Einführung in die Kovarianzanalyse (ANCOVA)

Größe: px
Ab Seite anzeigen:

Download "Einführung in die Kovarianzanalyse (ANCOVA)"

Transkript

1 Arbeitsunterlage Einführung in die Kovarianzanalyse (ANCOVA) ARGE-Bildungsforschung

2 2 Einführung in die Kovarianzanalyse (ANCOVA) 1 Die Varianzanalyse ist ein Verfahren, das die Wirkung einer (oder mehrerer) unabhängiger Variable auf eine (oder mehrere) abhängige Variable untersucht. Für die unabhängige Variable wird dabei lediglich Nominalskalierung verlangt, während die abhängige Variable metrisches Skalenniveau aufweisen muss. Die Varianzanalyse ist das wichtigste Analyseverfahren zur Auswertung von Experimenten. Typische Anwendungsbeispiele sind: - Verbessern Brain-Gym-Übungen aus dem Programm der Edu-Kinestetik die Konzentrationsfähigkeit von Volksschülern? - Unterscheiden sich die Englischleistungen von Buben und Mädchen in Stadthauptschulen, Landhauptschulen und Gymnasien? - Haben attraktive Zusatzangebote von Schulen einen Einfluss auf das von Schülern wahrgenommene Sozialklima, die Schulleistungen, sowie die Elternzufriedenheit? Gemeinsam ist allen Beispielen, dass ihnen eine Vermutung über die Wirkungsrichtung der Variablen zugrunde liegt. Wie in der Regressionsanalyse, die einen Erklärungszusammenhang der Art Y = f(x 1, X 2,, X J ) über metrische Variable herstellt, formuliert auch die Varianzanalyse einen solchen Zusammenhang, allein mit dem Unterschied, dass die Variablen X 1, X 2,, X J nominal skaliert sein dürfen. Die Beispiele verdeutlichen dies. So nimmt man im ersten Beispiel an, dass ein bestimmtes Treatment als unabhängige Variable mit den beiden Ausprägungen Übungsprogramm und kein Übungsprogramm einen Einfluss auf die Konzentrationsfähigkeit hat. Die Ausprägungen der unabhängigen Variablen beschreiben dabei stets alternativ Zustände. Demgegenüber ist die abhängige Variable, hier die Konzentrationsfähigkeit metrisch skaliert. Gemeinsam ist weiterhin allen Anwendungsbeispielen, dass sie experimentelle Situationen beschreiben: Feldexperimente im zweiten und dritten Beispiel, ein Laborexperiment im ersten Beispiel. Die Varianzanalyse ist das klassische Verfahren zur Analyse von Experimenten mit Variablen des bezeichneten Skalenniveaus. Die genannten Beispiele unterscheiden sich durch die Zahl der Variablen. So wird im ersten Beispiel die Wirkung einer unabhängigen Variablen (Treatment) auf eine abhängige Variable (Konzentrationsfähigkeit) untersucht. Im zweiten Beispiel wird demgegenüber die Wirkung von zwei unabhängigen Variablen (Schulart und Geschlecht) auf eine abhängige Variable (Englischleistungen) analysiert. Im dritten Beispiel gilt das Interesse ausschließlich der Wirkung einer unabhängigen Variablen (attraktive Zusatzangebote) auf drei abhängige Variablen (Sozialklima, Schulleistungen, Elternzufriedenheit). Die unabhängigen Variablen werden als Faktoren bezeichnet, die einzelnen Ausprägungen als Faktorstufen. Die Typen der Varianzanalyse lassen sich nach der Zahl der Faktoren differenzieren. Wenn eine abhängige Variable und eine unabhängige gegeben sind, spricht man von einfaktorieller, entsprechend bei zwei unabhängigen von zweifaktorieller Varianzanalyse usw. Bei mehr als einer abhängigen Variablen spricht man von mehrdimensionaler (multivariater) Varianzanalyse. 1 Textteile entnommen aus: BACKHAUS, Klaus, ERICHSON, Bernd, PLINKE, Wulff, WEIBER, Rolf (2008): Multivariate Analysemethoden. Eine anwendungsorientierte Einführung (12., vollst. überarb. Auflage). Berlin: Springer, S

3 3 Exemplarisches Beispiel Problem Der Leiter einer Supermarktkette will die Wirkung verschiedener Arten der Warenplatzierung überprüfen. Er wählt dazu Margarine in der Becherverpackung aus, wobei ihm drei Möglichkeiten der Regalplatzierung offen stehen: - Platzierung im Normalregal der Frischwarenabteilung - Platzierung im Normalregal der Frischwarenabteilung und Zweitplatzierung im Fleischmarkt - Platzierung im Kühlregal der Frischwarenabteilung Anschließend wird folgendes experimentelle Design entworfen: Aus den insgesamt vorhandenen Supermärkten werden drei weitgehend vergleichbare Supermärkte des Unternehmens ausgewählt, die sich durch unterschiedliche Präsentation von Margarine unterscheiden. In einem Zeitraum von 5 Tagen wird in jedem der drei Supermärkte jeweils eine Form der Margarine-Präsentation durchgeführt. Die Auswirkungen der Maßnahmen werden jeweils in der Größe kg Margarineabsatz pro Kassenvorgänge erfasst. Die folgende Tabelle zeigt die Ergebnisse der Datenerhebung: Platzierung in 3 Supermärkten Montag Dienstag Mittwoch Donnerstag Freitag Normalregal Zweitplatzierung Kühlregal Aufgabe 1 1. Definieren Sie für das o.a. Problem eine passende Datenmatrix in SPSS. 2. Tragen Sie die Daten der Tabelle ein. 3. Berechnen Sie die Mittelwerte (gesamt und getrennt nach Platzierung). Lösung Sie erhalten drei Teilstichproben mit jeweils genau fünf Beobachtungswerten; die Teilstichproben haben also den gleichen Umfang. Es fällt ins Auge, dass die drei Supermärkte unterschiedliche Erfolge im Margarineabsatz aufweisen. Die Mittelwerte zeigt folgende Tabelle: Platzierung der Margarine Mittelwert der Absatzmenge Normalregal 43,40 Zweitplatzierung 64,40 Kühlregal 52,20 Gesamt 53,33 Der Leiter des Unternehmens will nun wissen, ob die unterschiedlichen Absatzergebnisse in den drei Supermärkten auf die Variation der Warenplatzierung zurückzuführen sind. Nehmen wir zur Vereinfachung an, dass keine Einflussgrößen von außen (d. h. außerhalb der experimentellen Anordnung, wie z. B. Preiseinflüsse, Konkurrenzeinflüsse, Standorteinflüsse) das Ergebnis mitbestimmt haben. Dann dürften, wenn kein Einfluss der Art der Warenplatzierung auf den Absatz bestünde, auch keine größeren Unterschiede zwischen den Mittelwerten der

