Was ist Physik? Modell der Natur universell es war schon immer so

Save this PDF as:
Größe: px
Ab Seite anzeigen:

Download "Was ist Physik? Modell der Natur universell es war schon immer so"

Transkript

1 Was ist Physik? Modell der Natur universell es war schon immer so Kultur Aus was sind wir gemacht? Ursprung und Aufbau der Materie Von wo/was kommen wir? Ursprung und Aufbau von Raum und Zeit Wirtschaft Physik für Naturwissenschaftler - V1, Seite 1

2 Modell der Natur Was macht den Tisch zum Tisch, den Stuhl zum Stuhl, den Stein zum Stein? Idee und Qualität Höhlengleichnis von Platon Der Einfluss von Modellen auf unser Denken Der Effekt der Gewöhnung (Meter, Atom, Elektron,... ) Physik für Naturwissenschaftler - V1, Seite 2

3 Der Massenpunkt als ideale Modellvorstellung Modell für reale Objekte. Idealisierung eines ausgedehnten Körpers als mathematischer Punkt: hat deren Masse beliebig klein keine Rotationsfreiheitsgrade Sinnvoll für die Beschreibung der Bewegung des Schwerpunktes eines Körpers. Physik für Naturwissenschaftler - V1, Seite 3

4 Wie funktioniert Physik? Natur lässt sich mathematisch beschreiben exakte Wissenschaft Modelle/Hypothesen sind überprüfbar (Experiment) Näherungen, Vereinfachungen in Anlehnung an Modellvorstellung Hypothesen und deren Falsifikation - und in Wirklichkeit? Gödel und die Intuition - und der Schweiß Physik für Naturwissenschaftler - V1, Seite 4

5 Das Buch der Natur kann man nur verstehen, wenn man vorher die Sprache und die Buchstaben gelernt hat, in denen es geschrieben ist. Es ist in mathematischer Sprache geschrieben, und die Buchstaben sind Dreiecke, Kreise und andere geometrische Figuren, und ohne diese Hilfsmittel ist es Menschen unmöglich, auch nur ein Wort davon zu begreifen. Galileo Galilei ( ) Physik für Naturwissenschaftler - V1, Seite 5

6 Optische Täuschungen Nicht alles ist so, wie wir es zu sehen glauben. Unser Auge läßt sich leicht täuschen. Also - Achtung! Physik für Naturwissenschaftler - V1, Seite 6

7 Handwerkszeug der Physik Mathematik Messen Grundlegende Größen (und wie kommt man drauf?) SI-Einheiten Fehler Analyse Interpretation Physik für Naturwissenschaftler - V1, Seite 7

8 Mathematische Hilfsmittel Vektoren Analysis Näherungen (Taylorreihenentwicklung) Algebra, Differentialgeometrie, Topologie, Gruppentheorie Wahrscheinlichkeitstheorie, Statistik Numerische Methoden Physik für Naturwissenschaftler - V1, Seite 8

9 SI-Einheiten Eine physikalische Größe G ist gegeben durch einen numerischen Wert {G} und eine Einheit [G]: G = {G} [G]. Einige Größen sind einheitslos. Grösse Name der Einheit Symbol Länge Meter m Masse Kilogramm kg Zeit Sekunde s Strom Ampère A Temperatur Kelvin K Stoffmenge Mol mol Strahlungsintensität Candela cd Tabelle 1: SI-Einheiten Physik für Naturwissenschaftler - V1, Seite 9

10 Fehler unnötige Fehler: können durch Wiederholung des Experimentes behoben werden systematische Fehler: im Messapparat inhärent, oft schwierig abzuschätzen statistische (zufällige) Fehler: Fluktuationen von Experiment(ator) zu Experiment(ator) glückliche dumme Fehler (äußerst selten, viele Gegenbeispiele!) Physik für Naturwissenschaftler - V1, Seite 10

11 Kein Experiment ist je völlig sinnlos - es kann immer als schlechtes Beispiel dienen! Physik für Naturwissenschaftler - V1, Seite 11

12 Fehler II: Beispiel: Messung der Länge eines Tisches (direkte Messung) Messung ergibt 1,982 m Maßstab war bei 25 C geeicht, Messung fand bei 20 C statt: Expansionskoeffizient 0,0005/K Korrektur: Neues Resultat = altes Resultat mal (1 5 0,0005), also 1,977 m. Parallaxenfehler beim Ablesen: Systematisch 2 mm zu kurz gemessen, neues Resultat 1,979m. Physik für Naturwissenschaftler - V1, Seite 12

13 Fehler III: Genauigkeit (Accuracy): Maß dafür, wie nahe das experimentelle Resultat am wahren Wert liegt Präzision: Maß dafür, wie gut die Messungen sind, kein Bezug zu einem wahren Wert Problem: Der wahre Wert ist nicht bekannt! Physik für Naturwissenschaftler - V1, Seite 13

14 Fehler IV: Ersetzen wahren Wert durch den Mittelwert x. x. = 1 N N x i = 1 N (x 1 + x x N 1 + x N ) i=1 Definition des arithmetischen Mittels der Messwerte. Er wird sehr oft gebraucht, aber Physik für Naturwissenschaftler - V1, Seite 14

