Vorlesung nach Tipler, Gerthsen, Alonso-Finn, Halliday Skript:

Größe: px
Ab Seite anzeigen:

Download "Vorlesung nach Tipler, Gerthsen, Alonso-Finn, Halliday Skript:"

Transkript

1 PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm Vorlesung nach Tipler, Gerthsen, Alonso-Finn, Halliday Skript: Übungsblätter und Lösungen: Januar 2005 Universität Ulm, Experimentelle Physik

2 Klausur Datum und Uhrzeit , 10:00-12:00 Ort Hörsaal H2 Hilfsmittel 6 Seiten A4 (3 Blätter) handgeschrieben mit eigener Hand Tutorium am , Ort und Zeit sind Verhandlungssache Universität Ulm, Experimentelle Physik 1

3 Magnetisches Moment von Eisen: Küchentischexperiment Aufgabe: Bestimmen Sie mit einem zylinderförmigen Magneten (Eisennadel, Kompassnadel) einen Schätzwert für das magnetische Moment eines Eisenatoms. Hilfsmittel: Magnet, Faden, Stoppuhr und eventuell Waage. Hinweis: Die magnetische Induktion der Erde ist 50µT, wobei die geographische Breite nicht vergessen werden darf. Universität Ulm, Experimentelle Physik 2

4 Vektorpotential Das zu einer realen physikalischen Situation gehörende Vektorpotential A ist nicht eindeutig bestimmt. Die Wahl eines der zur gleichen Lösung von B gehörenden Potentiale nennt man Eichung In der Relativitätstheorie und in der Quantenmechanik rechnet man bevorzugt mit dem Vektorpotential. Universität Ulm, Experimentelle Physik 3

5 Vektorpotential II Aus der Gleichung für das Vektorpotential einer Stromverteilung A(x; y; z) = µ 0 i(x; y, z) U(x; y; z) = 1 ɛ 0 ρ el (x; y, z) (1) kann man die Umkehrfunktion berechnen und erhält, analog zur Elektrostatik, A ( r) = µ 0 4π i ( r) r r dv U ( r) = 1 4πɛ 0 ρel ( r) r r dv (2) Universität Ulm, Experimentelle Physik 4

6 Vektorpotential VIII Durch Integration der Formel von Laplace oder des Gesetzes von Biot-Savart bekommt man B( r) = µ 0I 4π Leiter d l ρ ρ 3 (3) Mit diesem Gesetz kann man das Magnetfeld einer beliebigen Spule berechnen. Achtung: nur die integrale Form hat eine physikalische Bedeutung! Die Formel von Laplace wird über das Vektorpotential berechnet. Universität Ulm, Experimentelle Physik 5

7 Hall-Effekt Universität Ulm, Experimentelle Physik 6

8 Lorentztransformation der Felder I Bewegte Magnetfelder und elektrische Felder. Universität Ulm, Experimentelle Physik 7

9 Skizze zur Transformation eines longitudinale E-Feldes (links) und des B-Feldes (rechts). Universität Ulm, Experimentelle Physik 8

10 σ = σ 1 v0 2 ( /c2 ) 2 (4) 1 /c 2 v 0 v 1 v v 0 1 v 2 0 /c ( 2 1 v v ) 0 c = σ 2 (1 v v 0 ) 2 c 2 (v0 v) 2 /c 2 = σ 1 2 v v 0 c 2 1 v 2 0 /c ( 2 1 v v ) 0 c 2 c 2 + v2 v v 2 0 /c ( 2 1 v v ) 0 c = σ 2 1 v 2 0 /v 2 1 v 2 /c 2 = σ γ ( 1 v v ) 0 c 2 c 4 v 2 0 /c2 v 2 /c 2 + 2vv 0 /c 4 Universität Ulm, Experimentelle Physik 9

11 Mit berechnet man v 0 = v 0 v 1 v v 0 c 2 ( v 0 σ = σ γ 1 v v ) 0 c 2 v 0 ( = σ γ 1 v v ) 0 v0 v c 2 1 v v 0 c 2 = σγ (v 0 v) (5) Damit ist E z = σ ɛ 0 = γ ( σ σv v ) 0 ɛ 0 ɛ 0 c 2 = γ (E z v B x ) (6) Universität Ulm, Experimentelle Physik 10

12 und B x = v 0 σ ɛ 0 c 2 = γ ( σ v0 ɛ 0 c 2 σ v ) ɛ 0 c 2 = γ ( B x v ) c 2E z (7) Skizze zur Transformation eines longitudinale E-Feldes (links) und des B-Feldes (rechts). Universität Ulm, Experimentelle Physik 11

13 Bewegung in die y-richtung mit v = (0; v y ; 0) (γ = 1 v2 /c 2 ) E x = γ (E x + v B z ) (8) E y = E y E z = γ (E z v B x ( B x = γ B x v ) c 2E z B y = B y ( B z = γ B z + v ) c 2E z Universität Ulm, Experimentelle Physik 12

14 Leiterschleife bewegt Induktion eines Stromes in einer in einem inhomogenen Magnetfeld bewegten Leiterschlaufe. Universität Ulm, Experimentelle Physik 13

15 Stabmagnet und Spule Vergleich eines Stabmagneten mit einer Spule. Universität Ulm, Experimentelle Physik 14

16 Induzierte Spannung Induzierte Spannung Universität Ulm, Experimentelle Physik 15

17 Selbstinduktion Selbstinduktion Universität Ulm, Experimentelle Physik 16

18 Magnetischer Fluss φ B = B d A (9) magnetischer Fluss durch die Fläche A A U EMK = dφ B dt = d dt A(S) B d A (10) Universität Ulm, Experimentelle Physik 17

19 Die Induktionsspannung und der Strom, den sie bewirkt, sind stets so gerichtet, dass sie der Ursache entgegenwirken. Universität Ulm, Experimentelle Physik 18

