Die Lösungen der Übungsaufgaben werden durch folgendes Lemma etwas vereinfacht:

Größe: px
Ab Seite anzeigen:

Download "Die Lösungen der Übungsaufgaben werden durch folgendes Lemma etwas vereinfacht:"

Transkript

1 Prof. Dr. D. Kuske, M.Sc. M. Huschenbe Fachgebie Theoreische Informaik, TU Ilmenau Muserlösung zum 2. Übungsbla Auomaenheorie Die Lösungen der Übungsaufgaben werden durch folgendes Lemma ewas vereinfach: Lemma Zu jedem Baumauomaen gib es einen äquivalenen Baumauomaen mi nur einem Endzusand, der dieselbe Sprache akzepier. Beweis Sei A = (Q, Σ,, F ) ein Baumauoma. Wir definieren einen Baumauomaen A { q}, Σ,, { q}), wobei q Q ein neuer Zusand sei, durch = (Q = { ( q, f, q 1,..., q m ) (p, f, q 1,..., q m ), p F }. Durch srukurelle Indukion über T Σ zeig man leich, dass für alle p Q genau dann A p gil, wenn A p gil. Daraus folg für alle = f( 1,..., m ) T Σ : L(A) p F : Es gil also L(A) = L(A ). A p (p, f, q 1,..., q m ), p F : ( q, f, q 1,..., q m ) : A q L(A ). i A q i für i = 1,..., m i A q i für i = 1,..., m Aufgabe 2 Es seien Σ = (Σ m ) m N ein Rangalphabe, Γ = m N Σ m, L Γ eine reguläre Sprache und T T Σ eine reguläre Baumsprache. Zeigen Sie, dass die folgenden Sprachen regulär sind: (a) die Menge aller Σ-Bäume, in denen einer der Äse mi einem Wor aus L beschrife is, (b) die Menge aller Σ-Bäume, in denen alle Äse mi Wörern aus L beschrife sind, (c) die Menge aller Wörer w Γ für die es einen Baum T gib, so dass einer der Äse von mi w beschrife is. Lösung (a) Es sei M = (Z, Γ, z 0, δ, E) ein DFA mi L(M) = L. Wir berachen den Baumauomaen A = (Z { z}, Σ,, {z 0 }), wobei z Z ein neuer Zusand sei, mi = { (p, f, q 1,..., q m ) Z Σ m (Z { z}) m m 1, δ(p, f) {q 1,..., q m } } { (p, a) Q Σ 0 δ(p, a) F } { ( z, f, z,..., z) m 0, f Σ m }. 1/6

2 2. Übungsbla zur Vorlesung Auomaenheorie Durch srukurelle Indukion zeig man leich, dass A z für alle T Σ gil. Durch srukurelle Indukion über T Σ zeigen wir außerdem, dass für alle p Z genau dann A p gil, wenn einen As besiz, der mi einem w Γ mi ˆδ(p, w) F beschrife is. Sei also = f( 1,..., m ) T Σ. 1. Fall: m = 0. Es gil A p (p, a) δ(p, a) F ˆδ(p, a) F. Da der einzige As von mi a beschrife is, gil lezeres genau dann, wenn einen As besiz, der mi einem w Γ mi ˆδ(p, w) F beschrife is. 2. Fall: m 1. Nehmen wir zunächs A p an. Wegen p z gib es dann q 1,..., q m Z { z} mi (p, f, q 1,..., q m ) und i A q i für i = 1,..., m. Ensprechend der Definiion von gib es ein j {1,..., m} mi δ(p, f) = q j. Nach Indukionsvoraussezung gil j M qj, d.h. es gib einen As von j der mi einem w Γ mi ˆδ(q j, w) F beschrife is. Somi besiz einen As, der mi fw beschrife is. Außerdem gil ˆδ(p, fw) = ˆδ ( δ(p, f), w ) = ˆδ(q j, w) F. Nehmen wir nun an, besäße einen As, der mi einem w Γ mi ˆδ(p, w) F beschrife is. Insbesondere gib es dann ein j {1,..., m} und einen As von j, der mi einem u Γ mi w = fu beschrife is. Mi q = δ(p, f) gil ˆδ(q, u) = ˆδ ( δ(p, f), u ) = ˆδ(p, fu) = ˆδ(p, w) F. Nach Indukionsvoraussezung gil also j A q. Außerdem gil i A z für alle i = 1,..., j 1, j + 1,..., m sowie (p, f, z,..., z, q, z,..., z), d.h. A p. Dami is die srukurelle Indukion abgeschlossen. Für alle T Σ gil also: L(A) A z 0 besiz einen mi einem w Γ mi ˆδ(z 0, w) F beschrifen As besiz einen mi einem w L(M) beschrifen As besiz einen mi einem w L beschrifen As. (b) Die Sprache Γ \ L is ebenfalls regulär. Lau Teilaufgabe (a) is also die Menge aller Σ- Bäume, in denen ein As mi einem Wor aus Γ \L beschrife is, regulär. Das Komplemen dieser Menge, also die Menge aller Σ-Bäume, in denen kein As mi einem Wor aus Γ \ L beschrife is, is ebenfalls regulär. Lezeres is aber gerade die Menge aller Σ-Bäume, in denen alle Äse mi Wörern aus L beschrife sind. (c) Es sei A = (Q, Σ,, F ) ein Baumauoma mi L(A) = T. O.B.d.A. sind Q und Γ disjunk. Außerdem nehmen wir an, dass F = 1, sagen wir F = {s}, sowie dass es für jedes p Q ein T Σ mi A p gib. Wir berachen die verallgemeiner rechslineare Grammik G = (Q, Γ, s, P ) mi P = { p fq i (p, f, q 1,..., q m ), i = 1,..., m } { p a (p, a) }. Unser Ziel is zu zeigen, dass L(G) = { w Γ T : ein As von is mi w beschrife }. Dazu zeigen wir zunächs per Indukion über die Länge von w Γ, dass für alle p Q genau dann p G w gil, wenn es einen Baum T Σ gib, der einen mi w beschrifeen As besiz und A p erfüll. Für w = ε sind beide Aussagen offensichlich ses falsch, wir müssen also nur den Fall w Γ + berachen. 2/6

