Physikalisch-Chemisches Grundpraktikum. 2. Theorie

Größe: px
Ab Seite anzeigen:

Download "Physikalisch-Chemisches Grundpraktikum. 2. Theorie"

Transkript

1 Physikalisch-Chemisches Grundpraktikum Versuch 4 Wärmeleitähigkeit von Gasen. Ziel des Versuchs.. Augabenstellung In diesem Versuch soll die Wärmeleitähigkeit von den olgenden Gasen in Abhängigkeit vom Druck untersucht werden:. trockene Lut. Wassersto 3. Kohlenstodioxid.. Hintergründe Dieser Versuch gibt einen Einblick, welche mikroskopischen Vorgänge hinter den messbaren Größen Wärme und Wärmeleitung stehen. Dazu wird unter anderem auch au das Verhalten der Teilchen eines Gases (Stoßzahlen, mittlere reie Weglänge, Arten der Energiespeicherung) eingegangen, um damit Größen wie Druck, Viskosität oder Wärmekapazität erklären zu können.. Theorie.. Wärme (thermische Energie) Wärme ist eine spezielle Energieorm, die als Bewegungsenergie der ungeordneten Bewegung der atomaren Partikel eines Körpers angesehen wird. Diese Energie wird auch als innere Energie bezeichnet, denn sie ist nicht mit einer makroskopischen Bewegung des Körpers verbunden, kann aber durch Wärmeübertragung au die Umgebung übertragen oder zur Verrichtung von mechanischer Arbeit genutzt werden (z.b. Carnotscher Kreisprozess oder Stirlingscher-Kreisprozess). Ein Zusammenhang zwischen Wärme und Temperatur ist über olgende Formel gegeben: Q = c T c:= Wärmekapazität Umgangssprachlich versteht man unter Wärme eine Sinnesempindung. Der Mensch ist über bestimmte Rezeptoren ür den Wärmesinn in der Lage, Wärme ebenso wie das entgegengesetzte Phänomen Kälte als Reiz wahrzunehmen

2 .. Allgemeine Beschreibung der Wärmeleitung Die Wärmeleitung von Gasen beruht au einem Transport von Wärme, also Energie. Es handelt sich dabei um einen Transportprozess, wie z.b. auch die Eusion, Diusion und elektrischer Stromluss. Der zugrundeliegende physikalische Prozess lässt sich in allen oben genannten Phänomen analog beschreiben. Herrscht in einem System ein Nichtgleichgewicht, so versucht das System im allgemeinen in einen Gleichgewichtszustand zu gelangen. Einen Nichtgleichgewichtszustand kann man z.b. durch lokale Erwärmung, Wärmetransport, Teilchenzahländerung oder Ladungszuührung usw. erzeugen. Damit sich wieder ein Gleichgewicht einstellen kann, kommt es zu einem Transportprozess. Es wird dabei eine ür den jeweiligen Prozess charakteristische Größe transportiert (z.b. Wärme als Transportgröße bei der Wärmeleitung). Die Beschreibung dieser Prozesse lässt sich allgemein durch olgende Beziehung darstellen: Fluss = Koeizient * treibende Krat (. Ficksches Gesetz) Der Fluss J der Transportgröße Γ stellt dabei die Größe dar, die pro Zeit und Flächeneinheit (senkrecht zur Flussrichtung) transportiert wird. In unserem Fall beim Wärmeluss: dγ J Γ = (Allgemein) Adt du J U = (Wärmetransport) Adt Die Koeizienten stellen die ür den entsprechenden Fluss charakteristischen Proportionalitätskoeizienten dar (Wärmeleitungskoeizient λ, Diusionskoeizient D, elektrische Leitähigkeit κ etc.). Die treibende Krat lieert der Gradient der entsprechenden Größe, die den Nichtgleichgewichtszustand charakterisiert (in unserem Fall der Temperaturgradient grad T x ). Der Gradient beschreibt die Änderung einer Größe entlang einer Raumrichtung. J U = λ grad T = λ x dt dx.3. Der Wärmeleitungskoeizient λ Der Wärmeleitungskoeizient λ gibt die Wärmemenge an, die pro Sekunde durch zwei senkrecht zur x-richtung stehenden Flächen eines Würels der Kantenlänge cm hindurchtritt, wenn zwischen diesen beiden Flächen ein Temperaturgradient von K herrscht.

3 Leitet man einen mathematischen Ausdruck ür λ her, kommt man au olgende Gleichung (vgl. Lehrbücher der physikalischen Chemie): N λ = c v v λm [ λ ] = N V A W m K mit N = Teilchenzahl N A = Avogardrozahl V = Volumen c v = Wärmekapazität bei konstantem Volumen v = mittlere Geschwindigkeit λ m = mittlere reie Weglänge Im Versuch soll die Druckabhängigkeit von λ untersucht werden. In welchen Größen indet man eine Druckabhängigkeit von λ? Außerdem werden unterschiedliche Gase untersucht. Wie kann die unterschiedliche Natur der Gase die Wärmeleitung beeinlussen? Um darau eine Antwort zu inden werden im olgenden die einzelnen Variablen der obenstehenden Gleichung untersucht. Teilchenzahl N Vereinacht man die Anschauung durch die Annahme eines idealen Gases, dann kann man recht einach über die kinetische Gastheorie einen Zusammenhang zwischen der Teilchenzahl und dem Druck inden. N p = m v 3 V Man sieht also, dass der Druck p direkt proportional zur Teilchenzahl N ist. Wärmekapazität c v Die Wärmekapazität ist Abhängig davon, wie gut ein Gasteilchen Wärme speichern kann. Die innere Energie eines Teilchens kann über den Gleichverteilungssatz und eine Bestimmung der Freiheitsgrade des Teilchens bestimmt werden. Allgemein gilt: U = k T mit = Freiheitsgrade k = Boltzmannkonstante T = Temperatur Für c v gilt:

4 c v U = T V = k Man sieht, dass kein Zusammenhang zwischen c v und dem Druck p besteht. Da die Anzahl der Freiheitsgrade aber vom betrachteten Teilchen abhängt sieht man, dass c v Teilchenspeziisch ist. Bei dieser Betrachtung muss man aber mitberücksichtigen, dass nicht alle Freiheitsgrade bei jeder Temperatur angeregt sind! Mittlere Geschwindigkeit In einem Gasraum haben nicht alle Teilchen die selbe Geschwindigkeit. Es herrscht vielmehr eine Geschwindigkeitsverteilung, die durch die Maxwell-Boltzmann-Verteilung ausgedrückt werden kann. m (v)dv = πkt 3 4πv e mv / kt Die mittlere Geschwindigkeit der Teilchen erhält man, wenn man die Summe aller Teilchen ( Integral über das Produkt von N(v) und v) durch die Teilchenzahl dividiert): dv v = 8kT πm Für den Mittelwert des Geschwindigkeitsquadrats gilt: 3kT v = m Auch hier ist keine Druckabhängigkeit zu inden. Es liegt aber wieder eine Teilchenspeziische Abhängigkeit vor. Die Masse m geht in die Geschwindigkeit mit ein. Die Maxwellsche mittlere reie Weglänge λ M die Maxwellsche mittlere reie Weglänge λ M sagt aus, wie weit sich ein Teilchen im mittel bewegt, bis es mit einem anderen Teilchen zusammenstößt. λ M = V N σ mit σ = π (r +r ) := Stoßquerschnitt

