1 Zahlen im Dezimalsystem

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "1 Zahlen im Dezimalsystem"

Transkript

1 1 Zahlen im Dezimalsystem Es gibt verschiedene Arten Zahlen aufzuschreiben. Zunächst gibt es verschiedene Zahlzeichen wie chinesische, römische oder arabische. Im deutschsprachigen Raum ist die Verwendung der arabischen Zahlzeichen (oder Ziffern) 0, 1, 2,..., 8, 9 gebräuchlich. Dazu gibt es verschiedene. Das sind sozusagen Verabredungen was die Ziffern einer Zahl bedeuten. Im dezimalen Zahlensystem werden die zehn verschiedenen Ziffern 0, 1, 2,..., 8, 9 in der sogenannten Stellenschreibweise eingesetzt. Das ist sozusagen eine abkürzende Schreibweise, bei der man wissen muss auf welches Zahlensystem man sich bezieht. Steht nichts weiter dabei geht man stillschweigend davon aus, dass es sich um das Zehnersystem handelt. Dort beschreibt man den Wert einer Zahl dadurch, dass man Stelle für Stelle aufschreibt aus wie viel Einsern, Zehnern, Hundertern, Tausendern,... sie besteht. Man könnte demnach die Zahl 5423 auch dadurch angeben dass man sagt: 5 Tausender, 4 Hunderter, 2 Zehner und 3 Einer = = = Weil alle diese Basiszahlen Potenzen von zehn sind, nennt man diese Art Zahlen aufzuschreiben das Zehner- oder Dezimalsystem (lat. decem = zehn). Natürlich muss genau festgelegt sein welche Stelle für welche Zehnerpotenz steht. Sonst könnte irgendjemand die Ziffernfolge 5423 auch als 5 Hunderter, 4Einer, 2 Tausender und 3 Zehner interpretieren. Dies entspräche dann aber der Dezimalzahl Damit solche Verwirrungen erst gar nicht aufkommen gilt für alle : Ganz rechts steht immer die Basiszahl hoch Null, eine Ziffer weiter links folgt die Basiszahl hoch eins, noch eins weiter nach links die Basiszahl hoch zwei, usw. Damit die Schreibweise einer Zahl im Zehnersystem eindeutig ist beschränkt man sich auf die Ziffern 0 bis 9. Würde man noch eine weitere Ziffer wir nennen sie einfach mal A mit dem Wert 10 hinzunehmen, so könnte man die Zahl 20 auf zwei Arten angeben = = = A = oder in Worten : 2 Zehner und 0 Einer oder in Worten :1 Zehner und A (also10) Einer Die Zahl 20 hätte also den gleichen Wert wie die Zahl 1A. Um dies zu vermeiden werden in allen n stets nur Ziffern verwendet die kleiner sind als die Basiszahl. Um jedoch alle Zahlen darstellen zu können sind auch wirklich alle ganzzahligen Ziffern von 0 bis eine Ziffer kleiner als die Basiszahl notwendig. Im Dezimalsystem ist die Basiszahl 10, zur Darstellung aller Zahlen werden die Ziffern 0 bis 9 verwendet. Seite 1 von 11

2 2 Dualzahlen Das Zweiersystem (Dualsystem, lat. duo = zwei) funktioniert im Prinzip genauso, nur dass man als Basis für die Stellenschreibweise von Zahlen nicht die Vielfachen von zehn, sondern von 2 verwendet. Dezimalsystem Dualsystem Schreibt man eine Zahl in Stellenschreibweise im Dualsystem an, so gibt man eben nicht mehr an aus wie viel Einern, Zehnern, Hundertern, usw. sie besteht, sondern aus wie viel Einern, Zweiern, Vierern, Achtern, Sechzehnern, Zweiunddreißigern,... sie aufgebaut ist. Wie beim Dezimalsystem sind auch im Dualsystem (und bei allen anderen n) Einer dabei, da sonst keine ungeraden Zahlen angegeben werden können. Diese erhält man automatisch bei jeder beliebigen Basis, da jede Basiszahl hoch Null 1 ergibt. 2.1 Umwandlung einer Dualzahl in eine Dezimalzahl Nimmt man im Dezimalsystem die Zahl 45, so besteht sie aus 4 Zehnern und 5 Einern. Eine Zahl mit genau dem gleichen Wert kann man aber auch im Dualsystem angeben. Dort werden wegen der Eindeutigkeit nur die Ziffern 0 und 1 zur Darstellung einer beliebigen Zahl benötigt = = = = ( in Dezimalschreibweise) Damit ist klar, wie Dualzahlen in Dezimalzahlen umgewandelt werden können: ausführliches anschreiben mit den Potenzen der Basiszahlen (siehe Zeile 1) den Wert für jede Ziffer durch ausmultiplizieren berechnen (siehe Zeile 2) alle Werte addieren (siehe Zeilen 3 und 4) Wandeln Sie nachfolgende Dualzahlen in Dezimalzahlen um = = = = Seite 2 von 11

3 2.2 Umwandlung einer Dezimalzahl in eine Dualzahl Das dabei zum Einsatz kommende Verfahren nennt man Euklidscher Algorithmus. Dieser soll hier jedoch nicht näher erklärt werden, da das zu weit führen würde. Wichtig ist, dass man sich das Konzept dahinter merkt und dann wie bei einem Kochrezept stur danach handelt. Es soll die Dezimalzahl 71 in eine Dualzahl umgewandelt werden: 1. Die Dezimalzahl wird durch zwei geteilt. Der Rest dieser Division kann nur 0 oder 1 sein. Diese Ziffer ergibt die erste, ganz rechte Stelle in der gesuchten Dualzahl. 2. Nun nimmt man das ganzzahlige Ergebnis der Division aus 1. und teilt es erneut durch zwei. Auch hier kann der Rest nur den Wert 0 oder 1 haben. Dieser Rest ist die zweite Stelle von rechts der gesuchten Dualzahl. 3. Mit dem ganzzahligen Ergebnis dieser Division wird wieder genau wie in 2. beschrieben verfahren. Dies wird so lange durchgeführt bis der ganzzahlige Anteil der Division Null ist. 71: 2 35 : 2 17 : 2 8 : 2 4 : 2 2 : 2 1: 2 = 35 = 17 = 8 = 4 = 2 = 1 = 0 Rest 1 Rest 1 Rest 1 Rest 0 Rest 0 Rest 0 Rest 1 0 Die Stelle für 2 ist eine 1. 1 Die Stelle für 2 ist eine 1. 2 Die Stelle für 2 ist eine 1. 3 Die Stelle für 2 ist eine 0. 4 Die Stelle für 2 ist eine 0. 5 Die Stelle für 2 ist eine 0. 6 Die Stelle für 2 ist eine 1. Die Dezimalzahl 71 lautet als Dualzahl Wandeln Sie die drei Dezimalzahlen 281, 90 und 318 unter Angabe des vollständigen Rechenweges in Dualzahlen um. Vervollständigen Sie nachfolgende Tabellen (geben Sie in der linken Tabelle alle Dualzahlen mit vier Ziffern an erkennen Sie ein System?). Dezimalzahl Dualzahl Dezimalzahl Dualzahl Seite 3 von 11