4 4 drei Supermärkte auftreten. Umgekehrt kann bei Vorliegen von Mittelwertunterschieden auf das Wirksamwerden der unterschiedlichen Warenplatzierung geschlossen werden. Platzierung in 3 Supermärkten Montag Dienstag Mittwoch Donnerstag Freitag Mittelwert Normalregal ,40 Zweitplatzierung ,40 Kühlregal ,20 Streuung der Beobachtungswerte Nun zeigen die einzelnen Beobachtungswerte, dass sie deutlich um den Mittelwert je Supermarkt streuen. Diese Streuung ist allein auf andere absatzwirksame Einflussgrößen als die Warenplatzierung zurückzuführen. Absatzmenge 80 kg pro 1000 Kassenvorgänge Zweitplatzierung Kühlregal Normalregal Tag Streng genommen muss die vereinfachende Annahme keine Einflussgrößen von außen also genauer formuliert werden: Es gibt Einflüsse von außen, jedoch geht die Varianzanalyse davon aus, dass diese Einflüsse bis auf zufällige Abweichungen in allen drei Supermärkten gleich sind. Wenn nun der Frage nachgegangen wird, ob die Warenplatzierung einen signifikanten Einfluss auf den Absatz hat, dann müssen die im Modell nicht erfassten Einflüsse von den im Modell erfassten Einflüssen getrennt werden. Dies geschieht, indem gefragt wird, ob sich ein bestimmter Beobachtungswert, z. B. der Wert y 11 = 47, zufällig (d.h. nur durch nicht erfasste äußere Einflüsse erklärt) oder systematisch (d.h. durch die Warenplatzierung erklärt) vom Gesamtmittelwert 53,33 unterscheidet. Wenn die im Modell nicht erfassten Einflüsse sich in allen drei Supermärkten bis auf zufällige Abweichungen gleich stark auswirken, dann drückt sich in den Abweichungen der Mittelwerte je Supermarkt vom Gesamtmittelwert die untersuchte Einflussgröße Warenplatzierung aus.

5 5 Grafische Erläuterung Die obige Grafik lässt sich auch so interpretieren: Der Prognosewert für den Margarineabsatz ist y M, wenn kein Einfluss der Warenplatzierung vorhanden wäre. Nimmt man einen Einfluss der Warenplatzierung auf den Absatz an, dann ist der Prognosewert für den Margarineabsatz je nach Art der Platzierung y 1, y 2 oder y 3. Die Abweichungen vom Prognosewert sind auf zufällige äußere Einflüsse zurückzuführen und somit nicht erklärt. Die Gesamtabweichung der Mittelwerte lässt sich also in zwei Komponenten zerlegen (sog. Streuungszerlegung! Varianzanalyse): Gesamtabweichung = erklärte Abweichung + nicht erklärte Abweichung Analyse der Abweichungsquadrate (Quadrate der Abweichungen vom Mittelwert) Diese Zerlegung der Gesamtabweichung je Beobachtung lässt sich in der Varianzanalyse auf die Summe der Gesamtabweichungen aller Beobachtungen übertragen (SS = sum of squares). Gesamtabweichung = erklärte Abweichung + nicht erklärte Abweichung Summe der quadrierten Gesamtabweichungen = Summe der quadrierten Abweichungen zwischen den Faktorstufen + Summe der quadrierten Abweichungen innerhalb der Faktorstufen SS t(otal) = SS b(etween) + SS w(ithin) Die Quadratsumme der Abweichungen als Maß für die Streuung wird um so größer, je größer die Zahl der Einzelwerte ist. Um eine aussagefähigere Schätzgröße für die Streuung zu erhalten, wird die SS durch die Zahl der Einzelwerte vermindert um 1 geteilt. Somit erhält man die Varianz, die unabhängig von der Zahl der Beobachtungswerte ist. Allgemein ist die (empirische) Varianz definiert als mittlere quadratische Abweichung (MS mean sum of squares ): Varianz MS = SS Zahl der Beobachtungen 1

6 6 Freiheitsgrade Die Größe im Nenner ist die Zahl der Freiheitsgrade df (degrees of freedom). Der Wert ergibt sich aus der Zahl der Beobachtungswerte vermindert um 1, weil der Mittelwert, von dem die Abweichungen berechnet wurden, aus den Beobachtungswerten selbst errechnet wurde. Demnach lässt sich immer einer der Beobachtungswerte aus den anderen Beobachtungswerten und dem geschätzten Mittelwert errechnen, d.h. er ist nicht mehr frei. So wie die Gesamtquadratsumme in SS b und SS w aufgeteilt wurde, können auch die Freiheitsgrade aufgeteilt werden. In unserem Beispiel haben wir 3 Faktorstufen mit je 5 Beobachtungen, d.h. 15 Beobachtungen insgesamt. df t ist demnach 15 1 = 14. Da nun jede Faktorstufe 5 Beobachtungen enthält, von denen nur 5 1 frei variieren können, ergeben sich bei drei Faktorstufen 3 (5 1) Freiheitsgrade. Der Wert für df w ist demnach 12. Bei 3 vorhandenen Faktorstufenmittelwerten können nur 3 1 frei variieren. Demnach ist df b = 2. Mit Hilfe der verschiedenen Freiheitsgrade können nun die Varianzen (a) zwischen den Faktorstufen und (b) innerhalb der Faktorstufen sowie (c) die Gesamtvarianz bestimmt werden. Ausgehend von den bisher gesetzten vereinfachenden Annahmen über das Wirksamwerden von den im Modell erfassten und von den im Modell nicht erfassten Einflussgrößen kann nun gefolgert werden, dass SS b von der Warenplatzierung und SS w von den nicht erfassten Einflüssen bestimmt wird. Ein Vergleich beider Größen kann Auskunft über die Bedeutung der unabhängigen Variablen im Vergleich zu den nicht erfassten Einflüssen geben. Wenn bei gegebener Gesamtvarianz (MS t(otal) ) MS w Null wäre, dann könnte gefolgert werden, dass MS t allein durch die experimentelle Variable erklärt wird. Je größer MS w ist, desto geringer muss gemäß dem Grundprinzip der Streuungszerlegung (SS t = SS b + SS w ) der Erklärungsanteil der experimentellen Variablen sein. Je größer demnach MS b im Verhältnis zu MS w ist, desto eher ist eine Wirkung der unabhängigen Variablen anzunehmen. Aufgabe 2 1. Führen Sie im SPSS mit den Daten aus Aufgabe 1 eine Varianzanalyse durch. 2. Berechnen Sie die Effektgröße (Eta-Quadrat). 3. Interpretieren Sie die Ergebnisse. Lösung Abhängige Variable: Absatzmenge Margarine Quelle Quadratsumme vom Typ III df Mittel der Quadrate F Signifikanz Partielles Eta-Quadrat Korrigiertes Modell 1112,133 a 2 556,067 38,087,000,864 Konstanter Term 42666, , ,374,000,996 REGAL 1112, ,067 38,087,000,864 Fehler 175, ,600 Gesamt 43954, Korrigierte Gesamtvariation 1287, a. R-Quadrat =,864 (korrigiertes R-Quadrat =,841) In unserem Beispiel übersteigt MS b = 556,07 den Wert für MS w = 14,6 erheblich, so dass ein Einfluss der unabhängigen Variablen Warenplatzierung vermutet werden kann. Die ermittelten mittleren quadratischen Abweichungen zwischen den und innerhalb der Faktorstufen können also dahingehend interpretiert werden, dass ein Einfluss des Faktors Warenplatzierung vermutet werden kann. Um diese interpretierende Aussage über die Wirkung des Faktors statistisch prüfen zu können, werden MS b und MS w in folgende Beziehung gesetzt:

