Quadratische Funktionen und Gleichungen

Größe: px
Ab Seite anzeigen:

Download "Quadratische Funktionen und Gleichungen"

Transkript

1 Quadratische Funktionen und Gleichungen. Das ist ein Bild der Nationalflagge von England. cm cm a cm Lösung: (a) b cm (a) Zeichne die Figur für a =, b = 6 und = 2 im Maßstab :2. (b) Zeige rechnerisch: FürdenFlächeninhaltA w desweißenanteilsdieserflaggegiltinabhängigkeit von : A w () = ( )cm 2 Für den Flächeninhalt A k des Kreuzes in dieser Flagge gilt in Abhängigkeit von : A k () = ( 2 +27)cm 2 (c) Berechne so, dass die Fläche des Kreuzes 30% der Gesamtfläche ausmacht. (d) Berechne so, dass die Inhalte von weißer Fläche und Kreuzfläche gleich sind. (b) Eine Möglichkeit der Lösung besteht darin, vom Flächeninhalt der Flagge denjenigen der beiden überlappenden Rechtecke, die das Kreuz ergeben, zu subtrahieren. Um den Flächeninhalt des Kreuzes zu erhalten, musst du jedoch am Ende den Inhalt des Quadrates im Zentrum einmal abziehen, weil das Quadrat ja beiden besagten Rechtecken angehört. Also: A w () = 6cm 2 (+6 2 )cm 2 = ( )cm 2 Wie oben schon dargelegt, ergibt sich: A k () = (+6 2 )cm 2 = ( 2 +27)cm 2 (c) Der Flächeninhalt des umlaufenden Rechtecks beträgt 76cm 2. 30% von 76cm 2 = 52,8cm 2. 52,8 = ,8 = 0 ;2 = 27± 57,8 2 = 0,5 (27+ 57,8) 24,88 ( ), wegen G =]0; [ R. 2 = 0,5 (27 57,8) 2,2 G =]0; [ R. Also: L = {3,5 0,5 57,8}.

2 (d) = = 0 mit G =]0; [ R ;2 = 54± = 3,5+0, ,2 ( ), wegen G =]0; [ R. 2 = 3,5 0, ,79 G =]0; [ R. Also: L = {3,5 0,5 377} 2. Lösung: (a) Familie Taerkot hat auf ihrem eingezäunten Grundstück einen 40m 2 großen Garten angelegt. Er wurde zusätzlich mit einem 25, 5 m langen Maschendrahtzaun abgegrenzt. (a) Berechne Länge und Breite. (b) Hätte Familie Taerkot mit 25,5m Maschendraht auf die in der Abbildung dargestellte Weise eine noch größere Gartenfläche abgrenzen können? m y m Es gilt: +y = 25,5 () y = 25,5 () y = 40 (2) () ) in (2): (25,5 ) = ,5 40 = 0 L = {7,5 ; 8}. Wegen () folgt: y = 8 y = 7,5. Das Gartengrundstück ist 7,5m lang und 8m breit (oder umgekehrt). (b) Für den Flächeninhalt A gilt: A = ym 2. Mit () folgt A() = (25,5 )m 2 A() = ( 2 +25,5)m 2. Der Etremwert muss wegen des negativen Vorzeichens von 2 ein Maimum sein. Die Berechnung erfolgt z.b. so, als ob du die Scheitelkoordinaten der zugehörigen (nach unten geöffneten) Parabel ermittelst: a = b = 25,5 und c = 0: S = 25,5 2 = 2,75 und y S = 0 25,52 = 62,5625 (Maimum). 4 Mit dem 25, 5 m langen Maschendraht hätte Familie Taerkot auf diese Weise sogar etwas mehr als 62m 2 einzäunen können. 2