15 Es geht auch anders... Wahrscheinlichkeitsdichtefunktion f(x) gibt die Wahrscheinlichkeit an, dass eine Messung x im Intervall zwischen x und x + dx liegt. f ist normiert dx f(x) = 1 Erwartungswert E(x) = dx f(x) x Varianz σ 2 = E((x E(x)) 2 ) Physik für Naturwissenschaftler - V1, Seite 15

16 Beispiel für f(x): Die Gaußsche- oder Normalverteilung f(x) = 1 e (x x)2 2σ 2 2πσ x = f(x) f(x) 0.1 σ x Physik für Naturwissenschaftler - V1, Seite 16

17 Beispiele für Wahrscheinlichkeitsverteilungen Moleküle im Gas f( v) = 1 N dn dv = 4πv2 ( m 2πkT «) 3/2 mv2 e 2kT Die Fermi-Verteilung n(e) = 1 e (E E F)/kT + 1, wo E F die Fermi-Energie ist. Physik für Naturwissenschaftler - V1, Seite 17

18 Mittlerer Fehler der Einzelmessung σ x. = δx = 1 N 1 N (x i x) 2 i=1 Physik für Naturwissenschaftler - V1, Seite 18

19 Mittlerer Fehler des Mittelwertes σ x. = δ x = 1 N(N 1) N (x i x) 2 i=1 Achtung: zentraler Grenzwertsatz! Angabe des Messresultates: Resultat = x ± δ x Physik für Naturwissenschaftler - V1, Seite 19

20 Zentraler Grenzwertsatz Seien X 1, X 2,..., X N eine Menge von N unabhängigen zufälligen Variablen, wo X i eine Wahrscheinlichkeitsdichtefunktion P(x 1, x 2,..., n N ) hat mit Erwartungswert µ i und endlicher Varianz σi 2, dann hat die Größe X Norm = N i=1 x i N i=1 µ i N i=1 σ2 i eine kumulative Verteilungsfunktion, welche für große N eine Normalverteilung annähert. Physik für Naturwissenschaftler - V1, Seite 20

21 Indirekte Messungen Beispiel: Durchschnittliche Fallgeschwindigkeit Fallhöhe h, Fallzeit t v = h t direkte Messung von h und t (Urdaten im Protokoll festhalten!) indirekte Messung von v Physik für Naturwissenschaftler - V1, Seite 21

22 Fehlerfortpflanzung 8 f(x) = x 2 6 f(x) 4 2 f(x 0 ) + f (x 0 ) dx 0 1 1,5 2 2,5 3 x Physik für Naturwissenschaftler - V1, Seite 22

23 Fehlerfortpflanzung für den Fehler des Mittelwertes δf(x i ) = N ( ) 2 f 2 δx i x i i=1 Physik für Naturwissenschaftler - V1, Seite 23

24 Ideales Pendel und die Bestimmung von g T = 2π l/g g = 4π2 l T 2 l m F = m g Physik für Naturwissenschaftler - V1, Seite 24

25 Ideales Pendel und die Bestimmung von g II g l = 4π2 T 2 δg = g T = l 24π2 T 3 (4π ) 2 2 ( ) 2 4π2 δ l 2 l + 4 δ T 2 T 2 T 3 Physik für Naturwissenschaftler - V1, Seite 25

26 Mathematische Hilfsmittel - Vektoren a Ein Vektor a ist durch seine Länge (Betrag) a = a und (mindestens) einen Winkel α definiert. Für seine Darstellung ist ein Koordinatensystem erforderlich. α Beispiele für vektorielle Größen sind Geschwindigkeit, Ort, Impuls, Kraft, elektrisches Feld, Spin, etc. Vektoren können addiert, subtrahiert und multipliziert werden. Physik für Naturwissenschaftler - V1, Seite 26

27 Koordinatensysteme a z z a Das am Besten bekannte Koordinatensystem ist das kartesische (rechtwinklige), in welchem ein Vektor a durch seine Komponenten in x, y und z Richung gegeben ist, a x x ϕ ϑ a y y a = (a x, a y, a z ) Manchmal ist es aber günstiger, sogenannte Kugelkoordinaten zu verwenden, etwa um die Bewegung auf einer Kugeloberfläche zu beschreiben. Das nutzt man z.b. in der Navigation aus, wo man ja geographische Länge und Breite angibt. a = a sinϑcos ϕ sinϑsinϕ cos ϑ Physik für Naturwissenschaftler - V1, Seite 27

28 Leiter an der Wand F G Ein Beispiel für die Vektorrechnung ist links gegeben. Eine an der Wand lehnende Leiter kann nur in Ruhe bleiben, wenn die Summe der angreifende Kräfte (Vektoren) verschwindet 1. Vektoren lassen sich addieren (oder auch zerlegen). F G Frage: Was passiert, wenn noch eine Person nach oben steigt? 1 Dabei muss auch die Summe der angreifenden Drehmomente verschwinden - sonst dreht sich die Leiter! Physik für Naturwissenschaftler - V1, Seite 28

29 Fähre über den Fluss v Fluss v v Fähre effektiv Will eine Fähre über den Fluss setzen, muss sie ein wenig gegen die Strömung fahren, damit ihr Weg gerade über den Fluss verläuft. Die Geschwindigkeit der Fähre und des Flusses addieren sich vektoriell. v Fluss v Fähre v effektiv Physik für Naturwissenschaftler - V1, Seite 29

Physik im Studium. Physik I - IV. Theoretische Vorlesungen. Praktika. Vorlesungen für Fortgeschrittene. Praktika für Fortgeschrittene

Physik im Studium. Physik I - IV. Theoretische Vorlesungen. Praktika. Vorlesungen für Fortgeschrittene. Praktika für Fortgeschrittene Physik im Studium Physik I - IV Übungen Theoretische Vorlesungen Praktika Vorlesungen für Fortgeschrittene Praktika für Fortgeschrittene Einführung in die Physik Teil I: Einführung: Philosophisches und

Mehr

Experimentalphysik E1!

