: Inverse Matrix, Determinanten, Analytische Geometrie

Aufgabenkomplex 5: Inverse Matrix, Determinanten, Analytische Geometrie Technische Universität Chemnitz 0. Dezember 0 Fakultät für Mathematik Höhere Mathematik I. Aufgabenkomplex 5: Inverse Matrix, Determinanten, Analytische Geometrie Letzter Abgabetermin: 3. Januar 0 (in

Mehr

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2 Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Kapitel 2 Mathematische Grundlagen In diesem Kapitel werden die mathematischen Grundlagen dargelegt, die für die Darstellung von dreidimensionalen Objekten notwendig sind. 2. 3D-Koordinatensystem Weit

Mehr

Vektorprodukt. 1-E1 Ma 1 Lubov Vassilevskaya

Vektorprodukt. 1-E1 Ma 1 Lubov Vassilevskaya Vektorprodukt 1-E1 Ma 1 Lubov Vassilevskaya Vektorprodukt Unter dem Vektorprodukt zweier Vektoren a und b versteht man den im Raum durch die folgenden Bedingungen charakterisierten Vektor: c = a b 1. c

Mehr

Mathematikaufgaben > Vektorrechnung > Parallelogrammpyramide

Mathematikaufgaben > Vektorrechnung > Parallelogrammpyramide Michael Buhlmann, Mathematikaufgaben > Vektorrechnung > Parallelogrammpyramide Michael Buhlmann Mathematikaufgaben > Vektorrechnung > Parallelogrammpyramide Aufgabe: a) Zeige, dass das Viereck ABCD mit

Mehr

(Quelle Landungsbildungsserver BW) (Quelle Landungsbildungsserver BW)

(Quelle Landungsbildungsserver BW) (Quelle Landungsbildungsserver BW) Aufgabe M01 Lösen Sie das lineare Gleichungssystem 7 2 2 3 5 4 4 7 Aufgabe M02 14 Stellen Sie den Vektor 5 als Linearkombination der drei Vektoren 7 0 1 5 1, 3 und 2 dar. 3 7 2 Aufgabe M03 0 2 Gegeben

Mehr

Prüfungsteil B, Aufgabengruppe 1, Geometrie. Bayern Aufgabe 1. a b. Bundesabitur Mathematik: Musterlösung. Abitur Mathematik Bayern 2014

Prüfungsteil B, Aufgabengruppe 1, Geometrie. Bayern Aufgabe 1. a b. Bundesabitur Mathematik: Musterlösung. Abitur Mathematik Bayern 2014 Abitur Mathematik Bayern Prüfungsteil B; Aufgabengruppe : Bundesabitur Mathematik: Prüfungsteil B, Aufgabengruppe, Bayern Aufgabe a) SCHRITT: BERECHNUNG DER VEKTOREN AB UND AC Den Flächeninhalt eines Dreiecks

Mehr

6. Analytische Geometrie : Geraden in der Ebene

6. Analytische Geometrie : Geraden in der Ebene M 6. Analtische Geometrie : Geraden in der Ebene 6.. Vektorielle Geradengleichung Eine Gerade ist durch einen Punkt A und einen Richtungsvektor r eindeutig bestimmt. Durch die Einführung eines Parameters

Mehr

Lektionen zur Vektorrechnung

Lektionen zur Vektorrechnung Die Homepage von Joachim Mohr Start Mathematik Lektionen zur Vektorrechnung in Aufgaben Diese Datei kann auch als PDF-Datei heruntergeladen werden. Download... Es handelt sich um " Basisaufgaben " der

Mehr

Algorithmische Techniken für Geometrische Probleme

Algorithmische Techniken für Geometrische Probleme Algorithmische Techniken für Geometrische Probleme Berthold Vöcking 14. Juni 2007 Inhaltsverzeichnis 1 Die Sweepline-Technik 2 1.1 Schnitte orthogonaler Liniensegmente............... 2 1.2 Schnitte beliebiger

Mehr

a b b 1 b 2 bzgl. einer ONB (Orthonormalbasis) heißt der a 2 b 3 a 3 b 2 a 3 b 1 a 1 b b 3 a 1 b 2 a 2 b 1

a b b 1 b 2 bzgl. einer ONB (Orthonormalbasis) heißt der a 2 b 3 a 3 b 2 a 3 b 1 a 1 b b 3 a 1 b 2 a 2 b 1 VIII. Vektor- und Spatprodukt ================================================================== 8.1 Das Vektorprodukt -----------------------------------------------------------------------------------------------------------------