5 Hier indet man einen Zusammenhang zur Teilchenzahl und damit wieder zum Druck. Auch die Teilchensorte spielt eine Rolle, weil mit zunehmender Teilchengröße die mittlere reie Weglänge abnimmt. Folgen ür den Wärmeleitungskoeizienten Setzt man nun die geundenen Werte in die Gleichung des Wärmeleitungskoeizienten ein, erhält man olgenden Ausdruck: N λ = c v v λm N V A = = N N A V k 8kT πm V = Nσ N A k 8kT πm σ = const. σ T m Überraschenderweise stellt man est, dass der Wärmeleitkoeizient von der Teilchenzahl und damit vom Druck unabhängig ist. Erhöht man den Druck, verringert man auch die mittlere reie Weglänge und die Beeinlussungen au λ heben sich gegenseitig au. Was kann man ür die Wärmeleitähigkeit der unterschiedlichen untersuchten Gase sagen? Bei welchen ist λ am größten? Der Wärmeleitungskoeizient bei niedrigen Drücken Beginnt man die Messung bei sehr kleinen Drücken (hypothetisch bei Null) und erhöht nun die Teilchenzahl langsam, dann wird man einen linearen Zusammenhang zwischen λ und p eststellen können. Dazu kommt es, da bei kleinen Drücken die Wahrscheinlichkeit eines Zusammenstoßes der Teilchen gering ist. Die Teilchen können unbehindert die Wärme transportieren. Die eektive Weglänge entspricht nun den Geäßdimensionen und ist damit eine Konstante l. λ = N N V A k 8kT πm l = 3 p N mv A k 8kT πm l Steigert man den Druck weiter, werden Zusammenstöße wahrscheinlicher, bis schließlich die oben gezeigte Unabhängigkeit von λ gegenüber p beobachtet werden kann. Wie sieht dann vermutlich die Kurve in einem λ/p-diagramm aus, dass über einen großen Druckbereich augenommen wird?

6 3. Versuchsdurchührung 3.. Versuchsaubau und Durchührung Kernstück der Apparatur ist die in einem Eisbad stehende Pirani-Zelle. Als Meßdraht dient ein 0.03 mm dicker Platindraht. Da ür die Relativmessungen die Material-/Gerätekonstanten ( α, d, A ) nicht eingehen, ist es nicht notwendig, eine deinierte Geometrie einzuhalten. Der Druck in der Apparatur wird mit einem Membranmanometer gemessen. Der Platindraht in der Pirani-Zelle bildet den unbekannten Widerstand R x einer Wheatstone schen Brücke ( R = 00 Ω, R = 00 Ω, R V :variabler Brückenwiderstand ). Durch Anlegen einer relativ geringen Spannung an die Brücke ( 0.5 V ) läßt sich R 0 bestimmen, indem man R V so lange variiert, bis U = 0 wird ( Nullabgleich ). Man stellt R V au einen Wert ein, der ~ 3% über R 0 liegt. Die Spannung am Netzgerät wird danach so variiert, bis U = 0 wird ( wie ist das möglich? ). Drehschieberpumpe

7 Beginnend vom Lutdruck wird die Apparatur nun langsam evakuiert. Die Anzahl der Teilchen nimmt ab. Wenn eine Erniedrigung der Wärmeleitung autritt, wird weniger Wärme von dem Draht zur Wand der Pirani-Zelle pro Zeiteinheit transportiert werden. Steigt dann der Widerstand des Drahtes oder ällt er? Die Spannung, die au dem Draht anliegt, wird nun so verändert, dass der ursprüngliche Widerstand wieder erreicht wird. Muss die Spannung au dem Draht erhöht oder erniedrigt werden, damit wir wieder den ursprünglichen Widerstand erhalten? Wir nehmen nun so verschiedene Spannung/Druck Wertepaare au. Vor der Messung an einem neuen Gas muß die Apparatur mit dem zu messenden Gas gespült werden. Dazu wird die Apparatur soweit wie möglich evakuiert, mit dem zu messenden Gas geüllt, und nochmals evakuiert; dieser Vorgang wird zweimal wiederholt. Danach kann das Gas zur Messung eingelassen werden.

8 3.. Meßmethode nach Schleiermacher Ein in einem Duranglasrohr augespannter Platindraht wird elektrisch geheizt. Die Auheizung erolgt bis zu einer Temperatur T, bei der die pro Zeiteinheit gebildende Joule sche Wärme Q zu der hauptsächlich durch Wärmeleitung des umgebenden Gases abgeührten Wärmemenge Q ab entspricht. Es gilt also: Q zu = Q ab Q zu entspricht dem Quotienten aus angelegter Spannung im Quadrat dividiert durch den Widerstand des Platindrahtes, also Q zu = U I = U /R T Q ab entspricht der abgeührten Energie pro Zeit 3 Q ab = du = λ A gradtx dt Durch Gleichsetzen erhält man: 4 U /R T = λ A gradt x Der Temperaturgradient grad T x lässt sich annähernd durch die Temperaturdierenz zwischen sich bildender Joule scher Wärme bei angelegter Spannung am Platindraht ( elektrisches Heizen ) und der Temperatur des Duranglasrohres ( Eisbad ) als ( T Draht T glasrohr )/d schreiben ( warum? ), wobei d dem Abstand zwischen Platindraht und Duranglasrohr entspricht. Die Größe des Widerstandes eines Leiters mit konstantem Querschnitt ist dessen Länge l direkt und dessen Querschnitt A L umgekehrt proportional: 5 R = ρ l/a L Der speziische Widerstand ρ ist selber temperaturabhängig! Steigt oder sinkt der Widerstand des Drahtes bei höherer Temperatur? Da wir nur Relativmessungen mit jeweils der selben Apparatur und dem selben Draht vornehmen wollen, brauchen wir nicht weiter au den Widerstand des Drahtes einzugehen. Wir beziehen die Messwerte der einzelnen Gase immer au den selben Wert U Lut und λ Lut, da die anderen Werte gleich bleiben und könne diese so vergleichen. Gleichung 4 vereinacht sich dann zu λ x /λ Lut = {U x /U Lut } ( warum? )