4 2.3 Rechenoperationen mit Dualzahlen Addition Bei der Addition zweier Dualzahlen gelten stets folgende Gesetzmäßigkeiten: Summe Übertrag = = = = 0 1 Besitzt ein Summand weniger Stellen als der andere, so werden einfach führende (!) Nullen ergänzt. Beispiel: Übertrag Summe Überprüfen Sie das oben stehende Beispiel indem Sie die Dualzahlen in Dezimalzahlen umrechnen. Führen Sie die nachfolgenden Additionen zunächst mit den Dualzahlen durch. Überprüfen Sie anschließend die Ergebnisse indem Sie alle Dualzahlen in Dezimalzahlen umwandeln Seite 4 von 11

5 2.3.2 Subtraktion Um zwei Dualzahlen voneinander abzuziehen gelten folgende Regeln: 1. Die durch vorsetzen von Nullen so erweitern dass sie die gleiche Anzahl Stellen aufweisen. 2. Beide Zahlen durch vorsetzen einer Vorzeichenstelle erweitern. Diese Stelle hat den Wert 0 für ein positives Vorzeichen und 1 bei einem negativen. 3. Vom Subtrahend (= der abzuziehenden Zahl) das Einer-Komplement bilden. Das heißt die abzuziehende Zahl zu invertieren (alle 0 1 und alle 1 0). 4. Vom Ergebnis aus Punkt 3 das Zweier-Komplement bilden. Dazu wird zur invertierten Zahl einfach eine 1 hinzuaddieren. 5. Das Zweier-Komplement mit dem Minuend addieren. Hierbei den Übertrag in der werthöchste Stelle einklammern (= Vorzeichen) 6. Ist das Vorzeichen negativ (d. h. die Stelle hat den Wert 1), so erhält man den eigentlichen Wert der Zahl durch erneutes bilden des Zweier-Komplements (= alle 0 1 und alle 1 0 und anschließend 1 hinzuaddieren). Beispiel 1: Minuend Subtrahend (0) (0) Minuend und Subtrahend um Vorzeichenstelle erweitert (1) Subtrahend invertieren ergibt Einer-Komplement + (0) den Wert 1 hinzuaddiert (1) ergibt Zweier-Komplement (0) Damit kann die Subtraktion als Addition + (1) angeschrieben werden (0) Vorzeichen ist 0 Ergebnis ist positiv Überprüfen Sie das oben stehende Beispiel indem Sie die Dualzahlen in Dezimalzahlen umrechnen. Seite 5 von 11

6 Beispiel 2: Minuend Subtrahend (0) (0) Minuend um führende Null ergänzt damit beide Zahlen die gleiche Ziffernanzahl haben Minuend und Subtrahend um Vorzeichenstelle erweitert (1) Subtrahend invertieren ergibt Einer-Komplement + (0) den Wert 1 hinzuaddiert (1) ergibt Zweier-Komplement (0) Damit kann die Subtraktion als Addition + (1) angeschrieben werden (1) Vorzeichen ist 1 Ergebnis ist negativ Ergebnis negativ Wert der Subtraktion durch Bildung des Zweier-Komplements des Ergebnisses (Vorzeichen muss nicht mehr beachtet werden) Überprüfen Sie das oben stehende Beispiel indem Sie die Dualzahlen in Dezimalzahlen umrechnen. Berechnen Sie nachfolgende Subtraktionen unter Angabe eines nachvollziehbaren Rechenweges Seite 6 von 11

7 2.3.3 Multiplikation Die Multiplikation erfolgt praktisch genau gleich wie mit Dezimalzahlen. Nur bei den Überträgen muss man besondere Vorsicht walten lassen wie Beispiel 2 zeigt. Beispiel 1: Übertrag Beispiel 2: Übertrag Berechnen Sie nachfolgende Multiplikationen Seite 7 von 11

8 2.3.4 Division Dies ist die schwerste aller Grundrechenarten bei Dualzahlen. Zunächst quasi zur Wiederholung ein Beispiel mit einer Division von Dezimalzahlen: : 1 1 = Rest Und nun genau die gleiche Division in dualer Schreibweise: : = Rest passt einmal in passt Null mal in Führen Sie nachfolgende Division aus und überprüfen Sie das Ergebnis durch Umrechnung aller Zahlen in Dezimalschreibweise : 1101 = Seite 8 von 11

9 3 Hexadezimalzahlen Durch die kleine Basis des Dualsystems ergibt sich der Nachteil, dass Zahlen im Binärsystem im Verhältnis zu Dezimalzahlen relativ lang sind (siehe Tabelle am Seitenende). Dies hat zur Verbreitung des Hexadezimalsystems (lat. hexa = sechs, lat. decem = zehn) geführt, welches die Basis 16 besitzt. Im Vergleich mit dem Dezimal- und dem Dualsystem erhält man somit folgende Basiszahlen: Dezimalsystem Dualsystem Hexadezimalsystem Wenn mit der Basis 16 gearbeitet wird, so werden die Ziffern 0 bis 15 benötigt um alle Zahlen darstellen zu können. Dies führt jedoch zu Problemen! Die Hexadezimalzahl 121 (16) könnte nun verschiedene Bedeutungen haben: (16) = = 289(10) (16) = = 193(10) Deshalb werden die in Hexadezimalzahlen benötigten Ziffern 0 bis 15 durch die Ziffernsymbole 0-9 und die Großbuchstaben A-F (für die Werte 10 bis 15) dargestellt. In obigem Beispiel würde das bedeuten: 289(10) = 121(16) 193( 10 ) = C1( 16 ) Durch diese Schreibweise sind Hexadezimalzahlen verhältnismäßig gut lesbar. So lässt sich zum Beispiel leicht feststellen, dass EDA5 (16) größer ist als ED7A (16) wo hingegen das bei den entsprechenden Dualzahlen (2) und (2) eher nicht mehr der Fall ist. Da 16 eine Potenz von 2 ist (16 = 2 4 ), ist es besonders einfach möglich, Binärzahlen in Hexadezimalzahlen umzurechnen. Dazu werden je vier Binärstellen durch eine Hexadezimalstelle ersetzt, was auch die Länge der dargestellten Zahlen um den Faktor vier verringert. Andererseits ist die Basis der Hexadezimalzahlen noch klein genug, um diese mit bekannten Symbolen darzustellen. Dezimalsystem Dualsystem Hexadezimalsystem A B C D E F Seite 9 von 11

