Othmar Marti Experimentelle Physik Universität Ulm

Größe: px
Ab Seite anzeigen:

Download "Othmar Marti Experimentelle Physik Universität Ulm"

Transkript

1 PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm Vorlesung nach Leisi, Tipler, Gerthsen, Känzig, Alonso-Finn Skript: Übungsblätter und Lösungen: Januar 2003 Universität Ulm, Experimentelle Physik

2 Leiterschleife bewegt Induktion eines Stromes in einer in einem inhomogenen Magnetfeld bewegten Leiterschlaufe. Universität Ulm, Experimentelle Physik 1

3 Leiterschlaufe bewegt II U EMK = 1 q 0 F d s = 1 q 0 F L d s P 2 = 1 F L ds = q 0 P 1 = v B b 1 q 0 (q 0 v B) b Universität Ulm, Experimentelle Physik 2

4 Magnetischer Fluss magnetischer Fluss φ B = B d A (1) A durch die Fläche A Die Einheit des magnetischen Flusses ist Weber. 1 Weber = 1 W b = 1 T m 2 (2) Universität Ulm, Experimentelle Physik 3

5 Stabmagnet und Spule Vergleich eines Stabmagneten mit einer Spule. Die Induktionsspannung und der Strom, den sie bewirkt, sind stets so gerichtet, dass sie der Ursache entgegenwirken. Universität Ulm, Experimentelle Physik 4

6 Induzierte Spannung Induzierte Spannung Die Nord- und Südpole der Magnete sind so definiert: Die B-Feldlinien laufen vom Nordpol zum Südpol. Universität Ulm, Experimentelle Physik 5

7 Selbstinduktion Vorzeichen des Magnetfeldes und der induzierten Spannung beim Einund Ausschalten. Universität Ulm, Experimentelle Physik 6

8 Selbstinduktion Selbstinduktion Universität Ulm, Experimentelle Physik 7

9 Lorentz-Transformation der elektromotorischen Kraft Wir betrachten die Situation in der Abbildung im Ruhesystem S der Schleife. Im Laborsystem S ist das Magnetfeld B = (0; 0; B) in die z-richtung gerichtet. Die Geschwindigkeit zeigt in die y-richtung. Mit derlorentztransformation berechnen wir die Felder im System S. Wir erhalten B = (0; 0; B ) = (0; 0; γ(v) B) (3) E = (E ; 0; 0) = (v γ(v) B; 0; 0) = (v B ; 0; 0) Die Leiterschleife ist im System S in Ruhe. Also muss die EMK durch das Universität Ulm, Experimentelle Physik 8

10 elektrische Feld erzeugt werden. U EMK = E b = v B b (4) Die Flussänderung ist dφ B = B v b dt (5) Somit lauten das Induktionsgesetz und das Ohmsche Gesetz Somit gilt für die EMK die Transformation U EMK = dφ B dt (6) U EMK = R I U EMK = γ(v)u EMK (7) Universität Ulm, Experimentelle Physik 9

11 Faradaysches Induktionsgesetz E d s = d dt B d a (8) S A(S) rot E = B t (9) Universität Ulm, Experimentelle Physik 10

12 Wirbelströme Anwendungen Wirbelstrombremse beim ICE Retarder in LKWs Dämpfung von Schwingungen in Rastertunnelmikroskopen Wirbelströme in Metallen In Transformatoren und Motoren verwendet man geschlitzte Bleche Universität Ulm, Experimentelle Physik 11

13 Transformator Zwei gekoppelte Stromkreise Universität Ulm, Experimentelle Physik 12

14 Transformator II Symbolische Darstellung eines Transformators Universität Ulm, Experimentelle Physik 13

15 Transformator III Schematischer Aufbau eines Transformators Universität Ulm, Experimentelle Physik 14

16 Kirchhoffsche Gesetze Kirchhoffsche Gesetze: links die Maschenregel, rechts die Knotenregel. Universität Ulm, Experimentelle Physik 15

17 In einer komplizierten elektrischen Schaltung betrachtet man eine einzelne Masche. Nach der definition der EMK muss eine Probeladung langsam um die Masche herumgeführt werden. Dies führt auf die Maschenregel k Quellen U k = j Verbraucher U j (10) wobei die Vorzeichen entsprechend dem Umlaufsinn einzusetzen sind. In unserem Beispiel bedeutet dies: U 1 U 2 = U R + U L Die Knotenregel ist ein Ausdruck für die Ladungserhaltung. An jedem Universität Ulm, Experimentelle Physik 16

18 Knoten gilt I k = 0 (11) k eines Knotens Mit diesen beiden Regeln sowie der Kenntnis der Charakteristika der Bauelemente kann jede statische oder quasistatische elektronische Schaltung berechnet werden. Universität Ulm, Experimentelle Physik 17

19 Impedanzen In diesem Abschnitt betrachten wir die Wirkung von cosinusförmigen Wechselspannungen U U(t) = U 0 cos (ωt ϕ) (12) Die Zeitskala für die Wechselspannung wird so gewählt, dass ϕ = 0 ist. Weiter setzen wir voraus, dass die zeitliche Änderung aller Grössen so gering sind, dass wir wie im stationären Falle rechnen können. Wir dies den quasistationären Fall. Universität Ulm, Experimentelle Physik 18

20 Definition von Strömen und Spannungen bei Wechselspannungen Da bei Wechselspannungen a priori keine Stromrichtung vorgegeben ist, definiert man, zum Beispiel wie in der Abbildung oben, die Stromrichtung zu einem bestimmten Zeitpunkt, hier für t = 0. Zu jedem Zeitpunkt muss Universität Ulm, Experimentelle Physik 19

21 die Spannung im Stromkreis insgesamt null sein. Also ist U U R = 0 (13) und mit dem Ohmschen Gesetz U 0 cos(ωt) I R = 0 (14) oder I(t) = U 0 R cos(ωt) = I 0 cos(ωt) (15) Der Strom und die Spannung erreichen immer dann einen Extremwert, wenn ωt ein ganzzahliges Vielfaches von π ist. Der durch einen Widerstand fliessende Strom ist in Phase mit der Spannung. Universität Ulm, Experimentelle Physik 20

22 Die momentane Leistung am Widerstand ist P (t) = U(t) I(t) = U 0 cos(ωt) U0 R cos(ωt) = U 2 0 R cos2 (ωt) = I 2 0R cos 2 (ωt) Der Mittelwert der Leistung ist ( cos 2 ω t t = 1/2) (16) P (t) t = 1 U0 2 2 R = 1 2 I2 R (17) Unter dem Effektivwert der Spannung (des Stromes) versteht man diejenige Gleichspannung, die an einem Ohmschen Widerstand die gleiche Verlustleistung erzeugt. Also ist für sinusförmige Spannungen U eff = 1 2 U 0 (18) Universität Ulm, Experimentelle Physik 21