Experimentalphysik E1! Experimentalphysik E1! Prof. Joachim Rädler! Paul Koza (Vorlesungsbetreuung)! Alle Informationen zur Vorlesung unter :! http://www.physik.lmu.de/lehre/vorlesungen/index.html! Fehlerrechnung! Der freie

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Prof. Joachim Rädler & Dr. Bert Nickel Paul Koza (Vorlesungsbetreuung) Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Heute: Fehlerrechnung

Mehr

ad Physik A VL2 (11.10.2012)

ad Physik A VL2 (11.10.2012) ad Physik A VL2 (11.10.2012) korrigierte Varianz: oder: korrigierte Stichproben- Varianz n 2 2 2 ( x) ( xi ) n 1 i1 1 n 1 n i1 1 Begründung für den Vorfaktor : n 1 Der Mittelwert der Grundgesamtheit (=

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Propädeutikum 4: Messfehler und Vektoren Dr. Daniel Bick 25. Oktober 2013 Daniel Bick Physik für Biologen und Zahnmediziner 25. Oktober 2013 1 / 41 Organisatorisches

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Kinematik & Dynamik. Über Bewegungen und deren Ursache Die Newton schen Gesetze. Physik, Modul Mechanik, 2./3. OG

Kinematik & Dynamik. Über Bewegungen und deren Ursache Die Newton schen Gesetze. Physik, Modul Mechanik, 2./3. OG Kinematik & Dynamik Über Bewegungen und deren Ursache Die Newton schen Gesetze Physik, Modul Mechanik, 2./3. OG Stiftsschule Engelberg, Schuljahr 2016/2017 1 Einleitung Die Mechanik ist der älteste Teil

Mehr

Messtechnische Grundlagen und Fehlerbetrachtung. (inkl. Fehlerrechnung)

Messtechnische Grundlagen und Fehlerbetrachtung. (inkl. Fehlerrechnung) Messtechnische Grundlagen und Fehlerbetrachtung (inkl. Fehlerrechnung) Länge Masse Zeit Elektrische Stromstärke Thermodynamische Temperatur Lichtstärke Stoffmenge Basisgrößen des SI-Systems Meter (m) Kilogramm

Mehr

Verbundstudium TBW Teil 1 Grundlagen 3. Semester

Verbundstudium TBW Teil 1 Grundlagen 3. Semester Verbundstudium TBW Teil 1 Grundlagen 3. Semester 1.1 Internationales Einheitensystem System (SI) Größe Symbol Einheit Zeichen Länge x Meter m Zeit t Sekunde s Masse m Kilogramm kg Elektr. Stromstärke I

Mehr

Physikalische Grundlagen der Maßeinheiten

Physikalische Grundlagen der Maßeinheiten Physikalische Grundlagen der Maßeinheiten Mit einem Anhang über Fehlerrechnung Von Dr. phil. Detlef Kamke o. Professor an der Universität Bochum und Dr. rer. nat. Klaus Krämer Akad. Rat an der Universität

Mehr

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung:

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung: Vektorrechnung eine Einführung Einleitung: Um beispielsweise das Dreieck ABC in der Abbildung an die Position A'B'C' zu verschieben, muss jeder Punkt um sieben Einheiten nach rechts und drei nach oben

Mehr

Inhalt. 1 Rechenoperationen Gleichungen und Ungleichungen... 86

Inhalt. 1 Rechenoperationen Gleichungen und Ungleichungen... 86 Inhalt 1 Rechenoperationen.................................. 13 1.1 Grundbegriffe der Mengenlehre und Logik............................. 13 1.1.0 Vorbemerkung.................................................

Mehr

Elementäre Bausteine m = 10 micron. Blutzelle Atom 1800 D.N.A Elektron m = 0.1 nanometer Photon 1900

Elementäre Bausteine m = 10 micron. Blutzelle Atom 1800 D.N.A Elektron m = 0.1 nanometer Photon 1900 Was ist Physik? Das Studium der uns umgebenden Welt vom Universum bis zum Atomkern, bzw. vom Urknall bis weit in die Zukunft, mit Hilfe von wenigen Grundprinzipien. Diese gesetzmäßigen Grundprinzipien

Mehr

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64 1/64 VEKTORRECHNUNG Prof. Dr. Dan Eugen Ulmet Hochschule Esslingen März 2011 2/64 Overview Vektoralgebra 1 Vektoralgebra 2 Was sind Vektoren? 3/64 Vektoren werden geometrisch definiert als Pfeilklassen:

Mehr

! -Wärmelehre! -Astrophysik! -E-Lehre! -Festkörperphysik! -Mechanik! -Elemtarteilchenphysik!!! -Optik! -Atomphysik!!! Quantenmechanik!