9 Die Wärmeleitähigkeit von Lut bei 73 K und 03 mbar beträgt λ = 0.04 W m - K Auswertung Nach obiger Gleichung rechnet man sich nun aus den gemessenen Werten ür die Spannung U die jeweiligen Wärmeleitkoeizienten aus. Die Werte ür alle drei Gase trägt man in ein Diagramm λ/p und ein Diagramm lnλ/lnp (warum?) ein. Interpretieren Sie die Kurvenverläue in diesen Diagrammen! 4. Fragen. Die Dimensionsvielalt ist otmals etwas verwirrend. Ergänzen Sie olgende Tabelle: Druck Pascal ( Pa ) physikalische Atmosphäre (atm) Bar (bar) Torr (Torr) Pascal ( Pa ) physikalische Atmosphäre (atm) Bar (bar) Torr (Torr)

10 . Es gibt keine Universalpumpen, die zwischen Atmosphärendruck und Ultrahochvakuum eingesetzt werden können. Die olgende Tabelle zeigt charakteristische Pumpentypen, bei denen über Kompression, Diusion, Gettern oder Kondensation eine Pumpwirkung erzielt wird. Erklären Sie kurz die Funktionsweise der Pumpen. Pumpentyp Druckbereich Mechanische Drehschieberpumpe Atmosphärendruck bis 0. Pa ( Molekular )-Sorptionspumpe Atmosphärendruck bis 0-3 Pa Öldiusionspumpe Turbomolekularpumpe Kryopumpe Titansublimationspumpe Ionengetterpumpe Pa bis 0-7 Pa Pa bis 0-9 Pa 0 - Pa bis 0-9 Pa 0 - Pa bis 0-9 Pa 0-3 Pa bis 0-9 Pa 3. Neben dem hier vorgestellten Membranmanometer gibt es eine ganze Menge weiterer Manometer, die bei unterschiedlichsten Drücken arbeiten, z. B. das Mc Leod-Manometer und das Ionisationsmanometer. Beschreiben Sie in kurzer Form ihr Funktionsprinzip. 4. Bestimmen Sie die mittlere Geschwindigkeit c von H, CO und Lut bei 73. K. Verwenden Sie ür Lut M r = Aus Viskositätsmessungen seien olgende Werte ür die Stoßquerschnitte σ bei 73. K gegeben: Gas H CO Lut σ/nm Bestimmen Sie Z ür H, CO und Lut bei 73. K unter Verwendung der idealen Gasgleichung ür p = 944 mbar, mbar und 0 - mbar. Betrachten Sie Lut als Gasgemisch mit den Molenbrüchen X N = 0.78 und X O = 0.0. Für die Partialdrücke gilt dann das Henry sche Gesetz: P J = X J (g ) p 6. Bestimmen Sie mit Hile von 5. die mittlere reie Weglänge!

11 7. Bei Raumtemperatur können bei den betrachteten Gasen nur Translation und Rotation angeregt werden. Bestimmen sie c v! Mit diesen Angaben sind Sie nun in der Lage λ zu berechnen. Vergleichen Sie die Werte mit entsprechenden Literaturwerten. 8. Wie hängt die Viskosität eines Gases von der Temperatur ab; bitte erläutern ( siehe auch Ordner ür Zusatzliteratur )

12 Versuch 4 Kollogthemen THEORIE: Hauptsätze der Thermodynamik Kinetische Gastheorie Druck Freiheitsgrade und Gleichverteilungssatz Wärme und Wärmekapazität Gasgleichung ür ideale Gase Boltzmann-Verteilung (kurz) Maxwell-Boltzmann Geschwindigkeitsverteilung (Formel, Diagramm) Mittlere reie Weglänge, Stoßzahlen Arten des Wärmetransports Wärmeleitungsgleichung (. Ficksches Gesetz) Wärmeleitähigkeitskoeizient Durchührung: Wheatstone-Brücke Auswerteormel Vakuumpumpen und Manometer (kurz)

Kräfte zwischen Teilchen (Atomen) eines Gases und deren Idealisierung

Kräfte zwischen Teilchen (Atomen) eines Gases und deren Idealisierung kinetische Gastheorie Zurückführung der makroskopischen Zusammenhänge: p(v,t) auf mikroskopische Ursachen. Atomistische Natur der Gase lange umstritten, Akzeptanz Ende 19. Jahrh., Boltzmann. Modell des

Mehr

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1 Thermische Isolierung mit Hilfe von Vakuum 9.1.2013 Thermische Isolierung 1 Einleitung Wieso nutzt man Isolierkannen / Dewargefäße, wenn man ein Getränk über eine möglichst lange Zeit heiß (oder auch kalt)

Mehr

11. Ideale Gasgleichung

11. Ideale Gasgleichung . Ideale Gasgleichung.Ideale Gasgleichung Definition eines idealen Gases: Gasmoleküle sind harte punktförmige eilchen, die nur elastische Stöße ausführen und kein Eigenvolumen besitzen. iele Gase zeigen

Mehr

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion...

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion... 5 Gase...2 5.1 Das ideale Gasgesetz...2 5.2 Kinetische Gastheorie...3 5.2.1 Geschwindigkeit der Gasteilchen:...5 5.2.2 Diffusion...5 5.2.3 Zusammenstöße...6 5.2.4 Geschwindigkeitsverteilung...6 5.2.5 Partialdruck...7

Mehr

Gase, Flüssigkeiten, Feststoffe

Gase, Flüssigkeiten, Feststoffe Gase, Flüssigkeiten, Feststoffe Charakteristische Eigenschaften der Aggregatzustände Gas: Flüssigkeit: Feststoff: Nimmt das Volumen und die Form seines Behälters an. Ist komprimierbar. Fliesst leicht.