10 3.1 Umwandlung einer Dezimalzahl in eine Hexadezimalzahl Auch hier kommt, wie bereits bei der Umwandlung einer Dezimalzahl in eine Dualzahl der Euklidscher Algorithmus zum Einsatz. Es soll die Dezimalzahl (10) in eine Hexadezimalzahl umgewandelt werden: 4. Die Dezimalzahl wird durch 16 geteilt. Der Rest dieser Division kann nur einen Wert zwischen 0 und 15 haben. Diese Ziffer ergibt die erste, ganz rechte Stelle in der gesuchten Hexadezimalzahl. 5. Nun nimmt man das ganzzahlige Ergebnis der Division aus 1. und teilt es erneut durch sechzehn. Auch hier kann der Rest nur den Wert zwischen 0 und 15 haben. Dieser Rest ist die zweite Stelle von rechts der gesuchten Hexadezimalzahl. 6. Mit dem ganzzahligen Ergebnis dieser Division wird wieder genau wie in 2. beschrieben verfahren. Dies wird so lange durchgeführt bis der ganzzahlige Anteil der Division Null ist : 16 = Rest 10 Die Stelle für 16 0 ist ein A : 16 = Rest 7 Die Stelle für 16 1 ist eine : 16 = 2851 Rest 13 Die Stelle für 16 2 ist ein D : 16 = 178 Rest 3 Die Stelle für 16 3 ist eine : 16 = 11 Rest 2 Die Stelle für 16 4 ist eine : 16 = 0 Rest 11 Die Stelle für 16 5 ist ein B. Die Dezimalzahl lautet als Hexadezimalzahl B23D7A. Wandeln Sie die drei Dezimalzahlen 2181, 90 und unter Angabe des vollständigen Rechenweges in Hexadezimalzahlen um. Vervollständigen Sie nachfolgende Tabelle. Vergleichen Sie diese Hexzahlen mit den Ergebnissen der Tabelle auf Seite 2. Dezimalzahl Hexadezimalzahl Seite 10 von 11

11 3.2 Rechenoperationen mit Hexadezimalzahlen Addition Gewöhnungsbedürftig ist dabei nur das Rechnen mit den Buchstaben. Ergibt die Summe zweier Ziffern einen Wert größer 15 (also F (16) ), so muss man aufpassen welchen Wert die entsprechende Stelle hat und welcher Übertrag sich ergibt. Mathematisch muss die Summe zweier Ziffern modulo 16 gerechnet werden (also durch 16 teilen, der Rest der Division ist das Ergebnis der Modulorechnung) um den Wert der entsprechenden Ziffer im Ergebnis zu erhalten. Mit etwas weniger Übung legt man sich am einfachsten eine Tabelle der folgenden Art an: A+1 = B Ü0 B+1 = C Ü0... usw.... A+2 = C Ü0 B+2 = D Ü0 A+3 = D Ü0 B+3 = E Ü0 A+4 = E Ü0 B+4 = F Ü0 A+5 = F Ü0 B+5 = 0 Ü1 A+6 = 0 Ü1 B+6 = 1 Ü1 A+7 = 1 Ü1 B+7 = 2 Ü1 A+8 = 2 Ü1 B+8 = 3 Ü1 A+9 = 3 Ü1 B+9 = 4 Ü1 A+A = 4 Ü1 B+A = 5 Ü1 A+B = 5 Ü1 B+B = 6 Ü1 A+C = 6 Ü1 B+C = 7 Ü1 A+D = 7 Ü1 B+D = 8 Ü1 A+E = 8 Ü1 B+E = 9 Ü1 A+F = 9 Ü1 B+F = A Ü1 Beispiel: 9 0 A C 2 0 F 1 + D B 0 Übertrag Summe A A 1 Berechnen Sie die folgenden Summen der gegebenen Hexadezimalzahlen DFAEB + 584A5FD EFA Seite 11 von 11

12 Lösungsblatt 1 Seite = 18 (10) = 51 (10) = 226 (10) = 153 (10) Seite 3 Dezimalzahl Dualzahl Dezimalzahl Dualzahl Seite Seite (0) (0) (1) Seite Seite : 1101 = Rest 10 Seite 12 von 11

13 Lösungsblatt 2 Seite 10 Dezimalzahl Hexadezimalzahl Seite DFAEB + 584A5FD EFA 587AC92 6B E5 Seite 13 von 11

Computer rechnen nur mit Nullen und Einsen

Computer rechnen nur mit Nullen und Einsen Computer rechnen nur mit Nullen und Einsen Name: Unser bekanntes Dezimalsystem mit 10 Ziffern Ein wesentliches Merkmal eines Zahlensystems ist die verwendete Anzahl der Ziffern. Im Dezimalsystem gibt es

Mehr

Skript Zahlensysteme

Skript Zahlensysteme Skript Zahlensysteme Dieses Skript enthält die Themen meiner Unterrichtseinheit Zahlensysteme. Hier sollen die Grundlagen für das Verständnis der darauf folgenden Inhalte zu den Abläufen innerhalb des

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Klaus Knopper 26.10.2004 Repräsentation von Zahlen Zahlen können auf unterschiedliche Arten dargestellt werden Aufgabe: Zahlen aus der realen Welt müssen im Computer abgebildet

Mehr

Zahlensysteme und Kodes. Prof. Metzler

Zahlensysteme und Kodes. Prof. Metzler Zahlensysteme und Kodes 1 Zahlensysteme und Kodes Alle üblichen Zahlensysteme sind sogenannte Stellenwert-Systeme, bei denen jede Stelle innerhalb einer Zahl ein besonderer Vervielfachungsfaktor in Form

Mehr

anschauen würdest. Meine Mailadresse lautet wenn du Fragen hast, kannst du mir eine schreiben.

anschauen würdest. Meine Mailadresse lautet wenn du Fragen hast, kannst du mir eine  schreiben. 15.Übungsblatt Klasse 5a Ausgabe am 17.03.2004 Abgabe am..2004 im Mathematikunterricht Nicht alle Erklärungen und Aufgaben, die im Internet zur Verfügung stehen, werden in gedruckter Form in den Übungsblättern

Mehr

Trage nachfolgend bitte ein, wie lange du insgesamt für die Bearbeitung dieses Übungsblattes gebraucht hast.

Trage nachfolgend bitte ein, wie lange du insgesamt für die Bearbeitung dieses Übungsblattes gebraucht hast. Ausgabedatum: 19.04.04 Abgabedatum: 26.04.04 Name: Trage nachfolgend bitte ein, wie lange du insgesamt für die Bearbeitung dieses Übungsblattes gebraucht hast.!! Nicht übersehen: Nach jeder Erklärung kommen

Mehr

Basisinformationstechnologie I

Basisinformationstechnologie I Basisinformationstechnologie I Wintersemester 2012/13 24. Oktober 2012 Grundlagen III Universität zu Köln. Historisch-Kulturwissenschaftliche Informationsverarbeitung Jan G. Wieners // jan.wieners@uni-koeln.de

Mehr

1. Definition von Dezimalzahlen

1. Definition von Dezimalzahlen . Definition von Dezimalzahlen Definition: Dezimalzahlen sind Zahlen mit einem Komma, wobei die Ziffern nach dem Komma die Zehntel, Hundertstel, Tausendstel, usw. entsprechend dem -er Zahlensystem anzeigen.