20 Wirbelströme Wirbelströme in Metallen Universität Ulm, Experimentelle Physik 19

21 Faradaysches Gesetz, Induktionsgesetz E d s = d dt B d a (11) S A(S) rot E = B t (12) Universität Ulm, Experimentelle Physik 20

22 Transformator Zwei gekoppelte Stromkreise Universität Ulm, Experimentelle Physik 21

23 Der magnetische Fluss am Punkt P 2 hängt sowohl vom Strom I 2 wie auch vom Strom I 1 ab: φ B (P 2 ) = L 2 I 2 + M 12 I 1 (13) Ebenso hängt der magnetische Fluss am Punkt P 1 von beiden Strömen ab φ B (P 1 ) = L 1 I 1 + M 21 I 2 (14) Neben der Selbstinduktivität L i müssen bei realen Systemen auch die Gegeninduktivitäten M ij berücksichtigt werden. Wie bei den Induktivitäten hängt auch bei den Gegeninduktivitäten die Grösse allein von der Geometrie ab. Universität Ulm, Experimentelle Physik 22

24 Symbolische Darstellung eines Transformators Universität Ulm, Experimentelle Physik 23

25 Die Gegeninduktivität ist M 21 = φ B 1 I 2 = µ 0 n 1 n 2 l(πr 2 1) = M 12 (15) Diese Beziehung, die an einem Spezialfall gezeigt wurde, gilt auch allgemein (ohne Beweis). Universität Ulm, Experimentelle Physik 24

26 Schematischer Aufbau eines Transformators Für Spannungen U 2 = N 2 N 1 U 1 (16) N 2 /N 1 heisst der Übersetzungsfaktor des Transformators. Universität Ulm, Experimentelle Physik 25

27 Wird der Ausgang des Transformators mit R belastet, fliesst der Strom I 2, der zu U 2 in Phase ist. I 2 erzeugt einen magnetischen Fluss φ B N 2I 2, der den ursprünglichen Fluss φ B durch die Spule 2 schwächt. Da durch beide Spulen der gleiche magnetische Fluss fliesst, muss auch der Fluss durch die erste Spule geschwächt werden. Da die Spannung durch die Spannungsquelle U vorgegeben ist, muss der Strom I 1 auf der Primärseite zusätzlich fliessen, so dass φ B N 1I 1 gilt. I 2 = N 1 N 2 I 1 (17) Wenn wir die Effektivwerte betrachten haben wir damit [ U 2 I 2 = N ] [ 2 U 1 N ] 1 I 1 = U 1 I 1 (18) N 1 N 2 sofern man Verluste vernachlässigt. Ideale Transformatoren übertragen also verlustfrei Leistung. Universität Ulm, Experimentelle Physik 26

28 Kirchhoffsche Gesetze Kirchhoffsche Gesetze: links die Maschenregel, rechts die Knotenregel. Universität Ulm, Experimentelle Physik 27

29 U k = U j (19) k Quellen j Verbraucher I k = 0 (20) k eines Knotens Universität Ulm, Experimentelle Physik 28

30 Wechselstromkreise und Impedanzen Definition von Strömen und Spannungen bei Wechselspannungen Universität Ulm, Experimentelle Physik 29

31 Rechnen mit komplexen Impedanzen U(t) = Ûeiωt Ableitung I(t) = Îeiωt U(t) t = iωûeiωt Universität Ulm, Experimentelle Physik 30

32 unbestimmtes Integral, Stammfunktion U(t)dt = 1 iωûeiωt Ohmsches Gesetz U(t) = R I(t) Universität Ulm, Experimentelle Physik 31

33 Kapazität C Kondensator mit Wechselspannung Universität Ulm, Experimentelle Physik 32

34 U(t) t = 1 C I(t) mit X C = 1 iωc iωûeiωt = 1 CÎeiωt Ûe iωt = 1 iωcîeiωt U(t) = 1 iωc I(t) Û = 1 iωcî U(t) = X C I(t) Universität Ulm, Experimentelle Physik 33

35 Induktivität L Spule mit Wechselspannung Universität Ulm, Experimentelle Physik 34

36 U(t) Selbstinduktion = L I(t) t wir haben: U Selbstinduktion = U angelegt. Dann ist U(t) = L I(t) t Ûe iωt = iωlîeiωt U(t) = iωli(t) Û = iωlî mit X L = iωl U(t) = X L I(t) Universität Ulm, Experimentelle Physik 35

37 Schwingkreis Schwingkreis Universität Ulm, Experimentelle Physik 36

38 L di dt + Q C = 0 Die Resonanzfrequenz ist iωli + 1 iωc I = 0 ω 2 = 1 LC Universität Ulm, Experimentelle Physik 37

39 Schwingkreis mit Widerstand Schwingkreis mit Widerstand Universität Ulm, Experimentelle Physik 38

40 L di dt + R I + Q C = 0 iωl I + R I + I iωc = 0 ω 2 iω R L 1 LC = 0 Universität Ulm, Experimentelle Physik 39

41 ω = ir L ± R2 L LC 2 = i R 2L ± R2 4L LC Universität Ulm, Experimentelle Physik 40

42 Schwingkreis mit Widerstand, an Spannungsquelle + + U(t) - C L R Schwingkreis mit Widerstand an Spannungsquelle Universität Ulm, Experimentelle Physik 41

43 U(t) = Ûeiωt = iωl I + R I + I iωc Ûe iωt = iωl Îeiωt + R Îeiωt + Îeiωt iωc Y = 1 X = Î Û = 1 iωl + R + 1 iωc Universität Ulm, Experimentelle Physik 42

44 Y = iωc ω 2 CL + iωrc + 1 = iω L 1 CL ω2 + iω R L mit ω 0 = 1/(CL) Y = iω ω 0 C ω 2 0 ω2 + iω R L Universität Ulm, Experimentelle Physik 43