Mehr

Grenzflächen-Phänomene

Grenzflächen-Phänomene Grenzflächen-Phänomene Oberflächenspannung Betrachtet: Grenzfläche Flüssigkeit-Gas Kräfte Fl Fl grösser als Fl Gas im Inneren der Flüssigkeit: kräftefrei an der Oberfläche: resultierende Kraft ins Innere

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 8- Reale Gas Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Reale Gas wird dieses Vorgespräch durch einen Multiple-Choice Test

Mehr

Physikalische Chemie IV Statistische Thermodynamik, SS2013

Physikalische Chemie IV Statistische Thermodynamik, SS2013 Physikalische Chemie IV Statistische Thermodynamik, SS013 Inhaltsverzeichnis mit Referenzen 1. Einführung 1.1 Vergleich makroskopische und mikroskopische Systeme: Beispiel: ideales Gas, Herleitung eines

Mehr

Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement

Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement 1. Einleitung Die Wheatstonesche Brücke ist eine Brückenschaltung zur Bestimmung von Widerständen. Dabei wird der zu messende Widerstand

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie Einführung in die Physik I Wärme Kinetische Gastheorie O. von der Lühe und U. Landgraf Kinetische Gastheorie - Gasdruck Der Druck in einem mit einem Gas gefüllten Behälter entsteht durch Impulsübertragung

Mehr

8. Wärmelehre. 8.1 Temperaturskala 1 = 2. kinetische und potentielle Energie, die ein System bei Temperaturänderung aufnimmt oder abgibt

8. Wärmelehre. 8.1 Temperaturskala 1 = 2. kinetische und potentielle Energie, die ein System bei Temperaturänderung aufnimmt oder abgibt 9 8. Wärmelehre 8. emperatursala Wärmeenergie: emperatur: inetische und potentielle Energie, die ein System bei emperaturänderung aunimmt oder abgibt Maß ür mittlere inetische Energie eines Systems (im

Mehr

5.1. Kinetische Gastheorie. Ziel: Der Gasdruck: Kolben ohne Reibung, Gasatome im Volumen V Wie groß ist F auf den Kolben?

5.1. Kinetische Gastheorie. Ziel: Der Gasdruck: Kolben ohne Reibung, Gasatome im Volumen V Wie groß ist F auf den Kolben? 5.1. Kinetische Gastheorie z.b: He-Gas : 3 10 Atome/cm diese wechselwirken über die elektrische Kraft: Materie besteht aus sehr vielen Atomen: gehorchen den Gesetzen der Mechanik Ziel: Verständnis der

Mehr

Der Gesamtdruck eines Gasgemisches ist gleich der Summe der Partialdrücke. p [mbar, hpa] = p N2 + p O2 + p Ar +...

Der Gesamtdruck eines Gasgemisches ist gleich der Summe der Partialdrücke. p [mbar, hpa] = p N2 + p O2 + p Ar +... Theorie FeucF euchtemessung Das Gesetz von v Dalton Luft ist ein Gemisch aus verschiedenen Gasen. Bei normalen Umgebungsbedingungen verhalten sich die Gase ideal, das heißt die Gasmoleküle stehen in keiner

Mehr

Energieumsatz bei Phasenübergang

Energieumsatz bei Phasenübergang Energieumsatz bei Phasenübergang wenn E Vib > E Bindung schmelzen verdampfen Q Aufbrechen von Bindungen Kondensation: Bildung von Bindungen E Bindung Q E Transl. E Bindung für System A B durch Stöße auf

Mehr

Peltier-Element kurz erklärt

Peltier-Element kurz erklärt Peltier-Element kurz erklärt Inhaltsverzeichnis 1 Peltier-Kühltechnk...3 2 Anwendungen...3 3 Was ist ein Peltier-Element...3 4 Peltier-Effekt...3 5 Prinzipieller Aufbau...4 6 Wärmeflüsse...4 6.1 Wärmebilanz...4

Mehr

Rückblick auf vorherige Vorlesung:

Rückblick auf vorherige Vorlesung: Rückblick auf vorherige Vorlesung: Der Zustand eines Systems wird durch Zustandsgrößen beschrieben 0. Hauptsatz der Thermodynamik Stehen zwei Körper A und B sowie zwei Körper B und C im thermischen Gleichgewicht

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr

Transportvorgänge. 1. Einleitung. 2. Wärmetransport (makroskopische Betrachtung) KAPITEL D

Transportvorgänge. 1. Einleitung. 2. Wärmetransport (makroskopische Betrachtung) KAPITEL D 3 KAPITEL D Transportvorgänge. Einleitung Bisher wurde das Hauptaugenmerk auf Gleichgewichtszustände gerichtet. Hat man in einem System an unterschiedlichen Orten unterschiedliche Temperaturen, so liegt

Mehr

Versuchsprotokoll. Die Röhrendiode. zu Versuch 25. (Physikalisches Anfängerpraktikum Teil II)

Versuchsprotokoll. Die Röhrendiode. zu Versuch 25. (Physikalisches Anfängerpraktikum Teil II) Donnerstag, 8.1.1998 Dennis S. Weiß & Christian Niederhöfer Versuchsprotokoll (Physikalisches Anfängerpraktikum Teil II) zu Versuch 25 Die Röhrendiode 1 Inhaltsverzeichnis 1 Problemstellung 3 2 Physikalische

Mehr

Der Elastizitätsmodul

Der Elastizitätsmodul Der Elastizitätsmodul Stichwort: Hookesches Gesetz 1 Physikalische Grundlagen Jedes Material verormt sich unter Einwirkung einer Krat. Diese Verormung ist abhängig von der Art der Krat (Scher-, Zug-, Torsionskrat

Mehr

Innere Reibung von Gasen

Innere Reibung von Gasen Blatt: 1 Aufgabe Bestimmen Sie die Viskosität η von Gasen aus der Messung der Strömung durch Kapillaren. Berechnen Sie aus den Messergebnissen für jedes Gas die Sutherland-Konstante C, die effektiven Moleküldurchmesser

Mehr

www.leipzig-medizin.de

www.leipzig-medizin.de Die mittlere kinetische Energie der Teilchen eines Körpers ist ein Maß für (A) die absolute Temperatur des Körpers (B) die Dichte des Körpers (C) die spezifische Wärmekapazität (D) das spezifische Wärmeleitvermögen

Mehr

Temperatur Wärme Thermodynamik

Temperatur Wärme Thermodynamik Temperatur Wärme Thermodynamik Stoffwiederholung und Übungsaufgaben... 2 Lösungen... 33 Thermodynamik / 1 Einführung: Temperatur und Wärme Alle Körper haben eine innere Energie, denn sie sind aus komplizierten

Mehr

Kinetische Gastheorie

Kinetische Gastheorie Kinetische Gastheorie Mikroskopischer Zugang zur Wärmelehre ausgehend on Gesetzen aus der Mechanik. Ziel: Beschreibung eines Gases mit ielen wechselwirkenden Atomen. Beschreibung mit Mitteln der Mechanik:

Mehr

2.6 Zweiter Hauptsatz der Thermodynamik

2.6 Zweiter Hauptsatz der Thermodynamik 2.6 Zweiter Hauptsatz der Thermodynamik Der zweite Hauptsatz der Thermodynamik ist ein Satz über die Eigenschaften von Maschinen die Wärmeenergie Q in mechanische Energie E verwandeln. Diese Maschinen

Mehr

Der Dampfdruck von Wasser

Der Dampfdruck von Wasser Physikalisches Grundpraktikum Versuch 8 Der Dampfdruck von Wasser Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de Tutor:

Mehr

Energie, mechanische Arbeit und Leistung

Energie, mechanische Arbeit und Leistung Grundwissen Physik Klasse 8 erstellt am Finsterwalder-Gymnasium Rosenheim auf Basis eines Grundwissenskatalogs des Klenze-Gymnasiums München Energie, mechanische Arbeit und Leistung Mit Energie können

Mehr

Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 9. Dezember 2009

Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 9. Dezember 2009 Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 9. Dezember 2009 Inhaltsverzeichnis 4.2 Zustandsgleichungen von Gasen und kinetische Gastheorie........