Mehr

Digitaltechnik FHDW 1.Q 2007

Digitaltechnik FHDW 1.Q 2007 Digitaltechnik FHDW 1.Q 2007 1 Übersicht 1-3 1 Einführung 1.1 Begriffsdefinition: Analog / Digital 2 Zahlensysteme 2.1 Grundlagen 2.2 Darstellung und Umwandlung 3 Logische Verknüpfungen 3.1 Grundfunktionen

Mehr

Dualzahlen

Dualzahlen Dualzahlen Ein Schüler soll sich eine Zahl zwischen und 6 denken. Nun soll der Schüler seinen Zahl in folgenden Tabellen suchen und die Nummer der Tabelle nennen in welcher sich seine Zahl befindet. 7

Mehr

Zahlensysteme. von Christian Bartl

Zahlensysteme. von Christian Bartl von Inhaltsverzeichnis Inhaltsverzeichnis... 2 1. Einleitung... 3 2. Umrechnungen... 3 2.1. Dezimalsystem Binärsystem... 3 2.2. Binärsystem Dezimalsystem... 3 2.3. Binärsystem Hexadezimalsystem... 3 2.4.

Mehr

2.Vorlesung Grundlagen der Informatik

2.Vorlesung Grundlagen der Informatik Christian Baun 2.Vorlesung Grundlagen der Informatik Hochschule Darmstadt WS1112 1/16 2.Vorlesung Grundlagen der Informatik Christian Baun Hochschule Darmstadt Fachbereich Informatik christian.baun@h-da.de

Mehr

Grundlagen der Informatik I. Übung

Grundlagen der Informatik I. Übung Grundlagen der Informatik I Übung Studiengang Wirtschaftsingenieurwesen Wintersemester 1/13 Autor: Prof. Dr.-Ing. habil. Hans-Joachim Böhme HTW Dresden, Fachbereich Informatik/Mathematik Friedrich-List-Platz

Mehr

, 5 8. Hunderter Zehner Zehntel. Einer

, 5 8. Hunderter Zehner Zehntel. Einer 5 1 11 Das Dezimalsystem Seit wir das erste Mal mit Hilfe unserer Finger»gezählt«haben, ist uns das Dezimalsystem Stück für Stück so vertraut geworden, dass wir es als selbstverständliches und womöglich

Mehr

Zahlen in Binärdarstellung

Zahlen in Binärdarstellung Zahlen in Binärdarstellung 1 Zahlensysteme Das Dezimalsystem Das Dezimalsystem ist ein Stellenwertsystem (Posititionssystem) zur Basis 10. Das bedeutet, dass eine Ziffer neben ihrem eigenen Wert noch einen

Mehr

Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird.

Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. Zahlensysteme Definition: Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. In der Informatik spricht man auch von Stellenwertsystem,

Mehr

There are only 10 types of people in the world: those who understand binary, and those who don't

There are only 10 types of people in the world: those who understand binary, and those who don't Modul Zahlensysteme In der Digitaltechnik haben wir es mit Signalen zu tun, die zwei Zustände annehmen können: Spannung / keine Spannung oder 1/ oder 5V / V oder beliebige andere Zustände. In diesem Modul

Mehr

01 - Zahlendarstellung

01 - Zahlendarstellung 01 - Zahlendarstellung Technische Grundlagen der Informatik Automation Systems Group E183-1 Institute of Computer Aided Automation Vienna University of Technology email: tgi@auto.tuwien.ac.at Zahlendarstellung

Mehr

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen:

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen: Zahlensysteme. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis darstellen: n n n n z a a... a a a Dabei sind die Koeffizienten a, a, a,... aus der

Mehr

Zahlensysteme Dezimal-System

Zahlensysteme Dezimal-System Zahlensysteme Dezimal-System Zahlenvorrat: 0,1,2,3,4,5,6,7,8,9 Mögliche unterschiedliche Zeichen pro Stelle:10 Basis: 10 Kennzeichnung: Index 10 oder D (dezimal) Wertigkeit 10 5 10 4 10 3 10 2 10 1 10

Mehr

1 Dualsystem Dualzahlen mit Vorzeichen 4. 2 Hexadezimalsystem Hexadezimalzahlen mit Vorzeichen Oktalsystem 13 4 Zahlenring 14

1 Dualsystem Dualzahlen mit Vorzeichen 4. 2 Hexadezimalsystem Hexadezimalzahlen mit Vorzeichen Oktalsystem 13 4 Zahlenring 14 Zahlensysteme Inhalt: 1 Dualsystem 1 1.1 Dualzahlen mit Vorzeichen 4 2 Hexadezimalsystem 8 2.1 Hexadezimalzahlen mit Vorzeichen 10 3 Oktalsystem 13 4 Zahlenring 14 Definition: Ein polyadisches Zahlensystem

Mehr

Im Original veränderbare Word-Dateien

Im Original veränderbare Word-Dateien Binärsystem Im Original veränderbare Word-Dateien Prinzipien der Datenverarbeitung Wie du weißt, führen wir normalerweise Berechnungen mit dem Dezimalsystem durch. Das Dezimalsystem verwendet die Grundzahl

Mehr

= 60 16 + B7 16 100 16 = B7 16 100 16 = 117 16 100 16 = 17 16 = 23 10

= 60 16 + B7 16 100 16 = B7 16 100 16 = 117 16 100 16 = 17 16 = 23 10 Hinweise zur Rückführung der Subtraktion auf eine Addition unter Verwendung des B-Komplements (Version vom 02.07.2010) siehe auch Vorlesungsskript Prof. H.-P. Bauer, Kapitel 6.3.2 bzw. Übersicht Digitaltechnik,

Mehr

Leitung 1 Leitung 2 0 0 0 1 1 0 1 1

Leitung 1 Leitung 2 0 0 0 1 1 0 1 1 1 1 Vorbetrachtungen Wie könnte eine Codierung von Zeichen im Computer realisiert werden? Der Computer arbeitet mit elektrischem Strom, d. h. er kann lediglich zwischen den beiden Zuständen Strom an und

Mehr

5. Nichtdezimale Zahlensysteme

5. Nichtdezimale Zahlensysteme 10 5. Nichtdezimale Zahlensysteme Dezimalsystem: 2315 10 = 2 10 3 + 3 10 2 + 1 10 1 + 5 10 0 2 Tausender, 3 Hunderter, 1 Zehner und 5 Einer. Basis b = 10, Ziffern 0, 1,..., 9 (10 ist keine Ziffer!) bedeutet

Mehr

Unter dem Symbol n! (gelesen n Fakultät) versteht man das Produkt der natürlichen Zahlen von 1 bis n.