45 Elektromotoren Prinzipbild eines Elektromotors Universität Ulm, Experimentelle Physik 44

46 Nebenschlussmotor und Hauptschlussmotor MN(x) MH(x) M Kennlinien ω Universität Ulm, Experimentelle Physik 45

47 Betatron Skizze eines Betatrons Universität Ulm, Experimentelle Physik 46

48 Skineffekt Berechnung des Skin-Effektes Universität Ulm, Experimentelle Physik 47

49 Energie im Magnetfeld Berechnung der Energie im Magnetfeld Universität Ulm, Experimentelle Physik 48

50 Magnetische Eigenschaften Diamagnetische (Bi), paramagnetische (Al) und ferromagnetische (Fe) Materialien im inhomogenen Magnetfeld. Universität Ulm, Experimentelle Physik 49

51 Kreisströme als Ursache des Dia- und des Paramagnetismus Universität Ulm, Experimentelle Physik 50

52 Satz von Larmor Illustration zum Satz von Larmor Universität Ulm, Experimentelle Physik 51

53 Langsames Einschalten eines Magnetfeldes für ein Elektron in einem Atom. Im linken Schaubild sind die positiven Richtungen definiert. Universität Ulm, Experimentelle Physik 52

54 Larmorwinkelgeschwindigkeit Ω = e 2m e B (21) In einem mit der Winkelgeschwindigkeit Ω rotierenden System sind die Elektronenbahnen im Atom unverändert. Universität Ulm, Experimentelle Physik 53

55 Berechnung der Larmorfrequenz mit einem Kreisel Universität Ulm, Experimentelle Physik 54

56 vektorielle Schreibweise der Larmorfrequenz Ω = e B (22) 2m Universität Ulm, Experimentelle Physik 55

57 Diamagnetismus Berechnung des Diamagnetismus Universität Ulm, Experimentelle Physik 56

58 Ein einzelner Kreisstrom Universität Ulm, Experimentelle Physik 57

59 Magnetismus Atomare Kreisströme Universität Ulm, Experimentelle Physik 58

60 Elektronenspin Elektronenspin Universität Ulm, Experimentelle Physik 59

61 Paramagnetismus Curie-Gesetz Universität Ulm, Experimentelle Physik 60

Othmar Marti Experimentelle Physik Universität Ulm

Othmar Marti Experimentelle Physik Universität Ulm PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Leisi, Tipler, Gerthsen, Känzig, Alonso-Finn Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3b-2002-2003

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 26. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 26. 06.

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 23. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 23. 06.

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 30. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 30. 06.

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 18. 06. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 18. 06. 2009

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 12. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 12. 06.

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 19. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 19. 06.

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 16. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 16. 06.

Mehr

15.Magnetostatik, 16. Induktionsgesetz

15.Magnetostatik, 16. Induktionsgesetz Ablenkung von Teilchenstrahlen im Magnetfeld (Zyklotron u.a.): -> im Magnetfeld B werden geladene Teilchen auf einer Kreisbahn abgelenkt, wenn B senkrecht zu Geschwindigkeit v Kräftegleichgewicht: 2 v

Mehr

Übungsblatt 05 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt)

Übungsblatt 05 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Übungsblatt 05 PHYS300 Grundkurs IIIb Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, othmar.marti@physik.uni-ulm.de) 5. 2. 2003 oder 2.. 2004 Aufgaben. In einer Leitung, die parallel zur x-achse

Mehr

Othmar Marti Experimentelle Physik Universität Ulm

Othmar Marti Experimentelle Physik Universität Ulm PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Tipler, Gerthsen, Känzig, Alonso-Finn Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3b-2002-2003

Mehr

Übungsblatt 06 Grundkurs IIIb für Physiker

Übungsblatt 06 Grundkurs IIIb für Physiker Übungsblatt 06 Grundkurs IIIb für Physiker Othmar Marti, (othmar.marti@physik.uni-ulm.de) 20. 1. 2003 oder 27. 1. 2003 1 Aufgaben für die Übungsstunden Quellenfreiheit 1, Hall-Effekt 2, Lorentztransformation

Mehr

6.4.4 Elihu-Thomson ****** 1 Motivation

6.4.4 Elihu-Thomson ****** 1 Motivation V644 6.4.4 ****** 1 Motivation Ein als Sekundärspule dienender geschlossener Aluminiumring wird durch Selbstinduktion von der Primärspule abgestossen und in die Höhe geschleudert. Ein offener Aluminiumring

Mehr

Vorlesung 5: Magnetische Induktion

Vorlesung 5: Magnetische Induktion Vorlesung 5: Magnetische Induktion, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2016/17 Magnetische Induktion Bisher:

Mehr

Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: Abb Verknüpfung von elektrischem Strom und Magnetfeld

Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: Abb Verknüpfung von elektrischem Strom und Magnetfeld 37 3 Transformatoren 3. Magnetfeldgleichungen 3.. Das Durchflutungsgesetz Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: H I Abb. 3..- Verknüpfung von elektrischem Strom und Magnetfeld

Mehr

Induktion. Bewegte Leiter

Induktion. Bewegte Leiter Induktion Bewegte Leiter durch die Kraft werden Ladungsträger bewegt auf bewegte Ladungsträger wirkt im Magnetfeld eine Kraft = Lorentzkraft Verschiebung der Ladungsträger ruft elektrisches Feld hervor

Mehr

20. Vorlesung EP. III Elektrizität und Magnetismus. 19. Magnetische Felder Fortsetzung: Materie im Magnetfeld 20. Induktion 21.