7 7 F emp = MS MS b w (empirischer F-Wert) = 556,067 14,6 = 38,087 Den Maßstab zur Beurteilung des empirischen F-Wertes bildet die theoretische F-Verteilung. Die F-Verteilung oder FISHER-Verteilung (nach Ronald Aylmer FISHER) ist die Wahrscheinlichkeitsverteilung einer stetigen Zufallsvariable n und ergibt sich als Quotient zweier Chi- Quadrat-verteilter Zufallsvariablen. Sie besitzt zwei unabhängige Freiheitsgrade als Parameter und bildet so selbst eine zwei-parameter-verteilungsfamilie. Als Test wird die F-Verteilung verwendet, um festzustellen, ob die Grundgesamtheiten zweier oder mehrerer Stichproben die gleiche Varianz haben (Varianzanalyse). Ausgangspunkt der Prüfung ist die Nullhypothese (H o ): Es bestehen bezüglich des Margarineabsatzes keine Unterschiede in der Wirkung durch die Art der Warenplatzierung. Die Alternativhypothese H 1 lautet: Es besteht bezüglich des Margarineabsatzes ein Unterschied in den Wirkungen alternativer Arten der Warenplatzierung. Die Prüfung erfolgt anhand eines Vergleichs des empirischen F-Wertes mit dem theoretischen F-Wert lt. Tabelle. Die Tabelle der theoretischen F-Werte zeigt für jeweilige Vertrauenswahrscheinlichkeit einen Prüfwert. Seine Höhe hängt von der Zahl der Freiheitsgrade im Zähler und von der Zahl der Freiheitsgrade im Nenner ab. Die Ermittlung des theoretischen F-Wertes in unserem Beispiel führt zu df = 2 im Zähler und df = 12 im Nenner, d.h. zu dem theoretischen Wert 6, 93 (muss in einer Tabelle nachgeschlagen werden). Empirischer und theoretischer F-Wert werden verglichen. Ist der empirische Wert größer als der theoretische, dann kann die Nullhypothese verworfen werden, d.h. es kann ein Einfluss des Faktors gefolgert werden. Theoretische F-Werte werden üblicherweise für Vertrauenswahrscheinlichkeiten von 90%, 95% und 99% in Tabellenform aufbereitet. Die materielle Bedeutung der Vertrauenswahrscheinlichkeiten ist die Erfassung der grundsätzlich verbleibenden Restunsicherheit, dass eine Wirkung der unabhängigen Variablen angenommen wird, obwohl tatsächlich der Einfluss nur zufälliger Natur ist.

8 8 Im Beispiel überschreitet der empirische F-Wert von 38,09 den theoretischen 2 von 6,93 erheblich, so dass im Rahmen der gesetzten Annahmen die Nullhypothese verworfen, d.h. (mit einer Vertrauenswahrscheinlichkeit von 99 %) der Schluss gezogen werden kann, dass die Platzierung Einfluss auf die Absatzmenge hat. SPSS gibt die Irrtumswahrscheinlichkeit (α-fehler, Fehler 1. Art) an, mit der man sich irrt, wenn man die Alternativhypothese H 1 annimmt, obwohl in der Wirklichkeit die Nullhypothese H 0 gilt. In unserem Beispiel ist die Signifikanz p < 0,001. Somit kann von einem signifikanten (bedeutsamen) statistischen Unterschied zwischen den 3 Platzierungen der Margarine hinsichtlich der Absatzmenge ausgegangen werden. Die Effektgröße wird bei der nächsten Aufgabe behandelt. Zweifaktorielle Varianzanalyse Problem Der Leiter der Supermarktkette will nicht nur wissen welchen Einfluss (1) die Warenplatzierung auf den Absatz hat, sondern auch, ob (2) die Verpackungsart den Absatz mitbestimmt. Dazu wird das Experiment erweitert. Bei drei Platzierungsarten und zwei Verpackungsarten ( Becher und Papier ) ergeben sich genau 3 x 2 experimentelle Kombinationen der Faktorstufen. Dies ist daher ein 3x2-faktorielles Design. Die notwendige Zahl von Teilstichproben im Experiment erhöht sich also auf sechs. Demnach werden sechs annähernd gleiche Supermärkte ausgesucht und wiederum wird die vereinfachende Annahme gesetzt, dass mögliche äußere Einflüsse bis auf Zufallsabweichungen jeweils einen gleich starken Einfluss auf die 6 Teilstichproben haben. Folgende Absatzmengen in kg pro Kassenvorgängen in sechs Supermärkten wurden erhoben: Platzierung Normalregal Zweitplatzierung Kühlregal Tag Verpackung Becher Papier In einer F-Werte-Tabelle würde man bei einem Signifikanzniveau von 1 % und bei 2 Freiheitsgraden im Zähler und 12 Freiheitsgraden im Nenner den theoretischen F-Wert von 6,93 ablesen können.

9 9 Aufgabe 3 1. Erweitern Sie Ihre SPSS-Datei mit den in der o.a. Tabelle stehenden Daten. 2. Suchen Sie Antworten auf die drei Fragen: (a) Hat die Warenplatzierung Einfluss auf den Absatz? Wie groß ist der Effekt? (b) Hat die Verpackung Einfluss auf den Absatz? Wie groß ist der Effekt? (c) Besteht eine Wechselwirkung zwischen Verpackung und Warenplatzierung? Wie groß ist der Effekt? Lösung Die Fragestellung der Varianzanalyse ist im faktoriellen Design gegenüber der einfachen Varianzanalyse erweitert. Zunächst werden die beiden Faktoren betrachtet. Falls für jede Kombination von Faktorausprägungen mehr als eine Beobachtung vorliegt (K > 1), erlaubt die zweifaktorielle Varianzanalyse gegenüber der einfaktoriellen zusätzlich die Erfassung des gleichzeitigen Wirksamwerdens zweier Faktoren, indem das Vorliegen von Wechselwirkungen (Interaktionen) zwischen den Faktoren getestet wird. So mag beispielsweise die Vermutung gerechtfertigt erscheinen, dass der durchschnittliche Absatz von Margarine in Becherform anders auf die Variation der Platzierung reagiert als die Papierverpackung, etwa, weil ein Weichwerden der Margarine im Normalregal eher auffällt als im Kühlregal. Eine einfache und sehr anschauliche Methode, das Vorhandensein von Interaktion zu prüfen ist ein Plot der Faktorstufenmittelwerte. Keine Interaktionen liegen vor, wenn die Verbindungslinien der Mittelwerte (die hier nur zur Verdeutlichung eingezeichnet sind) parallel laufen. Nichtparallele Verläufe sind ein klares Indiz für das Vorhandensein und die Stärke von Interaktionen. Im vorliegenden Fall bietet sich ein Anhaltspunkt für eine schwache Interaktion von Verpackung und Platzierung, da der Wirkungsunterschied zwischen Becher und Papier im Kühlregal im Analyseergebnis nahezu verschwindet, möglicherweise, weil dort von den Käufern ein Unterschied nicht wahrgenommen wird.