3 2. Übungsbla zur Vorlesung Auomaenheorie Indukionsanfang: w = 1. Es sei w = a mi a Γ. Der Baum = a() T Σ is offensichlich der einzige, der einen mi w beschrifeen As besiz. Außerdem gil p G w (p a) P (p, a) A p. Indukionsschri: w 2. Es sei w = fu mi f Γ und u Γ +. Nehmen wir zunächs p G w an. Dann gib es q Q mi (p fq) P und q G u. Somi gib es (p, f, q 1,..., q m ) und j {1,..., m} mi q = q j. Nach Indukionsvoraussezung gib es einen Baum j, der einen mi u beschrifeen As besiz und j A q j erfüll. Nach obiger Annahme, gib es außerdem für i = 1,..., j 1, j + 1,..., m jeweils ein i T Σ mi i A q i. Dann besiez der Baum = f( 1,..., m ) einen mi fu = w beschrifeen As und erfüll A p. Nehmen wir nun an, es gib einen Baum T Σ, der einen mi w beschrifeen As besiz und A p erfüll. Dann gib es m 1, 1,..., m T Σ und j {1,..., m}, so dass = f( 1,..., m ) und j einen mi u beschrifeen As besiz. Außerdem gib es q 1,..., q m Q mi (p, f, q 1,..., q m ) und i A q i für i = 1,..., m. Somi gil (p fq j ) P. Außerdem gil nach Indukionsvoraussezung q j G u. Zusammen folg p G fq j G fu = w. Dami is die Indukion abgeschlossen. Für alle w Γ gil nun w L(G) s G w T Σ : A s und ein As von is mi w beschrife L(A): ein As von is mi w beschrife T : ein As von is mi w beschrife. Aufgabe 3 Es sei Σ = (Σ n ) n N ein Rangalphabe. Für jeden Baum T Σ sei yield() Σ + 0 das man erhäl, wenn man die Bläer von von links nach rechs lies. dasjenige Wor, (a) Definieren Sie yield() formal durch srukurelle Indukion über. (b) Zeigen Sie: Für jede reguläre Baumsprache T T Σ is die Sprache konexfrei. yield(t ) = { yield() T } Σ + 0 (c) Beweisen Sie nun folgende Umkehrung: Wenn Σ 2, dann gib es zu jeder konexfreien Sprache L Σ + 0 eine reguläre Baumsprache T T Σ mi L = yield(t ). Hinweis: Man kann leich zeigen, dass die Bedingung Σ 2 nich nur hinreichend sondern auch nowendig is. 3/6

4 2. Übungsbla zur Vorlesung Auomaenheorie Lösung (a) Für = f( 1,..., m ) T Σ is yield() definier durch { f falls m = 0, yield() = yield( 1 ) yield( m ) falls m 1. (b) Es sei A = (Q, Σ,, F ) ein Baumauoma mi L(A) = T. O.B.d.A. sind Q und Σ 0 disjunk. Außerdem nehmen wir F = 1 an, sagen wir F = {s}. Wir definieren eine Grammaik G = (Q, Σ 0, P, s) durch P = { p q 1... q m (p, f, q 1,..., q m ), m 1 } { p a (p, a) }. Ziel is es, L(G) = yield(t ) nachzuweisen. Da sowohl L(G) Σ + 0 als auch yield(t ) Σ+ 0 gil, können wir unsere Unersuchungen dazu auf Wörer w Σ + 0 beschränken. Beweis von L(G) yield(t ): Zunächs zeigen wir per Indukion über k N, dass es für alle p Q und w Σ + 0 mi p k G w einen Baum T Σ mi yield() = w und A p gib. Da Q und Σ + 0 disjunk sind, is im Fall k = 0 nichs zu zeigen. Indukionsanfang: k = 1. Es gil p G w, d.h. (p w) P. Ensprechend der Definiion von P gib es also ein a Σ 0 mi w = a und (p, a). Der Baum = a() T Σ erfüll also yield() = w und A p. Indukionsschri: k 2. Es gib α (V Σ 0 ) mi p G α k 1 G w. Insbesondere gil also (p α) P. Wegen α k 1 G w und k 1 1 gil α Σ 0 und aufgrund der Definiion von P somi α Q +, sagen wir α = q 1... q m mi m 1 und q 1,..., q m Q. Es gil also (p q 1... q m ) P. Ensprechend der Definiion von P gib es also ein f Σ m mi (p, f, q 1,..., q m ). Aus q 1... q m k 1 G w folg, dass es u 1,..., u m Σ + 0 und l 1,..., l m N mi w = u 1 u m, q i li u i für i = 1,..., m und l l m = k 1 gib. Insbesondere gil also l 1,..., l m k 1. Nach Indukionsvoraussezung gib es also 1,..., m T Σ mi yield( i ) = u i und i A q i für i = 1,..., m. Der Baum = f( 1,..., f m ) erfüll also yield() = yield( 1 ) yield( m ) = u 1 u m = w und A q. Dami is die Indukion abgeschlossen. Sei nun w L(G), d.h. s G w. Es gib also ein T Σ mi yield() = w und A s. Lezeres bedeue L(A) = T und somi w yield(t ). Beweis von yield(t ) L(G): Zunächs zeigen wir durch srukurelle Indukion über T Σ, dass für jedes p Q mi A p auch p G yield() gil. Sei also = f( 1,..., f m ). 1. Fall: m = 0. Es gil f Σ 0 und (p, f). Somi is (p f) P, also p G f. Wegen yield() = f bedeue dies insbesondere p G yield(). 2. Fall: m 1. Wegen A p gib es q 1,..., q m Q mi (p, f, q 1,..., q m ) und i A q i für i = 1,..., m. Nach Indukionsvoraussezung gil also q i G yield( i). Außerdem gil (p q 1... q m ) P. Daraus folg p G q 1 q 2... q m G yield( 1 )q 2... q m G G yield( 1 ) yield( m ) = yield(). Dami is die srukurelle Indukion abgeschlossen. Sei nun w yield(t ), d.h. es gib ein T mi yield() = w. Wegen T = L(A) gil A s und somi s G yield() = w, d.h. w L(G). 4/6

5 2. Übungsbla zur Vorlesung Auomaenheorie (c) Es sei G = (V, Σ 0, P, S) eine konexfreie Grammaik in Chomsky-Normalform mi L(G) = L. Weier sei f Σ 2 beliebig. Wir definieren einen Baumauomaen A = (V, Σ,, {S}) durch = { (A, f, B, C) (A BC) P } { (A, a) (A a) P } und berachen die reguläre Baumsprache T = L(A). Überführ man A wie im Beweis von Teilaufgabe (b) in eine konexfreie Grammaik, erhäl man gerade G. Es gil also yield(t ) = L(G) = L. Aufgabe 4 Es seien Γ ein Alphabe, A 1,..., A n Γ Sprachen über Γ und Σ = (Σ m ) m N das Rangalphabe mi Σ 0 = {A 1,..., A n }, Σ 1 = {, }, Σ 2 = {,, \, } und Σ m = für m > 2. Jeder Baum in T Σ kann als Mengenausdruck über den Teilmengen von Γ aufgefass werden, wobei die unären Operaoren und die Komplemenbildung bzw. den Kleene-Sern bezeichnen. Die durch einen Baum T Σ beschriebene Teilmenge von Γ sei mi L() bezeichne. Zeigen Sie: (a) Für jedes w Γ is die Menge aller T Σ mi w L() regulär. (b) Die Menge R aller T Σ, in denen die Symbole, und \ nich vorkommen, is regulär. (c) Die Menge aller R mi L() = is regulär. (d) Is die Menge aller T Σ mi L() = regulär? Lösung (a) Es sei I(w) = { u Γ v 1, v 2 Γ : w = v 1 uv 2 } die Menge aller Infixe von w. Diese Menge is offensichlich endlich und es gil insbesondere w I(w). Wir definieren einen deerminisischen und vollsändigen Baumauomaen A = (Q, Σ,, F ) durch Q = 2 I(w), und F = { M I(w) w M } (M, A i ) M = A i I(w), (M,, N) M = I(w) \ N, (M,, N) M = N I(w), (M,, N 1, N 2 ) M = N 1 N 2, (M,, N 1, N 2 ) M = N 1 N 2, (M, \, N 1, N 2 ) M = N 1 \ N 2, (M,, N 1, N 2 ) M = (N 1 N 2 ) I(w). Durch srukurelle Indukion über T Σ zeig man leich, dass für alle M I(w) genau dann A M gil, wenn M = L() I(w). Für T Σ gil dann L(A) M F : A M M I(w): w M und M = L() I(w) w L(). 5/6