20. Vorlesung EP. III Elektrizität und Magnetismus. 19. Magnetische Felder Fortsetzung: Materie im Magnetfeld 20. Induktion 21. 20. Vorlesung EP III Elektrizität und Magnetismus 19. Magnetische Felder Fortsetzung: Materie im Magnetfeld 20. Induktion 21. Wechselstrom Versuche: Induktion: Handdynamo und Thomson-Transformator Diamagnetismus:

Mehr

Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom

Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom Ferienkurs Sommersemester 009 Martina Stadlmeier 09.09.009 Inhaltsverzeichnis 1 Zeitlich veränderliche Felder 1.1 Faradaysches Induktionsgesetz.....................

Mehr

Magnetismus. Prof. DI Michael Steiner

Magnetismus. Prof. DI Michael Steiner Magnetismus Prof. DI Michael Steiner www.htl1-klagenfurt.at Magnetismus Natürlicher Künstlicher Magneteisenstein Magnetit Permanentmagnete Stabmagnet Ringmagnet Hufeisenmagnet Magnetnadel Temporäre Magnete

Mehr

Zusammenfassung. Induktions-Spannungspuls in einem bewegten Leiter im homogenen Magnetfeld

Zusammenfassung. Induktions-Spannungspuls in einem bewegten Leiter im homogenen Magnetfeld 5b Induktion Zusammenfassung Induktion ist ein physikalisches Phänomen, bei der eine Spannungspuls in einem Leiter oder einer Spule induziert wird, wenn sich der Leiter in einem Magnetischen Feld befindet.

Mehr

Wechselstromwiderstände (Impedanzen) Parallel- und Reihenschaltungen. RGes = R1 + R2 LGes = L1 + L2

Wechselstromwiderstände (Impedanzen) Parallel- und Reihenschaltungen. RGes = R1 + R2 LGes = L1 + L2 Wechselstromwiderstände (Impedanzen) Ohm'scher Widerstand R: Kondensator mit Kapazität C: Spule mit Induktivität L: RwR = R RwC = 1/(ωC) RwL = ωl Parallel- und Reihenschaltungen bei der Reihenschaltung

Mehr

Übungsblatt 07. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 07. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungsblatt 07 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@physik.uni-ulm.de) 7.. 005 oder 14.. 005 1 Aufgaben 1. Wir berechnen Elektromotoren. Nehmen

Mehr

Grundlagen. der. Elektrotechnik

Grundlagen. der. Elektrotechnik Skriptum zu den Grundlagen der Elektrotechnik von Prof. Dr. rer. nat. Hartmann Bearbeitet von: Stand: 02.10.2002 Thorsten Parketny i Inhaltsverzeichnis 1. Grundbegriffe und Werkzeuge...1 1.1. Elektrische

Mehr

1 Gesetz von Biot-Savart

1 Gesetz von Biot-Savart 1 1 Gesetz von Biot-Savart d l: Längenelement entlang der Stromrichtung für eine beliebige Anordnung von Strömen gilt: L I = B( r 2 ) = µ 4π I L A I d l = j d A L ( B( r 2 ) = µ 4π A d l r 12 r12 3 dv

Mehr

III Elektrizität und Magnetismus

III Elektrizität und Magnetismus 20. Vorlesung EP III Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion Versuche: Diamagnetismus, Supraleiter Induktion Leiterschleife, bewegter Magnet Induktion mit Änderung der Fläche

Mehr

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P]

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] 3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] B = µ 0 I 4 π ds (r r ) r r 3 a) Beschreiben Sie die im Gesetz von Biot-Savart vorkommenden Größen (rechts vom Integral). b) Zeigen Sie, dass das Biot-Savartsche

Mehr

3.5. Prüfungsaufgaben zur Wechselstromtechnik

3.5. Prüfungsaufgaben zur Wechselstromtechnik 3.5. Prüfungsaufgaben zur Wechselstromtechnik Aufgabe : Impedanz (4) Erkläre die Formel C i C und leite sie aus der Formel C Q für die Kapazität eines Kondensators her. ösung: (4) Betrachtet man die Wechselspannung

Mehr

Magnetisches Induktionsgesetz

Magnetisches Induktionsgesetz Magnetisches Induktionsgesetz Michael Faraday entdeckte, dass ein sich zeitlich veränderndes Magnetfeld eine elektrische Spannung in einer Schleife oder Spule aus leitendem Material erzeugt: die Induktionsspannung

Mehr

Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz

Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz Stephan Huber 19. August 2009 1 Nachtrag zum Drehmoment 1.1 Magnetischer Dipol Ein magnetischer Dipol erfährt

Mehr

Zusammenfassung EPII. Elektromagnetismus

Zusammenfassung EPII. Elektromagnetismus Zusammenfassung EPII Elektromagnetismus Elektrodynamik: Überblick Dynamik (Newton): Elektromagnetische Kräfte zw. Ladungen: Definition EFeld: Kraft auf ruhende Testladung Q: BFeld: Kraft auf bewegte Testladung:

Mehr

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld.

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld. Induktion Die elektromagnetische Induktion ist der Umkehrprozess zu dem stromdurchflossenen Leiter, der ein Magnetfeld erzeugt. Bei der Induktion wird in einem Leiter, der sich in einem Magnetfeld bewegt,

Mehr

Musterloesung. 2. Klausur Grundlagen der Elektrotechnik I-B 17. Juni Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten

Musterloesung. 2. Klausur Grundlagen der Elektrotechnik I-B 17. Juni Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten 2. Klausur Grundlagen der Elektrotechnik I-B Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie den Aufgabensatz nicht auf. Benutzen Sie für die Lösung der Aufgaben nur das mit

Mehr

Physik LK 12, 3. Kursarbeit Induktion - Lösung

Physik LK 12, 3. Kursarbeit Induktion - Lösung Physik K 1, 3. Kursarbeit Induktion - ösung.0.013 Aufgabe I: Induktion 1. Thomson ingversuch 1.1 Beschreibe den Thomson'schen ingversuch in Aufbau und Beobachtung und erkläre die grundlegenden physikalischen