Mehr

Übungsblatt 7 - Voronoi Diagramme

Übungsblatt 7 - Voronoi Diagramme Karlsruher Institut für Technologie Algorithmische Geometrie Fakultät für Informatik Sommersemester 2012 ITI Wagner Martin Nöllenburg/Andreas Gemsa Übungsblatt 7 - Voronoi Diagramme 1 Voronoi-Zellen Sei

Mehr

Geometrische Algorithmen Segmentschnitt

Geometrische Algorithmen Segmentschnitt Folie 1 von 36 Geometrische Algorithmen Segmentschnitt Folie 2 von 36 Segmentschnitt Übersicht Zwei Segmente Lage zweier Segmente Prüfung auf Schnittfreiheit Formeln zum Geradenschnitt Feststellen des

Mehr

Geometrische Algorithmen Segmentschnitt

Geometrische Algorithmen Segmentschnitt Folie 1 von 36 Geometrische Algorithmen Segmentschnitt Folie 2 von 36 Segmentschnitt Übersicht Zwei Segmente! Lage zweier Segmente! Prüfung auf Schnittfreiheit! Formeln zum Geradenschnitt! Feststellen

Mehr

2.4. Triangulierung von Polygonen

2.4. Triangulierung von Polygonen Als drittes Problem haben wir in Kapitel 1 die Triangulierung von Polygonen identifiziert, die etwa bei der Überwachung eines Museums durch Kameras auftritt. F70 F71 Definition und Theorie: Definition

Mehr

Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie)

Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie) Klasse 11 2. Schulaufgabe Mathematik (Thema: Raumgeometrie) Aufgabe 1 Gegeben sind die Punkte A ( 2 12 4 ); B ( 4 22 6 ); C ( 6 20 8 ); S ( 0 14 14 ) a) Zeigen Sie, dass das Dreieck ABC gleichschenklig

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Kapitel 12 Mathematische Grundlagen In diesem Kapitel werden die mathematischen Grundlagen dargelegt, die für die Darstellung von dreidimensionalen Objekten notwendig sind. 12.1 3D-Koordinatensystem Weit

Mehr

Algebra 4.

Algebra 4. Algebra 4 www.schulmathe.npage.de Aufgaben In einem kartesischen ( Koordinatensystem ) sind die Punkte A( ), B( ), C(5 ), D( 4 0) und S gegeben. a) Die Punkte A, B und C liegen in einer Ebene E. Stellen

Mehr

BADEN-WÜRTTEMBERG Vektoren Geraden im Raum Lösungen Herausgegeben von Heinz Griesel Helmut Postel Friedrich Suhr Schroedel

BADEN-WÜRTTEMBERG Vektoren Geraden im Raum Lösungen Herausgegeben von Heinz Griesel Helmut Postel Friedrich Suhr Schroedel ELEMENTE DER MATHEMATIK BADEN-WÜRTTEMBERG Vektoren Geraden im Raum Lösungen Herausgegeben von Heinz Griesel Helmut Postel Friedrich Suhr Schroedel Vektoren Geraden im Raum. Kartesisches Koordinatensystem

Mehr

Geometrie / Lineare Algebra

Geometrie / Lineare Algebra 6 Geometrie / Lineare Algebra Vektoren und Rechenregeln Länge, Winkel, Abstand Darstellung von Geraden und Ebenen Umformungen Abstandsbestimmungen Lage, Schnitte, Schnittwinkel Spiegelungen E-Mail: klaus_messner@web.de,

Mehr

ohne Anspruch auf Vollständigkeit

ohne Anspruch auf Vollständigkeit Abi-Crash-Kurs Analytische Geometrie (G Niveau) ohne Anspruch auf Vollständigkeit Inhalt 1 Punkte, Vektoren und Geraden im R³... 2 2 Rechnen mit Vektoren... 4 2.1 Skalarprodukt... 4 2.2 Vektorprodukt...

Mehr

12 Der Abstand eines Punktes von einer Geraden Seite 1 von Der Abstand eines Punktes von einer Geraden

12 Der Abstand eines Punktes von einer Geraden Seite 1 von Der Abstand eines Punktes von einer Geraden 12 Der Abstand eines Punktes von einer Geraden Seite 1 von 5 12 Der Abstand eines Punktes von einer Geraden Die Bestimmung des Abstands eines Punktes von einer Geraden gehört zu den zentralen Problemen

Mehr

Hauptprüfung Fachhochschulreife Baden-Württemberg

Hauptprüfung Fachhochschulreife Baden-Württemberg Hauptprüfung Fachhochschulreife 05 Baden-Württemberg Aufgabe 4 Analytische Geometrie Hilfsmittel: grafikfähiger Taschenrechner Berufskolleg Alexander Schwarz www.mathe-aufgaben.com Juni 05 Ein Papierflieger