6 2. Übungsbla zur Vorlesung Auomaenheorie (b) Der deerminisische Baumauoma A = ({q}, Σ,, {q}) mi = { (q, A i ) i = 1,..., n } { (q,, q), (q,, q, q), (q, q, q) } erfüll offensichlich L(A) = R. (c) Wir berachen den deerminisischen Baumauoma A = (Q, Σ,, {1}) mi Q = {0, 1} und (p, A i ) p = 1 genau dann, wenn A i, (p,, q) p = 0, (p,, q, r) p = 1 genau dann, wenn sowohl q = 1 als auch r = 1, (p,, q, r) p = 1 genau dann, wenn q = 1 oder r = 1. Durch srukurelle Indukion über T Σ zeig man leich: (1) Es gib genau dann ein p Q mi A p, wenn R, (2) Es gil genau dann A 1, wenn R und L() =, (3) Es gil genau dann A 0, wenn R und L(). Für T Σ gil also L(A) genau dann, wenn R und L() =. (d) Im Allgemeinen is die Anwor negaiv. Dazu berachen wir den Fall A 1 = {a} für ein a Γ. Angenommen, die Menge aller T Σ mi L() = wäre regulär, dann gäbe es einen deerminisischen und vollsändigen Baumauomaen A = (Q, Σ,, F ) mi L(A) = { T Σ L() = }. Für jedes k N definieren wir einen Baum s k T Σ indukiv durch s 0 = A 1 () und s k+1 = (s k, A 1 () ). Durch Indukion über k zeig man leich, dass L(s k ) = {a k+1 }. Da A deerminisisch und vollsändig is, gib es für jedes k N ein eindeuig besimmes p k Q mi s k A p k. Da Q endlich is, gib es somi k, l N mi k < l und p k = p l. Wir berachen den Baum = \(s k, s k ) und den eindeuig besimmen Zusand q Q mi A q. Dieser erfüll (q, \, p k, p k ). Außerdem gil L() = L(s k )\L(s k ) =, also L(A) bzw. q F. Wir berachen nun außerdem den Baum = \(s k, s l ). Dieser erfüll einseis ebenfalls A q, d.h. L(A). Andererseis gil jedoch L( ) = L(s k ) \ L(s l ) = {a k+1 } \ {a l+1 } = {a k+1 } =. Dies is offensichlich ein Widersprich und somi kann die Menge aller T Σ mi L() = nich regulär sein. 6/6

Lineare Algebra I - Lösungshinweise zur Klausur

Lineare Algebra I - Lösungshinweise zur Klausur Insiu für Mahemaik Winersemeser 0/3 Universiä Würzburg 0 Februar 03 Prof Dr Jörn Seuding Dr Anna von Heusinger Frederike Rüppel Lineare Algebra I - Lösungshinweise zur Klausur Aufgabe : (0 Punke) Zeigen

Mehr

Lösungen zu Übungsblatt 4

Lösungen zu Übungsblatt 4 Fakulä für Mahemaik, Technische Universiä Dormund Vorlesung Geomerie für Lehram Gymnasium, Winersemeser 24/5 Dipl-Mah Aranç Kayaçelebi Lösungen zu Übungsbla 4 Aufgabe 2 Punke a Geben Sie eine Funkion f

Mehr

Zentralübung zur Vorlesung Theoretische Informatik

Zentralübung zur Vorlesung Theoretische Informatik SS 2015 Zentralübung zur Vorlesung Theoretische Informatik Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2015ss/theo/uebung/ 7. Mai 2015 ZÜ THEO ZÜ IV Übersicht: 1.

Mehr

5. Übungsblatt zur Linearen Algebra II

5. Übungsblatt zur Linearen Algebra II Fachbereich Mahemaik Prof. J. Bokowski Dennis Frisch, Nicole Nowak Sommersemeser 27 5., 8. und 2. Mai 5. Übungsbla zur Linearen Algebra II Gruppenübung Aufgabe G (Hüllen) In dieser Aufgabe soll es darum

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6 5. Semester ARBEITSBLATT 6 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6 5. Semester ARBEITSBLATT 6 PARAMETERDARSTELLUNG EINER GERADEN ARBEITSBLATT PARAMETERDARSTELLUNG EINER GERADEN Eine Gerade sell man im R ensprechend zum R auf, nur daß eine z-koordinae hinzukomm: Definiion: Parameerdarsellung einer Gerade durch die Punke A und B:

Mehr

7 Das lokale Ito-Integral

7 Das lokale Ito-Integral 7 Das lokale Io-Inegral 7.3 Ein lokales L p -Maringal is uner einer gleichgradigen Inegrierbarkeisbedingung ein L p -Maringal 7.4 Rechsseiig seiges (seiges), lokales L p -Maringal 7.5 Seige, lokale Maringale

Mehr

Karlsruher Institut für Technologie (KIT) Institut für Analysis Dr. A. Müller-Rettkowski Dipl.-Math. M. Uhl. Sommersemester 2011

Karlsruher Institut für Technologie (KIT) Institut für Analysis Dr. A. Müller-Rettkowski Dipl.-Math. M. Uhl. Sommersemester 2011 Karlsruher Insiu für Technologie KIT) Insiu für Analysis Dr. A. Müller-Rekowski Dipl.-Mah. M. Uhl Sommersemeser Höhere Mahemaik II für die Fachrichungen Elekroingenieurwesen und Physik inklusive Komplee

Mehr

Gewöhnliche Differentialgleichungen (DGL)

Gewöhnliche Differentialgleichungen (DGL) Gewöhnliche Differenialgleichungen (DGL) Einführende Beispiele und Definiion einer DGL Beispiel 1: 1. Die lineare Pendelbewegung eines Federschwingers führ uner Zuhilfenahme des Newonschen Krafgesezes

Mehr

Übungsblatt 4 Lösungsvorschläge

Übungsblatt 4 Lösungsvorschläge Insiu für Theoreische Informaik Lehrsuhl Prof. Dr. D. Wagner Übungsbla 4 Lösungsvorschläge Vorlesung Algorihmenechnik im WS 09/10 Problem 1: Flüsse [vgl. Kapiel 4.1 im Skrip] ** Gegeben sei ein Nezwerk

Mehr

Probeklausur 1. Thema Nr. 1 (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten!