Mehr

Physik. Integrierter Kurs Physiker, Mathematiker und Informatiker. Prof. Dr. Reinhold Kleiner

Physik. Integrierter Kurs Physiker, Mathematiker und Informatiker. Prof. Dr. Reinhold Kleiner 2 Physik II Integrierter Kurs für Physiker, Mathematiker und Informatiker Prof. Dr. Reinhold Kleiner Raum D6 P40 Physikalisches Institut: Experimentalphysik II Auf der Morgenstelle 14 72076 Tübingen kleiner@uni-tuebingen.de

Mehr

O. Sternal, V. Hankele. 4. Magnetismus

O. Sternal, V. Hankele. 4. Magnetismus 4. Magnetismus Magnetfelder N S Rotationsachse Eigenschaften von Magneten und Magnetfeldern Ein Magnet hat Nord- und Südpol Ungleichnamige Pole ziehen sich an, gleichnamige Pole stoßen sich ab. Es gibt

Mehr

(1) (4) Integralform. Differentialform ρ. Hier fehlt noch. etwas!

(1) (4) Integralform. Differentialform ρ. Hier fehlt noch. etwas! Zeitlich veränderliche Felder: Elektrodynamik Die Maxwell-Gleichungen im statischen Fall (1) 1 E d = ρdv E = V( ) (2) B d = B = etwas! (3) E dr = E = (4) Integralform ε Hier fehlt noch Differentialform

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

Bewegter Leiter im Magnetfeld

Bewegter Leiter im Magnetfeld Bewegter Leiter im Magnetfeld Die Leiterschaukel mal umgedreht: Bewegt man die Leiterschaukel im Magnetfeld, so wird an ihren Enden eine Spannung induziert. 18.12.2012 Aufgaben: Lies S. 56 Abschnitt 1

Mehr

Übungsblatt 12 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik

Übungsblatt 12 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik Übungsblatt 2 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik.7.28 Aufgaben. Ein Transformator mit Primärwindungen und 3 Sekundärwindungen wird mit einem Wechselstrom

Mehr

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn 22.02.200 Probeklausur Elektrotechnik I für Maschinenbauer Name: Vorname: Matr.-Nr.: Fachrichtung:

Mehr

6.4.2 Induktion erzeugt Gegenkraft ******

6.4.2 Induktion erzeugt Gegenkraft ****** V642 6.4.2 ****** Motivation Ein permanenter Stabmagnet wird durch einen luminiumring bewegt. Der dabei im Ring fliessende Induktionsstrom bewirkt, dass der Ring der Bewegung des Stabmagneten folgt. 2

Mehr

Klassische Theoretische Physik III WS 2014/ Elektromagnetische Induktion: (3+3+4=10 Punkte)

Klassische Theoretische Physik III WS 2014/ Elektromagnetische Induktion: (3+3+4=10 Punkte) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik III WS 014/015 Prof Dr A Shnirman Blatt 8 Dr B Narozhny Lösungen 1 Elektromagnetische Induktion:

Mehr

Aufgabenblatt zum Seminar 12 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 12 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 2 PHYS7357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, (othmar.marti@uni-ulm.de) 8. 7. 29 Aufgaben. In der Vorlesung

Mehr

Induktionsbeispiele. Rotierende Leiterschleife: Spule mit Induktionsschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 )

Induktionsbeispiele. Rotierende Leiterschleife: Spule mit Induktionsschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 ) Induktionsbeispiele Rotierende eiterschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 ) A φ B ω Induktionsspannung: U ind = dφ m = AB [ ω sin(ωt + φ 0 )] = ABω sin(ωt + φ 0 ) (Wechselspannung)

Mehr

5.1 Statische und zeitlich veränderliche

5.1 Statische und zeitlich veränderliche 5.1 Statische und zeitlich veränderliche Felder 5 Induktion 5.1 Statische und zeitlich veränderliche Felder Bisher haben wir elektrische und magnetische Felder betrachtet, die durch zeitlich konstante

Mehr

Klassische Experimentalphysik II

Klassische Experimentalphysik II Klassische Experimentalphysik II SS 2014 Dozent: Prof. Übungsleitung: Dr. Martin Weides Modul 5520 Beschreibung Lernziele: Verständnis der experimentellen Grundlagen und deren mathematischer Beschreibung

Mehr

TR Transformator. Blockpraktikum Herbst Moritz Stoll, Marcel Schmittfull (Gruppe 2b) 25. Oktober 2007

TR Transformator. Blockpraktikum Herbst Moritz Stoll, Marcel Schmittfull (Gruppe 2b) 25. Oktober 2007 TR Transformator Blockpraktikum Herbst 2007 (Gruppe 2b) 25 Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 11 Unbelasteter Transformator 2 12 Belasteter Transformator 3 13 Leistungsanpassung 3 14 Verluste

Mehr

IV. Elektrizität und Magnetismus

IV. Elektrizität und Magnetismus IV. Elektrizität und Magnetismus IV.4 Wechselstromkreise Physik für Mediziner Ohmscher Widerstand bei Wechselstrom Der Ohmsche Widerstand verhält sich bei Wechselstrom genauso wie bei Gleichstrom zu jedem

Mehr

Technische Universität Clausthal

Technische Universität Clausthal Technische Universität Clausthal Klausur im Wintersemester 2012/2013 Grundlagen der Elektrotechnik I Datum: 18. März 2013 Prüfer: Prof. Dr.-Ing. Beck Institut für Elektrische Energietechnik Univ.-Prof.