! -Wärmelehre! -Astrophysik! -E-Lehre! -Festkörperphysik! -Mechanik! -Elemtarteilchenphysik!!! -Optik! -Atomphysik!!! Quantenmechanik! D Definition Physik Physik ist eine Naturwissenschaft, die sich mit der Beschreibung der Naturerscheinungen und mit der Erforschung von deren (mathematischen) Gesetzen befasst. Teilgebiete der Physik -Wärmelehre

Mehr

Inhalt der Vorlesung Physik A2 / B2

Inhalt der Vorlesung Physik A2 / B2 Inhalt der Vorlesung Physik A2 / B2 1. Einführung Einleitende Bemerkungen Messung physikalischer Größen 2. Mechanik Kinematik Die Newtonschen Gesetze Anwendung der Newtonschen Gesetze Koordinaten und Bezugssysteme

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Naturwissenschaften Teil 1

Naturwissenschaften Teil 1 Naturwissenschaften Teil Auswertung von Messreihen Grafische Darstellung Die nachfolgende Tabelle enthält die Messwerte zur Aufnahme einer Abkühlungskurve für reines Zinn. Stelle die Messwerte in einem

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Definition 2.77: Normalverteilung & Standardnormalverteilung Es sei µ R und 0 < σ 2 R. Besitzt eine stetige Zufallsvariable X die Dichte f(x) = 1 2 πσ 2 e 1 2 ( x µ σ ) 2, x R, so heißt X normalverteilt

Mehr

1 Messfehler. 1.1 Systematischer Fehler. 1.2 Statistische Fehler

1 Messfehler. 1.1 Systematischer Fehler. 1.2 Statistische Fehler 1 Messfehler Jede Messung ist ungenau, hat einen Fehler. Wenn Sie zum Beispiel die Schwingungsdauer eines Pendels messen, werden Sie - trotz gleicher experimenteller Anordnungen - unterschiedliche Messwerte

Mehr

Schnellkurs und Übersicht zur Gröÿtfehlerabschätzung und Fehlerrechnung

Schnellkurs und Übersicht zur Gröÿtfehlerabschätzung und Fehlerrechnung 1 Schnellkurs und Übersicht zur Gröÿtfehlerabschätzung und Fehlerrechnung Zum Messergebnis gehören immer eine Fehlerangabe und nur signikante Stellen 1 Beim Messen arbeiten wir mit Näherungswerten! Selbst

Mehr

Integrierter Kurs P1a im WiSe 2009/10. Skript Experimentalphysik. Prof. Dr. Oliver Benson

Integrierter Kurs P1a im WiSe 2009/10. Skript Experimentalphysik. Prof. Dr. Oliver Benson Integrierter Kurs P1a im WiSe 2009/10 Skript Experimentalphysik Prof. Dr. Oliver Benson I. Einleitung 1. Das physikalische Weltbild Die Physik beschäftigt sich mit den Grundbausteinen der wahrnehmbaren

Mehr

Physik-Aufgaben 1 Physik und Medizin

Physik-Aufgaben 1 Physik und Medizin A1 Physikalische Grössen, SI-Einheiten Hinweis: Die Nuerierung stit nicht überein! Aufgabe 1.1 Welche Angaben braucht es, dait eine (skalare) physikalische Grösse eindeutig definiert ist? Zahlenwert und

Mehr

Kapitel 1 PUNKTMECHANIK LERNZIELE INHALT. Körper. Masse

Kapitel 1 PUNKTMECHANIK LERNZIELE INHALT. Körper. Masse Kapitel 1 PUNKTMECHANIK LERNZIELE Definition der physikalischen Begriffe Körper, Masse, Ort, Geschwindigkeit, Beschleunigung, Kraft. Newtons Axiome Die Benutzung eines Bezugssystems / Koordinatensystems.

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

1 Einführung Ziel der Vorlesung:

1 Einführung Ziel der Vorlesung: Interdisziplinäre Kenntnisse werden immer wichtiger um die komplexen Zusammenhänge in den verschiedenen wissenschaftlichen Teilbereichen zu erfassen. Die Physik, als eine der Grundlagenwissenschaften reicht

Mehr

Ü b u n g s b l a t t 15

Ü b u n g s b l a t t 15 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 2. 7. 2007 Ü b u n g s b l a t t 15 Hier ist zusätzliches Übungsmaterial zur Klausurvorbereitung quer durch die Inhalte der Vorlesung. Eine

Mehr

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp Datenanalyse (PHY231) Herbstsemester 2015 Olaf Steinkamp 36-J-22 olafs@physik.uzh.ch 044 63 55763 Vorlesungsprogramm Einführung, Messunsicherheiten, Darstellung von Messdaten Grundbegriffe der Wahrscheinlichkeitsrechnung

Mehr

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation Physik Rotation Schwerpunkt Schwerpunkt Bewegungen, Beschleunigungen und Kräfte können so berechnet werden, als würden Sie an einem einzigen Punkt des Objektes angreifen. Bei einem Körper mit homogener

Mehr

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen 6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher: Diskrete Zufallsvariablen,

Mehr

Kräfte zwischen Ladungen: quantitative Bestimmung

Kräfte zwischen Ladungen: quantitative Bestimmung Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #3 am 25.04.2007 Vladimir Dyakonov Kräfte zwischen Ladungen: quantitative Bestimmung Messmethode:

Mehr

Zufallsvariablen. Erwartungswert. Median. Perzentilen

Zufallsvariablen. Erwartungswert. Median. Perzentilen Zufallsvariablen. Erwartungswert. Median. Perzentilen Jörn Loviscach Versionsstand: 22. Januar 2010, 10:46 1 Zufallsvariablen Wenn ein Zufallsexperiment eine Zahl als Ergebnis liefert, nennt man diese

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr

Vektoren. Hinführung: Vektorielle Größen

Vektoren. Hinführung: Vektorielle Größen Vektoren Dieser Anhang enthält eine Kurzeinführung in den für einfache Anwendungen erforderlichen Teil der Vektorrechnung. Er geht nicht primär davon aus, die zugehörige mathematische Struktur zu beschreiben

Mehr

Vierte Schularbeit Mathematik Klasse 7A G am xx

Vierte Schularbeit Mathematik Klasse 7A G am xx Vierte Schularbeit Mathematik Klasse 7A G am xx.05.2016 SCHÜLERNAME: Punkte im ersten Teil: Punkte im zweiten Teil: Davon Kompensationspunkte: Note: Notenschlüssel: Falls die Summe der erzielten Kompensationspunkte

Mehr

Grundlagen der Statistik und Fehlerrechnung

Grundlagen der Statistik und Fehlerrechnung Physikalisches Grundpraktikum Teil 1 WS 2010/2011 Grundlagen der Statistik und Fehlerrechnung Stefan Diehl 28.02.2011 12.30 13.30 HS I 01.03.2011 12.30 13.30 CHEG18 Inhalt Grundbegriffe der Statistik Wahrscheinlichkeitsverteilungen

Mehr

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle Patric Müller ETHZ Teil VIII Zentraler Grenzwertsatz und Vertrauensintervalle WBL 17/19, 29.05.2017 Wahrscheinlichkeit

Mehr

Wahrscheinlichkeitsrechnung und Quantentheorie

Wahrscheinlichkeitsrechnung und Quantentheorie Physikalische Chemie II: Atombau und chemische Bindung Winter 2013/14 Wahrscheinlichkeitsrechnung und Quantentheorie Messergebnisse können in der Quantenmechanik ganz prinzipiell nur noch mit einer bestimmten

Mehr

Zusammenfassung. Kriterien einer physikalischen Messung 1. reproduzierbar (Vergleichbarkeit von Messungen an verschiedenen Orten und Zeiten)

Zusammenfassung. Kriterien einer physikalischen Messung 1. reproduzierbar (Vergleichbarkeit von Messungen an verschiedenen Orten und Zeiten) Zusammenfassung Kriterien einer physikalischen Messung 1. reproduzierbar (Vergleichbarkeit von Messungen an verschiedenen Orten und Zeiten) 2. quantitativ (zahlenmäßig in Bezug auf eine Vergleichsgröße,

Mehr

5. Meßfehler. Zufällige Messfehler machen das Ergebnis unsicher - ihre Abschätzung ist nur unter Verwendung statistischer Methoden durchführbar

5. Meßfehler. Zufällige Messfehler machen das Ergebnis unsicher - ihre Abschätzung ist nur unter Verwendung statistischer Methoden durchführbar 5. Meßfehler Man unterscheidet... zufällige Meßfehler systematische Meßfehler Zufällige Messfehler machen das Ergebnis unsicher - ihre Abschätzung ist nur unter Verwendung statistischer Methoden durchführbar

Mehr

6.2 Temperatur und Boltzmann Verteilung

6.2 Temperatur und Boltzmann Verteilung 222 KAPITEL 6. THERMODYNAMIK UND WÄRMELEHRE 6.2 Temperatur und Boltzmann Verteilung Im letzten Abschnitt haben wir gesehen, dass eine statistische Verteilung von Atomen eines idealen Gases in einem Volumen

Mehr

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Karlsruher Institut für Technologie Ulrich Husemann Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie

Mehr

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2 Formelsammlung Physik für Biologen und Geowissenschaftler 15. Juni 2005 Inhaltsverzeichnis 1 Grundlagen 2 SI - Einheiten............................................... 2 Fehlerberechnung.............................................

Mehr

Statistik - Fehlerrechnung - Auswertung von Messungen

Statistik - Fehlerrechnung - Auswertung von Messungen Statistik - Fehlerrechnung - Auswertung von Messungen TEIL II Vorbereitungskurs F-Praktikum B (Physik), RWTH Aachen Thomas Hebbeker Eindimensionaler Fall: Parameterbestimmung - Beispiele [Übung] Mehrdimensionaler

Mehr

2.2 Kollineare und koplanare Vektoren

2.2 Kollineare und koplanare Vektoren . Kollineare und koplanare Vektoren Wie wir schon gelernt haben, können wir einen Vektor durch Multiplikation mit einem Skalar verlängern oder verkürzen. In Abbildung 9 haben u und v die gleiche Richtung,

Mehr

Maurizio Musso, Universität Salzburg, ver Physikalische Grundlagen der Meßtechnik. Teil 2

Maurizio Musso, Universität Salzburg, ver Physikalische Grundlagen der Meßtechnik. Teil 2 Teil 2 Auswertung von Messungen, zufällige oder statistische Abweichungen Auswertung direkter Messungen Häufigkeitsverteilung, Häufigkeitsfunktion Mittelwert, Standardabweichung der Einzelwerte Standardabweichung