23 beziehungsweise I eff = 1 2 I 0 (19) Für beliebige Spannungsverläufe (Stromverläufe) ist der Effektivwert (auch rms-wert von Root Mean Square ) U eff = U rms = 1 T t+t t U 2 (τ)dτ (20) wobei T eine Zeit ist, die bei periodischen Signalen der Periodendauer entspricht und bei zufälligen Signalen lang gegenüber der charakteristischen Universität Ulm, Experimentelle Physik 22

24 Zeitdauer der Schwankungen sein muss. Für Ströme gilt die analoge Formel I eff = I rms = 1 t+t I T 2 (τ)dτ (21) t Spule mit Wechselspannung Die induzierte Spannung ist der Flussänderung entgegengesetzt. Sie wirkt so, dass die Zunahme des Stromes bei zunehmender Anregungsspannung Universität Ulm, Experimentelle Physik 23

25 gebremst wird. Deshalb ist U U L = 0 = U L di dt (22) Setzen wir U = U 0 cos(ωt) ein, erhalten wir di dt = U 0 L cos(ωt) (23) und damit I(t) = U 0 L t 0 cos(ωτ)dτ = U 0 Lω sin(ωt) = U 0 Lω cos(ωt π 2 ) (24) Universität Ulm, Experimentelle Physik 24

26 Der Strom hat also den Scheitelwert I = U 0 ωl = U 0 X L (25) wobei X L = ωl die Impedanz oder der induktive Widerstand der Spule ist. Die Einheit der Impedanz ist gleich wie die Einheit des Widerstandes, das Ohm. Der Strom folgt der Spannung mit einer Phasenverschiebung von π/2. Für die Effektivwerte gilt I eff = U eff /X L, da für sinusförmige Spannungen und Ströme der gleiche Faktor zur Umrechnung von Scheitelwerten zu Effektivwerten verwendet werden muss. Die momentan dissipierte Leistung an einer Spule ist P (t) = U(t) I(t) = U 0 cos(ωt) U0 ωl cos(ωt π 2 ) = U 2 0 ωl cos(ωt) sin(ωt) (26) Universität Ulm, Experimentelle Physik 25

27 Die dissipierte Leistung kann sowohl positiv wie auch negativ sein. Die mittlere dissipierte Leistung ist P t = U 2 0 ωl cos(ωt) sin(ωt) t = 0 (27) Im Mittel wird also keine Leistung an einer Spule dissipiert. Kondensator mit Wechselspannung Beim Kondensator ist U C = q/c. Diese Spannung muss gleich der Universität Ulm, Experimentelle Physik 26

28 treibenden Spannung sein. U U C = 0 = U q C (28) Wir setzen U ein und erhalten q = C U 0 cos(ωt) (29) Der Strom ist dann für den Strom I = dq dt = d dt C U 0 cos(ωt) = Cω U 0 sin(ωt) = Cω U 0 cos(ωt+ π 2 ) (30) Wir nennen X C = 1 ωc (31) Universität Ulm, Experimentelle Physik 27

29 die Impedanz des Kondensators. Der Scheitelwert des Stromes ist I 0 = ωcu 0 (32) Analog wie bei der Spule gilt die Gleichung I eff = U eff /X C mit der gleichen Begründung auch für Kondensatoren. Die momentan dissipierte Leistung ist P (t) = ωcu 2 0 cos(ωt) sin(ωt) (33) Sie ist, analog wie bei der Spule, positiv oder negativ. Deshalb ist die mittlere dissipierte Leistung P (t) t = ωcu 2 0 cos(ωt) sin(ωt) t = 0 (34) Universität Ulm, Experimentelle Physik 28

30 Schwingkreis Der Kondensator soll zur Zeit t = 0 auf die Spannung U C,0 aufgeladen sein. Zur Zeit t = 0 wird der Schalter geschlossen. Die Differentialgleichung dieser Schaltung lautet: L di dt + Q C = 0 (35) Wir differenzieren einmal und bekommen d 2 I dt LC I = 0 (36) Universität Ulm, Experimentelle Physik 29

31 Dies ist die aus der Mechanik bekannte Schwingungsdifferentialgleichung. Durch Analogieschluss sieht man, dass die Resonanzfrequenz ω 0 = 1 LC (37) ist. Universität Ulm, Experimentelle Physik 30

32 Schwingkreis mit Widerstand Der gedämpfte Schwingkreis enthält neben dem Kondensator und der Spule auch einen Widerstand. Die Differentialgleichung des gedämpften Schwingkreises ist L di dt + R I + Q C = 0 (38) Wir differenzieren einmal und bekommen d 2 I dt 2 + R di L dt + 1 LC I = 0 (39) Universität Ulm, Experimentelle Physik 31

33 Analog zur Mechanik ist die R C der Dämpfungsterm. Das in der Mechanik berechnete Verhalten eines schwingungsfähigen Systems gilt auch für den elektrischen Schwingkreis. Wenn der elektrische Schwingkreis von einer Wechselspannungsquelle getrieben wird, ergeben sich die gleichen Phänomene wie bei einem getriebenen Pendel, also auch eine Resonanz. Anwendungen Schwingkreise zur Signalfilterung in Radioempfängern Verhalten von langen Leitungen Verhalten elektrischer Maschinen Universität Ulm, Experimentelle Physik 32

34 Elektromotoren Prinzipbild eines Elektromotors Wir betrachten zuerst den Elektromotor als Generator. Der Fluss durch die Leiterschlaufe mit N Windungen und einer Fläche A ist φ B = NBA cos Θ (40) Universität Ulm, Experimentelle Physik 33

35 wobei Θ der Winkel zwischen der Normalen der Fläche der Leiterschlaufe und der Richtung des Magnetfeldes ist. Mit Θ = ωt + δ wird der zeitabhängige Fluss durch eine sich mit ω drehende Leiterschlaufe φ B (t) = NBA cos(ωt + δ) (41) Durch Ableiten erhält man die Induktionsspannung U = dφ B(t) dt = NBA d dt cos(ωt + δ) = NBAω sin(ωt + δ) (42) Die induzierte effektive Spannung ist U eff,i = NBAω 2 (43) Wenn die Leiterschlaufe mit Spannung versorgt wird, arbeitet sie als Motor. Universität Ulm, Experimentelle Physik 34