Mehr

Übungsblatt 06 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt)

Übungsblatt 06 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Übungsblatt 06 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@physik.uni-ulm.de) 19. 1. 004 oder 6. 1. 004 1 Aufgaben 1. Die unten stehende Abbildung zeigt

Mehr

4 Induktion. Worum geht es? Ein veränderliches Magnetfeld (allgemein Änderung von Φ B ) in der Spule,

4 Induktion. Worum geht es? Ein veränderliches Magnetfeld (allgemein Änderung von Φ B ) in der Spule, 4 Induktion Worum geht es? Ein veränderliches Magnetfeld (allgemein Änderung von Φ B ) in der Spule, induziert eine Spannung ( Stromfluss U=RI) in der Spule. Caren Hagner / PHYSIK 2 / Sommersemester 2015

Mehr

Lösung für Blatt 7,,Elektrodynamik

Lösung für Blatt 7,,Elektrodynamik Institut für Theoretische Physik, Universität Zürich Lösung für Blatt 7,,Elektrodynamik Prof. Dr. T. Gehrmann Blatt 7 FS 213 Aufgabe 1 Induktion im Magnetfeld Nach dem Faraday schen Induktionsgesetz induziert

Mehr

Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016

Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016 Institut für Experimentelle Kernphysik, KIT Übungen zur Klassischen Physik II Elektrodynamik) SS 206 Prof. Dr. T. Müller Dr. F. Hartmann 2tes und letztes Übungsblatt - Spulen, Wechselstrom mit komplexen

Mehr

Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert:

Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert: Versuch 18: Der Transformator Name: Telja Fehse, Hinrich Kielblock, Datum der Durchführung: 28.09.2004 Hendrik Söhnholz Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert: 1 Einleitung Der Transformator

Mehr

1 Elektrostatik Elektrische Feldstärke E Potential, potentielle Energie Kondensator... 4

1 Elektrostatik Elektrische Feldstärke E Potential, potentielle Energie Kondensator... 4 Inhaltsverzeichnis 1 Elektrostatik 3 1.1 Elektrische Feldstärke E............................... 3 1.2 Potential, potentielle Energie............................ 4 1.3 Kondensator.....................................

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 28. 05. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 28. 05. 2009

Mehr

Übungsblatt 06. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 06. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungsblatt 06 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@physik.uni-ulm.de) 24. 1. 2005 31. 1. 2005 1 Aufgaben 1. Berechnen Sie für das Vektorpotential

Mehr

Das stationäre Magnetfeld Grundlagen der Elektrotechnik Kapitel 1 Kapitel 5 Das stationäre Magnetfeld

Das stationäre Magnetfeld Grundlagen der Elektrotechnik Kapitel 1 Kapitel 5 Das stationäre Magnetfeld Kapitel Pearson Folie: Kapitel 5 Das stationäre Folie: 2 Lernziele Kapitel Pearson Folie: 3 5. Magnete Kapitel Pearson Folie: 4 5. Magnete Kapitel Pearson S N Folie: 5 5.2 Kraft auf stromdurchflossene

Mehr

Gliederung des Vorlesungsskriptes zu "Grundlagen der Elektrotechnik I" Physikalische Grundbegriffe... 1

Gliederung des Vorlesungsskriptes zu Grundlagen der Elektrotechnik I Physikalische Grundbegriffe... 1 - Grundlagen der Elektrotechnik I - I 23.05.02 Gliederung des Vorlesungsskriptes zu "Grundlagen der Elektrotechnik I" 1 Physikalische Grundbegriffe... 1 1.1 Aufbau der Materie, positive und negative Ladungen...

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 13 - Lösungen zu Übungsblatt 4 1 Schiefe Ebene im Magnetfeld In einem vertikalen, homogenen Magnetfeld

Mehr

Elektrotechnik II Formelsammlung

Elektrotechnik II Formelsammlung Elektrotechnik II Formelsammlung Achim Enthaler 20.03.2007 Gleichungen Allgemeine Gleichungen aus Elektrotechnik I siehe Formelsammlung Elektrotechnik I, SS2006 Maxwell Gleichungen in Integralform Durchutungsgesetz

Mehr

Rechenübungen zum Physik Grundkurs 2 im SS 2010

Rechenübungen zum Physik Grundkurs 2 im SS 2010 Rechenübungen zum Physik Grundkurs 2 im SS 2010 2. Klausur (Abgabe: Do 16.9.2010 12.00 Uhr Neue Aula) Name, Vorname: Geburtstag: Ihre Identifizierungs-Nr. ID2= 122 Hinweise: Studentenausweis: Hilfsmittel:

Mehr

Learn4Vet. Magnete. Man kann alle Stoffe in drei Klassen einteilen:

Learn4Vet. Magnete. Man kann alle Stoffe in drei Klassen einteilen: Magnete Die Wirkung und der Aufbau lassen sich am einfachsten erklären mit dem Modell der Elementarmagneten. Innerhalb eines Stoffes (z.b. in ein einem Stück Eisen) liegen viele kleine Elementarmagneten

Mehr

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld 1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu

Mehr

Grundgebiete der. Elektrotechnik. Ludwig Brabetz, Oliver Haas und Christian Spieker. Operationsverstärkerschaltungen, elektrische und

Grundgebiete der. Elektrotechnik. Ludwig Brabetz, Oliver Haas und Christian Spieker. Operationsverstärkerschaltungen, elektrische und Horst Clausert, Gunther Wiesemann, Ludwig Brabetz, Oliver Haas und Christian Spieker Grundgebiete der Elektrotechnik Band 1: Gleichstromnetze, Operationsverstärkerschaltungen, elektrische und magnetische

Mehr

Basiswissen Physik Jahrgangsstufe (G9)

Basiswissen Physik Jahrgangsstufe (G9) Wärmelehre (nur nspr. Zweig) siehe 9. Jahrgangsstufe (mat-nat.) Elektrizitätslehre Basiswissen Physik - 10. Jahrgangsstufe (G9) Ladung: Grundeigenschaft der Elektrizität, positive und negative Ladungen.