Unter dem Symbol n! (gelesen n Fakultät) versteht man das Produkt der natürlichen Zahlen von 1 bis n. Die Fakultät Definition: Unter dem Symbol n! (gelesen n Fakultät) versteht man das Produkt der natürlichen Zahlen von 1 bis n. n! = 1 2 3... (n 2) (n 1) n Zusätzlich wird definiert 0! = 1 Wie aus der Definition

Mehr

Rückblick. Zahlendarstellung zu einer beliebigen Basis b. Umwandlung zwischen Zahlendarstellung (214) 5 = (278) 10 =(?) 8

Rückblick. Zahlendarstellung zu einer beliebigen Basis b. Umwandlung zwischen Zahlendarstellung (214) 5 = (278) 10 =(?) 8 Rückblick Zahlendarstellung zu einer beliebigen Basis b (214) 5 = Umwandlung zwischen Zahlendarstellung (278) 10 =(?) 8 25 Rückblick Schnellere Umwandlung zwischen Binärdarstellung und Hexadezimaldarstellung

Mehr

Trage nachfolgend bitte ein, wie lange du insgesamt für die Bearbeitung dieses Übungsblattes gebraucht hast.

Trage nachfolgend bitte ein, wie lange du insgesamt für die Bearbeitung dieses Übungsblattes gebraucht hast. Ausgabedatum: 29.03.04 Abgabedatum: 19.04.04 Name: Trage nachfolgend bitte ein, wie lange du insgesamt für die Bearbeitung dieses Übungsblattes gebraucht hast. Bearbeitungszeit: Dezimal- und Dualzahlen

Mehr

Regeln zur Bruchrechnung

Regeln zur Bruchrechnung Regeln zur Bruchrechnung Brüche und Anteile Zur Beschreibung von Anteilen verwendet man Brüche (von gebrochen, z. B. eine Glasscheibe) wie 5 ; 5 oder 9. Die obere Zahl (über dem Bruchstrich) heißt Zähler,

Mehr

Zahlensysteme Seite -1- Zahlensysteme

Zahlensysteme Seite -1- Zahlensysteme Zahlensysteme Seite -- Zahlensysteme Inhaltsverzeichnis Dezimalsystem... Binärsystem... Umrechnen Bin Dez...2 Umrechnung Dez Bin...2 Rechnen im Binärsystem Addition...3 Die negativen ganzen Zahlen im Binärsystem...4

Mehr

Binärzahlen. Vorkurs Informatik. Sommersemester Institut für Informatik Heinrich-Heine-Universität Düsseldorf

Binärzahlen. Vorkurs Informatik. Sommersemester Institut für Informatik Heinrich-Heine-Universität Düsseldorf Binärzahlen Vorkurs Informatik Institut für Informatik Heinrich-Heine-Universität Düsseldorf Sommersemester 2016 Gliederung 1 Das Binärsystem Einleitung Darstellung 2 Umrechen Modulo und DIV Dezimal in

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr

Grundwissenskatalog der 6. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg

Grundwissenskatalog der 6. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg Grundwissenskatalog der. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg. Brüche und Dezimalzahlen Bruchteile Berechnung von Bruchteilen Bruchzahlen als Quotient Gemischte Zahlen Erweitern

Mehr

Vorkurs Mathematik 1

Vorkurs Mathematik 1 Vorkurs Mathematik 1 Einführung in die mathematische Notation Konstanten i komplexe Einheit i 2 + 1 = 0 e Eulersche Zahl Kreiszahl 2 Einführung in die mathematische Notation Bezeichner Primzahlen, Zähler

Mehr

Zahlen im Computer (Klasse 7 Aufbaukurs Informatik)

Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Die Bildauswahl erfolgte in Anlehnung an das Alter der Kinder Prof. J. Walter Bitte römische Zahlen im Geschichtsunterricht! Messsystem mit Mikrocontroller

Mehr

Basisinformationstechnologie I

Basisinformationstechnologie I Basisinformationstechnologie I Wintersemester 2014/15 29. Oktober 2014 Grundlagen II Universität zu Köln. Historisch-Kulturwissenschaftliche Informationsverarbeitung Jan G. Wieners // jan.wieners@uni-koeln.de

Mehr

Modul 114. Zahlensysteme

Modul 114. Zahlensysteme Modul 114 Modulbezeichnung: Modul 114 Kompetenzfeld: Codierungs-, Kompressions- und Verschlüsselungsverfahren einsetzen 1. Codierungen von Daten situationsbezogen auswählen und einsetzen. Aufzeigen, welche

Mehr

a) 71,45 + 25,07 44,91 = d) 63,8 + 40,03 35,94 = c) 3,604 1,28 0,45 = f) 230,05 79,602 + 51,4 =

a) 71,45 + 25,07 44,91 = d) 63,8 + 40,03 35,94 = c) 3,604 1,28 0,45 = f) 230,05 79,602 + 51,4 = Name: 1) SUBTRAHIERE DIE KLEINERE ZAHL VON DER GRÖßEREN: a) 43,86 521,43 b) 15864,2 85,8 c) 0,8 0,643 2) RECHNE VORTEILHAFT! a) 1,45 + 25,0 44,1 d) 63,8 + 40,03 35,4 b) 0,85 + 1,0835 0,084 e),6 30,04 +

Mehr

5 Stellenwertsysteme. Berechne q :=, und setze r := a q b. = 2.25, also q = 2.25 = 2 und = 3. Im Beispiel ergibt sich a b

5 Stellenwertsysteme. Berechne q :=, und setze r := a q b. = 2.25, also q = 2.25 = 2 und = 3. Im Beispiel ergibt sich a b 5 Stellenwertsysteme In diesem kurzen Kapitel werden wir uns mit der übliche Darstellung natürlicher Zahlen dem Dezimalsystem beschäftigen. Grundlage ist die Division mit Rest, die wir zunächst auf die

Mehr

3 Kodierung von Informationen

3 Kodierung von Informationen 43 3 Kodierung von Informationen Bevor ich Ihnen im nächsten Kapitel die einzelnen Bausteine einer Computeranlage vorstelle, möchte ich Ihnen noch kurz zeigen, wie Daten kodiert sein müssen, damit der

Mehr

Grundstrukturen: Speicherorganisation und Zahlenmengen

Grundstrukturen: Speicherorganisation und Zahlenmengen Zahlendarstellung Zahlen und ihre Darstellung in Digitalrechnern Grundstrukturen: Speicherorganisation und Zahlenmengen Linear organisierter Speicher zu einer Adresse gehört ein Speicher mit 3 Bit-Zellen

Mehr

Mikro-Controller-Pass 1

Mikro-Controller-Pass 1 Seite: 1 Zahlensysteme im Selbststudium Inhaltsverzeichnis Vorwort Seite 3 Aufbau des dezimalen Zahlensystems Seite 4 Aufbau des dualen Zahlensystems Seite 4 Aufbau des oktalen Zahlensystems Seite 5 Aufbau

Mehr

Black Box erklärt Zahlensysteme.