Mehr

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen)

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen) 10. Wärmelehre Temperatur aus mikroskopischer Theorie: = 3/2 kt = ½ m = 0 T = 0 quantitative Messung von T nutzbares Maß? grundsätzlich Mittel über große Zahl von Teilchen thermisches

Mehr

Versuch 20. Kennlinie der Vakuum-Diode

Versuch 20. Kennlinie der Vakuum-Diode Physikalisches Praktikum Versuch 20 Kennlinie der Vakuum-Diode Name: Henning Hansen Datum der Durchführung: 9.09.2006 Gruppe Mitarbeiter: Christian Köhler ssistent: testiert: 3 Einleitung Die Vakuum-Diode

Mehr

24. Transportprozesse

24. Transportprozesse 4. Transportprozesse 4.1. Diffusion Gas- und Flüssigkeitsteilchen befinden sich in ständiger unregelmäßiger Bewegung (Gas: BROWNsche Bewegung). unwahrscheinliche Ausgangsverteilungen gleichen sich selbständig

Mehr

Themengebiet: Mechanik

Themengebiet: Mechanik Seite 1 Themengebiet: Mechanik 1 Literatur D. Meschede, Gerthsen Physik, Springer, Berlin M. Wutz, H. Adam, W. Walcher, Theorie und Praxis der technik, Vieweg 2 Grundlagen Historisch gesehen bezeichnet

Mehr

Wärmeleitung und thermoelektrische Effekte Versuch P2-32

Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Auswertung Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Iris Conradi und Melanie Hauck Gruppe Mo-02 7. Juni 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Wärmeleitfähigkeit 3 2 Peltier-Kühlblock

Mehr

Temperatur. Gebräuchliche Thermometer

Temperatur. Gebräuchliche Thermometer Temperatur Wärme ist Form von mechanischer Energie Umwandlung Wärme mechanische Energie ist möglich! Thermometer Messung der absoluten Temperatur ist aufwendig Menschliche Sinnesorgane sind schlechte "Thermometer"!

Mehr

Vakuum und Gastheorie

Vakuum und Gastheorie Vakuum und Gastheorie Jan Krieger 9. März 2005 1 INHALTSVERZEICHNIS 0.1 Formelsammlung.................................... 2 0.1.1 mittlere freie Weglänge in idealen Gasen................... 3 0.1.2 Strömungsleitwerte

Mehr

Die Wärmepumpe. Abb. 1: Energiefluss-Diagramme für Ofen, Wärmekraftmaschine und Wärmepumpe

Die Wärmepumpe. Abb. 1: Energiefluss-Diagramme für Ofen, Wärmekraftmaschine und Wärmepumpe Die Stichworte: Thermische Maschinen; 1. und. Hauptsatz; Wirkungsgrad und Leistungsziffer 1 Einführung und Themenstellung Mit einer wird - entgegen der natürlichen Richtung eines Wärmestroms - Wärme von

Mehr

4.2 Gleichstromkreise

4.2 Gleichstromkreise 4.2 Gleichstromkreise Werden Ladungen transportiert, so fließt ein elektrischer Strom I dq C It () [] I A s dt Einfachster Fall: Gleichstrom; Strom fließt in gleicher ichtung mit konstanter Stärke. I()

Mehr

Grundwissen Physik (8. Klasse)

Grundwissen Physik (8. Klasse) Grundwissen Physik (8. Klasse) 1 Energie 1.1 Energieerhaltungssatz 1.2 Goldene egel der Mechanik Energieerhaltungssatz: n einem abgeschlossenen System ist die Gesamtenergie konstant. Goldene egel der Mechanik:

Mehr

Marion Pucher Membrantechnik S26 Matthias Steiger. Membrantechnik. Betreuer: Univ. Prof. Dr. Anton Friedl. Durchgeführt von:

Marion Pucher Membrantechnik S26 Matthias Steiger. Membrantechnik. Betreuer: Univ. Prof. Dr. Anton Friedl. Durchgeführt von: Membrantechnik Betreuer: Univ. Prof. Dr. Anton Friedl Durchgeführt von: Marion Pucher Mtk.Nr.:0125440 Kennzahl: S26 Mtk.Nr.:0125435 Kennzahl: Datum der Übung: 17.3.2004 Seite 1/11 1. Ziel der Übung Mithilfe

Mehr

Paschen-Effekt / Gasentladungen

Paschen-Effekt / Gasentladungen Paschen-Effekt / Gasentladungen Aufgabenstellung: 1. Vakuumphysik Lesen Sie zunächst die Anleitung für den Pumpstand, machen Sie sich mit dessen Arbeitsweise vertraut und nehmen Sie die Anlage in Betrieb

Mehr

Physikalisches Grundpraktikum für Physiker/innen Teil II. Wärmeleitung

Physikalisches Grundpraktikum für Physiker/innen Teil II. Wärmeleitung Fachrichtungen der Physik UNIVERSIÄ DES SAARLANDES Physikalisches Grundpraktikum für Physiker/innen eil II WWW-Adresse Grundpraktikum Physik: 0Hhttp://grundpraktikum.physik.uni-saarland.de/ Kontaktadressen

Mehr

Stromdurchossene Leiter im Magnetfeld, Halleekt

Stromdurchossene Leiter im Magnetfeld, Halleekt Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 2005/06 Jens Küchenmeister (1253810) Versuch: P1-73 Stromdurchossene Leiter im Magnetfeld, Halleekt - Vorbereitung - Inhaltsverzeichnis 1

Mehr

t ). Wird diese Verteilung experimentell ermittelt, so ist entsprechend Gl.(1) eine Bestimmung der Wärmeleitfähigkeit

t ). Wird diese Verteilung experimentell ermittelt, so ist entsprechend Gl.(1) eine Bestimmung der Wärmeleitfähigkeit W 4 Wärmeleitfähigkeit. Aufgabenstellung. Bestimmen Sie aus der zeitlichen Änderung der Wassertemperatur des Kalorimeters den Wärmeaustausch mit der Umgebung.. Stellen Sie die durch Wärmeleitung hervorgerufene

Mehr

Institut für Physikalische und Theoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2

Institut für Physikalische und Theoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2 Institut für Physikalische und heoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2. Das Gasgesetz von Gay-Lussac hema In diesem ersuch soll das erhalten von Gasen bei Erwärmung unter