36 Durch den Strom I wird ein Drehmoment M = NAB I sin Θ (44) erzeugt 1. Das mittlere Drehmoment bei einem Motor, bei dem der Kommutator immer bei dem Winkel, bei dem das Drehmoment null wird, das Vorzeichen ändert, ist M eff = NAB I (45) 2 Wenn der Widerstand des Ankers, der rotierenden Spule, R ist, kann man den mittleren Strom berechnen I eff = U U eff,i R = U R NBA R 2 ω (46) 1 Beachte die Phasenverschiebung zwischen Fluss und Drehmoment! Universität Ulm, Experimentelle Physik 35

37 Damit hängt das Drehmoment von der Drehzahl ab M eff (ω) = NAB 2 ( U R NBA ) R 2 ω = NABU R 2 N 2 A 2 B 2 2R ω (47) Das Drehmoment des ruhenden Motors ist also M eff (0) = M max = NABU R 2 (48) und die maximale Drehzahl (da wo M eff = 0) ist ω max = 2U NAB (49) Diese Charakteristik hat man immer dann, wenn das erregende Feld B unabhängig von der Drehzahl ist, bei Permanentmagneten oder wenn die Universität Ulm, Experimentelle Physik 36

38 Spule für die Erregerwicklung parallel zum Anker angeschlossen ist. Will man die Drehzahl erhöhen, muss man das Feld B schwächer machen. Ist die Erregerwicklung in Serie zur Ankerwicklung geschaltet, gibt es keine maximale Drehzahl. Eine lange Zylinderspule (Länge l, Windungszahl N) hat das Magnetfeld B Z = µ 0 N l I (50) Für andere Geometrien gilt das gleiche Gesetz, aber mit einem geometrieabhängigen Vorfaktor K. Im statischen Falle ist der Strom nur vom Gleichstromwiderstand R E der Erregerspule abhängig. Wenn U E der Spannungsabfall an der Erregerspule ist, ist B(U E ) = Kµ 0 N E l E U E R E == Kµ 0 N E l E I E (51) Universität Ulm, Experimentelle Physik 37

39 Der durch den Anker fliessende Strom ist dann durch I eff = U U E U eff,i R = U R U E R NB(U E)A R ω (52) 2 gegeben. Da I eff = I E ist, gilt I eff = U R R E R I eff µ 0 K N N E A l E R I eff ω (53) 2 oder U I eff = R + R E + µ 0 K N N E A l E 2 ω Damit wird das Drehmoment M eff (ω) = NAB 2 U R + R E + µ 0 K N N E A l E 2 ω (54) (55) Universität Ulm, Experimentelle Physik 38

40 Dieser Motor hätte, ohne Lagerreibung, eine unendlich grosse maximale Drehzahl. Das Startdrehmoment für ω = 0 ist M eff (0) = M max = NAB 2 U R + R E (56) Universität Ulm, Experimentelle Physik 39

41 Betatron Die Idee hinter der Konstruktion des Betatrons ist, dass bei einem zeitabhängigen B-Feld nach rot E = B/ t auch ein zeitabhängiges E-Feld existiert. Universität Ulm, Experimentelle Physik 40

42 Nach dem Induktionsgesetz rot E = B/ t hat das durch ein in die z-richtung zeigende Magnetfeld induzierte elektrische Feld keine z- Komponente. Nehmen wir an, dass das E-Feld eine Radialkomponente hätte. Sie könnte zum Beispiel in die y-richtung zeigen. Rotieren wir die ganze Anordnung um π um die y-achse und kehren die Richtung des B-Feldes um, haben wir wieder die Ausgangsanordnung. Mit der Richtungsumkehr von B hat aber auch E die Richtung geändert (Induktionsgesetz). Dies ist aber im Widerspruch zur Ausgangssituation. Deshalb kann es kein radiales E-Feld geben: das E-Feld ist tangential und beschleunigt die geladenen Teilchen. Damit die Teilchen auf der Kreisbahn bleiben, muss m v2 R = e v B(t) (57) oder mv(t) = p(t) = e B R (58) Universität Ulm, Experimentelle Physik 41

43 Das zweite Newtonsche Axiom in tangentialer Richtung angewandt bedeutet dp(t) dt = ee(t) (59) Mit der Integralform des Induktionsgesetzes erhält man mit einer Kreisbahn S(R) mit dem Radius R S(R) E(t) d s = E(t) 2πR = d dt A(R) B(t) d a = d B(t) dt πr 2 (60) wobei B das über die Fläche des Kreises gemittelte B-Feld ist. Durch Kombination der obigen Gleichungen und unter Berücksichtigung der Vorzeichen erhalten wir dp(t) dt = e R 2 d B dt (61) Universität Ulm, Experimentelle Physik 42

44 Die Integration mit den Anfangsbedingungen p(0) = 0 und B(0) = 0 liefert p(t) = e R 2 B(t) (62) Der Vergleich mit der Bedingung für die Zentripetalkraft liefert die Wideroe- Bedingung B(t) = 2 B(t) (63) Diese Bedingung kann durch eine geeignete Wahl der Form der Polschuhe erreicht werden. Universität Ulm, Experimentelle Physik 43

45 Skin-Effekt Berechnung des Skin-Effektes Bei Gleichstrom in einem zylindrischen Leiter ist das elektrische Feld konstant über dem Querschnitt. Nach dem Ampèreschen Durchflutungsgesetz ist das Magnetfeld proportional zum Abstand. Universität Ulm, Experimentelle Physik 44

46 Für den Fall eines Wechselstroms mit niedriger Frequenz müssen wir das Induktionsgesetz berücksichtigen. Nach dem Induktionsgesetz gilt für die Kurve S, die auf einer Ebene, in der auch die Zylinderachse liegt, liegt = d dt B d a (64) S A(S) Für die eingezeichnete Schlaufe gilt h [E(r r) E(r)] = d B dt h R (65) wobei wieder B das über die Fläche r h gemittelte Magnetfeld ist. Da der Strom zeitabhängig ist, muss auch das E-Feld ortsabhängig sein. Eine homogene Stromverteilung bei Wechselstrom ist bei einem Ohmschen Leiter nicht vereinbar mit dem Induktionsgesetz. Die Taylorentwicklung Universität Ulm, Experimentelle Physik 45

47 von Gleichung (64) liefert die betragsmässige Bedingung E(r, t) t = B(r, t) t (66) Das elektrische Feld muss also bei Wechselstrom mit zunehmendem Abstand vom Radius zunehmen. Da der Gesamtstrom gegeben ist, ist die Stromdichte an der Oberfläche konzentriert. Dies ist der Skin-Effekt. Anwendung Bei Überlandleitungen wird um ein Stahlseil Kupfer (Luxusausführung) oder Aluminium (das Übliche) gewickelt. Dies erhöht den Widerstand kaum, da der Skin-Effekt die Stromleitung bei 50Hz auf etwa 1cm Tiefe beschränkt. Universität Ulm, Experimentelle Physik 46