Mehr

Schulmathematik Geometrie und Vektorrechnung Blatt 1

Schulmathematik Geometrie und Vektorrechnung Blatt 1 Hans HUMENBERGER WS 05/6 Blatt Aufg.. a) Finden Sie eine Aufgabe aus einem Schulbuch der 5. Klasse, in der es um das Aufstellen, Interpretieren, Berechnen von Vektortermen (Addition, Subtraktion, Multiplikation

Mehr

Der Satz von Pick. Alexandra Zimmer

Der Satz von Pick. Alexandra Zimmer Der Satz von Pick Alexandra Zimmer Übersicht Georg Pick Der Satz von Pick: Hilfslemma Beweisidee Beweis Hilfslemma Basis des Z²-Gitters, elementares Parallelogramm mit Flächeninhalt 1 Beweis Satz Triangulierung,

Mehr

Pfadgenerierung/Polygone/Polygonoffsetting

Pfadgenerierung/Polygone/Polygonoffsetting Pfadgenerierung/Polygone/Polygonoffsetting Jan Stenzel 17. Juni 2015 Proseminar: 3D-Druck-Verfahren 1 / 42 Gliederung I 1 Polygone Definition konkav, konvex und überschlagen 2 Clipping Was kann passieren?

Mehr

Triangulierung von einfachen Polygonen

Triangulierung von einfachen Polygonen Triangulierung von einfachen Polygonen - Seminarvortrag von Tobias Kyrion - Inhalt: 1.1 Die Problemstellung Quellenangabe 1.1 Die Problemstellung Definition Polygon: endlich viele paarweise verschiedene

Mehr

GEOMETRIE (4a) Kurzskript

GEOMETRIE (4a) Kurzskript GEOMETRIE (4a) Kurzskript Dieses Kurzskript ist vor allem eine Sammlung von Sätzen und Definitionen und sollte ausdrücklich nur zusammen mit weiteren Erläuterungen in der Veranstaltung genutzt werden.

Mehr

6.6. Abstandsbestimmungen

6.6. Abstandsbestimmungen 6.6. Abstandsbestimmungen 6. Geraden und Ebenen im Raum In diesem Kapitel werden folgende Fälle vorgestellt:. Abstand zweier Punkte. Abstand zweier paralleler Geraden 3. Abstand einer Ebene zu einer zur

Mehr

Abitur 2011 G8 Abitur Mathematik Geometrie V

Abitur 2011 G8 Abitur Mathematik Geometrie V Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 211 G8 Abitur Mathematik Geometrie V In einem kartesischen Koordinatensystem sind die Punkte A( 6 ), B( 8 6 6) und C( 8 6) gegeben. Teilaufgabe 1a (8

Mehr

Parameter Das Buch Inhaltsverzeichnis Stichwortverzeichnis Aufgaben zum Selberrechnen Die Strukturierung

Parameter Das Buch   Inhaltsverzeichnis Stichwortverzeichnis Aufgaben zum Selberrechnen Die Strukturierung Das Buch: Dieses Kapitel ist Teil eines Buches. Das vollständige Buch können Sie unter www.mathe-laden.de bestellen (falls Sie das möchten). Sie werden in diesem Buch ein paar Sachen finden, die nicht

Mehr

Das Wichtigste auf einen Blick

Das Wichtigste auf einen Blick Das Wichtigste auf einen Blick Zusammenfassung Geometrie.Parameterform einer Geraden Eine Gerade ist wie auch in der Analysis durch zwei Punkte A, B im Raum eindeutig bestimmt einer der beiden Punkte,

Mehr

Formeln zur zweidimensionalen Geometrie

Formeln zur zweidimensionalen Geometrie 'Ray Tracing' mit sektorierten Segmenten Bernd Ragutt Formeln zur zweidimensionalen Geometrie Inhaltsverzeichnis Vektoren...1 unkte...6 Geraden...7 Halbgeraden...12 Strecken...15 Dreiecksflächen...17 olygone...20

Mehr

Geometrie Strecke, Gerade, Halbgerade

Geometrie Strecke, Gerade, Halbgerade Für einige Aufgaben wird ein beschriftetes Gitternetz folgender Größe benötigt: Rechtsachse (x- Achse): 8 LE Hochachse (y- Achse): 8 LE 1 LE 1 cm 1. Zeichne ohne Gitternetz: a) Die Gerade g ist senkrecht

Mehr

Übersicht über Informatik und Softwaresystemtechnik WS 99/00, Prof. Dr. Andreas Schwill

Übersicht über Informatik und Softwaresystemtechnik WS 99/00, Prof. Dr. Andreas Schwill Konvexe Hülle Hierbei handelt es sich um ein klassisches Problem aus der Algorithmischen Geometrie, dem Teilgebiet der Informatik, in dem man für geometrische Probleme effiziente Algorithmen bestimmt.