Mehr

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K Fundamentalgleichung für die Entropie Entropie S [S] = J/K spezifische Entropie: s = S/m molare Entropie: s m = S/n Mit dem 1. Hauptsatz für einen reversiblen Prozess und der Definition für die Entropie

Mehr

Experimentelle Übungen I E5 Kleine Widerstände / Thermoelement Protokoll

Experimentelle Übungen I E5 Kleine Widerstände / Thermoelement Protokoll Experimentelle Übungen I E5 Kleine Widerstände / Thermoelement Protokoll Jan-Gerd Tenberge 1 Tobias Südkamp 2 6. Januar 2009 1 Matrikel-Nr. 349658 2 Matrikel-Nr. 350069 Experimentelle Übungen I E5 Tenberge,

Mehr

Praktikum Materialwissenschaft II. Wärmeleitung

Praktikum Materialwissenschaft II. Wärmeleitung Praktikum Materialwissenschaft II Wärmeleitung Gruppe 8 André Schwöbel 1328037 Jörg Schließer 1401598 Maximilian Fries 1407149 e-mail: a.schwoebel@gmail.com Betreuer: Markus König 21.11.2007 Inhaltsverzeichnis

Mehr

Physikalische Chemie: Kreisprozesse

Physikalische Chemie: Kreisprozesse Physikalische Chemie: Kreisprozesse Version vom 29. Mai 2006 Inhaltsverzeichnis 1 Diesel Kreisprozess 2 1.1 Wärmemenge Q.................................. 2 1.2 Arbeit W.....................................

Mehr

Elektrischen Phänomene an Zellmembranen

Elektrischen Phänomene an Zellmembranen Konzeptvorlesung 17/18 1. Jahr Block 1 Woche 4 Physikalische Grundlagen der Bioelektrizität Physik PD Dr. Hans Peter Beck Laboratorium für Hochenergiephysik der niversität Bern HPB11 1 Elektrischen Phänomene

Mehr

Physikalisches Praktikum I. PTC und NTC Widerstände. Fachbereich Physik. Energielücke. E g. Valenzband. Matrikelnummer:

Physikalisches Praktikum I. PTC und NTC Widerstände. Fachbereich Physik. Energielücke. E g. Valenzband. Matrikelnummer: Fachbereich Physik Physikalisches Praktikum I Name: PTC und NTC Widerstände Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von

Mehr

Formel X Leistungskurs Physik 2005/2006

Formel X Leistungskurs Physik 2005/2006 System: Wir betrachten ein Fluid (Bild, Gas oder Flüssigkeit), das sich in einem Zylinder befindet, der durch einen Kolben verschlossen ist. In der Thermodynamik bezeichnet man den Gegenstand der Betrachtung

Mehr

Wärmeleitung und thermoelektrische Effekte Versuch P2-32

Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Vorbereitung Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Iris Conradi und Melanie Hauck Gruppe Mo-02 3. Juni 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Wärmeleitfähigkeit 3 2 Peltier-Kühlblock

Mehr

Lernziele zu SoL: Druck, Auftrieb

Lernziele zu SoL: Druck, Auftrieb Lernziele zu SoL: Druck, Auftrieb Theoriefragen: Diese Begriffe müssen Sie auswendig in ein bis zwei Sätzen erklären können. a) Teilchenmodell b) Wie erklärt man die Aggregatzustände im Teilchenmodell?

Mehr

Spezifische Wärmekapazität

Spezifische Wärmekapazität Versuch: KA Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: L. Jahn B. Wehner J. Pöthig J. Stelzer am 01. 06. 1997 Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher am

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 1: Übersicht 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie 3.1.2 Innere Energie U 3.1.3 Energietransfer

Mehr

wegen Massenerhaltung

wegen Massenerhaltung 3.3 Bilanzgleichungen Allgemein: Änderung der Bilanzgröße im System = Eingang Ausgang + Bildung - Verbrauch. 3.3.1 Massenbilanz Integration für konstante Massenströme: 0 wegen Massenerhaltung 3.3-1 3.3.2

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #12 10/11/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Konvektion Verbunden mit Materietransport Ursache: Temperaturabhängigkeit der Dichte In Festkörpern

Mehr

1 Grundwissen Energie. 2 Grundwissen mechanische Energie

1 Grundwissen Energie. 2 Grundwissen mechanische Energie 1 Grundwissen Energie Die physikalische Größe Energie E ist so festgelegt, dass Energieerhaltung gilt. Energie kann weder erzeugt noch vernichtet werden. Sie kann nur von einer Form in andere Formen umgewandelt

Mehr

9.10.2 Der Carnotsche Kreisprozess

9.10.2 Der Carnotsche Kreisprozess 9. Thermodynamik 99 9.9 Der erste Hauptsatz 9.10 Der zweite Hauptsatz 9101 9.10.1 Thermodynamischer Wirkungsgrad 9.10.2 Der Carnotsche Kreisprozess 9.9 Der erste Hauptsatz Für kinetische Energie der ungeordneten

Mehr

Versuch W6 für Nebenfächler Wärmeleitung

Versuch W6 für Nebenfächler Wärmeleitung Versuch W6 für Nebenfächler Wärmeleitung I. Physikalisches Institut, Raum 104 Stand: 4. November 2013 generelle Bemerkungen bitte Versuchspartner angeben bitte Versuchsbetreuer angeben bitte nur handschriftliche

Mehr

Physikalisches Grundpraktikum. Wärmeleitung

Physikalisches Grundpraktikum. Wärmeleitung Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum WWW-Adresse Grundpraktikum Physik: http://grundpraktikum.physik.uni-saarland.de/ Kontaktadressen der Praktikumsleiter:

Mehr

D = 10 mm δ = 5 mm a = 0, 1 m L = 1, 5 m λ i = 0, 4 W/mK ϑ 0 = 130 C ϑ L = 30 C α W = 20 W/m 2 K ɛ 0 = 0, 8 ɛ W = 0, 2

D = 10 mm δ = 5 mm a = 0, 1 m L = 1, 5 m λ i = 0, 4 W/mK ϑ 0 = 130 C ϑ L = 30 C α W = 20 W/m 2 K ɛ 0 = 0, 8 ɛ W = 0, 2 Seminargruppe WuSt Aufgabe.: Kabelkanal (ehemalige Vordiplom-Aufgabe) In einem horizontalen hohlen Kabelkanal der Länge L mit einem quadratischen Querschnitt der Seitenlänge a verläuft in Längsrichtung

Mehr

Lehre der Energie, ihrer Erscheinungsform und Fähigkeit, Arbeit zu verrichten.