Mehr

Statistik für Ingenieure Vorlesung 3

Statistik für Ingenieure Vorlesung 3 Statistik für Ingenieure Vorlesung 3 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 14. November 2017 3. Zufallsgrößen 3.1 Zufallsgrößen und ihre Verteilung Häufig sind

Mehr

Einführung in die Theorie der Messfehler

Einführung in die Theorie der Messfehler Einführung in die Theorie der Messfehler Ziel der Vorlesung: Die Studentinnen/Studenten sollen die Grundlagen der Theorie der Messfehler sowie den Unterschied zwischen Ausgleichsrechnung und statistischer

Mehr

2 Mechanik des Massenpunktes

2 Mechanik des Massenpunktes 2 Mechanik des Massenpunktes Wir beginnen deshalb in Kapitel 2 mit der Beschreibung der Bewegung von Massenpunkten, kommen dann in Kapitel 4 zum starren Körper und schließlich in Kapitel 5 zur Mechanik

Mehr

Solutions I Publication:

Solutions I Publication: WS 215/16 Solutions I Publication: 28.1.15 1 Vektor I 4 2 Ein Objekt A befindet sich bei a = 5. Das zweite Objekt B befindet sich bei b = 4. 2 3 (a) Die Entfernung von Objekt A zum Ursprung ist die Länge

Mehr

Moderne Methoden der Datenverarbeitung in der Physik I

Moderne Methoden der Datenverarbeitung in der Physik I Moderne Methoden der Datenverarbeitung in der Physik I Prof. Dr. Stefan Schael / Dr. Thomas Kirn I. Physikalisches Institut MAPLE II, Krypthographie Wahrscheinlichkeit Zufallszahlen, Wahrscheinlichkeitsdichten,

Mehr

Thema: Thema 1: Zahlenmengen, Mengen

Thema: Thema 1: Zahlenmengen, Mengen Thema: Inhalt und Handlung Thema 1: Zahlenmengen, Mengen Vernetzung und Anwendung Zahlenbereiche von natürliche Zahlen bis komplexe Zahlen beschreiben und darstellen Rechengesetze formulieren und begründen

Mehr

Erstabgabe Übung nicht abgegeben

Erstabgabe Übung nicht abgegeben Erstabgabe Übung 9 6 5 4 3 2 1 nicht abgegeben T. Kießling: Auswertung von Messungen und Fehlerrechnung - Graphische Darstellungen, Etrapolation 18.01.2018 Vorlesung 10-1 Übungsaufgaben So soll es sein:

Mehr

7.3 Der quantenmechanische Formalismus

7.3 Der quantenmechanische Formalismus Dieter Suter - 389 - Physik B3 7.3 Der quantenmechanische Formalismus 7.3.1 Historische Vorbemerkungen Die oben dargestellten experimentellen Hinweise wurden im Laufe der ersten Jahrzehnte des 20. Jahrhunderts

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

Experimentalphysik 1 Wintersemester 2009/10. B.v.Issendorff Fakultät für Mathematik und Physik Albert-Ludwigs-Universität Freiburg

Experimentalphysik 1 Wintersemester 2009/10. B.v.Issendorff Fakultät für Mathematik und Physik Albert-Ludwigs-Universität Freiburg Experimentalphysik Wintersemester 2009/0 B.v.Issendorff Fakultät für Mathematik und Physik Albert-Ludwigs-Universität Freiburg Übersicht über die Vorlesung Einführung, Maßsysteme Kinematik: Bewegungen

Mehr

Fehlerrechnung. Bei physikalisch-technischen Messungen können systematische und zufällige Fehler auftreten.

Fehlerrechnung. Bei physikalisch-technischen Messungen können systematische und zufällige Fehler auftreten. Seite 1 / 6 H.C. iehuus Fehlerrechnung Bei physikalisch-technischen Messungen können systematische und zufällige Fehler auftreten. Systematische Fehler erzeugen systematische Effekte. Falsch kalibrierte

Mehr

Zusammenfassung PVK Statistik

Zusammenfassung PVK Statistik Zusammenfassung PVK Statistik (Diese Zusammenfassung wurde von Carlos Mora erstellt. Die Richtigkeit der Formeln ist ohne Gewähr.) Verteilungen von diskreten Zufallsvariablen Beschreibung Binomialverteilung

Mehr

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015 Vektorrechnung Fakultät Grundlagen Juli 205 Fakultät Grundlagen Vektorrechnung Übersicht Grundsätzliches Grundsätzliches Vektorbegriff Algebraisierung der Vektorrechnung Betrag 2 Skalarprodukt Vektorprodukt

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

WAHRSCHEINLICHKEITSRECHNUNG

WAHRSCHEINLICHKEITSRECHNUNG WAHRSCHEINLICHKEITSRECHNUNG Mathematischer Teil In der Wahrscheinlichkeitsrechnung haben wir es mit Zufallsexperimenten zu tun, d.h. Ausgang nicht vorhersagbar. Grundbegriffe Zufallsexperiment und Ergebnisse

Mehr

Learn4Med. 1. Größen und Einheiten

Learn4Med. 1. Größen und Einheiten 1. Größen und Einheiten Eine physikalische Größe beschreibt, was man misst (z.b. den Druck, die Zeit). Eine physikalische Einheit beschreibt, wie man die Größe misst (z.b. in bar, in Sekunden). Man darf