Probeklausur 1. Thema Nr. 1 (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten! Universiä Regensburg, Winersemeser 3/4 Examenskurs Analysis (LGy) Dr. Farid Madani Probeklausur Thema Nr. (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeien! Aufgabe (5 Punke). Man

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Wintersemester 2007 / 2008 Prof. Dr. Heribert Vollmer Institut für Theoretische Informatik 29.10.2007 Reguläre Sprachen Ein (deterministischer) endlicher Automat

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 LAGEBEZIEHUNG DREIER EBENEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 LAGEBEZIEHUNG DREIER EBENEN Mahemaik Mag. Schmid Wolfgang Arbeisbla. Semeser ARBEITSBLATT LAGEBEZIEHUNG DREIER EBENEN Nachdem wir die Lage weier Ebenen unersuch haben, wollen wir uns nun mi der Lage von drei Ebenen beschäfigen. Anders

Mehr

existiert. In der Regel wird zusätzlich zum oben gegebenen System von Differentialgleichungen noch eine Anfangsbedingung

existiert. In der Regel wird zusätzlich zum oben gegebenen System von Differentialgleichungen noch eine Anfangsbedingung 0 Eine Anwendung der Jordan-Normalform in der Analysis In vielen physikalischen Anwendungen is es nowendig, Syseme von Differenialgleichungen der Form: y ( = b y ( + b 2 y 2 ( + + b n y n ( + f ( y 2(

Mehr

8.5 Uneigentliche Integrale Integrale über unbeschränkte Bereiche. f(x) dx. Integrale über unbeschränkte Funktionen mit Singularitäten am Rand

8.5 Uneigentliche Integrale Integrale über unbeschränkte Bereiche. f(x) dx. Integrale über unbeschränkte Funktionen mit Singularitäten am Rand 8.5 Uneigenliche Inegrle Inegrle über unbeschränke Bereiche,, Inegrle über unbeschränke Funkionen mi Singulriäen m Rnd, f : (, b] R seig, f : [, b) R seig Lokle Inegrierbrkei: Definiion: Eine Funkion f

Mehr

Zwischenwerteigenschaft

Zwischenwerteigenschaft Zwischenwereigenschaf Markus Berberich Ausarbeiung zum Vorrag im Proseminar Überraschungen und Gegenbeispiele in der Analysis (Sommersemeser 2009, Leiung PD Dr. Gudrun Thäer) Zusammenfassung: In dieser

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Insiu für Technologie Insiu für Analysis Dr. Chrisoph Schmoeger Michael Ho, M. Sc. M. Sc. SS 6 9.7.6 Höhere Mahemaik II für die Fachrichung Physik Lösungsvorschläge zur Übungsklausur Aufgabe

Mehr

Formale Sprachen. Spezialgebiet für Komplexe Systeme. Yimin Ge. 5ahdvn. 1 Grundlagen 1. 2 Formale Grammatiken 4. 3 Endliche Automaten 5.

Formale Sprachen. Spezialgebiet für Komplexe Systeme. Yimin Ge. 5ahdvn. 1 Grundlagen 1. 2 Formale Grammatiken 4. 3 Endliche Automaten 5. Formale Sprachen Spezialgebiet für Komplexe Systeme Yimin Ge 5ahdvn Inhaltsverzeichnis 1 Grundlagen 1 2 Formale Grammatien 4 Endliche Automaten 5 4 Reguläre Sprachen 9 5 Anwendungen bei Abzählproblemen

Mehr

Lösungsvorschläge Blatt 4

Lösungsvorschläge Blatt 4 Theoretische Informatik Departement Informatik Prof. Dr. Juraj Hromkovič http://www.ita.inf.ethz.ch/theoinf16 Lösungsvorschläge Blatt 4 Zürich, 21. Oktober 2016 Lösung zu Aufgabe 10 (a) Wir zeigen mit

Mehr

3.4 Systeme linearer Differentialgleichungen

3.4 Systeme linearer Differentialgleichungen 58 Kapiel 3 Invarianen linearer Transformaionen 34 Syseme linearer Differenialgleichungen Die Unersuchung der Normalformen von Marizen soll nun auf die Lösung von Differenialgleichungssysemen angewende

Mehr

Übungsblatt 8 Musterlösung

Übungsblatt 8 Musterlösung Numerik gewöhnlicher Differenialgleichungen MA - SS6 Übungsbla 8 Muserlösung Aufgabe 7 Schriweienseuerung) Im Folgenden soll die Differenzialgleichung y ) = f,y)) = sign)y, y ) = e, im Zeiinervall [, ]

Mehr

Hauptachsentransformation

Hauptachsentransformation Haupachsenransformaion Erinnerung: A M n is genau ann nich inverierbar, wenn es ein x R n, x gib, mi A x. Definiion. Sei A M n eine Marix. Ein Vekor v R n, v heiß Eigenvekor von A zum Eigenwer λ R, wenn

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Insiu für Technologie Insiu für Analysis Dr. Chrisoph Schmoeger Dipl.-Mah. Sebasian Schwarz SS 015 17.05.015 Höhere Mahemaik II für die Fachrichung Physik Lösungsvorschläge zum 6. Übungsbla

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Prof. Dr. Guido Sweers WS 08/09 Jan Gerdung, M.Sc. Gewöhnliche Differenialgleichungen Übungsbla Die Lösungen müssen in den Übungsbriefkasen Gewöhnliche Differenialgleichungen (Raum 0 im MI) geworfen werden.

Mehr

Definition. Definition. 1 Q eine endliche Menge von Zuständen, 2 Σ eine endliche Menge von Eingabesymbolen,

Definition. Definition. 1 Q eine endliche Menge von Zuständen, 2 Σ eine endliche Menge von Eingabesymbolen, Diskee Mahemaik OLC mpuaional gic Main Avanzini Ane Dü Chisoph Kolleide Geog Mose Zusammenfassung de lezen LV Zusammenfassung de lezen LV deeminisische TM mi k Bänden einbändige, deeminisische TM M, sodass

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt Prof Dr M Gerds Dr A Dreves J Michael Winerrimeser 6 Mahemaische Mehoden in den Ingenieurwissenschafen 4 Übungsbla Aufgabe 9 : Mehrmassenschwinger Berache wird ein schwingendes Sysem aus Körpern der Masse

Mehr

7. Vorlesung Wintersemester

7. Vorlesung Wintersemester 7. Vorlesung Winersemeser Der ungedämpfe Oszillaor mi komplexem Lösungsansaz Wie gezeig, wird die DGL des ungedämpfen Oszillaors mẍ() + kx() = 0 () im Komplexen von den Funkionen x () = e iω und x 2 ()

Mehr

Zusammenfassung der letzten LVA. Endliche Automaten mit Epsilon-Übergängen. Inhalte der Lehrveranstaltung (cont d)

Zusammenfassung der letzten LVA. Endliche Automaten mit Epsilon-Übergängen. Inhalte der Lehrveranstaltung (cont d) Zusammenfassung der letzten LVA Ein nichtdeterministischer endlicher Automat (NEA) ist ein 5-Tupel (Q, Σ, δ, S, F), sodass Q eine endliche Menge von Zustände Σ eine endliche Menge, das Eingabealphabet;

Mehr

Definition Ein Homomorphismus von Lie-Algebren. Für uns ist vor allem die im folgenden Satz eingeführte Darstellung von Bedeutung.