10 10 Analyse der Abweichungsquadrate (Quadrate der Abweichungen vom Mittelwert) Die Absatzmenge wird bestimmt vom (1) Einfluss des Faktors Platzierung, (2) Einfluss des Faktors Verpackungsart, (3) Einfluss der Interaktion zwischen den beiden Faktoren sowie (4) Zufallseffekt nicht kontrollierter Einflüsse. Die Gesamtstreuung teilt sich im zweifaktoriellen Design folgendermaßen auf: Gesamtstreuung SS t Streuung zwischen den Gruppen SS b (4) Streuung innerhalb der Gruppen SS w (1) Streuung durch Platzierung SS A (2) Streuung durch Verpackung SS B (3) Streuung durch Wechselwirkung von Platzierung und Verpackung SS AxB Berechnung mit SPSS Anzahl der Fälle je Faktorstufe: Faktoren Faktorstufen N Verpackungsart Becher 15 Papier 15 Platzierung Normalregal 10 Zweitplatzierung 10 Kühlregal 10 Abhängige Variable: Absatzmenge Quelle Quadratsumme Mittel der Partielles df F Signifikanz vom Typ III Quadrate Eta-Quadrat Korrigiertes Modell 2233,500 a 5 446,700 45,045,000,904 Konstanter Term 76507, , ,042,000,997 VERPACK 240, ,833 24,286,000,503 REGAL 1944, ,100 98,027,000,891 VERPACK * REGAL 48, ,233 2,444,108,169 Fehler 238, ,917 Gesamt 78979, Korrigierte Gesamtvariation 2471, a. R-Quadrat =,904 (korrigiertes R-Quadrat =,884) Varianzzerlegung SS t (Gesamtstreuung) = 2471,5 SS A (Streuung erklärt durch Platzierung Haupteffekt Platzierung) = 1944,2 SS B (Streuung erklärt durch Verpackung Haupteffekt Verpackung) = 240,833 SS AxB (Streuung erklärt durch Wechselwirkung Interaktionseffekt) = 48,467 SS w (Reststreuung, innerhalb der Zellen) = 238,0 SS b (Abweichungen zwischen den Gruppenmitteln und dem Gesamtmittel) = 2233,5

11 11 Die Gesamtstreuung teilt sich im konkreten zweifaktoriellen Design folgendermaßen auf: Gesamtstreuung SS t = 2471,5 Streuung zwischen den Gruppen SS b = 2233,5 Streuung innerhalb der Gruppen SS w = 238,0 Streuung durch Platzierung SS A = 1944,2 Streuung durch Verpackung SS B = 240,833 Streuung durch Wechselwirkung von Platzierung und Verpackung SS AxB = 48,467 Die empirischen Varianzen (MS = mean (sum of) squares, mittlere quadratische Abweichung) werden berechnet, indem die Streuungen durch die Zahl der Freiheitsgrade dividiert werden: 1944,2 MS Regal = = 972,1 2 Die Ermittlung des empirischen F-Wertes erfolgt durch Division der MS der betrachteten Faktoren durch die MS der Reststreuung: 972,1 F = = 98,027 9,917 Übersteigt der empirische F-Wert den theoretischen F-Wert, kann die Nullhypothese verworfen werden. SPSS gibt den p-wert der Signifikanzprüfung gleich mit aus. In unserem Fall ist für den Faktor Platzierung p < 0,001. Die Nullhypothese darf also zugunsten der Alternativhypothese verworfen werden. Antworten Hat die Warenplatzierung Einfluss auf den Absatz? Ja, die Warenplatzierung hat einen signifikanten Einfluss auf den Absatz. Der alleinige Faktor Platzierung klärt 89,1% der Absatzvarianz auf. Hat die Verpackung Einfluss auf den Absatz? Ja, die Verpackungsart hat einen signifikanten Einfluss auf den Absatz. Der alleinige Faktor Verpackungsart klärt 50,3% der Absatzvarianz auf. Besteht eine Wechselwirkung zwischen Verpackung und Warenplatzierung? Nein, es lässt sich keine signifikante Interaktion zwischen den beiden Faktoren Platzierung und Verpackungsart nachweisen (Irrtumswahrscheinlichkeit p = 10,8%). Mit dem gesamten Modell können 90,4% Varianz der abhängigen Variablen Absatzmenge aufgeklärt werden.

12 12 Kovarianzanalyse Eine Erweiterung der Varianzanalyse liegt in der Einbeziehung von Kovariaten in die Analyse ((M)ANCOVA, (Multivariate) Analysis of Covariance). Kovariaten sind metrisch skalierte unabhängige, d.h. erklärende Variablen in einem faktoriellen Design. Häufig ist dem Forscher bewusst, dass es außer den Faktoren Einflussgrößen auf die abhängige Variable gibt, deren Einbeziehung sinnvoll und notwendig sein kann. Wenn in unserem Margarine-Beispiel der Absatzpreis in den 6 Zellen der Erhebung unterschiedlich ist (z. B. aufgrund unterschiedlicher Preise je Verpackungsart oder aufgrund unterschiedlicher Preise für Zweitplatzierung), dann würde die Reststreuung nicht nur zufällige, sondern auch systematische Einflüsse enthalten. Indem der Preis als Kovariate eingeführt wird, kann ein Teil der Gesamtvarianz möglicherweise auf die Variation des Preises zurückgeführt werden, was sich bei Nichterfassung in einer erhöhten Reststreuung (SSW) ausdrücken würde. Üblicherweise geht die Varianzanalyse bei einem Untersuchungsdesign mit Kovariaten ( Kovarianzanalyse ) so vor, dass zunächst der auf die Kovariaten entfallende Varianzanteil ermittelt wird. Dieses entspricht im Prinzip einer vorgeschalteten Regressionsanalyse. Die Beobachtungswerte der abhängigen Variablen werden um den durch die Regressionsanalyse ermittelten Einfluss korrigiert und anschließend der Varianzanalyse unterzogen. Dadurch wird rechnerisch der Einfluss der Kovariaten bereinigt. Problem Der Leiter der Supermarktkette gibt keine Ruhe. Nun will er zusätzlich überprüfen, ob nicht außer den Faktoren (1) Verpackungsart und (2) Platzierung auch (3) der Verkaufspreis sowie (4) die durchschnittliche Temperatur im Supermarkt die nachgefragte Menge erklärt. Aufgabe 4 1. Erweitern Sie Ihren Datensatz mit den u.a. Beobachtungswerten. 2. Berechnen Sie den Einfluss aller Faktoren bzw. Variablen auf die Absatzmenge. 3. Interpretieren Sie die Ergebnisse. Verpackung Becher Papier Platzierung Tag Absatz Preis Temp. Absatz Preis Temp. Normalregal , , , , , , , , , ,09 20 Zweitregal , , , , , , , , , ,09 18 Kühlregal , , , , , , , , , ,13 18