Black Box erklärt Zahlensysteme. Black Box erklärt Zahlensysteme. Jeder von uns benutzt aktiv mindestens zwei Zahlenssysteme, oftmals aber so selbstverständlich, dass viele aus dem Stegreif keines mit Namen nennen können. Im europäischen

Mehr

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement Kx Binäre Zahlen Kx Binäre Zahlen Inhalt. Dezimalzahlen. Hexadezimalzahlen. Binärzahlen. -Bit Binärzahlen ohne Vorzeichen. -Bit Binärzahlen mit Vorzeichen. -Bit Binärzahlen im er Komplement. Rechnen im

Mehr

Zahlensysteme. Aufbauvorschrift für ein Zahlensystem. 盹 诲诲诲盿 盿 έ έ έ. Dezimales Zahlensystem (Basis = 10) Z(2) Z(1) Z(0)

Zahlensysteme. Aufbauvorschrift für ein Zahlensystem. 盹 诲诲诲盿 盿 έ έ έ. Dezimales Zahlensystem (Basis = 10) Z(2) Z(1) Z(0) 盹 诲诲诲盿 盿 έ έ έ Zahlensysteme Das vom Menschen am häufigsten benutzte Zahlensystem ist das dezimale Zahlensystem. Wahrscheinlich benutzen wir es, weil wir zehn Finger haben und damit das Abzählen von Mengen

Mehr

Aufgaben zu Stellenwertsystemen

Aufgaben zu Stellenwertsystemen Aufgaben zu Stellenwertsystemen Aufgabe 1 a) Zähle im Dualsystem von 1 bis 16! b) Die Zahl 32 wird durch (100000) 2 dargestellt. Zähle im Dualsystem von 33 bis 48! Zähle schriftlich! Aufgabe 2 Wandle die

Mehr

Grundlagen der Technischen Informatik. 3. Übung

Grundlagen der Technischen Informatik. 3. Übung Grundlagen der Technischen Informatik 3. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 3. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Zahlendarstellungen

Mehr

2 Repräsentation von elementaren Daten

2 Repräsentation von elementaren Daten 2 Repräsentation von elementaren Daten Alle (elemtaren) Daten wie Zeichen und Zahlen werden im Dualsystem repräsentiert. Das Dualsystem ist ein spezielles B-adisches Zahlensystem, nämlich mit der Basis

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr

Begriffe, die auf eine Multiplikation oder Division hinweisen

Begriffe, die auf eine Multiplikation oder Division hinweisen Fachbegriffe der Addition und Subtraktion Bei der Addition werden Zahlen zusammengezählt: 2 + 4 = 6 1. Summand 2. Summand Summe Bei der Subtraktion wird eine Zahl von einer anderen abgezogen. 7 2 = 5 Minuend

Mehr

Vorlesung Programmieren

Vorlesung Programmieren Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 1. Semester ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN. 1. Arten von Brüchen und Definition

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 1. Semester ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN. 1. Arten von Brüchen und Definition ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN 1. Arten von Brüchen und Definition Beispiel: 3 5 Zähler Bruchstrich Nenner Definition: Jeder Bruch hat folgendes Aussehen: Zähler. Der Nenner gibt an, Nenner in wie

Mehr

Die Zahlensysteme. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000.

Die Zahlensysteme. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000. Die Zahlensysteme Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000.de 1 Einführung Seite 1 2 Das Umrechnen von Zahlen aus unterschiedlichen

Mehr

Arithmetik in der Grundschule Di 08-10 Uhr HS 1. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind

Arithmetik in der Grundschule Di 08-10 Uhr HS 1. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind Sommersemester 2016 Arithmetik in der Grundschule Di 08-10 Uhr HS 1 V 1 12.04. V 2 19.04 Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind V 3 26.04. Zahlenraum

Mehr

Musterlösung 1. Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016

Musterlösung 1. Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016 Musterlösung 1 Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den

Mehr

Kapitel 2. Zahlensysteme, Darstellung von Informationen

Kapitel 2. Zahlensysteme, Darstellung von Informationen Kapitel 2 Zahlensysteme, Darstellung von Informationen 1 , Darstellung von Informationen Ein Computer speichert und verarbeitet mehr oder weniger große Informationsmengen, je nach Anwendung und Leistungsfähigkeit.

Mehr

Mathematik 1 -Arbeitsblatt 1-4: Rechnen mit Brüchen. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB RECHNEN MIT BRÜCHEN

Mathematik 1 -Arbeitsblatt 1-4: Rechnen mit Brüchen. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB RECHNEN MIT BRÜCHEN RECHNEN MIT BRÜCHEN. Arten von Brüchen und Definition Beispiel: 3 5 Zähler Bruchstrich Nenner Definition: Jeder Bruch hat folgendes Aussehen: Zähler Nenner. Der Nenner gibt an, in wie viele gleich große

Mehr

Übung Programmieren - Zahlendarstellung, SSH, SCP, Shellskripte -

Übung Programmieren - Zahlendarstellung, SSH, SCP, Shellskripte - Übung Programmieren - Zahlendarstellung, SSH, SCP, Shellskripte - Sebastian Ebers Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/users/ebers Zahlendarstellung 201010? 16 2010

Mehr

Technische Fachhochschule Berlin Fachbereich VIII

Technische Fachhochschule Berlin Fachbereich VIII Technische Fachhochschule Berlin Fachbereich VIII Ergänzungen Seite von LOGIKPEGEL Logik-Familien sind elektronische Schaltkreise, die binäre Zustände verarbeiten und als logische Verknüpfungen aufgebaut

Mehr

Übung zur Wirtschaftsinformatik I. Zahlensysteme / Codierung

Übung zur Wirtschaftsinformatik I. Zahlensysteme / Codierung WS 06/07 Thema 4: Zahlensysteme / Codierung 1 Übung zur Winfo I - Themenplan - Informationsverarbeitung in Unternehmen Tabellenkalkulation Anwendungen PC-Komponenten Zahlensysteme / Codierung Boole sche

Mehr

Zahlensysteme. Wie Computer Zahlen darstellen und mit ihnen rechnen Peter Ziesche

Zahlensysteme. Wie Computer Zahlen darstellen und mit ihnen rechnen Peter Ziesche Zahlensysteme Wie Computer Zahlen darstellen und mit ihnen rechnen 16.10.2004 Peter Ziesche ahlen Natürliche Zahlen 1, 2, 3,... Ganze Zahlen..., -3, -2, -1, 0, 1, 2, 3,... Rationale Zahlen -2, -1/2, -1/3,