Definition Ein Homomorphismus von Lie-Algebren. Für uns ist vor allem die im folgenden Satz eingeführte Darstellung von Bedeutung. 1 Lie-Gruppen 1. Lie-Algebren Im lezen Vorrag haben wir bereis das Konzep der Lie-Algebren kennengelern. Zunächs werde ich noch einige weiere grundlegende Definiionen dazu angeben. In diesem Kapiel sei

Mehr

2.2 Reguläre Sprachen Endliche Automaten

2.2 Reguläre Sprachen Endliche Automaten 2.2.1 Endliche Automaten E I N G A B E Lesekopf endliche Kontrolle Signal für Endzustand Ein endlicher Automat liest ein Wort zeichenweise und akzeptiert oder verwirft. endlicher Automat Sprache der akzeptierten

Mehr

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R.

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R. Abiuraufgaben Grundkurs 9 Bayern Analysis I I.). Die Abbildung zeig den Graphen G f einer ganzraionalen Funkion f drien Grades mi dem Definiionsbereich D f R. Die in der Abbildung angegebenen Punke P(

Mehr

Differentialgleichungen

Differentialgleichungen Ein einfaches Modell (Domar) Im Domar Wachsumsmodell reffen wir die folgenden Annahmen: Kapiel Differenialgleichungen () Erhöhung der Invesiionsrae I() erhöh das Einkommen Y(): dy d = s di (s = konsan)

Mehr

Laplacetransformation in der Technik

Laplacetransformation in der Technik Verallgemeinere Funkionen Laplaceransformaion in der echnik Fakulä Grundlagen Februar 26 Fakulä Grundlagen Laplaceransformaion in der echnik Übersich Verallgemeinere Funkionen Verallgemeinere Funkionen

Mehr

Endliche Automaten. Einführung in den Themenbereich. Karin Haenelt

Endliche Automaten. Einführung in den Themenbereich. Karin Haenelt Endliche Auomaen Einführung in den Themenbereich Karin Haenel 18.04.2010 1 Inhal Informelle Einführung: Was sind endliche Auomaen? Absrake Auomaen Endliche absrake Auomaen Beispiele T ypen endlicher Auomaen

Mehr

Stochastische Differentialgleichungen

Stochastische Differentialgleichungen INSTITUT FÜR STOCHASTIK SS 2007/08 UNIVRSITÄT KARLSRUH Bla 9 Priv.-Doz. Dr. D. Kadelka Übungen zur Vorleung Sochaiche Differenialgleichungen Muerlöungen Aufgabe 21: Definieren Sie analog zur d-dimenionalen

Mehr

liefern eine nicht maschinenbasierte Charakterisierung der regulären

liefern eine nicht maschinenbasierte Charakterisierung der regulären Reguläre Ausdrücke 1 Ziel: L=L M für NFA M L=L(r) für einen regulären Ausdruck r Reguläre Ausdrücke über einem Alphabet Σ Slide 1 liefern eine nicht maschinenbasierte Charakterisierung der regulären Sprachen

Mehr

Differenzieren von Funktionen zwischen Banachräumen

Differenzieren von Funktionen zwischen Banachräumen Differenzieren von Funkionen zwischen Banachräumen Ingmar Gezner In dieser Seminararbei wollen wir das Differenzieren auf Funkionen zwischen Banachräume verallgemeinern. In unendlichdimensionalen Räumen

Mehr

Übungen zur Klausur 11M1 21/05/2008 Seite 1 von 5

Übungen zur Klausur 11M1 21/05/2008 Seite 1 von 5 Seie von 5 Aufgabe : Eine ganzraionale Funkion. Grades habe die Nullsellen ; ;. Ihr Schaubild gehe durch P( 6). Besimme die Exremsellen. Skizziere den Graphen der Funkion. allgemeine Form einer Funkion.

Mehr

PHYSIK III. Serie 12, Musterlösung

PHYSIK III. Serie 12, Musterlösung Prof Dr Danilo Pescia Tel 044 633 50 pescia@solidphysehzch Winersemeser 06/07 wwwmicrosrucureehzch Serie, Muserlösung Niculin Saraz Tel 044 633 3 8 saraz@physehzch Reflexion Die Fresnel schen Formeln lauen:

Mehr

2 2 Reguläre Sprachen. 2.2 Endliche Automaten. Übersicht

2 2 Reguläre Sprachen. 2.2 Endliche Automaten. Übersicht Formale Systeme, Automaten, Prozesse Übersicht 2 2. Reguläre Ausdrücke 2.3 Nichtdeterministische endliche Automaten 2.4 Die Potenzmengenkonstruktion 2.5 NFAs mit ɛ-übergängen 2.6 Minimale DFAs und der

Mehr

q 0 q gdw. nicht (q A) (q A) q i+1 q gdw. q i q oder ( a Σ) δ(q, a) i δ(q, a) L = {a n b n : n N} für a, b Σ, a b

q 0 q gdw. nicht (q A) (q A) q i+1 q gdw. q i q oder ( a Σ) δ(q, a) i δ(q, a) L = {a n b n : n N} für a, b Σ, a b Kap. 2: Endliche Automaten Myhill Nerode 2.4 Minimalautomat für reguläre Sprache Abschnitt 2.4.3 L Σ regulär der Äuivalenzklassen-Automat zu L ist ein DFA mit minimaler Zustandszahl (= index( L )) unter

Mehr

Kryptologie. Bernd Borchert. Univ. Tübingen WS 15/16. Vorlesung. Teil 1b. Rechnen modulo n

Kryptologie. Bernd Borchert. Univ. Tübingen WS 15/16. Vorlesung. Teil 1b. Rechnen modulo n Krypologie Bernd Borcher Univ. Tübingen WS 15/16 Vorlesung Teil 1b Rechnen modulo n Modulo Rechnen a mod n is definier als Res von a bei Division durch n (a aus Z, n aus N) a + b mod n = a mod n + b mod

Mehr

4. Übung zur Vorlesung Informatik III am

4. Übung zur Vorlesung Informatik III am 1 4. Übung zur Vorlesung Informatik III am 16.11.2007 Wiederholung Konkatenation 2 Definition Konkatenation Eine endliche Folge w von Symbolen aus Σ heißt Wort. Die Menge aller Wörter über Σ heißt Σ. Sei

Mehr

Reguläre Sprachen. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

Reguläre Sprachen. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer, Reguläre Sprachen Reguläre Sprachen (Typ-3-Sprachen) haben große Bedeutung in Textverarbeitung und Programmierung (z.b. lexikalische Analyse) besitzen für viele Entscheidungsprobleme effiziente Algorithmen

Mehr

5. Übungsblatt zur Differentialgeometrie

5. Übungsblatt zur Differentialgeometrie Insiu für Mahemaik Prof. Dr. Helge Glöckner Dipl. Mah. Rafael Dahmen 5. Übungsbla zur Differenialgeomerie (Aufgaben und Lösungen) SoSe 3.05.0 Gruppenübung Aufgabe G9 (Submersionen und Unermannigfaligkei)

Mehr

Elementare Lösungsmethoden für gewöhnliche Differentialgleichungen

Elementare Lösungsmethoden für gewöhnliche Differentialgleichungen 454 Erforderliche Kennnisse: Höhere Analysis Elemenare Lösungsmehoden für gewöhnliche Differenialgleichungen Was is eigenlich eine Differenialgleichung? Eine Differenialgleichung is eine Gleichung, in

Mehr

Fourier-Transformation Linearität, Symmetrie, Verschiebung, Skalierung, Faltung, Modulation

Fourier-Transformation Linearität, Symmetrie, Verschiebung, Skalierung, Faltung, Modulation Übung 3 Fourier-Transformaion Lineariä, Symmerie, Verschiebung, Skalierung, Falung, Modulaion Lernziele - wissen und versehen, dass der Berag der Fourier-Transformieren einer reellen Funkion gerade is.