13 13 Lösung Die Aufnahme der Kovariaten PREIS und TEMP in das Modell erfolgt wiederum im Dialogfeld Univariat durch Übertragen dieser Variablen in das Feld Kovariate. Durch den erneuten Aufruf der Prozedur und eine neue Analyse zeigt sich folgendes Ergebnis: Abhängige Variable: Absatzmenge Quadratsumme Mittel der Partielles Quelle vom Typ III df Quadrate F Signifikanz Eta-Quadrat Korrigiertes Modell 2247,511 a 7 321,073 31,536,000,909 Konstanter Term 8, ,815,866,362,038 PREIS 5, ,010,492,490,022 TEMP 4, ,884,480,496,021 REGAL 1207, ,941 59,319,000,844 VERPACK 82, ,605 8,113,009,269 REGAL * VERPACK 13, ,610,649,532,056 Fehler 223, ,181 Gesamt 78979, Korrigierte Gesamtvariation 2471, a. R-Quadrat =,909 (korrigiertes R-Quadrat =,881) Wiederum finden wir in der ersten Spalte der Tabelle die Zerlegung der Gesamtstreuung in die erklärte Streuung (Korrigiertes Modell) und in die Reststreuung (Fehler). Die mittleren Zeilen zeigen nunmehr in der ersten Spalte eine Aufteilung der durch die Kovariaten und durch die Faktoren erklärten Streuung (Korrigiertes Modell) in ihre jeweiligen Einzelbeiträge (PREIS, TEMP, REGAL, VERPACK, REGAL*VERPACK). Die übrigen Spalten enthalten die Freiheitsgrade (df), die empirischen F-Werte (F), das Signifikanzniveau der F-Statistik (Signifikanz) sowie die partiellen Eta 2 -Werte (Partielles Eta-Quadrat). Antwort Der SPSS-Output verdeutlicht, dass (1) die Platzierung der Margarine den größten Einfluss auf die Absatzmenge hat (84% Varianzaufklärung, höchst signifikant), (2) die Verpackungsart einen deutlichen, aber geringeren Einfluss auf die Absatzmenge hat (27% Varianzaufklärung, sehr signifikant), (3) kein signifikanter Interaktionseffekt zwischen Verpackungsart und Platzierung nachweisbar ist, (4) für eine gegebene Vertrauenswahrscheinlichkeit von 95% der Einfluss der Kovariaten (a) Preis und (b) Temperatur im Supermarkt auf die abhängige Variable Absatzmenge als nicht signifikant einzustufen ist, (5) das Modell insgesamt 91% der Varianz aufklärt und somit mit sehr gut beurteilt werden kann.

Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse

Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse Univariate Varianz- und Kovarianzanlyse, Multivariate Varianzanalyse und Varianzanalyse mit Messwiederholung finden sich unter

Mehr

Varianzanalyse (ANOVA: analysis of variance)

Varianzanalyse (ANOVA: analysis of variance) Varianzanalyse (AOVA: analysis of variance) Einfaktorielle VA Auf der Basis von zwei Stichproben wird bezüglich der Gleichheit der Mittelwerte getestet. Variablen müssen Variablen nur nominalskaliert sein.

Mehr

Webergänzung zu Kapitel 10

Webergänzung zu Kapitel 10 Webergänzung zu Kapitel 10 10.1.4 Varianzanalyse (ANOVA: analysis of variance) Im Kapitel 10 haben wir uns hauptsächlich mit Forschungsbeispielen beschäftigt, die nur zwei Ergebnissätze hatten (entweder

Mehr

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen Ergebnisse 77 5 Ergebnisse Das folgende Kapitel widmet sich der statistischen Auswertung der Daten zur Ü- berprüfung der Hypothesen. Die hier verwendeten Daten wurden mit den in 4.3 beschriebenen Instrumenten

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Varianzanalyse Statistik

Mehr

Einfache Varianzanalyse für abhängige

Einfache Varianzanalyse für abhängige Einfache Varianzanalyse für abhängige Stichproben Wie beim t-test gibt es auch bei der VA eine Alternative für abhängige Stichproben. Anmerkung: Was man unter abhängigen Stichproben versteht und wie diese

Mehr

V A R I A N Z A N A L Y S E

V A R I A N Z A N A L Y S E V A R I A N Z A N A L Y S E Ziel / Funktion: statistische Beurteilung des Einflusses von nominal skalierten (kategorialen) Faktoren auf intervallskalierte abhängige Variablen Vorteil: die Wirkung von mehreren,

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

FAKTORIELLE VERSUCHSPLÄNE. Andreas Handl

FAKTORIELLE VERSUCHSPLÄNE. Andreas Handl FAKTORIELLE VERSUCHSPLÄNE Andreas Handl 1 Inhaltsverzeichnis 1 Versuchsplanung 4 2 Einfaktorielle Varianzanalyse 6 2.1 DieAnnahmen... 6 2.2 Die ANOVA-Tabelle und der F -Test... 6 2.3 Versuche mit zwei

Mehr

Fortgeschrittene Statistik Logistische Regression

Fortgeschrittene Statistik Logistische Regression Fortgeschrittene Statistik Logistische Regression O D D S, O D D S - R A T I O, L O G I T T R A N S F O R M A T I O N, I N T E R P R E T A T I O N V O N K O E F F I Z I E N T E N, L O G I S T I S C H E

Mehr

Varianzanalyse * (1) Varianzanalyse (2)

Varianzanalyse * (1) Varianzanalyse (2) Varianzanalyse * (1) Einfaktorielle Varianzanalyse (I) Die Varianzanalyse (ANOVA = ANalysis Of VAriance) wird benutzt, um Unterschiede zwischen Mittelwerten von drei oder mehr Stichproben auf Signifikanz

Mehr

Varianzanalyse ANOVA

Varianzanalyse ANOVA Varianzanalyse ANOVA Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/23 Einfaktorielle Varianzanalyse (ANOVA) Bisher war man lediglich in der Lage, mit dem t-test einen Mittelwertsvergleich für

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang

Mehr

Kapitel 6: Zweifaktorielle Varianzanalyse

Kapitel 6: Zweifaktorielle Varianzanalyse Kapitel 6: Zweifaktorielle Varianzanalyse Durchführung einer zweifaktoriellen Varianzanalyse ohne Messwiederholung 1 Effektstärke und empirische Teststärke einer zweifaktoriellen Varianzanalyse ohne Messwiederholung

Mehr

Varianzanalyse. Seminar: Multivariate Verfahren Dr. Thomas Schäfer. Datum: 25. Mai 2010

Varianzanalyse. Seminar: Multivariate Verfahren Dr. Thomas Schäfer. Datum: 25. Mai 2010 Varianzanalyse Seminar: Multivariate Verfahren Dozent: Dr. Thomas Schäfer Referenten: Ralf Hopp, Michaela Haase, Tina Giska Datum: 25. Mai 2010 Gliederung I Theorieteil 1. Das Prinzip der Varianzanalyse

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Übungsserie Nr. 10 mit Lösungen

Übungsserie Nr. 10 mit Lösungen Übungsserie Nr. 10 mit Lösungen 1 Ein Untersuchungsdesign sieht einen multivariaten Vergleich einer Stichprobe von Frauen mit einer Stichprobe von Männern hinsichtlich der Merkmale X1, X2 und X3 vor (Codierung:

Mehr

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1 Inhaltsverzeichnis Regressionsanalyse... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-8)... 2 1. Allgemeine Beziehungen... 3 2. 'Best Fit'... 3 3. 'Ordinary Least Squares'... 4 4. Formel der Regressionskoeffizienten...