Mehr

12. Elektrodynamik. 12. Elektrodynamik

12. Elektrodynamik. 12. Elektrodynamik 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Maxwell sche Verschiebungsstrom 12.4 Magnetische Induktion 12.5 Lenz sche Regel 12.6 Magnetische Kraft 12. Elektrodynamik

Mehr

Versuch: Induktions - Dosenöffner. Experimentalphysik I/II für Mediziner: Sommersemester 2010 Caren Hagner Magnetismus 25

Versuch: Induktions - Dosenöffner. Experimentalphysik I/II für Mediziner: Sommersemester 2010 Caren Hagner Magnetismus 25 Versuch: Induktions - Dosenöffner Experimentalphysik I/II für Mediziner: Sommersemester 2010 Caren Hagner Magnetismus 25 Der schwebende Supraleiter (idealer Diamagnet) Supraleiter B ind Magnet B Magnet

Mehr

Physikalisches Grundpraktikum E6 - T ransformator. E6 - Transformator

Physikalisches Grundpraktikum E6 - T ransformator. E6 - Transformator E6 - Transformator Aufgabenstellung: Ermitteln Sie das Strom- und Spannungsübertragungsverhältnis eines Transformators für zwei verschiedene Sekundärwindungszahlen mittels Leerlauf- und Kurzschlussschaltung.

Mehr

6.4.8 Induktion von Helmholtzspulen ******

6.4.8 Induktion von Helmholtzspulen ****** V648 6.4.8 ****** Motivation Das Induktionsgesetz von Faraday wird mit einer ruhenden Leiterschleife im zeitabhängigen B-Feld und mit einer bewegten Leiterschleife im stationären B-Feld untersucht. 2 Experiment

Mehr

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H ET 6 Elektromagnetisches Feld Magnetische Feldstärke (magnetische Erregung) In der Umgebung stromdurchflossener Leiter entsteht ein magnetisches Feld, H = H e s... quellenfreies Vektorfeld der Feldstärke

Mehr

Elektrotechnik: Zusatzaufgaben

Elektrotechnik: Zusatzaufgaben Elektrotechnik: Zusatzaufgaben 1.1. Aufgabe: Rechnen Sie die abgeleiteten Einheiten der elektrischen Spannung, des elektrischen Widerstandes und der elektrischen Leistung in die Basiseinheiten des SI um.

Mehr

18. Magnetismus in Materie

18. Magnetismus in Materie 18. Magnetismus in Materie Wir haben den elektrischen Strom als Quelle für Magnetfelder kennen gelernt. Auch das magnetische Verhalten von Materie wird durch elektrische Ströme bestimmt. Die Bewegung der

Mehr

Aufgabenblatt zum Seminar 10 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 10 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 0 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, (othmar.marti@uni-ulm.de) 4. 06. 009 Aufgaben. Wie in

Mehr

Strom und Magnetismus. Musterlösungen. Andreas Waeber Ohmsche Widerstände I: Der Widerstand von Draht A beträgt mit r A = 0, 5mm

Strom und Magnetismus. Musterlösungen. Andreas Waeber Ohmsche Widerstände I: Der Widerstand von Draht A beträgt mit r A = 0, 5mm Strom und Magnetismus Musterlösungen Andreas Waeber 5. 0. 009 Elektrischer Strom. Strahlungsheizer: U=5V, P=50W a) P = U = P = 0, 9A U b) R = U = 0, 6Ω c) Mit t=3600s: E = P t = 4, 5MJ. Ohmsche Widerstände

Mehr

Elektrotechnische Anwendungen: Wechselstromgenerator

Elektrotechnische Anwendungen: Wechselstromgenerator Elektrotechnische Anwendungen: Wechselstromgenerator Das Faradaysche Induktionsgesetz bildet die Grundlage für die technische Realisierung von elektrischen Motoren und Generatoren. Das einfachste Modell

Mehr

1 Wechselstromwiderstände

1 Wechselstromwiderstände 1 Wechselstromwiderstände Wirkwiderstand Ein Wirkwiderstand ist ein ohmscher Widerstand an einem Wechselstromkreis. Er lässt keine zeitliche Verzögerung zwischen Strom und Spannung entstehen, daher liegt

Mehr

d) Betrachten Sie nun die Situation einer einzelnen Ladung q 1 (vergessen Sie q 2 ). Geben Sie das Feld E(r) dieser Ladung an. E(r) dr (1) U(r )=

d) Betrachten Sie nun die Situation einer einzelnen Ladung q 1 (vergessen Sie q 2 ). Geben Sie das Feld E(r) dieser Ladung an. E(r) dr (1) U(r )= Übung zur Vorlesung PN II Physik für Chemiker Sommersemester 2012 Prof. Tim Liedl, Department für Physik, LMU München Lösung zur Probeklausur (Besprechungstermin 08.06.2012) Aufgabe 1: Elektrostatik Elektrische

Mehr

Amateurfunkkurs. Themen Übersicht. Erstellt: Landesverband Wien im ÖVSV. 1 Widerstand R. 2 Kapazität C. 3 Induktivität L.

Amateurfunkkurs. Themen Übersicht. Erstellt: Landesverband Wien im ÖVSV. 1 Widerstand R. 2 Kapazität C. 3 Induktivität L. Amateurfunkkurs Landesverband Wien im ÖVSV Erstellt: 2010-2011 Letzte Bearbeitung: 20. Februar 2016 Themen 1 2 3 4 5 6 Zusammenhang zw. Strom und Spannung am Widerstand Ein Widerstand... u i Ohmsches Gesetz

Mehr

Elektrizität und Magnetismus

Elektrizität und Magnetismus 1 Ergänzungen zum Kapitel Elektrizität und Magnetismus 4.7.7 Gefährdung durch Elektrizität Wie ernst ein Stromschlag zu nehmen ist, hängt davon ab, wie groß die durch den Körper fließende Stromstärke ist,

Mehr

Grundlagen der Elektrotechnik 1

Grundlagen der Elektrotechnik 1 Grundlagen der Elektrotechnik 1 von Wolf-Ewald Büttner Oldenbourg Verlag München Wien Vorwort V VII 1 Einleitung 1 2 Grundbegriffe 3 2.1 Elektrische Ladung 3 2.2 Leiter und Nichtleiter 4 2.3 Elektrischer

Mehr

Kehrt man die Bewegungsrichtung des Leiters um, dann ändert sich die Polung der Spannung.