48 Energie im Magnetfeld Berechnung der Energie im Magnetfeld Wir betrachten eine mit einer Wechselstromquelle U(t) = U 0 sin(ωt) verbundene reale Spule. Diese Spule wird modelliert durch einen Widerstand R und eine ideale Spule L. Die Differentialgleichung dieses Kreises lautet U(t) = L I(t) + R I(t) (67) Universität Ulm, Experimentelle Physik 47

49 Die stationäre Lösung dieser Gleichung hat die Form Für den Fall, dass R ωl ist, bekommt man I S (t) = I 0 cos(ωt δ) (68) I S (t) = U 0 ωl Die momentane Leistung der Spannungsquelle ist cos ωt (69) P U (t) = U(t) I(t) = U 0 2 ωl sin ωt cos ωt = U2 0 ωl 1 2 sin(2ωt) (70) Die Leistung der Spannungsquelle kann nur die Energie des B-Feldes ändern, da wir keine dissipativen Elemente haben (R = 0). Wenn man Universität Ulm, Experimentelle Physik 48

50 die Differentialgleichung für den Fall mit I(t) multipliziert, bekommt man P U = U(t) I(t) = L I I = d dt ( ) L 2 I2 (71) Nun ist aber P = de/dt. Damit ist die Energie des Magnetfeldes E L = L 2 I2 (72) Um die Energiedichte eines Magnetfeldes zu berechnen betrachten wir eine Spule B = µ 0 ni (73) mit der Selbstinduktivität L = µ 0 n 2 Al (74) wobei A der Querschnitt der Spule und l ihre Länge ist. Eingesetzt in die Universität Ulm, Experimentelle Physik 49

51 Gleichung für die Energie E L bekommt man E L = 1 2 µ 0n 2 Al ( ) 2 B = B2 Al (75) µ 0 n 2µ 0 Deshalb ist die Energiedichte des B-Feldes w B = B2 2µ 0 (76) Universität Ulm, Experimentelle Physik 50

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 23. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 23. 06.

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 26. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 26. 06.

Mehr

Othmar Marti Experimentelle Physik Universität Ulm

Othmar Marti Experimentelle Physik Universität Ulm PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Leisi, Tipler, Gerthsen, Känzig, Alonso-Finn Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3b-2002-2003

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 19. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 19. 06.

Mehr

Übungsblatt 07. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 07. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungsblatt 07 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@physik.uni-ulm.de) 7.. 005 oder 14.. 005 1 Aufgaben 1. Wir berechnen Elektromotoren. Nehmen

Mehr

Othmar Marti Experimentelle Physik Universität Ulm

Othmar Marti Experimentelle Physik Universität Ulm PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Leisi, Tipler, Gerthsen, Känzig, Alonso-Finn Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3b-2002-2003

Mehr

Vorlesung nach Tipler, Gerthsen, Alonso-Finn, Halliday Skript:

Vorlesung nach Tipler, Gerthsen, Alonso-Finn, Halliday Skript: PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Tipler, Gerthsen, Alonso-Finn, Halliday Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3b-2003-2004

Mehr

Vorlesung nach Tipler, Gerthsen, Alonso-Finn, Halliday Skript:

Vorlesung nach Tipler, Gerthsen, Alonso-Finn, Halliday Skript: PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Tipler, Gerthsen, Alonso-Finn, Halliday Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3b-2004-2005

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 18. 06. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 18. 06. 2009

Mehr

Übungsblatt 06 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt)

Übungsblatt 06 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Übungsblatt 06 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@physik.uni-ulm.de) 19. 1. 004 oder 6. 1. 004 1 Aufgaben 1. Die unten stehende Abbildung zeigt

Mehr

Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom

Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom Ferienkurs Sommersemester 009 Martina Stadlmeier 09.09.009 Inhaltsverzeichnis 1 Zeitlich veränderliche Felder 1.1 Faradaysches Induktionsgesetz.....................

Mehr

Othmar Marti Experimentelle Physik Universität Ulm

Othmar Marti Experimentelle Physik Universität Ulm PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Leisi, Tipler, Gerthsen, Känzig, Alonso-Finn Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3b-2002-2003

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 09. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 09. 06.

Mehr

Zusammenfassung EPII. Elektromagnetismus

Zusammenfassung EPII. Elektromagnetismus Zusammenfassung EPII Elektromagnetismus Elektrodynamik: Überblick Dynamik (Newton): Elektromagnetische Kräfte zw. Ladungen: Definition EFeld: Kraft auf ruhende Testladung Q: BFeld: Kraft auf bewegte Testladung:

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 13 - Lösungen zu Übungsblatt 4 1 Schiefe Ebene im Magnetfeld In einem vertikalen, homogenen Magnetfeld

Mehr

O. Sternal, V. Hankele. 4. Magnetismus

O. Sternal, V. Hankele. 4. Magnetismus 4. Magnetismus Magnetfelder N S Rotationsachse Eigenschaften von Magneten und Magnetfeldern Ein Magnet hat Nord- und Südpol Ungleichnamige Pole ziehen sich an, gleichnamige Pole stoßen sich ab. Es gibt

Mehr

6.4.4 Elihu-Thomson ****** 1 Motivation

6.4.4 Elihu-Thomson ****** 1 Motivation V644 6.4.4 ****** 1 Motivation Ein als Sekundärspule dienender geschlossener Aluminiumring wird durch Selbstinduktion von der Primärspule abgestossen und in die Höhe geschleudert. Ein offener Aluminiumring

Mehr

Übungsblatt 06 Grundkurs IIIb für Physiker

Übungsblatt 06 Grundkurs IIIb für Physiker Übungsblatt 06 Grundkurs IIIb für Physiker Othmar Marti, (othmar.marti@physik.uni-ulm.de) 20. 1. 2003 oder 27. 1. 2003 1 Aufgaben für die Übungsstunden Quellenfreiheit 1, Hall-Effekt 2, Lorentztransformation

Mehr

Vorkurs Physik des MINT-Kollegs

Vorkurs Physik des MINT-Kollegs Vorkurs Physik des MINT-Kollegs Elektrizitätslehre MINT-Kolleg Baden-Württemberg 1 KIT 03.09.2013 Universität desdr. Landes Gunther Baden-Württemberg Weyreter - Vorkurs und Physik nationales Forschungszentrum