Mehr

Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule

Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule Berufsfeldbezogenes Fachseminar - Zahlentheorie Lisa Laudan Prof. Dr. Jürg Kramer Wintersemester 2014/2015 Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule 1.1

Mehr

Grundlagen der Technischen Informatik. 3. Übung. Christian Knell Keine Garantie für Korrekt-/Vollständigkeit

Grundlagen der Technischen Informatik. 3. Übung. Christian Knell Keine Garantie für Korrekt-/Vollständigkeit Grundlagen der Technischen Informatik 3. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 3. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Zahlendarstellungen

Mehr

Einführung in die Informatik Inf, SAT

Einführung in die Informatik Inf, SAT Einführung in die Informatik Inf, SAT Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de http://www.miwilhelm.de Raum 2.202 Tel. 03943 / 659

Mehr

Der Nenner eines Bruchs darf nie gleich 0 sein! Der Zähler eines Bruchs kann dagegen auch 0 sein. Dies besagt, dass kein Teil zu nehmen ist.

Der Nenner eines Bruchs darf nie gleich 0 sein! Der Zähler eines Bruchs kann dagegen auch 0 sein. Dies besagt, dass kein Teil zu nehmen ist. Bruchteile Bruchteile von Ganzen lassen sich mit Hilfe von Brüchen angeben. Der Nenner gibt an, in wie viele gleiche Teile ein Ganzes zerlegt wird. Der Zähler gibt an, wie viele dieser gleichen Teile zu

Mehr

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit Informationsmenge Maßeinheit: 1 Bit Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit 1 Byte Zusammenfassung von 8 Bit, kleinste Speichereinheit im Computer, liefert

Mehr

Mathematik I für Wirtschaftsinformatiker

Mathematik I für Wirtschaftsinformatiker Zahlensysteme, Ungleichungen, Beträge 28.11.2008 Reelle Zahlen Dual-, Oktal-, Hexadezimalsystem Aufbau des Zahlensystems (I) Natürliche Zahlen N = {1, 2, 3,... } = Summe m + n und Produkt m n natürlicher

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6 1. Semester ARBEITSBLATT 6 VERBINDUNG DER VIER GRUNDRECHNUNGSARTEN IN Q

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6 1. Semester ARBEITSBLATT 6 VERBINDUNG DER VIER GRUNDRECHNUNGSARTEN IN Q ARBEITSBLATT 6 VERBINDUNG DER VIER GRUNDRECHNUNGSARTEN IN Q Dieser Punkt fällt in der Erklärung besonders leicht. Zusammengefasst kann man sagen, dass alles beim Alten bleibt. Es bleiben also sämtliche

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Grundlagen der Informatik Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de http://www.miwilhelm.de Raum 2.202 Tel. 03943 / 659 338 FB Automatisierung

Mehr

Grundwissen Mathematik

Grundwissen Mathematik Grundwissen Mathematik Algebra Terme und Gleichungen Jeder Abschnitt weist einen und einen teil auf. Der teil sollte gleichzeitig mit dem bearbeitet werden. Während die bearbeitet werden, sollte man den

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Grundlagen der Informatik Teil II Speicherung und Interpretation von Information Seite 1 Speicherung und Interpretation von Information Beginn der Datenverarbeitung => Erfindung von Zahlensystemen Quantifizierung

Mehr

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme Grundlagen der Informatik 2 Grundlagen der Digitaltechnik 1. Zahlensysteme Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Christian Haubelt Lehrstuhl für Hardware-Software Software-Co-Design Grundlagen der Digitaltechnik

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................

Mehr

Das negative Zweierkomplementzahlensystem

Das negative Zweierkomplementzahlensystem Das negative Zweierkomplementzahlensystem Ines Junold 07. Dezember 2009 1 / 21 Inhaltsverzeichnis 1 Einleitung 2 Das konventionelle Zweierkomplement 3 Das negative Zweierkomplementsystem 4 Zusammenfassung

Mehr

Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen. Teilen durch die Basis des Zahlensystems. Der jeweilige Rest ergibt die Ziffer.

Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen. Teilen durch die Basis des Zahlensystems. Der jeweilige Rest ergibt die Ziffer. Digitaltechnik Aufgaben + Lösungen 2: Zahlen und Arithmetik Aufgabe 1 Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen a) 4 D b) 13 D c) 118 D d) 67 D Teilen durch die Basis des Zahlensystems.

Mehr

Anleitung zum Ausführen der vier Grundrechenarten mit dem russischen Abakus ( Stschoty )

Anleitung zum Ausführen der vier Grundrechenarten mit dem russischen Abakus ( Stschoty ) Zahlen darstellen 1 Anleitung zum Ausführen der vier Grundrechenarten mit dem russischen Abakus ( Stschoty ) 1 Zahlen darstellen 1.1 Stschoty in Grundstellung bringen Der Stschoty wird hochkant gehalten

Mehr

Alexander Halles. Zahlensysteme

Alexander Halles. Zahlensysteme Stand: 26.01.2004 - Inhalt - 1. Die verschiedenen und Umwandlungen zwischen diesen 3 1.1 Dezimalzahlensystem 3 1.2 Das Dualzahlensystem 4 1.2.1 Umwandlung einer Dezimalzahl in eine Dualzahl 4 1.2.2 Umwandlung

Mehr

Inhalt. 2.1 Darstellung von Zahlen. 2.2 Darstellung von Zeichen. 2.3 Boolesche Algebra. 2.4 Aussagenlogik. Informatik 1 / Kapitel 2: Grundlagen

Inhalt. 2.1 Darstellung von Zahlen. 2.2 Darstellung von Zeichen. 2.3 Boolesche Algebra. 2.4 Aussagenlogik. Informatik 1 / Kapitel 2: Grundlagen 2. Grundlagen Inhalt 2.1 Darstellung von Zahlen 2.2 Darstellung von Zeichen 2.3 Boolesche Algebra 2.4 Aussagenlogik 2 2.1 Darstellung von Zahlen Im Alltag rechnen wir gewöhnlich im Dezimalsystem, d.h.

Mehr

Kapitel 5: Darstellung von Daten im Rechner

Kapitel 5: Darstellung von Daten im Rechner Kapitel 5: Darstellung von Daten im Rechner Kapitel 5 Darstellung von Daten im Rechner und Rechnerarithmetik Literatur: Oberschelp/Vossen, Kapitel 5 Kapitel 5: Darstellung von Daten im Rechner Seite Kapitel

Mehr

Aufgabe Multiplizieren Sie nacheinander schrittweise folgende Terme aus und vereinfachen Sie diese so weit wie möglich!