Mehr

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Formelsammlung Physikalische Größen physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Grundgrößen Zeit t s (Sekunde) Länge l m (Meter) Masse m kg (Kilogramm) elektrischer Strom I A

Mehr

Einführung in die Fehlerrechnung und Messdatenauswertung

Einführung in die Fehlerrechnung und Messdatenauswertung Grundpraktikum der Physik Einführung in die Fehlerrechnung und Messdatenauswertung Wolfgang Limmer Institut für Halbleiterphysik 1 Fehlerrechnung 1.1 Motivation Bei einem Experiment soll der Wert einer

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab Enrico Mank. Praktikumsbericht: Galton-Brett

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab Enrico Mank. Praktikumsbericht: Galton-Brett Anfänger-Praktikum I WS 11/12 Michael Seidling Timo Raab Enrico Mank Praktikumsbericht: Galton-Brett Inhaltsverzeichnis Inhaltsverzeichnis I. Theoretische Grundlagen 2 1. Zentraler Grenzwertsatz 2 2. Binomialverteilung

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Wahrscheinlichkeitsfunktionen

Mehr

Vektoren. Mathematik I für Biologen, Geowissenschaftler und Geoökologen. Vektoren. Stefan Keppeler. 21. November 2007.

Vektoren. Mathematik I für Biologen, Geowissenschaftler und Geoökologen. Vektoren. Stefan Keppeler. 21. November 2007. Mathematik I für Biologen, Geowissenschaftler und Geoökologen Vektoren 21. November 2007 Vektoren Vektoren werden zur Darstellung gerichteter Größen verwendet. Man stelle sich also einen Pfeil in eine

Mehr

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System: Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar

Mehr

Wintersemester 2014/15

Wintersemester 2014/15 Wintersemester 0/ Einführung in die Physik mit Experimenten für Natur- und UmweltwissenschaftlerInnen B.v.Issendorff Fakultät für Mathematik und Physik Albert-Ludwigs-Universität Freiburg Organisatorisches

Mehr

Einführungsseminar S1 Elemente der Fehlerrechnung. Physikalisches Praktikum der Fakultät für Physik und Astronomie Ruhr-Universität Bochum

Einführungsseminar S1 Elemente der Fehlerrechnung. Physikalisches Praktikum der Fakultät für Physik und Astronomie Ruhr-Universität Bochum Einführungsseminar S1 Elemente der Fehlerrechnung Physikalisches Praktikum der Fakultät für Physik und Astronomie Ruhr-Universität Bochum Literatur Wolfgang Kamke Der Umgang mit experimentellen Daten,

Mehr

Stochastik 03 Zufallsgröÿen und Verteilung

Stochastik 03 Zufallsgröÿen und Verteilung 29. August 2018 Grundlagen der Stochastik (bis Klasse 10) Grundlagen der Statistik (bis Klasse 10) Zufallsgrößen und Verteilungen Beurteilende Statistik (Testen von Hypothesen) Bernoulli-Experimente Ziele

Mehr

Wintersemester 2012/13

Wintersemester 2012/13 Wintersemester 202/3 Einführung in die Physik mit Experimenten für NaturwissenschaftlerInnen und UmweltwissenschaftlerInnen B.v.Issendorff Fakultät für Mathematik und Physik Albert-Ludwigs-Universität

Mehr

Auffrischungskurs Physik-Kurs 20h VHS Jena. Dozent: Silvio Fuchs 22. September 2008

Auffrischungskurs Physik-Kurs 20h VHS Jena. Dozent: Silvio Fuchs 22. September 2008 Auffrischungskurs Physik-Kurs 20h VHS Jena Dozent: Silvio Fuchs 22. September 2008 1 Inhaltsverzeichnis 1 Einführung 3 1.1 Physik........................................... 3 1.2 Grundlegende Arbeitsweise...............................

Mehr

Hochschule Düsseldorf University of Applied Sciences. 27. Oktober 2016 HSD. Physik. Vektoren Bewegung in drei Dimensionen

Hochschule Düsseldorf University of Applied Sciences. 27. Oktober 2016 HSD. Physik. Vektoren Bewegung in drei Dimensionen Physik Vektoren Bewegung in drei Dimensionen y (px) ~x x (px) Spiele-Copyright: http://www.andreasilliger.com/index.php Richtung a b b ~x = a Einheiten in Richtung x, b Einheiten in Richtung y y (px) ~x

Mehr

Die Grundkonzepte der Quantenmechanik illustriert an der Polarisation von Photonen

Die Grundkonzepte der Quantenmechanik illustriert an der Polarisation von Photonen Die Grundkonzepte der Quantenmechanik illustriert an der Polarisation von Photonen Frank Wilhelm-Mauch February 5, 013 Fachrichtung Theoretische Physik, Universität des Saarlandes, Saarbrücken 0. Februar

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit Fehlerrechnung Inhalt: 1. Motivation 2. Was sind Messfehler, statistische und systematische 3. Verteilung statistischer Fehler 4. Fehlerfortpflanzung 5. Graphische Auswertung und lineare Regression 6.

Mehr

27 Zufallsvariablen. Erwartungswert. Median. Perzentilen

27 Zufallsvariablen. Erwartungswert. Median. Perzentilen 27 Zufallsvariablen. Erwartungswert. Median. Perzentilen Jörn Loviscach Versionsstand: 7. Januar 2011, 21:03 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu:

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 25. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 25. 06.