Mehr

Vorlesung nach Tipler, Gerthsen, Alonso-Finn, Halliday Skript:

Vorlesung nach Tipler, Gerthsen, Alonso-Finn, Halliday Skript: PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Tipler, Gerthsen, Alonso-Finn, Halliday Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3b-2004-2005

Mehr

Induktionsbeispiele. Rotierende Leiterschleife: Spule mit Induktionsschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 )

Induktionsbeispiele. Rotierende Leiterschleife: Spule mit Induktionsschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 ) Induktionsbeispiele Rotierende eiterschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 ) A φ B ω Induktionsspannung: U ind = dφ m = AB [ ω sin(ωt + φ 0 )] = ABω sin(ωt + φ 0 ) (Wechselspannung)

Mehr

Wechselstromwiderstände (Impedanzen) Parallel- und Reihenschaltungen. RGes = R1 + R2 LGes = L1 + L2

Wechselstromwiderstände (Impedanzen) Parallel- und Reihenschaltungen. RGes = R1 + R2 LGes = L1 + L2 Wechselstromwiderstände (Impedanzen) Ohm'scher Widerstand R: Kondensator mit Kapazität C: Spule mit Induktivität L: RwR = R RwC = 1/(ωC) RwL = ωl Parallel- und Reihenschaltungen bei der Reihenschaltung

Mehr

Elektrostaitische Felder

Elektrostaitische Felder Elektrostaitische Felder Grundlagen zu den elektrischen Felder 1 homogenes Feld des Plattenkondensators inhomogenes Feld einer Punktladung Bei einem Plattenkondensator verlaufen die Feldlinien parallel

Mehr

Übungsblatt 8. = d(i 0 I) Nach Integration beider Seiten und beachtung der Anfangswerte t = 0, I = 0 erhält man:

Übungsblatt 8. = d(i 0 I) Nach Integration beider Seiten und beachtung der Anfangswerte t = 0, I = 0 erhält man: Aufgabe 29 Ein Stromkreis bestehe aus einer Spannungsquelle mit Spannung U 0 in Reihe mit einer Induktivität(Spule) L = 0.8H und einem Widerstand R = 10Ω. Zu dem Zeitpunkt t = 0 werde die Spannungsquelle

Mehr

IV. Elektrizität und Magnetismus

IV. Elektrizität und Magnetismus IV. Elektrizität und Magnetismus IV.4 Wechselstromkreise Physik für Mediziner Ohmscher Widerstand bei Wechselstrom Der Ohmsche Widerstand verhält sich bei Wechselstrom genauso wie bei Gleichstrom zu jedem

Mehr

15.Magnetostatik, 16. Induktionsgesetz

15.Magnetostatik, 16. Induktionsgesetz Ablenkung von Teilchenstrahlen im Magnetfeld (Zyklotron u.a.): -> im Magnetfeld B werden geladene Teilchen auf einer Kreisbahn abgelenkt, wenn B senkrecht zu Geschwindigkeit v Kräftegleichgewicht: 2 v

Mehr

Induktion. Bewegte Leiter

Induktion. Bewegte Leiter Induktion Bewegte Leiter durch die Kraft werden Ladungsträger bewegt auf bewegte Ladungsträger wirkt im Magnetfeld eine Kraft = Lorentzkraft Verschiebung der Ladungsträger ruft elektrisches Feld hervor

Mehr

20. Vorlesung EP. III Elektrizität und Magnetismus. 19. Magnetische Felder Fortsetzung: Materie im Magnetfeld 20. Induktion 21.

20. Vorlesung EP. III Elektrizität und Magnetismus. 19. Magnetische Felder Fortsetzung: Materie im Magnetfeld 20. Induktion 21. 20. Vorlesung EP III Elektrizität und Magnetismus 19. Magnetische Felder Fortsetzung: Materie im Magnetfeld 20. Induktion 21. Wechselstrom Versuche: Induktion: Handdynamo und Thomson-Transformator Diamagnetismus:

Mehr

(2 π f C ) I eff Z = 25 V

(2 π f C ) I eff Z = 25 V Physik Induktion, Selbstinduktion, Wechselstrom, mechanische Schwingung ösungen 1. Eine Spule mit der Induktivität = 0,20 mh und ein Kondensator der Kapazität C = 30 µf werden in Reihe an eine Wechselspannung

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 05. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 05. 06.

Mehr

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H ET 6 Elektromagnetisches Feld Magnetische Feldstärke (magnetische Erregung) In der Umgebung stromdurchflossener Leiter entsteht ein magnetisches Feld, H = H e s... quellenfreies Vektorfeld der Feldstärke

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 16. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 16. 06.

Mehr

Übungsblatt 05 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt)

Übungsblatt 05 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Übungsblatt 05 PHYS300 Grundkurs IIIb Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, othmar.marti@physik.uni-ulm.de) 5. 2. 2003 oder 2.. 2004 Aufgaben. In einer Leitung, die parallel zur x-achse

Mehr

2. Parallel- und Reihenschaltung. Resonanz

2. Parallel- und Reihenschaltung. Resonanz Themen: Parallel- und Reihenschaltungen RLC Darstellung auf komplexen Ebene Resonanzerscheinungen // Schwingkreise Leistung bei Resonanz Blindleistungskompensation 1 Reihenschaltung R, L, C R L C U L U

Mehr

Aufgaben zur Wechselspannung

Aufgaben zur Wechselspannung Aufgaben zur Wechselspannung Aufgabe 1) Ein 30 cm langer Stab rotiert um eine horizontale, senkrecht zum Stab verlaufende Achse, wobei er in 10 s 2,5 Umdrehungen ausführt. Von der Seite scheint paralleles

Mehr

E2: Wärmelehre und Elektromagnetismus 20. Vorlesung

E2: Wärmelehre und Elektromagnetismus 20. Vorlesung E2: Wärmelehre und Elektromagnetismus 20. Vorlesung 28.06.2018 Barlow-Rad Heute: Telefon nach Bell - Wechselstrom - Transformatoren - Leistungsverluste - R, L, C im Wechselstromkreis 28.06.2018 https://xkcd.com/2006/

Mehr

12. Elektrodynamik. 12. Elektrodynamik

12. Elektrodynamik. 12. Elektrodynamik 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Maxwell sche Verschiebungsstrom 12.4 Magnetische Induktion 12.5 Lenz sche Regel 12.6 Magnetische Kraft 12. Elektrodynamik

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik

Physik-Department. Ferienkurs zur Experimentalphysik Physik-Department Ferienkurs zur Experimentalphysik Daniel Jost 27/08/13 Technische Universität München Inhaltsverzeichnis 1 Magnetostatik 1 1.1 Gleichungen der Magnetostatik........................ 1