Lehre der Energie, ihrer Erscheinungsform und Fähigkeit, Arbeit zu verrichten. Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 2007 Vladimir Dyakonov Raum E143, Tel. 888-5875, email: dyakonov@physik.uni-wuerzburg.de 10 Wärmelehre/Thermodynamik Lehre der Energie,

Mehr

Versuch W8 - Wärmeleitung von Metallen. Gruppennummer: lfd. Nummer: Datum:

Versuch W8 - Wärmeleitung von Metallen. Gruppennummer: lfd. Nummer: Datum: Ernst-Moritz-Arndt Universität Greifswald Institut für Physik Versuch W8 - Wärmeleitung von Metallen Name: Mitarbeiter: Gruppennummer: lfd. Nummer: Datum: 1. Aufgabenstellung 1.1. Versuchsziel Bestimmen

Mehr

Physikalische Grundlagen der Hygrometrie

Physikalische Grundlagen der Hygrometrie Den Druck der durch die verdampfenden Teilchen entsteht, nennt man auch Dampfdru Dampfdruck einen gewissen Wert, so können keine weiteren Teilchen aus der Flüssigk Physikalische Grundlagen der Hygrometrie

Mehr

Diese Präsentation soll in kurzer Form den zweiten Teil des Kapitels thermische Eigenschaften der Phononen näher erläutern. Im Speziellen wird auf

Diese Präsentation soll in kurzer Form den zweiten Teil des Kapitels thermische Eigenschaften der Phononen näher erläutern. Im Speziellen wird auf Diese Präsentation soll in kurzer Form den zweiten Teil des Kapitels thermische Eigenschaften der Phononen näher erläutern. Im Speziellen wird auf den Zusammenhang zwischen anharmonischen Kristallwechselwirkungen

Mehr

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals:

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals: 1 Arbeit und Energie Von Arbeit sprechen wir, wenn eine Kraft ~ F auf einen Körper entlang eines Weges ~s einwirkt und dadurch der "Energieinhalt" des Körpers verändert wird. Die Arbeit ist de niert als

Mehr

Die innere Energie eines geschlossenen Systems ist konstant

Die innere Energie eines geschlossenen Systems ist konstant Rückblick auf vorherige Vorlesung Grundsätzlich sind alle möglichen Formen von Arbeit denkbar hier diskutiert: Mechanische Arbeit: Arbeit, die nötig ist um einen Massepunkt von A nach B zu bewegen Konservative

Mehr

VERSUCH 16 CHEMISCHES GLEICHGEWICHT IN DER GASPHASE

VERSUCH 16 CHEMISCHES GLEICHGEWICHT IN DER GASPHASE GRUNDPRAKTIKUM PHYSIKALISCHE CHEMIE VERSUCH 16 CHEMISCHES GLEICHGEWICHT IN DER GASPHASE Kurzbeschreibung: Die Temperaturabhängigkeit des chemischen Gasphasen-Gleichgewichts wird unter isobaren Bedingungen

Mehr

Praktische Einführung in die Chemie Integriertes Praktikum:

Praktische Einführung in die Chemie Integriertes Praktikum: Praktische Einführung in die Chemie Integriertes Praktikum: Versuch 1-2 (MWG) Massenwirkungsgesetz Versuchs-Datum: 20. Juni 2012 Gruppenummer: 8 Gruppenmitglieder: Domenico Paone Patrick Küssner Michael

Mehr

Kapitel 2 Thermische Ausdehnung

Kapitel 2 Thermische Ausdehnung Kapitel 2 Thermische Ausdehnung Die Ausdehnung von Festkörpern, Flüssigkeiten und Gasen hängt von der Temperatur ab. Für Festkörper und Flüssigkeiten ist diese temperaturabhängige Ausdehnung zusätzlich

Mehr

It is important to realize that in physik today, we have no knowledge of what energie is.

It is important to realize that in physik today, we have no knowledge of what energie is. 9. Energie It is important to realize that in physik today, we have no knowledge of what energie is. Richard Feynmann, amerikanischer Physiker und Nobelpreisträger 1965. Energieformen: Mechanische Energie:

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig)

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Ideale und Reale Gase Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Wann sind reale Gase ideal? Reale Gase verhalten sich wie ideale Gase

Mehr

POGGENDORFSCHE KOMPENSATIONSMETHODE

POGGENDORFSCHE KOMPENSATIONSMETHODE Grundpraktikum der Physik Versuch Nr. 23 POGGENDORFSCHE KOMPENSATIONSMETHODE UND WHEATSTONE SCHE BRÜCKENSCHALTUNG Versuchsziel: Stromlose Messung ohmscher Widerstände und kapazitiver Blindwiderstände 1

Mehr

Elektrischer Strom. Strommessung

Elektrischer Strom. Strommessung Elektrischer Strom. Elektrischer Strom als Ladungstransport. Wirkungen des elektrischen Stromes 3. Mikroskopische Betrachtung des Stroms, elektrischer Widerstand, Ohmsches Gesetz 4. Elektrische Netzwerke

Mehr

Klausur Physikalische Chemie für TUHH (Chemie III)

Klausur Physikalische Chemie für TUHH (Chemie III) 07.03.2012 14.00 Uhr 17.00 Uhr Moritz / Pauer Klausur Physikalische Chemie für TUHH (Chemie III) Die folgende Tabelle dient Korrekturzwecken und darf vom Studenten nicht ausgefüllt werden. 1 2 3 4 5 6

Mehr

Energie und Energieerhaltung. Mechanische Energieformen. Arbeit. Die goldene Regel der Mechanik. Leistung

Energie und Energieerhaltung. Mechanische Energieformen. Arbeit. Die goldene Regel der Mechanik. Leistung - Formelzeichen: E - Einheit: [ E ] = 1 J (Joule) = 1 Nm = 1 Energie und Energieerhaltung Die verschiedenen Energieformen (mechanische Energie, innere Energie, elektrische Energie und Lichtenergie) lassen

Mehr

Physikalische Chemie 0 Klausur, 22. Oktober 2011

Physikalische Chemie 0 Klausur, 22. Oktober 2011 Physikalische Chemie 0 Klausur, 22. Oktober 2011 Bitte beantworten Sie die Fragen direkt auf dem Blatt. Auf jedem Blatt bitte Name, Matrikelnummer und Platznummer angeben. Zu jeder der 25 Fragen werden

Mehr

13. Abzählen von Null- und Polstellen

13. Abzählen von Null- und Polstellen 13. Abzählen von Null- und Polstellen 77 13. Abzählen von Null- und Polstellen Als weitere Anwendung des Residuensatzes wollen wir nun sehen, wie man ot au einache Art berechnen kann, wie viele Null- bzw.