Mehr

Kapitel 7: Varianzanalyse mit Messwiederholung

Kapitel 7: Varianzanalyse mit Messwiederholung Kapitel 7: Varianzanalyse mit Messwiederholung Durchführung einer einfaktoriellen Varianzanalyse mit Messwiederholung 1 Durchführung einer zweifaktoriellen Varianzanalyse mit Messwiederholung auf einem

Mehr

Einfache Varianzanalyse für unabhängige Stichproben

Einfache Varianzanalyse für unabhängige Stichproben Einfache Varianzanalyse für unabhängige Stichproben VARIANZANALYSE Die Varianzanalyse ist das dem t-test entsprechende Mittel zum Vergleich mehrerer (k 2) Stichprobenmittelwerte. Sie wird hier mit VA abgekürzt,

Mehr

8. Methoden der klassischen multivariaten Statistik

8. Methoden der klassischen multivariaten Statistik 8. Methoden der klassischen multivariaten Statistik 8.1. Darstellung von Daten Voraussetzungen auch in diesem Kapitel: Grundgesamtheit (Datenraum) Ω von Objekten (Fällen, Instanzen), denen J-Tupel von

Mehr

Hypothesentests mit SPSS

Hypothesentests mit SPSS Beispiel für eine zweifaktorielle Varianzanalyse mit Messwiederholung auf einem Faktor (univariate Lösung) Daten: POKIII_AG4_V06.SAV Hypothese: Die physische Attraktivität der Bildperson und das Geschlecht

Mehr

Leseprobe. Wilhelm Kleppmann. Versuchsplanung. Produkte und Prozesse optimieren ISBN: 978-3-446-42033-5. Weitere Informationen oder Bestellungen unter

Leseprobe. Wilhelm Kleppmann. Versuchsplanung. Produkte und Prozesse optimieren ISBN: 978-3-446-42033-5. Weitere Informationen oder Bestellungen unter Leseprobe Wilhelm Kleppmann Versuchsplanung Produkte und Prozesse optimieren ISBN: -3-44-4033-5 Weitere Informationen oder Bestellungen unter http://www.hanser.de/-3-44-4033-5 sowie im Buchhandel. Carl

Mehr

Studiendesign/ Evaluierungsdesign

Studiendesign/ Evaluierungsdesign Jennifer Ziegert Studiendesign/ Evaluierungsdesign Praxisprojekt: Nutzerorientierte Evaluierung von Visualisierungen in Daffodil mittels Eyetracker Warum Studien /Evaluierungsdesign Das Design einer Untersuchung

Mehr

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Einfaktorielle Versuchspläne 27/40 Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Abweichung Einfach Differenz Helmert Wiederholt Vergleich Jede Gruppe mit Gesamtmittelwert

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1. LÖSUNG 7 a)

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1. LÖSUNG 7 a) LÖSUNG 7 a) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Aufrufen der Varianzanalyse: "Analysieren", "Mittelwerte vergleichen", "Einfaktorielle ANOVA ", "Abhängige Variablen:" TVHOURS;

Mehr

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Hypothese: Die Beschäftigung mit Kunst ist vom Bildungsgrad abhängig. 1. Annahmen Messniveau: Modell: Die Skala zur Erfassung der

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Etwas positive Tendenz ist beim Wechsel der Temperatur von 120 auf 170 zu erkennen.

Etwas positive Tendenz ist beim Wechsel der Temperatur von 120 auf 170 zu erkennen. Explorative Datenanalyse Erstmal die Grafiken: Aufreisskraft und Temperatur 3 1-1 N = 1 15 17 Temperatur Diagramm 3 1 95% CI -1 N = 1 15 17 Temperatur Etwas positive Tendenz ist beim Wechsel der Temperatur

Mehr

Kapitel 6: Zweifaktorielle Varianzanalyse

Kapitel 6: Zweifaktorielle Varianzanalyse Kapitel 6: Zweifaktorielle Varianzanalyse Durchführung einer zweifaktoriellen Varianzanalyse ohne Messwiederholung Dieser Abschnitt zeigt die Durchführung der in Kapitel 6 behandelten zweifaktoriellen

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

? Unterscheiden sich Burschen und Mädchen im Ausmaß der Mithilfe im Haushalt?

? Unterscheiden sich Burschen und Mädchen im Ausmaß der Mithilfe im Haushalt? 341 i Metrische und kategoriale Merkmale An einer Beobachtungseinheit werden metrische und kategoriale Variable erhoben. Beispiel: Hausarbeit von Teenagern (Stunden/Woche) 25 15 STUNDEN 5-5 weiblich männlich?

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Im Modell der Varianzanalyse (mit festen Effekten) ist das. aus dem Durchschnittsmesswert für y plus dem Effekt des.

Im Modell der Varianzanalyse (mit festen Effekten) ist das. aus dem Durchschnittsmesswert für y plus dem Effekt des. Einfatorielle Varianzanalyse Varianzanalyse untersucht den Einfluss verschiedener Bedingungen ( = nominalsalierte(r) Variable(r)) auf eine metrische Variable. Die Bedingungen heißen auch atoren und ihre

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Rasch, Friese, Hofmann & Naumann (006). Quantitative Methoden. Band (. Auflage). Heidelberg: Springer. Kapitel 5: Einfaktorielle Varianzanalyse Berechnen der Teststärke a priori bzw. Stichprobenumfangsplanung

Mehr

Florian Frötscher und Demet Özçetin

Florian Frötscher und Demet Özçetin Statistische Tests in der Mehrsprachigkeitsforschung Aufgaben, Anforderungen, Probleme. Florian Frötscher und Demet Özçetin florian.froetscher@uni-hamburg.de SFB 538 Mehrsprachigkeit Max-Brauer-Allee 60

Mehr

Varianzananalyse. How to do

Varianzananalyse. How to do Varianzananalyse How to do Die folgende Zusammenfassung zeigt beispielhaft, wie eine Varianzanalyse mit SPSS durchgeführt wird und wie die Ergebnisse in einem Empra-Bericht oder in einer Bachelor- oder

Mehr

Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear":

Das Dialogfeld für die Regressionsanalyse (Lineare Regression) findet sich im Statistik- Menu unter Regression-Linear: Lineare Regression Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear": Im einfachsten Fall werden mehrere Prädiktoren (oder nur

Mehr

DOE am Beispiel Laserpointer

DOE am Beispiel Laserpointer DOE am Beispiel Laserpointer Swen Günther Ein wesentliches Ziel im Rahmen der Neuproduktentwicklung ist die aus Kundesicht bestmögliche, d.h. nutzenmaximale Konzeption des Produktes zu bestimmen (vgl.

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Kapitel 5: Einfaktorielle Varianzanalyse Durchführung einer einfaktoriellen Varianzanalyse ohne Messwiederholung Dieser Abschnitt zeigt die Durchführung der in Kapitel 5 vorgestellten einfaktoriellen Varianzanalyse

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

Anwendungsaufgaben. Effektgröße bei df Zähler = df A = 1 und N = 40 (zu berechnen aus df Nenner ): Der aufgedeckte Effekt beträgt also etwa 23 %.

Anwendungsaufgaben. Effektgröße bei df Zähler = df A = 1 und N = 40 (zu berechnen aus df Nenner ): Der aufgedeckte Effekt beträgt also etwa 23 %. Anhang A: Lösungen der Aufgaben 39 beiden Kombinationen sehr hoch ist. (Dieses Ergebnis wäre aber in diesem Beispiel nicht plausibel.) 5. Der Faktor A und die Wechselwirkung werden signifikant: Lärm hat

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen einer Population anhand eines Merkmals mit zwei oder mehr

Mehr

Beispiel 1: Zweifache Varianzanalyse für unabhängige Stichproben

Beispiel 1: Zweifache Varianzanalyse für unabhängige Stichproben Beispiel 1: Zweifache Varianzanalyse für unabhängige Stichproben Es wurden die Körpergrößen von 3 Versuchspersonen, sowie Alter und Geschlecht erhoben. (Jeweils Größen pro Faktorstufenkombination). (a)

Mehr

Aufgaben zu Kapitel 5:

Aufgaben zu Kapitel 5: Aufgaben zu Kapitel 5: Aufgabe 1: Ein Wissenschaftler untersucht, in wie weit die Reaktionszeit auf bestimmte Stimuli durch finanzielle Belohnung zu steigern ist. Er möchte vier Bedingungen vergleichen:

Mehr

Beispiel für eine multivariate Varianzanalyse (MANOVA) Daten: POKIV_Terror_V12.sav

Beispiel für eine multivariate Varianzanalyse (MANOVA) Daten: POKIV_Terror_V12.sav Beispiel für eine multivariate Varianzanalyse () Daten: POKIV_Terror_V12.sav Es soll überprüft werden, inwieweit das ATB-Syndrom (Angst vor mit den drei Subskalen affektive Angst von, Terrorpersistenz,

Mehr

Kapitel 6: Zweifaktorielle Varianzanalyse

Kapitel 6: Zweifaktorielle Varianzanalyse Kapitel 6: Zweifaktorielle Varianzanalyse Berechnen der Teststärke a priori bzw. Stichprobenumfangsplanung 1 Teststärkebestimmung a posteriori 4 Berechnen der Effektgröße f² aus empirischen Daten und Bestimmung

Mehr

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression Institut für Soziologie Methoden 2 Regressionsanalyse I: Einfache lineare Regression Programm Anwendungsbereich Vorgehensweise Interpretation Annahmen Zusammenfassung Übungsaufgabe Literatur # 2 Anwendungsbereich

Mehr

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen.

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen. Modul G.1 WS 07/08: Statistik 17.01.2008 1 Wiederholung Kovarianz und Korrelation Kovarianz = Maß für den linearen Zusammenhang zwischen zwei Variablen x und y Korrelation Die Korrelation ist ein standardisiertes

Mehr

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.) ue biostatistik: nichtparametrische testverfahren / ergänzung 1/6 h. Lettner / physik Statistische Testverfahren Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Mehr

Name (in Druckbuchstaben): Matrikelnummer: Unterschrift:

Name (in Druckbuchstaben): Matrikelnummer: Unterschrift: 20-minütige Klausur zur Vorlesung Lineare Modelle im Sommersemester 20 PD Dr. Christian Heumann Ludwig-Maximilians-Universität München, Institut für Statistik 2. Oktober 20, 4:5 6:5 Uhr Überprüfen Sie

Mehr

Grundlagen der Inferenzstatistik

Grundlagen der Inferenzstatistik Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,

Mehr

Versuchsplanung. Inhalt. Grundlagen. Faktor-Effekt. Allgemeine faktorielle Versuchspläne. Zweiwertige faktorielle Versuchspläne

Versuchsplanung. Inhalt. Grundlagen. Faktor-Effekt. Allgemeine faktorielle Versuchspläne. Zweiwertige faktorielle Versuchspläne Inhalt Versuchsplanung Faktorielle Versuchspläne Dr. Tobias Kiesling Allgemeine faktorielle Versuchspläne Faktorielle Versuchspläne mit zwei Faktoren Erweiterungen Zweiwertige

Mehr

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Analytische Statistik I Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Testen Anpassungstests (goodness of fit) Weicht eine gegebene Verteilung signifikant von einer bekannten

Mehr

Der χ 2 -Test (Chiquadrat-Test)

Der χ 2 -Test (Chiquadrat-Test) Der χ 2 -Test (Chiquadrat-Test) Der Grundgedanke Mit den χ 2 -Methoden kann überprüft werden, ob sich die empirischen (im Experiment beobachteten) Häufigkeiten einer nominalen Variable systematisch von

Mehr

Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und

Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und β-fehler? Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de

Mehr

Chi-Quadrat Verfahren

Chi-Quadrat Verfahren Chi-Quadrat Verfahren Chi-Quadrat Verfahren werden bei nominalskalierten Daten verwendet. Die einzige Information, die wir bei Nominalskalenniveau zur Verfügung haben, sind Häufigkeiten. Die Quintessenz

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/

Mehr

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Speziell im Zusammenhang mit der Ablehnung der Globalhypothese werden bei einer linearen Einfachregression weitere Fragestellungen

Mehr

Statistische Auswertung:

Statistische Auswertung: Statistische Auswertung: Die erhobenen Daten mittels der selbst erstellten Tests (Surfaufgaben) Statistics Punkte aus dem Punkte aus Surftheorietest Punkte aus dem dem und dem Surftheorietest max.14p.

Mehr

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten.

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten. Statistik für Kommunikationswissenschaftler Wintersemester 2009/200 Vorlesung Prof. Dr. Helmut Küchenhoff Übung Cornelia Oberhauser, Monia Mahling, Juliane Manitz Thema 4 Homepage zur Veranstaltung: http://www.statistik.lmu.de/~helmut/kw09.html

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Rasch, Friese, Hofmann & Naumann (010). Quantitative Methoden. Band (3. Auflage). Heidelberg: Springer. Kapitel 5: Einfaktorielle Varianzanalyse Berechnen der Teststärke a priori bzw. Stichprobenumfangsplanung

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst Excel Edition ^ Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3

Mehr

Marktforschung I. Marktforschung I 2

Marktforschung I. Marktforschung I 2 Marktforschung I Marktforschung I Einführung in die Testtheorie (Toporowski) Mathematische Grundlagen (Toporowski) Varianzanalyse (Toporowski) Regressionsanalyse (Boztuğ) Diskriminanzanalyse (Hammerschmidt)

Mehr

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die Statistik für Kommunikationswissenschaftler Wintersemester 2010/2011 Vorlesung Prof. Dr. Nicole Krämer Übung Nicole Krämer, Cornelia Oberhauser, Monia Mahling Lösung Thema 9 Homepage zur Veranstaltung:

Mehr

Überblick über die Verfahren für Ordinaldaten

Überblick über die Verfahren für Ordinaldaten Verfahren zur Analyse ordinalskalierten Daten 1 Überblick über die Verfahren für Ordinaldaten Unterschiede bei unabhängigen Stichproben Test U Test nach Mann & Whitney H Test nach Kruskal & Wallis parametrische

Mehr

Hypothesentests mit SPSS. Beispiel für einen t-test

Hypothesentests mit SPSS. Beispiel für einen t-test Beispiel für einen t-test Daten: museum-f-v04.sav Hypothese: Als Gründe, in ein Museum zu gehen, geben mehr Frauen als Männer die Erweiterung der Bildung für Kinder an. Dies hängt mit der Geschlechtsrolle

Mehr

Prüfung eines Datenbestandes

Prüfung eines Datenbestandes Prüfung eines Datenbestandes auf Abweichungen einzelner Zahlen vom erwarteten mathematisch-statistischen Verhalten, die nicht mit einem Zufall erklärbar sind (Prüfung auf Manipulationen des Datenbestandes)

Mehr

6.2 Regressionsanalyse

6.2 Regressionsanalyse c-kennzahlensystem (ROCI) 6. Regressionsanalyse Die Regressionsanalyse zählt zu den wichtigsten Analysemethoden des Kommunikationscontrollings und hat ihre tiefen Wurzeln in der Statistik. Im Rahmen des

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

Anhang A: Fragebögen und sonstige Unterlagen

Anhang A: Fragebögen und sonstige Unterlagen Anhang Anhang A: Fragebögen und sonstige Unterlagen A.: Flyer zur Probandenrekrutierung 46 A.: Fragebogen zur Meditationserfahrung 47 48 A.3: Fragebogen Angaben zur Person 49 5 5 A.4: Termin- und Einladungsschreiben