Mehr

Magnetisches Induktionsgesetz

Magnetisches Induktionsgesetz Magnetisches Induktionsgesetz Michael Faraday entdeckte, dass ein sich zeitlich veränderndes Magnetfeld eine elektrische Spannung in einer Schleife oder Spule aus leitendem Material erzeugt: die Induktionsspannung

Mehr

Vorlesung 5: Magnetische Induktion

Vorlesung 5: Magnetische Induktion Vorlesung 5: Magnetische Induktion, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2016/17 Magnetische Induktion Bisher:

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 2 Thema: Elektrischer Strom und Magnetostatik I Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 2 Elektrischer Strom 3 2.1

Mehr

1 Allgemeine Grundlagen

1 Allgemeine Grundlagen Allgemeine Grundlagen. Gleichstromkreis.. Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j d d :Stromelement :Flächenelement.. Die Grundelemente

Mehr

17. Wechselströme. me, 18.Elektromagnetische Wellen. Wechselstromtransformation. = = (gilt bei Ohm schen Lasten

17. Wechselströme. me, 18.Elektromagnetische Wellen. Wechselstromtransformation. = = (gilt bei Ohm schen Lasten Wechselstromtransformation Idee: Anwendung der Induktion und der Feldführung in einem Eisenkern zur verlustarmen Transformation der Amplitude von Wechselspannungen Anwendung (n >>n 1 ): Hochspannungserzeugung

Mehr

Versuchsvorbereitung: P1-83,84: Ferromagnetische Hysteresis

Versuchsvorbereitung: P1-83,84: Ferromagnetische Hysteresis Praktikum Klassische Physik I Versuchsvorbereitung: P1-83,84: Ferromagnetische Hysteresis Jingfan Ye Gruppe Mo-11 Karlsruhe, 23. November 2009 Inhaltsverzeichnis 1 Induktivität und Verlustwiderstand einer

Mehr

Aufgabenblatt zum Seminar 12 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 12 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 2 PHYS7357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, (othmar.marti@uni-ulm.de) 8. 7. 29 Aufgaben. In der Vorlesung

Mehr

Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: Abb Verknüpfung von elektrischem Strom und Magnetfeld

Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: Abb Verknüpfung von elektrischem Strom und Magnetfeld 37 3 Transformatoren 3. Magnetfeldgleichungen 3.. Das Durchflutungsgesetz Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: H I Abb. 3..- Verknüpfung von elektrischem Strom und Magnetfeld

Mehr

Klausur Grundkurs IIIb, Diplom Physik, Diplom Wirtschaftsphysik und Lehramt Physik

Klausur Grundkurs IIIb, Diplom Physik, Diplom Wirtschaftsphysik und Lehramt Physik Klausur Grundkurs IIIb, Diplom Physik, Diplom Wirtschaftsphysik und Lehramt Physik Othmar Marti, othmar.marti@physik.uni-ulm.de) 13. Februar 2003 Prüfungstermin 13. 2. 2003, 8:00 bis 10:00 Name Vorname

Mehr

Zusammenfassung. Induktions-Spannungspuls in einem bewegten Leiter im homogenen Magnetfeld

Zusammenfassung. Induktions-Spannungspuls in einem bewegten Leiter im homogenen Magnetfeld 5b Induktion Zusammenfassung Induktion ist ein physikalisches Phänomen, bei der eine Spannungspuls in einem Leiter oder einer Spule induziert wird, wenn sich der Leiter in einem Magnetischen Feld befindet.

Mehr

6.4.8 Induktion von Helmholtzspulen ******

6.4.8 Induktion von Helmholtzspulen ****** V648 6.4.8 ****** Motivation Das Induktionsgesetz von Faraday wird mit einer ruhenden Leiterschleife im zeitabhängigen B-Feld und mit einer bewegten Leiterschleife im stationären B-Feld untersucht. 2 Experiment

Mehr

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3 Vorbereitung Resonanz Carsten Röttele 17. Januar 01 Inhaltsverzeichnis 1 Drehpendel, freie Schwingungen 3 Drehpendel, freie gedämpfte Schwingungen 3 3 Messung der Winkelrichtgröße D 4 4 Drehpendel, erzwungene

Mehr

20. Vorlesung. III Elektrizität und Magnetismus. 21. Wechselstrom 22. Elektromagnetische Wellen IV. Optik 22. Elektromagnetische Wellen (Fortsetzung)

20. Vorlesung. III Elektrizität und Magnetismus. 21. Wechselstrom 22. Elektromagnetische Wellen IV. Optik 22. Elektromagnetische Wellen (Fortsetzung) 20. Vorlesung III Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen IV. Optik 22. Elektromagnetische Wellen (Fortsetzung) Versuche: Aluring (Nachtrag zur Lenzschen Regel, s.20)

Mehr

Lösung der Problemstellung 1

Lösung der Problemstellung 1 Lösung der Problemstellung 1 1. Zunächst untersuchen wir die Wechselwirkung nach dem Thomson-Modell: Da das α Teilchen sehr viel kleiner als das Goldatom ist, sehen wir es als punktförmig an. Das Goldatom

Mehr

3.5. Prüfungsaufgaben zur Wechselstromtechnik

3.5. Prüfungsaufgaben zur Wechselstromtechnik 3.5. Prüfungsaufgaben zur Wechselstromtechnik Aufgabe : Impedanz (4) Erkläre die Formel C i C und leite sie aus der Formel C Q für die Kapazität eines Kondensators her. ösung: (4) Betrachtet man die Wechselspannung

Mehr

Grundkurs Physik (2ph2) Klausur

Grundkurs Physik (2ph2) Klausur 1. Ernest O. Lawrence entwickelte in den Jahren 1929-1931 den ersten ringförmigen Teilchenbeschleuniger, das Zyklotron. Dieses Zyklotron konnte Protonen auf eine kinetische Energie von 80 kev beschleunigen.