Mehr

Hörsaalübung 3 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Hörsaalübung 3 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mahemaik der Universiä Hamburg WiSe 26/27 Dr. Hanna Peywand Kiani Hörsaalübung 3 Differenialgleichungen I für Sudierende der Ingenieurwissenschafen Lineare Differenialgleichungssyseme Die ins

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2013

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2013 Automaten und Formale Sprachen alias Theoretische Informatik Sommersemester 2013 Dr. Sander Bruggink Übungsleitung: Jan Stückrath Sander Bruggink Automaten und Formale Sprachen 1 Reguläre Ausdrücke Wozu

Mehr

Der Primzahlsatz, Teil 1. 1 Erste Abschätzungen zum Primzahlsatz

Der Primzahlsatz, Teil 1. 1 Erste Abschätzungen zum Primzahlsatz Der Primzahlsaz, Teil Vorrag zum Seminar zur Funionenheorie, 07.05.0 Raffaela Biesenbach Diese Arbei beschäfig sich mi der Herleiung des Primzahlsazes. Dazu werden Definiionen und Säze aus dem Sri zur

Mehr

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion)

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion) R. Brinkmann hp://brinkmann-du.de Seie.. Tangene und Normale Tangenenseigung Die Seigung eines Funkionsgraphen in einem Punk P ( f ( ) ) is gleichbedeuend mi der Seigung der Tangene in diesem Punk. Nachfolgend

Mehr

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 Abiurprüfung Mahemaik 0 (Baden-Würemberg) Berufliche Gymnasien Analysis, Aufgabe. (8 Punke) Die Abbildung zeig das Schaubild einer Funkion h mi der Definiionsmenge [-7 ; 4]. Die Funkion H is eine Sammfunkion

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Casrigiano Dr. M. Prähofer Zenralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zenrum Mahemaik Mahemaik 3 für Physik (Analysis ) hp://www-hm.ma.um.de/ss/ph/ 49. Eine reguläre Kurve ha keinen Knick

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

Musterlösung Serie 10

Musterlösung Serie 10 Prof. D. Salamo Aalysis I MATH, PHYS, CHAB HS 04 Muserlösug Serie 0. a Wir bereche mi der biomische Formel e cos ix + e ix x = = =0 =0 e ix e i x = =0 e i x Da = gil, öe wir i der leze Summe die Terme

Mehr

3.2 Autoregressive Prozesse (AR-Modelle) AR(p)-Prozesse

3.2 Autoregressive Prozesse (AR-Modelle) AR(p)-Prozesse 3. Auoregressive Prozesse (AR-Modelle 3.. AR(-Prozesse Definiion: Ein sochasischer Prozess ( heiß auoregressiver Prozess der Ordnung [AR(-Prozess], wenn er der Beziehung (3.. genüg. ( is darin ein reiner

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwere un Eigenvekoren Vorbemerkung: Is ie n n Marix inverierbar, so ha as lineare Gleichungssysem A x b für jees b genau eine Lösung, nämlich x A b. Grun: i A x A A b b, ii Is y eine weiere Lösung,

Mehr

Definition 4 (Operationen auf Sprachen) Beispiel 5. Seien A, B Σ zwei (formale) Sprachen. Konkatenation: AB = {uv ; u A, v B} A + = n 1 An

Definition 4 (Operationen auf Sprachen) Beispiel 5. Seien A, B Σ zwei (formale) Sprachen. Konkatenation: AB = {uv ; u A, v B} A + = n 1 An Definition 4 (Operationen auf Sprachen) Seien A, B Σ zwei (formale) Sprachen. Konkatenation: AB = {uv ; u A, v B} A 0 = {ɛ}, A n+1 = AA n A = n 0 An A + = n 1 An Beispiel 5 {ab, b}{a, bb} = {aba, abbb,

Mehr

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital apiel 11 Produkion, Sparen und der Aufbau von apial Vorbereie durch: Florian Barholomae / Sebasian Jauch / Angelika Sachs Die Wechselwirkung zwischen Produkion und apial Gesamwirschafliche Produkionsfunkion:

Mehr

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14 Kapitel: Die Chomsky Hierarchie Die Chomsky Hierarchie 1 / 14 Allgemeine Grammatiken Definition Eine Grammatik G = (Σ, V, S, P) besteht aus: einem endlichen Alphabet Σ, einer endlichen Menge V von Variablen

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik im WiSe 2003/2004

Lösung zur Klausur. Grundlagen der Theoretischen Informatik im WiSe 2003/2004 Lösung zur Klausur Grundlagen der Theoretischen Informatik im WiSe 2003/2004 1. Geben Sie einen deterministischen endlichen Automaten an, der die Sprache aller Wörter über dem Alphabet {0, 1} akzeptiert,

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/07 8. Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/07 8. Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 8. Vorlesung 17.11.2006 schindel@informatik.uni-freiburg.de 1 Prinzip des Kellerautomats Push-Down-Automaton (PDA) Ein Kellerautomat vereinigt

Mehr

Formale Methoden 2 LVA ,

Formale Methoden 2 LVA , Formale Methoden 2 LVA 703019, 703020 (http://clinformatik.uibk.ac.at/teaching/ss06/fmii/) Georg Moser (VO) 1 Martin Korp (UE) 2 Friedrich Neurauter (UE) 3 Christian Vogt (UE) 4 1 georg.moser@uibk.ac.at

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 7

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 7 Prof. J. Esparza Technische Universität München S. Sickert, J. Krämer KEINE ABGABE Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt 7 Übungsblatt Wir unterscheiden zwischen Übungs-

Mehr

Grundlagen der theoretischen Informatik

Grundlagen der theoretischen Informatik Grundlagen der theoretischen Informatik Kurt Sieber Fakultät IV, Department ETI Universität Siegen SS 2013 Vorlesung vom 30.04.2013 Grenzen regulärer Sprachen Wie beweist man, dass eine Sprache nicht regulär

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Übung am 3..2 INSTITUT FÜR THEORETISCHE KIT 7..2 Universität des Andrea Landes Schumm Baden-Württemberg - Theoretische und Grundlagen der Informatik INSTITUT FÜR