Mehr

03 Sensoren Genauigkeiten

03 Sensoren Genauigkeiten 03 Sensoren Genauigkeiten Emery, W.J. and R.E. Thomson (2001) Data Analysis Methods in Physical Oceanography. Chapter 1: Data Acquisition and Recording. ELSEVIER, Amsterdam. Bergmann, Schaefer (1998) Lehrbuch

Mehr

Kalmanfiter (1) Typische Situation für den Einsatz von Kalman-Filtern

Kalmanfiter (1) Typische Situation für den Einsatz von Kalman-Filtern Kalmanfiter (1) Typische Situation für den Einsatz von Kalman-Filtern Vorlesung Robotik SS 016 Kalmanfiter () Kalman-Filter: optimaler rekursiver Datenverarbeitungsalgorithmus optimal hängt vom gewählten

Mehr

Kapitel 2. Fehlerrechnung

Kapitel 2. Fehlerrechnung Fehlerrechnung 1 Messungen => quantitative Aussagen Messungen müssen zu jeder Zeit und an jedem Ort zu den gleichen Ergebnissen führen Messungen sind immer mit Fehler behaftet. => Angabe des Fehlers! Bespiel

Mehr

Vektoren - Die Basis

Vektoren - Die Basis Vektoren - Die Basis Motivation (Als Vereinfachung - der Schreibarbeit - wählen wir meistens Vektoren in R 2.) Eigentlich ist ja Alles klar! Für einen Vektor a gilt a = ( a x a y )! Am Ende werden wir

Mehr

Mathematische Grundlagen für das Physik-Praktikum:

Mathematische Grundlagen für das Physik-Praktikum: Mathematische Grundlagen für das Physik-Praktikum: Grundwissen: Bruchrechnung Potenzen Logarithmen Funktionen und ihre Darstellungen: Lineare Funktionen Proportionen Exponentialfunktion Potenzfunktionen

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 17/19, 24.04.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

Rechnernutzung in der Physik

Rechnernutzung in der Physik Rechnernutzung in der Physik Teil 3 Statistische Methoden in der Datenanalyse Roger Wolf 15. Dezember 215 INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) PHYSICS FACULTY KIT University of the State of

Mehr

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp Datenanalyse (PHY23) Herbstsemester 207 Olaf Steinkamp 36-J-05 olafs@physik.uzh.ch 044 63 55763 Vorlesungsprogramm Einführung, Messunsicherheiten, Darstellung von Messdaten Grundbegriffe der Wahrscheinlichkeitsrechnung

Mehr

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe:

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe: Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II Mathematik Symbol, Definition Deutsch Erklärung Mengenbegriffe: natürlichen Zahlen natürlichen Zahlen inkl. der 0 ganzen Zahlen rationalen

Mehr

27 Zufallsvariablen. Erwartungswert. Median. Perzentilen

27 Zufallsvariablen. Erwartungswert. Median. Perzentilen 27 Zufallsvariablen. Erwartungswert. Median. Perzentilen Jörn Loviscach Versionsstand: 21. September 2013, 15:56 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html

Mehr

Messung von Rendite und Risiko. Finanzwirtschaft I 5. Semester

Messung von Rendite und Risiko. Finanzwirtschaft I 5. Semester Messung von Rendite und Risiko Finanzwirtschaft I 5. Semester 1 Messung von Renditen Ergebnis der Anwendung der Internen Zinsfuß- Methode ist die Rentabilität des Projekts. Beispiel: A0-100.000 ZÜ1 54.000

Mehr

Einführung Vektoralgebra VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen. October 6, 2007

Einführung Vektoralgebra VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen. October 6, 2007 Hochschule Esslingen October 6, 2007 Overview Einführung 1 Einführung 2 Was sind Vektoren? Vektoren werden geometrisch definiert als Pfeilklassen: Strecken mit gleichem Betrag, gleicher Richtung und Orientierung.

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. P. Bühlmann ETH Zürich Sommer 2010 Wahrscheinlichkeit und Statistik BSc D-INFK 1. (10 Punkte) Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete

Mehr

Physik: Größen und Einheiten

Physik: Größen und Einheiten Physik: Größen und Einheiten Daniel Kraft 2. März 2013 CC BY-SA 3.0, Grafiken teilweise CC BY-SA Wikimedia Größen in der Physik Größen Eine physikalische Größe besteht aus: G = m [E] Maßzahl Die (reelle)

Mehr

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe:

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe: Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II Mathematik Symbol, Definition N N 0 Z Q Z + + Q 0 A = {a 1,, a n } Deutsch Erklärung Mengenbegriffe: natürlichen Zahlen natürlichen Zahlen

Mehr

Begleitendes Seminar. Praktischen Übungen in Physik. Humanmediziner, Zahnmediziner, Molekulare Biomediziner und Pharmazeuten

Begleitendes Seminar. Praktischen Übungen in Physik. Humanmediziner, Zahnmediziner, Molekulare Biomediziner und Pharmazeuten Dr. Christoph Wendel Begleitendes Seminar zu den Praktischen Übungen in Physik für Humanmediziner, Zahnmediziner, Molekulare Biomediziner und Pharmazeuten Übersicht Praktikum Vorbereitung und Durchführung

Mehr