Mehr

E2: Wärmelehre und Elektromagnetismus 20. Vorlesung

E2: Wärmelehre und Elektromagnetismus 20. Vorlesung E2: Wärmelehre und Elektromagnetismus 20. Vorlesung 28.06.2018 Barlow-Rad Heute: Telefon nach Bell - Wechselstrom - Transformatoren - Leistungsverluste - R, L, C im Wechselstromkreis 28.06.2018 https://xkcd.com/2006/

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016

Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016 Institut für Experimentelle Kernphysik, KIT Übungen zur Klassischen Physik II Elektrodynamik) SS 206 Prof. Dr. T. Müller Dr. F. Hartmann 2tes und letztes Übungsblatt - Spulen, Wechselstrom mit komplexen

Mehr

Ladungsfluss durch geschlossene Fläche = zeitliche Änderung der Ladung im Volumen 4.2 Elektrischer Widerstand

Ladungsfluss durch geschlossene Fläche = zeitliche Änderung der Ladung im Volumen 4.2 Elektrischer Widerstand E-Dynamik Teil II IV Der elektrische Strom 4.1 Stromstärke, Stromdichte, Kontinuitätsgleichung Definition der Stromstärke: ist die durch eine Querschnittsfläche pro Zeitintervall fließende Ladungsmenge

Mehr

Lösung für Blatt 7,,Elektrodynamik

Lösung für Blatt 7,,Elektrodynamik Institut für Theoretische Physik, Universität Zürich Lösung für Blatt 7,,Elektrodynamik Prof. Dr. T. Gehrmann Blatt 7 FS 213 Aufgabe 1 Induktion im Magnetfeld Nach dem Faraday schen Induktionsgesetz induziert

Mehr

Wechselspannung. Liegt die Spannung U(t) über einen Ohm'schen Widerstand R an, so fließt ein Strom I(t) nach dem Ohm'schen Gesetz: I(t) = U(t)/R.

Wechselspannung. Liegt die Spannung U(t) über einen Ohm'schen Widerstand R an, so fließt ein Strom I(t) nach dem Ohm'schen Gesetz: I(t) = U(t)/R. Wechselspannung Eine zeitlich sich periodisch bzw. sinusförmig verändernde Spannung heißt Wechselspannung. Liegt die Spannung U(t) über einen Ohm'schen Widerstand R an, so fließt ein Strom I(t) nach dem

Mehr

Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert:

Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert: Versuch 18: Der Transformator Name: Telja Fehse, Hinrich Kielblock, Datum der Durchführung: 28.09.2004 Hendrik Söhnholz Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert: 1 Einleitung Der Transformator

Mehr

Versuch E Bei einer unbelasteten Spannungsquelle liegt kein geschlossener Stromkreis vor. Außer dem Innenwiderstand

Versuch E Bei einer unbelasteten Spannungsquelle liegt kein geschlossener Stromkreis vor. Außer dem Innenwiderstand 1 Spannungsquelle Belastete und unbelastete Spannungsquelle: Unbelastete Spannungsquelle Bei einer unbelasteten Spannungsquelle liegt kein geschlossener Stromkreis vor. Außer dem Innenwiderstand R i der

Mehr

1 Elektrostatik Elektrische Feldstärke E Potential, potentielle Energie Kondensator... 4

1 Elektrostatik Elektrische Feldstärke E Potential, potentielle Energie Kondensator... 4 Inhaltsverzeichnis 1 Elektrostatik 3 1.1 Elektrische Feldstärke E............................... 3 1.2 Potential, potentielle Energie............................ 4 1.3 Kondensator.....................................

Mehr

Klassische Theoretische Physik III WS 2014/ Elektromagnetische Induktion: (3+3+4=10 Punkte)

Klassische Theoretische Physik III WS 2014/ Elektromagnetische Induktion: (3+3+4=10 Punkte) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik III WS 014/015 Prof Dr A Shnirman Blatt 8 Dr B Narozhny Lösungen 1 Elektromagnetische Induktion:

Mehr

Kraft auf ein geladenes Teilchen im Magnetfeld (Lorentzkraft):

Kraft auf ein geladenes Teilchen im Magnetfeld (Lorentzkraft): Wiederholung: 1 r F r B Kraft auf ein geladenes Teilchen im Magnetfeld (Lorentzkraft): = r q v q = Ladung des Teilchens v = Geschwindigkeit des Teilchens B = magnetische Kraftflussdichte Rechte Hand Regel

Mehr

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P]

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] 3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] B = µ 0 I 4 π ds (r r ) r r 3 a) Beschreiben Sie die im Gesetz von Biot-Savart vorkommenden Größen (rechts vom Integral). b) Zeigen Sie, dass das Biot-Savartsche

Mehr

5.1 Statische und zeitlich veränderliche

5.1 Statische und zeitlich veränderliche 5.1 Statische und zeitlich veränderliche Felder 5 Induktion 5.1 Statische und zeitlich veränderliche Felder Bisher haben wir elektrische und magnetische Felder betrachtet, die durch zeitlich konstante

Mehr

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel 11. Elektrodynamik 11.5.4 Das Amperesche Gesetz 11.5.5 Der Maxwellsche Verschiebungsstrom 11.5.6 Magnetische Induktion 11.5.7 Lenzsche Regel 11.6 Maxwellsche Gleichungen 11.7 Elektromagnetische Wellen

Mehr

Aufgabenblatt zum Seminar 09 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 09 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 9 PHYS7357 Elektrizitätslehre und Magnetismus Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, othmar.marti@uni-ulm.de) 7. 6. 9 Aufgaben. Durch eine

Mehr

Strom durch Bewegung

Strom durch Bewegung 5 Induktion 1 Strom durch ewegung Stromimpuls ei ewegung des Stabmagneten wird eine Spannung erzeugt kein Stromimpuls Ohne ewegung des Stabmagneten wird keine Spannung erzeugt Stromimpuls ei ewegung des

Mehr

Zulassungstest zur Physik II für Chemiker

Zulassungstest zur Physik II für Chemiker SoSe 2016 Zulassungstest zur Physik II für Chemiker 03.08.16 Name: Matrikelnummer: T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T TOT.../4.../4.../4.../4.../4.../4.../4.../4.../4.../4.../40 R1 R2 R3 R4 R TOT.../6.../6.../6.../6.../24

Mehr

GRUNDLAGEN DER WECHSELSTROMTECHNIK

GRUNDLAGEN DER WECHSELSTROMTECHNIK ELEKTROTECHNIK M GLEICHSTROM. ELEKTRISCHE GRÖßEN UND GRUNDGESETZE. ELEKTRISCHE LADUNG UND STROM.3 ELEKTRISCHES FELD UND STROM.4 ELEKTRISCHES SPANNUNG UND POTENTIAL.5 ELEKTRISCHES LEISTUNG UND WIRKUNGSGRAD.6

Mehr

Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben.

Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben. Wechsel- und Drehstrom - KOMPAKT 1. Spannungserzeugung durch Induktion Das magnetische Feld Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben.