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 7 5. Semester ARBEITSBLATT 7 PARAMETERDARSTELLUNG EINER EBENE

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 7 5. Semester ARBEITSBLATT 7 PARAMETERDARSTELLUNG EINER EBENE Mahemaik: Mag. Schmid Wolfgang Arbeibla 7. Semeer ARBEITSBLATT 7 PARAMETERDARSTELLUNG EINER EBENE Im Raum möche man naürlich nich nur Geraden ondern auch Flächen darellen. Diee Flächen bezeichne man al

Mehr

Kapitel : Exponentiell-beschränktes Wachstum

Kapitel : Exponentiell-beschränktes Wachstum Wachsumsprozesse Kapiel : Exponeniell-beschränkes Wachsum Die Grundbegriffe aus wachsum.xmcd werden auch hier verwende! Wir verwenden nun eine Angabe aus der Biologie und in einem weieren Beispiel eines

Mehr

Formale Sprachen und Automaten: Tutorium Nr. 8

Formale Sprachen und Automaten: Tutorium Nr. 8 Formale Sprachen und Automaten: Tutorium Nr. 8 15. Juni 2013 Übersicht 1 Nachtrag 2 Besprechung von Übungsblatt 7 Aufgabe 1 Aufgabe 2 Aufgabe 3 3 CFG PDA Definitionen Ein Beispiel! Aufgabe 4 Der PDA als

Mehr

Übung zur Vorlesung Grundlagen der theoretischen Informatik. Aufgabenblatt 7 Lösungen. Wiederholung: Pumping-Lemma für kontextfreie Sprachen

Übung zur Vorlesung Grundlagen der theoretischen Informatik. Aufgabenblatt 7 Lösungen. Wiederholung: Pumping-Lemma für kontextfreie Sprachen Prof. Dr. Viorica Sofronie-Stokkermans Universität Koblenz-Landau Fachbereich 4: Informatik Dennis Peuter 01. Juni 2017 Übung zur Vorlesung Grundlagen der theoretischen Informatik Aufgabenblatt 7 Lösungen

Mehr

Übungsaufgaben zu Formalen Sprachen und Automaten

Übungsaufgaben zu Formalen Sprachen und Automaten Universität Freiburg PD Dr. A. Jakoby Sommer 27 Übungen zum Repetitorium Informatik III Übungsaufgaben zu Formalen Sprachen und Automaten. Untersuchen Sie das folgende Spiel: A B x x 2 x 3 C D Eine Murmel

Mehr

A.24 Funktionsscharen 1

A.24 Funktionsscharen 1 A.24 Funkionsscharen Das Buch: Dieses Kapiel is Teil eines Buches. Das vollsändige Buch können Sie uner www.mahe-laden.de besellen (falls Sie das möchen). Sie werden in diesem Buch ein paar Sachen finden,

Mehr

Grundlagenfach Mathematik. Prüfende Lehrpersonen Alitiloh Essodinam

Grundlagenfach Mathematik. Prüfende Lehrpersonen Alitiloh Essodinam Schrifliche Mauriäsprüfung 017 Fach Grundlagenfach Mahemaik Prüfende Lehrpersonen Aliiloh Essodinam essodinam.aliiloh@edulu.ch Mikova Teodora eodora.mikova@edulu.ch Zuidema Roel roel.zuidema@edulu.ch Klassen

Mehr

Stochastische Automaten und Quellen

Stochastische Automaten und Quellen KAPITEL 2 Sochasische Auomaen und Quellen Sei A ein Sysem allgemeiner Ar (z.b. ein physikalisches Sysem oder eine Nachrichenquelle), das wir zu diskreen Zeipunken = 0, 1,... beobachen. Wir nehmen an: (SA

Mehr

Frank Heitmann 2/47. 1 Ein PDA beginnt im Startzustand z 0 und mit im Keller. 2 Ist der Automat

Frank Heitmann 2/47. 1 Ein PDA beginnt im Startzustand z 0 und mit im Keller. 2 Ist der Automat Formale Grundlagen der Informatik 1 Kapitel 5 Über reguläre Sprachen hinaus und (Teil 2) Frank Heitmann heitmann@informatik.uni-hamburg.de 21. April 2015 Der Kellerautomat - Formal Definition (Kellerautomat

Mehr

1. Übungsblatt 6.0 VU Theoretische Informatik und Logik

1. Übungsblatt 6.0 VU Theoretische Informatik und Logik . Übungsblatt 6. VU Theoretische Informatik und Logik 25. September 23 Aufgabe Sind folgende Aussagen korrekt? Begründen Sie jeweils Ihre Antwort. a) Für jede Sprache L gilt: L < L (wobei A die Anzahl

Mehr

Restkapazität. = O( V ) mal kritisch. Also gibt es insgesamt höchstens O( V E ) Augmentierungen.

Restkapazität. = O( V ) mal kritisch. Also gibt es insgesamt höchstens O( V E ) Augmentierungen. Lemma 4.5.9. Der Algorihmu von Edmond-Karp führ höchen O( V E ) Augmenierungen durch. Bewei. Eine Kane (u, v) heiße kriich auf augmenierenden Weg p gdw. c f (u, v) = c f (p). Rekapaziä Eine kriiche Kane

Mehr

Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (ii) ε ist ein regulärer Ausdruck über Σ.

Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (ii) ε ist ein regulärer Ausdruck über Σ. Reguläre Ausdrücke Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (i) ist ein regulärer Ausdruck über Σ. (ii) ε ist ein regulärer Ausdruck über Σ. (iii) Für jedes a Σ ist a ein regulärer

Mehr

c) {abcde, abcfg, bcade, bcafg} d) {ade, afg, bcde, bcfg} c) {abcabc} d) {abcbc, abc, a} c) {aa, ab, ba, bb} d) {{aa}, {ab}, {ba}, {bb}}

c) {abcde, abcfg, bcade, bcafg} d) {ade, afg, bcde, bcfg} c) {abcabc} d) {abcbc, abc, a} c) {aa, ab, ba, bb} d) {{aa}, {ab}, {ba}, {bb}} 2 Endliche Automaten Fragen 1. Was ergibt sich bei {a, bc} {de, fg}? a) {abc, defg} b) {abcde, abcfg} c) {abcde, abcfg, bcade, bcafg} d) {ade, afg, bcde, bcfg} 2. Was ergibt sich bei {abc, a} {bc, λ}?

Mehr

Versicherungstechnik

Versicherungstechnik Operaions Research und Wirschafsinformaik Prof Dr P Rech // Marius Radermacher, MSc DOOR Aufgabe 30 Versicherungsechnik Übungsbla 9 Abgabe bis zum Diensag, dem 13122016 um 10 Uhr im Kasen 19 Berachen Sie

Mehr

1. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004. Mit Lösung!

1. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004. Mit Lösung! Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 23/4 ILKD Prof. Dr. D. Wagner 2. Februar 24. Klausur zur Vorlesung Informatik III Wintersemester 23/24 Mit Lösung! Beachten Sie:

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 8. Reguläre Sprachen II Malte Helmert Gabriele Röger Universität Basel 24. März 24 Pumping Lemma Pumping Lemma: Motivation Man kann zeigen, dass eine Sprache regulär ist, indem man

Mehr

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 11. Juli HA-Lösung. TA-Lösung

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 11. Juli HA-Lösung. TA-Lösung Technische Universität München Sommer 26 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert. Juli 26 HA-Lösung TA-Lösung Einführung in die theoretische Informatik Aufgabenblatt 3 Beachten Sie: Soweit nicht

Mehr

Das Pumping Lemma: Ein Anwendungsbeispiel

Das Pumping Lemma: Ein Anwendungsbeispiel Das Pumping Lemma: Ein Anwendungsbeispiel Beispiel: Die Palindromsprache ist nicht regulär. L = { } w {0, 1} w ist ein Palindrom Beweis: Angenommen, L ist doch regulär. Gemäß Pumping Lemma gibt es dann

Mehr

Homomorphismen. Defnition: Σ und Γ seien zwei endliche Alphabete, und h sei eine Abbildung h : Σ Γ. Wir definieren die folgenden Sprachen:

Homomorphismen. Defnition: Σ und Γ seien zwei endliche Alphabete, und h sei eine Abbildung h : Σ Γ. Wir definieren die folgenden Sprachen: Homomorphismen Σ und Γ seien zwei endliche Alphabete, und h sei eine Abbildung h : Σ Γ. Wir definieren die folgenden Sprachen: h(l) := {h(u) : u L} Γ, für jede Sprache L Σ, h 1 (M) := {u Σ : h(u) M} Σ,

Mehr

Analysis II Musterlösung 12. für t [ 0, 2π). y

Analysis II Musterlösung 12. für t [ 0, 2π). y .. Saz von Green Die Randkurve des, in unensehender Figur dargesellen, umerangs kann paramerisier werden durch 4 cos ( + cos( sin( für, π..75.5.5 -.5 3 4 5 6 -.5 -.75 - Zur erechnung des Flächeninhales

Mehr

Kurz-Skript zur Theoretischen Informatik I

Kurz-Skript zur Theoretischen Informatik I Kurz-Skript zur Theoretischen Informatik I Inhaltsverzeichnis 1 Grundlagen 2 2 Reguläre Ausdrücke 4 3 Endliche Automaten 5 3.1 Vollständige endliche Automaten................................... 6 3.2 ε

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie Sprachen (III) 17.06.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Formale Sprachen. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S

Formale Sprachen. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S Formale Grundlagen (WIN) Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Das Alphabet Σ sei eine endliche

Mehr

Name: Klasse: Datum: Signale - Einführung Werner-von-Siemens-Schule Arbeitsblatt

Name: Klasse: Datum: Signale - Einführung Werner-von-Siemens-Schule Arbeitsblatt Signale - allgemein nser ägliches Leben wird häufig durch Signale beeinfluss. So solle man beispielsweise nich bei ROT über die Sraße gehen/fahren oder umgekehr bei einem Klingeln die Türe öffnen. Das

Mehr

FORMALE SYSTEME. Wiederholung. Beispiel: NFA. Wiederholung: NFA. 4. Vorlesung: Nichtdeterministische Endliche Automaten. TU Dresden, 19.

FORMALE SYSTEME. Wiederholung. Beispiel: NFA. Wiederholung: NFA. 4. Vorlesung: Nichtdeterministische Endliche Automaten. TU Dresden, 19. Wiederholung FORMALE SYSTEME 4. Vorlesung: Nichtdeterministische Endliche Automaten Markus Krötzsch Professur für Wissensbasierte Systeme Grammatiken können Sprachen beschreiben und sie grob in Typen unterteilen

Mehr

Die Nerode-Relation und der Index einer Sprache L

Die Nerode-Relation und der Index einer Sprache L Die Nerode-Relation und der Index einer Sprache L Eine zweite zentrale Idee: Sei A ein vollständiger DFA für die Sprache L. Repäsentiere einen beliebigen Zustand p von A durch die Worte in Σ, die zu p

Mehr

Lösung zur Übung für Analysis einer Variablen WS 2016/17

Lösung zur Übung für Analysis einer Variablen WS 2016/17 Blatt Nr. 3 Prof. F. Merkl Lösung zur Übung für Analysis einer Variablen WS 206/7 Aufgabe Das Guthaben G setzt sich zusammen aus der Summe aller bisherigen Einzahlungen multipliziert mit ( + p) k, wobei

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Übung am 02.02.2012 INSTITUT FÜR THEORETISCHE 0 KIT 06.02.2012 Universität des Andrea Landes Schumm Baden-Württemberg - Theoretische und Grundlagen der Informatik

Mehr

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 13 Wintersemester 2011/2012

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 13 Wintersemester 2011/2012 Prof Dr O Junge, A Biracher Zenrum Mahemaik - M3 Technische Universiä München MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 3 Winersemeser 2/22 Tuorübungsaufgaben (3-3222) Aufgabe T Berachen Sie das Anfangswerproblem

Mehr

Thema: Singuläres, skalares Problem 2. Ordnung - Lösbarkeit Seminararbeit aus Numerik von Differentialgleichungen

Thema: Singuläres, skalares Problem 2. Ordnung - Lösbarkeit Seminararbeit aus Numerik von Differentialgleichungen Thema: Singuläres, skalares Problem 2. Ordnung - Lösbarkei Seminararbei aus Numerik von Differenialgleichungen Michael Hubner, Sefan Wurm 8. Juli 22 Inhalsverzeichnis. Problemdefiniion 2 2. Einführende

Mehr

Formale Methoden 1. Gerhard Jäger 9. Januar Uni Bielefeld, WS 2007/2008 1/23

Formale Methoden 1. Gerhard Jäger 9. Januar Uni Bielefeld, WS 2007/2008 1/23 1/23 Formale Methoden 1 Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de Uni Bielefeld, WS 2007/2008 9. Januar 2008 2/23 Automaten (informell) gedachte Maschine/abstraktes Modell einer Maschine verhält sich

Mehr

Lösung zur Hausaufgabe in Topologie und Differentialrechnung mehrerer Variablen SS x 1. x 2. x 1+x 2+x 3

Lösung zur Hausaufgabe in Topologie und Differentialrechnung mehrerer Variablen SS x 1. x 2. x 1+x 2+x 3 Bl Nr. 11 Simon Reisser Lösung zur Husufgbe in Topologie und Differenilrechnung mehrerer Vriblen SS 17 Aufgbe () Sei f(x 1, x, x 3 ) = (y 1, y, y 3 ) = (e x1x x3, e x1x+x3, e xx3 ) und dg(y 1, y, y 3 )

Mehr

Kapitel 4. Versuch 415 T-Flipflop

Kapitel 4. Versuch 415 T-Flipflop Kapiel 4 Versuch 415 T-Flipflop Flipflops, die mi jeder seigenden oder mi jeder fallenden Takflanke in den engegengesezen Zusand kippen, heissen T Flipflops ( Toggle Flipflops ). T-Flipflops können aus

Mehr