Mehr

A Vektorrechnung. B Geraden und Ebenen

A Vektorrechnung. B Geraden und Ebenen A Vektorrechnung Seite 1 Lineare Gleichungssysteme... 4 2 Gauß-Algorithmus... 6 3 Vektoren... 10 4 Vektorberechnungen und Vektorlängen... 12 5 Linearkombination und Einheitsvektor... 16 6 Lineare Abhängigkeit

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.43 2018/05/15 16:07:13 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel Am Ende der letzten Sitzung hatten wir begonnen zwei weitere Aussagen über Winkel zu beweisen,

Mehr

Grundlagen der Vektorrechnung

Grundlagen der Vektorrechnung Grundlagen der Vektorrechnung Ein Vektor a ist eine geordnete Liste von n Zahlen Die Anzahl n dieser Zahlen wird als Dimension des Vektors bezeichnet Schreibweise: a a a R n Normale Reelle Zahlen nennt

Mehr

Mathematik LK 12 M1, 2. Kursarbeit LA I / An. Geometrie Lösung

Mathematik LK 12 M1, 2. Kursarbeit LA I / An. Geometrie Lösung Mathematik LK M,. Kursarbeit LA I / An. Geometrie Lösung..7 Aufgabe : Rechnen mit Vektoren Berechne... und vereinfache das Ergebnis so weit wie möglich. Falls der Term keinen gültigen Ausdruck darstellt,

Mehr

Algorithmische Geometrie Thema: Konvexe Hüllen

Algorithmische Geometrie Thema: Konvexe Hüllen Algorithmische Geometrie Thema: Konvexe Hüllen Christoph Hermes Hermes@hausmilbe.de 17. Juni 2003 Ausblick auf den Vortrag 1/32 1 Was sind konvexe Hüllen? Wozu braucht man sie? Wie kann man sie berechnen

Mehr

Übungsaufgaben Geometrie und lineare Algebra - Serie 1

Übungsaufgaben Geometrie und lineare Algebra - Serie 1 Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß

Mehr

7.6. Prüfungsaufgaben zu Normalenformen

7.6. Prüfungsaufgaben zu Normalenformen 7.6. Prüfungsaufgaben zu Normalenformen Aufgabe () Gegeben sind die Gerade g: x a + r u mit r R und die Ebene E: ( x p ) n. a) Welche geometrische Bedeutung haben die Vektoren a und u bzw. p und n? Veranschaulichen

Mehr

Potenzen der Linearen Algebra

Potenzen der Linearen Algebra Potenzen der Linearen Algebra Stufen der Verallgemeinerung und ihre didaktische Umsetzung in der Lehre Fakultät für Ingenieurwissenschaften Prof. Dr. Dieter Schott E-Post: dieter.schott@hs-wismar.de www.et.hs-wismar.de/schott

Mehr

Dualität + Quad-trees

Dualität + Quad-trees Übung Algorithmische Geometrie Dualität + Quad-trees LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Andreas Gemsa 30.06.2011 Übersicht Übungsblatt 10 - Dualität

Mehr

Übungsblatt 3 (Vektorgeometrie)

Übungsblatt 3 (Vektorgeometrie) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Mathematik- und Naturwissenschaft Übungsblatt (Vektorgeometrie Roger Burkhardt 08 Mathematik. Aufgabe Gegeben seien die Vektoren

Mehr

Algorithmische Anwendungen. Algorithmen zur Berechnung konvexer Hüllen von Punkten

Algorithmische Anwendungen. Algorithmen zur Berechnung konvexer Hüllen von Punkten Algorithmische Anwendungen Algorithmen zur Berechnung konvexer Hüllen von Punkten Gruppe: C Team: lila Benz Andreas Matrikel-Nr.: 11036930 Radke Eugen Matrikel-Nr.: 11037089 Inhaltsverzeichnis 1. Einführung...3

Mehr

Algorithmische Geometrie: Delaunay Triangulierung (Teil 2)

Algorithmische Geometrie: Delaunay Triangulierung (Teil 2) Algorithmische Geometrie: Delaunay Triangulierung (Teil 2) Nico Düvelmeyer WS 2009/2010, 2.2.2010 Überblick 1 Delaunay Triangulierungen 2 Berechnung der Delaunay Triangulierung Randomisiert inkrementeller

Mehr