Mehr

Bewegter Leiter im Magnetfeld

Bewegter Leiter im Magnetfeld Bewegter Leiter im Magnetfeld Die Leiterschaukel mal umgedreht: Bewegt man die Leiterschaukel im Magnetfeld, so wird an ihren Enden eine Spannung induziert. 18.12.2012 Aufgaben: Lies S. 56 Abschnitt 1

Mehr

Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz

Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz Stephan Huber 19. August 2009 1 Nachtrag zum Drehmoment 1.1 Magnetischer Dipol Ein magnetischer Dipol erfährt

Mehr

Das Ampere sche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenz sche Regel

Das Ampere sche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenz sche Regel 10. Elektrodynamik 10.5.4 Das Ampere sche Gesetz 10.5.5 Der Maxwellsche Verschiebungsstrom 10.5.6 Magnetische Induktion 10.5.7 Lenz sche Regel 10.6 Maxwell sche Gleichungen 10.7 Elektromagnetische Wellen

Mehr

Resonanz Versuchsvorbereitung

Resonanz Versuchsvorbereitung Versuche P1-1,, Resonanz Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 0.1.010 1 1 Vorwort Im Praktikumsversuch,,Resonanz geht es um freie

Mehr

Wechselstromkreis E 31

Wechselstromkreis E 31 E 3 kreis kreis E 3 Aufgabenstellung. Bestimmung von Phasenverschiebungen zwischen Strom und Spannung im kreis.2 Aufbau und ntersuchung einer Siebkette 2 Physikalische Grundlagen n einem kreis (Abb.) befinde

Mehr

6 Elektromagnetische Schwingungen und Wellen

6 Elektromagnetische Schwingungen und Wellen 6 Elektroagnetische Schwingungen und Wellen Elektroagnetischer Schwingkreis Schaltung it Kondensator C und Induktivität L. Kondensator wird periodisch aufgeladen und entladen. Tabelle 6.1: Vergleich elektroagnetischer

Mehr

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

Learn4Vet. Magnete. Man kann alle Stoffe in drei Klassen einteilen:

Learn4Vet. Magnete. Man kann alle Stoffe in drei Klassen einteilen: Magnete Die Wirkung und der Aufbau lassen sich am einfachsten erklären mit dem Modell der Elementarmagneten. Innerhalb eines Stoffes (z.b. in ein einem Stück Eisen) liegen viele kleine Elementarmagneten

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 28. 05. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 28. 05. 2009

Mehr

Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom

Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom Aufgaben 13 Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom Lernziele - aus einem Experiment neue Erkenntnisse gewinnen können. - sich aus dem Studium eines schriftlichen

Mehr

Übungsblatt 11. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik

Übungsblatt 11. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik Übungsblatt Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik 3.7.8 Aufgaben. Ein magnetischer Dipol Stabmagnet mit Länge l =, m, magnetischer Fluss Φ = 4 V s

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 3 - Übungsblatt 7 Wechselstrom In der Zeichnung ist ein Stromkreis mit reellen (Ohmschen) sowie

Mehr

PHYSIK III. Wintersemester 06/ E vereinfacht sich im Vakuum zu t c2 B =

PHYSIK III. Wintersemester 06/ E vereinfacht sich im Vakuum zu t c2 B = Serie 11, Musterlösung 1. Plattenkondensator a) Die vierte Maxwellgleichung c 2 B = j ε 0 + E vereinfacht sich im Vakuum zu t c2 B = E. Mit ihr können wir das B-Feld aus dem elektrischen Feld bestimmen.

Mehr

5 t % = 0, j = 0 entstehen. Für diese gelten die Gleichungen E = % 0. E = 0 Eds = 0 (5.2) B = 0 Bd A = 0 (5.3) j Bds = µ 0 I (5.

5 t % = 0, j = 0 entstehen. Für diese gelten die Gleichungen E = % 0. E = 0 Eds = 0 (5.2) B = 0 Bd A = 0 (5.3) j Bds = µ 0 I (5. 5.1 Statische und zeitlich veränderliche Felder 5 Induktion 5.1 Statische und zeitlich veränderliche Felder Bisher haben wir elektrische und magnetische Felder betrachtet, die durch zeitlich konstante

Mehr

Ferienkurs Experimentalphysik II Elektrodynamik

Ferienkurs Experimentalphysik II Elektrodynamik Ferienkurs Experimentalphysik II Elektrodynamik Lennart Schmidt 07.09.2011 Inhaltsverzeichnis 1 Zeitlich veränderliche Felder 3 1.1 Induktion.................................... 3 1.2 Die Maxwell-Gleichungen...........................

Mehr

3. Klausur in K1 am

3. Klausur in K1 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung: 3. Klausur in K am.. 0 Achte auf gute Darstellung und vergiss nicht Geg., Ges., Formeln herleiten, Einheiten, Rundung...! 9 Elementarladung:

Mehr

(1) (4) Integralform. Differentialform ρ. Hier fehlt noch. etwas!

(1) (4) Integralform. Differentialform ρ. Hier fehlt noch. etwas! Zeitlich veränderliche Felder: Elektrodynamik Die Maxwell-Gleichungen im statischen Fall (1) 1 E d = ρdv E = V( ) (2) B d = B = etwas! (3) E dr = E = (4) Integralform ε Hier fehlt noch Differentialform

Mehr

Physik Klausur

Physik Klausur Physik Klausur 12.1 2 15. Januar 2003 Aufgaben Aufgabe 1 Ein Elektron wird mit der Geschwindigkeit v = 10 7 m s 1 von A aus unter 45 in ein begrenztes Magnetfeld geschossen. Der Geschwindigkeitsvektor

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 02. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 02. 06.

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Übungsblatt 06. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 06. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungsblatt 06 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@physik.uni-ulm.de) 24. 1. 2005 31. 1. 2005 1 Aufgaben 1. Berechnen Sie für das Vektorpotential

Mehr

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen Aufbau von Atomen Ein Atom besteht aus einem positiv geladenen Atomkern und einer negativ geladenen Atomhülle. Träger der positiven Ladung sind Protonen, Träger der negativen Ladung sind Elektronen. Atomhülle

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Elektrizitätslehre und Schaltungen Versuch 29 ELS-29-1 Wechselstromwiderstände 1 Vorbereitung 1.1 Allgemeine Vorbereitung für die Versuche zur Elektrizitätslehre 1.2 Wechselspannung, Wechselstrom, Frequenz,

Mehr

Elektromagnetische Induktion

Elektromagnetische Induktion Elektromagnetische M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis im bewegten und im ruhenden Leiter Magnetischer Fluss und sgesetz Erzeugung sinusförmiger Wechselspannung In diesem Abschnitt

Mehr

Administratives BSL PB

Administratives BSL PB Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.

Mehr