Mehr

Grimsehl Lehrbuch der Physik

Grimsehl Lehrbuch der Physik Grimsehl Lehrbuch der Physik BAND 1 Mechanik Akustik Wärmelehre 27., unveränderte Auflage mit 655 Abbildungen BEGRÜNDET VON PROF. E. GRIMSEHL WEITERGEFÜHRT VON PROF. DR. W. SCHALLREUTER NEU BEARBEITET

Mehr

Versuch A02: Thermische Ausdehnung von Metallen

Versuch A02: Thermische Ausdehnung von Metallen Versuch A02: Thermische Ausdehnung von Metallen 13. März 2014 I Lernziele Wechselwirkungspotential im Festkörper Gitterschwingungen Ausdehnungskoezient II Physikalische Grundlagen Die thermische Längen-

Mehr

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008 Thermodynamik Basics Dietmar Pflumm: KSR/MSE Thermodynamik Definition Die Thermodynamik... ist eine allgemeine Energielehre als Teilgebiet der Chemie befasst sie sich mit den Gesetzmässigkeiten der Umwandlungsvorgänge

Mehr

Der elektrische Strom

Der elektrische Strom Der elektrische Strom Bisher: Ruhende Ladungen Jetzt: Abweichungen vom elektrostatischen Gleichgewicht Elektrischer Strom Transport von Ladungsträgern Damit Ladungen einen Strom bilden, müssen sie frei

Mehr

Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy

Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Dr. Raimund Horn a Dipl. Chem. Barbara Bliss b Dipl. Phys. Lars Lasogga c a Fritz Haber Institut der Max Planck Gesellschaft

Mehr

Themengebiet: Thermodynamik. mol K. mol. ] eines Stoffes bestehend aus n Mol mit der Masse m gilt. M = m n. (2)

Themengebiet: Thermodynamik. mol K. mol. ] eines Stoffes bestehend aus n Mol mit der Masse m gilt. M = m n. (2) Seite 1 Themengebiet: Thermodynamik 1 Literatur D. Meschede, Gerthsen Physik, Springer F. Kohlrausch, Praktische Physik, Band 2, Teubner R.P. Feynman, R.B. Leighton und M. Sands, Feynman-Vorlesungen über

Mehr

Thermische Ausdehnung

Thermische Ausdehnung Versuch: TA Fachrichtung Physik Physikalisches Grundpraktikum Aktualisiert: am 16. 09. 2009 Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Thermische Ausdehnung Inhaltsverzeichnis

Mehr

Physik III - Anfängerpraktikum- Versuch 302

Physik III - Anfängerpraktikum- Versuch 302 Physik III - Anfängerpraktikum- Versuch 302 Sebastian Rollke (103095) und Daniel Brenner (105292) 15. November 2004 Inhaltsverzeichnis 1 Theorie 2 1.1 Beschreibung spezieller Widerstandsmessbrücken...........

Mehr

Wiedemann-Franz-Lorenzsches Gesetz (Wiede)

Wiedemann-Franz-Lorenzsches Gesetz (Wiede) TU Ilmenau Ausgabe: September 2015 Fakultät für Elektrotechnik und Informationstechnik Dr. Kups Institut für Werkstofftechnik 1 Versuchsziel Wiedemann-Franz-Lorenzsches Gesetz (Wiede) Ziel des Versuches

Mehr

STATIONÄRE WÄRMELEITUNG

STATIONÄRE WÄRMELEITUNG Wärmeübertragung und Stofftransport VUB4 STATIONÄRE WÄRMELEITUNG Bestimmung der Wärmeleitfähigkeit λ eines Metallzylinders durch Messungen der stationären Wärmeverteilung Gruppe 1 Christian Mayr 23.03.2006

Mehr

Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig

Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig W 10 Wärmepumpe Aufgaben 1 Nehmen Sie die Temperatur- und Druckverläufe einer Wasser-Wasser-Wärmepumpe auf!

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 2010 17. 21. Mai 2010 Physik für Bauingenieure Übungsblatt 5 Gruppenübungen 1. Wärmepumpe Eine Wärmepumpe hat eine Leistungszahl

Mehr

HYGROMETRIE. Im Folgenden werden vier unterschiedliche Verfahren zur Bestimmung der relativen Luftfeuchtigkeit vorgestellt. 1.

HYGROMETRIE. Im Folgenden werden vier unterschiedliche Verfahren zur Bestimmung der relativen Luftfeuchtigkeit vorgestellt. 1. Versuch 7/1 HYGROMETRIE 04.06.2012 Blatt 1 HYGROMETRIE Im Folgenden werden vier unterschiedliche Verfahren zur Bestimmung der relativen Luftfeuchtigkeit vorgestellt. 1. Grundbegriffe Die Luftfeuchtigkeit

Mehr

2.11. Heißluftmotor (neuer Aufbau von Phywe mit PC seit Oktober 2008)

2.11. Heißluftmotor (neuer Aufbau von Phywe mit PC seit Oktober 2008) 2.11 Heißluftmotor (neuer Aufbau von Phywe mit PC seit Oktober 2008) 271 2.11. Heißluftmotor (neuer Aufbau von Phywe mit PC seit Oktober 2008) Ziel Der Versuch soll das Verständnis für die Funktionsweise

Mehr

Kryotechnik Fortbildung am GSI

Kryotechnik Fortbildung am GSI Kryotechnik Fortbildung am GSI 1. Kälteerzeugung 2. Kälteverteilung 3. Wärmeübergang 4. Niedrigere Temperaturen Kühlmöglichkeite nmit Helium Bezugsquellen für Stoffdatenprogramme GASPAK, HEPAK, CRYOCOMP

Mehr

6. Transporteigenschaften von Metallen

6. Transporteigenschaften von Metallen 6. Transporteigenschaften von Metallen 6. llgemeine Transportgleichung a) elektrische Leitung b) Wärmeleitung c) Diffusion llgemeine Transportgleichung: j C Φ j : C : Φ : Stromdichte Proportionalitätskonstante

Mehr

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1 Arbeit, Energie, Leistung 8 Arbeit, Energie, Leistung 2009 1 Begriffe Arbeit, Energie, Leistung von Joule, Mayer und Lord Kelvin erst im 19. Jahrhundert eingeführt! (100 Jahre nach Newton s Bewegungsgesetzen)

Mehr

T6 - Temperaturabhängigkeit der molaren Wärmekapazität

T6 - Temperaturabhängigkeit der molaren Wärmekapazität 6 - emperaturabhängigkeit der molaren Wärmekapazität Aufgaben: 1. Messung der molaren Wärmekapazität von Aluminium bzw. Kupfer als Funktion der emperatur im Bereich von 196 C bis Zimmertemperatur. 2. Berechnung

Mehr

ST Der Stirling-Motor als Wärmekraftmaschine

ST Der Stirling-Motor als Wärmekraftmaschine ST Der Stirling-Motor als Wärmekraftmaschine Blockpraktikum Herbst 2007 Gruppe 2b 24. Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Stirling-Kreisprozess............................. 2 1.2 Technische

Mehr