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Master of Science in Pflege

Master of Science in Pflege Master of Science in Pflege Modul: Statistik Einführung in die Varianzanalyse (ANOVA) / ANCOVA / ANOVA mit Messwiederholung November 2012 Prof. Dr. Jürg Schwarz Folie 2 Programm 7. November 2012: Vormittag

Mehr

Messgeräte: Mess-System-Analyse und Messmittelfähigkeit

Messgeräte: Mess-System-Analyse und Messmittelfähigkeit Messgeräte: Mess-System-Analyse und Messmittelfähigkeit Andreas Berlin 14. Juli 2009 Bachelor-Seminar: Messen und Statistik Inhalt: 1 Aspekte einer Messung 2 Mess-System-Analyse 2.1 ANOVA-Methode 2.2 Maße

Mehr

Einfache statistische Testverfahren

Einfache statistische Testverfahren Einfache statistische Testverfahren Johannes Hain Lehrstuhl für Mathematik VIII (Statistik) 1/29 Hypothesentesten: Allgemeine Situation Im Folgenden wird die statistische Vorgehensweise zur Durchführung

Mehr

3.3 Das allgemeine lineare Modell (ALM), Methode der kleinsten Quadrate

3.3 Das allgemeine lineare Modell (ALM), Methode der kleinsten Quadrate 31 und 31 und (), Methode der 33 Das allgemeine (), Methode der kleinsten Quadrate 37 Modelle mit Messwiederholungen 1 / 113 Eine grundsätzliche Bemerkung zu Beginn Es bestehen viele Ähnlichkeiten zwischen

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test 1 Der zweidimensionale Chi²-Test 4 Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen

Mehr

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG Statistische Methoden In der vorliegenden fiktiven Musterstudie wurden X Patienten mit XY Syndrom (im folgenden: Gruppe XY) mit Y Patienten eines unauffälligem

Mehr

Teil II: Einführung in die Statistik

Teil II: Einführung in die Statistik Teil II: Einführung in die Statistik (50 Punkte) Bitte beantworten Sie ALLE Fragen. Es handelt sich um multiple choice Fragen. Sie müssen die exakte Antwortmöglichkeit angeben, um die volle Punktzahl zu

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS Sommersemester 2009, Statistik mit SPSS 26. August 2009 26. August 2009 Statistik Dozentin: mit Anja SPSS Mays 1 Bivariate Datenanalyse, Überblick bis Freitag heute heute Donnerstag Donnerstag Freitag

Mehr

Analytische Statistik II

Analytische Statistik II Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Das Testen von Hypothesen Während die deskriptive Statistik die Stichproben nur mit Hilfe quantitativer Angaben charakterisiert,

Mehr

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem

Mehr

Einführung in die statistische Datenanalyse I

Einführung in die statistische Datenanalyse I Einführung in die statistische Datenanalyse I Inhaltsverzeichnis 1. EINFÜHRUNG IN THEORIEGELEITETES WISSENSCHAFTLICHES ARBEITEN 2 2. KRITIERIEN ZUR AUSWAHL STATISTISCH METHODISCHER VERFAHREN 2 3. UNIVARIATE

Mehr

Regression und Korrelation

Regression und Korrelation Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandeltdie VerteilungeinerVariablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem dagegen

Mehr

Messung von Veränderungen. Dr. Julia Kneer Universität des Saarlandes

Messung von Veränderungen. Dr. Julia Kneer Universität des Saarlandes von Veränderungen Dr. Julia Kneer Universität des Saarlandes Veränderungsmessung Veränderungsmessung kennzeichnet ein Teilgebiet der Methodenlehre, das direkt mit grundlegenden Fragestellungen der Psychologie

Mehr

Auswerten mit Excel. Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro

Auswerten mit Excel. Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro Auswerten mit Excel Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro 1. Pivot-Tabellen erstellen: In der Datenmaske in eine beliebige Zelle klicken Registerkarte Einfügen

Mehr

Multivariate Statistik mit Mathematica und SPSS

Multivariate Statistik mit Mathematica und SPSS Multivariate Statistik mit Mathematica und SPSS von Dipl.-Math. Marco Schuchmann Dipl.-Math. Werner Sanns Seite 2 Varianzanalyse Die Informationen in diesem Buch entstammen langjähriger Erfahrung in Praxis

Mehr

Gestaltungsempfehlungen

Gestaltungsempfehlungen Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Lehren und Lernen mit Medien I Gestaltungsempfehlungen Überblick Auswahl der Empfehlungen Gestaltungseffekte Empirische

Mehr

Prüfen von Mittelwertsunterschieden: t-test

Prüfen von Mittelwertsunterschieden: t-test Prüfen von Mittelwertsunterschieden: t-test Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) t-test

Mehr

Kontingenzkoeffizient (nach Pearson)

Kontingenzkoeffizient (nach Pearson) Assoziationsmaß für zwei nominale Merkmale misst die Unabhängigkeit zweier Merkmale gibt keine Richtung eines Zusammenhanges an 46 o jl beobachtete Häufigkeiten der Kombination von Merkmalsausprägungen

Mehr

Statistik II (Sozialwissenschaften)

Statistik II (Sozialwissenschaften) Dr. Hans-Otfried Müller Institut für Mathematische Stochastik Fachrichtung Mathematik Technische Universität Dresden http://www.math.tu-dresden.de/sto/mueller/ Statistik II (Sozialwissenschaften) 2. Konsultationsübung,

Mehr

Aufgaben zu Kapitel 7:

Aufgaben zu Kapitel 7: Aufgaben zu Kapitel 7: Aufgabe 1: In einer Klinik sollen zwei verschiedene Therapiemethoden miteinander verglichen werden. Zur Messung des Therapieerfolges werden die vorhandenen Symptome einmal vor Beginn

Mehr

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Diese Übung beschäftigt sich mit der Skalierung von Variablen in Regressionsanalysen und mit asymptotischen Eigenschaften von OLS. Verwenden

Mehr

Diskriminanzanalyse Beispiel

Diskriminanzanalyse Beispiel Diskriminanzanalyse Ziel bei der Diskriminanzanalyse ist die Analyse von Gruppenunterschieden, d. h. der Untersuchung von zwei oder mehr Gruppen hinsichtlich einer Vielzahl von Variablen. Diese Methode

Mehr

Univariate/ multivariate Ansätze. Klaus D. Kubinger. Test- und Beratungsstelle. Effektgrößen

Univariate/ multivariate Ansätze. Klaus D. Kubinger. Test- und Beratungsstelle. Effektgrößen Univariate/ multivariate Ansätze Klaus D. Kubinger Effektgrößen Rasch, D. & Kubinger, K.D. (2006). Statistik für das Psychologiestudium Mit Softwareunter-stützung zur Planung und Auswertung von Untersuchungen

Mehr

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler DAS THEMA: INFERENZSTATISTIK II INFERENZSTATISTISCHE AUSSAGEN Standardfehler Konfidenzintervalle Signifikanztests Standardfehler der Standardfehler Interpretation Verwendung 1 ZUR WIEDERHOLUNG... Ausgangspunkt:

Mehr

Datenanalyse mit Excel. Wintersemester 2013/14

Datenanalyse mit Excel. Wintersemester 2013/14 Datenanalyse mit Excel 1 KORRELATIONRECHNUNG 2 Korrelationsrechnung Ziel der Korrelationsrechnung besteht im bivariaten Fall darin, die Stärke des Zusammenhangs zwischen zwei interessierenden statistischen

Mehr