Aufgabe Multiplizieren Sie nacheinander schrittweise folgende Terme aus und vereinfachen Sie diese so weit wie möglich! Kapitel 1 Rechengesetze 1.1 Körperaxiome und Rechenregeln 1.1.1 Binomische Formeln Aufgabe 1.1.1.1. 1. Multiplizieren Sie nacheinander schrittweise folgende Terme aus und vereinfachen Sie diese so weit

Mehr

Einführung in die Programmierung

Einführung in die Programmierung Technische Universität Carolo Wilhelmina zu Brauschweig Institut für rechnergestützte Modellierung im Bauingenierwesen Prof. Dr.-Ing. habil. Manfred Krafczyk Pockelsstraße 3, 38106 Braunschweig http://www.irmb.tu-bs.de

Mehr

Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen

Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Großübung 1: Zahlensysteme Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Lehrender: Dr. Klaus Richter, Institut für Informatik; E-Mail: richter@informatik.tu-freiberg.de

Mehr

Die Zeilen mit geraden Zahlen beim Halbieren werden gestrichen.

Die Zeilen mit geraden Zahlen beim Halbieren werden gestrichen. Napier s Rechenbrett Die Bedeutung des Zweiersystems ist im Computer-Zeitalter kein Geheimnis mehr. Verdoppeln und Halbieren sind Tätigkeiten, welche uralt sind. Sie erfordern weder ein Zählen noch Rechnen,

Mehr

Natürliche Zahlen. Wer kann alle möglichen Zahlen aus diesen Ziffern basteln und sie der Größe nach ordnen?

Natürliche Zahlen. Wer kann alle möglichen Zahlen aus diesen Ziffern basteln und sie der Größe nach ordnen? Natürliche Zahlen 1.) Stellentafel Große Zahlen Impuls: Lehrer schreibt in Kästchen an die Tafel folgende Ziffern: 5 3 6 2 9 8 Wer kann aus diesen Ziffern eine Zahl basteln? 356928 Wer kann aus diesen

Mehr

1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB

1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB Mathematik -Arbeitsblatt -: Rechnen in Q F Wintersemester 0/0 Unterlagen: LehrerInnenteam GFB VERBINDUNG DER VIER GRUNDRECHNUNGSARTEN IN Q Dieser Punkt fällt in der Erklärung besonders leicht. Zusammengefasst

Mehr

gleich ?

gleich ? Bekanntlich rechnen wir üblicherweise mit Zahlen, die mit Ziffern aus einem Vorrat von 10 verschiedenen Zeichen beschrieben werden: { 0, 1, 2,..., 8, 9 }, wobei die Ziffer 0 ganz wesentlich für ein Stellenwertsystem

Mehr

Kapitel 2. Kapitel 2 Natürliche und ganze Zahlen

Kapitel 2. Kapitel 2 Natürliche und ganze Zahlen Natürliche und ganze Zahlen Inhalt 2.1 2.1 Teiler 12 12 60 60 2.2 2.2 Primzahlen 2, 2, 3, 3, 5, 5, 7, 7, 11, 11, 13, 13,...... 2.3 2.3 Zahldarstellungen 17 17 = (1 (10 0 0 1) 1) 2 2 2.4 2.4 Teilbarkeitsregeln

Mehr

Grundlagen der Informatik I. Übung

Grundlagen der Informatik I. Übung Grundlagen der Informatik I Übung Studiengang Wirtschaftsingenieurwesen Wintersemester 2013/2014 Autor: Prof. Dr.-Ing. habil. Hans-Joachim Böhme HTW Dresden, Fachbereich Informatik/Mathematik Friedrich-List-Platz

Mehr

Arbeitsblatt Zahlensysteme, Nr. 1

Arbeitsblatt Zahlensysteme, Nr. 1 Arbeitsblatt Zahlensysteme, Nr. 1 1.) Welchen Dezimalwerten entsprechen die Zahlen 4.711 7? 4.711 8? 4.711 9? 2.) Welchen Dezimalwerten entsprechen die Zahlen 2.004 5? 2.004 6? 2.004 7? 2.004 8? 2.004

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

BSZ für Elektrotechnik Dresden. Zahlenformate. Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de

BSZ für Elektrotechnik Dresden. Zahlenformate. Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de BSZ für Elektrotechnik Dresden Zahlenformate Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de Gliederung 1 Überblick 2 Grundaufbau der Zahlensysteme 2.1 Dezimalzahlen 2.2 Binärzahlen = Dualzahlen

Mehr

Zahlendarstellungen und Rechnerarithmetik*

Zahlendarstellungen und Rechnerarithmetik* Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien

Mehr

Technische Informatik I

Technische Informatik I Technische Informatik I Vorlesung 2: Zahldarstellung Joachim Schmidt jschmidt@techfak.uni-bielefeld.de Übersicht Geschichte der Zahlen Zahlensysteme Basis / Basis-Umwandlung Zahlsysteme im Computer Binärsystem,

Mehr

Rechnen mit rationalen Zahlen

Rechnen mit rationalen Zahlen Zu den rationalen Zahlen zählen alle positiven und negativen ganzen Zahlen (-2, -2,,,...), alle Dezimalzahlen (-,2; -,; 4,2; 8,; ) und alle Bruchzahlen ( 2, 4, 4 ), sowie Null. Vergleichen und Ordnen von

Mehr

Grundwissen Mathematik 6. Dieser Grundwissenskatalog gehört: Name: Klasse:

Grundwissen Mathematik 6. Dieser Grundwissenskatalog gehört: Name: Klasse: Grundwissen Mathematik 6 Dieser Grundwissenskatalog gehört: Name: Klasse: Inhaltsverzeichnis Zahlen 1. Brüche 1.1 Bruchteile 1.2 Brüche als Werte von Quotienten 1.3 Bruchzahlen 1.4 Anordnung der Bruchzahlen

Mehr

Darstellen, Ordnen und Vergleichen

Darstellen, Ordnen und Vergleichen Darstellen, Ordnen und Vergleichen negative Zahlen positive Zahlen 1_ 6 < 3,5 3 < +2 +1 2 < +5 Um negative Zahlen darstellen zu können, wird der Zahlenstrahl zu einer Zahlengeraden erweitert. Wenn zwei

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 14 Kunst gibt nicht das Sichtbare wieder, sondern Kunst macht sichtbar Paul Klee Division mit Rest Jede natürliche Zahl lässt

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 4 1. Semester ARBEITSBLATT 4 DIE RATIONALEN ZAHLEN. 1) Einleitung

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 4 1. Semester ARBEITSBLATT 4 DIE RATIONALEN ZAHLEN. 1) Einleitung ARBEITSBLATT DIE RATIONALEN ZAHLEN 1) Einleitung Wie wir schon bei der Erweiterung von der Menge der natürlichen Zahlen auf die Menge der ganzen Zahlen gesehen haben, ist es ein Ziel der Mathematik, innerhalb

Mehr