Kehrt man die Bewegungsrichtung des Leiters um, dann ändert sich die Polung der Spannung. 7. Die elektromagnetische Induktion ------------------------------------------------------------------------------------------------------------------ A Die Induktion im bewegten Leiter Bewegt man einen

Mehr

Elektrizität in den Themenfeldern 6 und 9

Elektrizität in den Themenfeldern 6 und 9 Elektrizität in den Themenfeldern 6 und 9 1 Intention TF 6 Entwicklung von Vorstellungen zum Energietransport mit dem Träger Elektrizität Energienutzung im Alltag; Einheiten J und kwh Zusammenhang von

Mehr

Grundlagen der Elektrotechnik

Grundlagen der Elektrotechnik 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Ingo Wolff Grundlagen der Elektrotechnik Einführung in die elektrischen

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

Aufgabenblatt zum Seminar 09 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 09 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 9 PHYS7357 Elektrizitätslehre und Magnetismus Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, othmar.marti@uni-ulm.de) 7. 6. 9 Aufgaben. Durch eine

Mehr

Physik DJ Induktion. Elektromagnetische Induktion. Wie verläuft die Induktion

Physik DJ Induktion. Elektromagnetische Induktion. Wie verläuft die Induktion Physik DJ Induktion Elektromagnetische Induktion Wie verläuft die Induktion Bei der Induktion wird ein Leiter (Kupferkabel, ) durch ein Magnetfeld gezogen. Hierbei entsteht eine Lorenzkraft. Die Richtung

Mehr

1.10 Elektromagnetische Induktion

1.10 Elektromagnetische Induktion 1.10 Elektromagnetische Induktion Wasserkraft: Deutschland 5% weltweit 18% Deutschland 30% weltweit 17% Deutschland 59% weltweit 64% Quelle: Wikipedia 1.10.1 Experimente zur elektromagnetischen Induktion

Mehr

Materie im Magnetfeld

Materie im Magnetfeld . Stromschleifen - Permanentmagnet Materie im Magnetfeld EX-II SS007 = > µmag = I S ˆn S = a b µ bahn = e m L µ spin = e m S Stromschleife im Magnetfeld Magnetisierung inhomogenes Magnetfeld = D = µmag

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 19. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 19. 05.

Mehr

Hans M. Strauch. Elektrische Ladung

Hans M. Strauch. Elektrische Ladung Hans M. Strauch Elektrische Ladung Themenfeld 6: Spannung und Induktion 2 Hydraulikstromkreis als Energieträger Hydraulik Wassermenge Wasserstromstärke Druck E-Lehre Q I V 3 Geschlossener Stromkreis als

Mehr

Versuch 25: Der Transformator

Versuch 25: Der Transformator Versuch 25: Der Transformator Praktikum der Physik Oliver Heinrich Bernd Kugler L2 11.Mai.2007 Abgabe: 25.Mai.2007, 08.Juni.2007 Betreuer: Andreas Kleiner

Mehr

4.4 Induktion. Bisher: Strom durch einen Draht Magnetfeld Jetzt: zeitlich veränderliches Magnetfeld Strom

4.4 Induktion. Bisher: Strom durch einen Draht Magnetfeld Jetzt: zeitlich veränderliches Magnetfeld Strom Bisher: Strom durch einen Draht Magnetfeld Jetzt: zeitlich veränderliches Magnetfeld Strom 4.4 Induktion Spannungen und Ströme, die durch Veränderungen von Magnetfeldern entstehen, bezeichnet man als Induktionsspannungen,

Mehr

IK Induktion. Inhaltsverzeichnis. Sebastian Diebold, Moritz Stoll, Marcel Schmittfull. 25. April Einführung 2

IK Induktion. Inhaltsverzeichnis. Sebastian Diebold, Moritz Stoll, Marcel Schmittfull. 25. April Einführung 2 IK Induktion Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Magnetfelder....................... 2 2.2 Spule............................ 2

Mehr

Elektromagnetische Schwingkreise

Elektromagnetische Schwingkreise Grundpraktikum der Physik Versuch Nr. 28 Elektromagnetische Schwingkreise Versuchsziel: Bestimmung der Kenngrößen der Elemente im Schwingkreis 1 1. Einführung Ein elektromagnetischer Schwingkreis entsteht

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 3 - Übungsblatt 7 Wechselstrom In der Zeichnung ist ein Stromkreis mit reellen (Ohmschen) sowie

Mehr

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen Aufbau von Atomen Ein Atom besteht aus einem positiv geladenen Atomkern und einer negativ geladenen Atomhülle. Träger der positiven Ladung sind Protonen, Träger der negativen Ladung sind Elektronen. Atomhülle

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Lösung Übungsblatt 2 Tutoren: Elena Kaiser und Matthias Golibrzuch 2 Elektrischer Strom 2.1 Elektrischer Widerstand Ein Bügeleisen von 235 V / 300 W hat eine Heizwicklung

Mehr

rtllh Grundlagen der Elektrotechnik Gert Hagmann AULA-Verlag

rtllh Grundlagen der Elektrotechnik Gert Hagmann AULA-Verlag Gert Hagmann Grundlagen der Elektrotechnik Das bewährte Lehrbuch für Studierende der Elektrotechnik und anderer technischer Studiengänge ab 1. Semester Mit 225 Abbildungen, 4 Tabellen, Aufgaben und Lösungen

Mehr