3 Die Länge = 2,75m liefert mit () die Breite y = (25,5 2,75)m = 2,75m. Das bedeutet, dass der flächengrößte Garten eine quadratische Form hätte. 3. Ursula und Hans wollen die folgenden quadratischen Gleichungen lösen: 2 + 0,5 4 = 0 () = 0 (2) (a) Hans bekommt für die Gleichung () die Lösungsmenge { 4; 3,6} heraus. Überprüfe das. (b) Danach schaut sich Ursula die Gleichung (2) genauer an. Sie meint schließlich: Da brauchen wir die Lösungsformel gar nicht. Die beiden Gleichungen müssen dieselben Lösungen haben. Wie hat Ursula das erkannt? Lösung: (a) Du kannst das durch z.b. Einsetzen überprüfen: 4 in (): ( 4) 2 +0,5 ( 4) 4 = 0 ergibt eine wahre Aussage. 3,6 in (): 3,6 2 +0,5 3,6 4 = 0,76 0; d.h. 3,6 ist keine Lösung. (b) 2 +0,5 4 = = 0. Wenn du jetzt noch die Summanden und2 2 vertauschst,erhältstdudiegleichung(2). BeideGleichungen sindäquivalent. Also haben sie die gleiche Lösungsmenge. 4. y O 3

4 Für die Gleichung einer Parabel p gilt a = 0,5. Die Punkte P( 4 4,5) und Q( 3) liegen auf dieser Parabel. Die Parabel p und die Geradeg mit der Gleichung y = 0,5+2 sind in Ausschnitten dargestellt. (a) Zeige durch Rechnung: Die Parabel p hat die Gleichung y = 0, ,5. (b) Berechne die Scheitelkoordinaten der Parabel. (c) Es werden nun rechtwinklige Dreiecke A n B n C n mit den folgenden Eigenschaften erzeugt: Die Punkte A n liegen auf der Geraden g. Die Punkte C n liegen auf der Parabel p. DiePunkteA n sinddiescheitel derrechten Winkel aller Dreiecke A n B n C n. Die Punkte C n haben den gleichen Abszissenwert wie die Punkte A n. Der Abszissenwert der Punkte B n ist stets um 3 kleiner als der Abszissenwert der Punkte C n. Zeichne oben für = 2 das Dreieck A B C ein. (d) Gib zwei -Werte an, für die es kein Dreieck gibt. Begründe deine Wahl. (e) Begründe: Unter allen Dreiecken A n B n C n gibt es keines, das zu einem Punkt entartet. Lösung: y B A O C (a) P( 4 4,5): -4,5 = 0,5 ( 4,5) 2 +b ( 4,5)+c Q( 3): 3 = 0,5 2 +b +c 4,5 = 8 4b+c () 3 = 0,5+b+c (2) (2) (): 7,5 = 7,5+5b 4

5 b = 3 und z.b. in (2): c = 0,5. Also gilt für p: y = 0, ,5. (b) S = 3 2 0,5 = 3 und y S = 0,5 32 = 5 S( 3 5). 4 0,5 (c) Siehe Zeichnung oben. (d) An den Schnittpunkten der Parabel mit der Geraden gilt: = 6 bzw. =. Dort liegen die betreffenden Punkte A n und C n aufeinander. Also gibt es jeweils kein Dreieck. (e) Weil die Punkte B n niemals mit den Punkten A n zur Deckung kommen, kann das betreffende Dreieck höchstens zur Strecke entarten. 5. y O Gegeben sind die Parabel p : y = 0, ,5 + 2, die Parabel p 2 : y = 2 8+ sowie die Gerade g : y = +5. Ausschnitte aus diesen Graphen sind oben dargestellt. (a) DieGerade g schneidet die Parabel p in den Punkten Aund B. Dabei liegt der Punkt B im IV. Quadranten. Berechne die Koordinaten des Schnittpunktes B. 5

6 (b) Die Punkte R n ( 0,5 2 +2,5+2) liegen auf der Parabel p, die Punkte Q n ( +5) liegen auf der Geraden g und die Punkte P n ( 2 8+) liegen auf der Parabel p 2. Die Punkte P n und R n haben stets den gleichen Abszissenwert. Die Punkte Q n haben jeweils eine um größere Abszisse als die Punkte P n und R n. Dadurch entstehen laufend Dreiecke P n Q n R n. Zeichne für = 2 das Dreieck P Q R ein. (c) Zeige: Für den Flächeninhalt A der Dreiecke P n Q n R n gilt: A() = ( 0, ,25 4,5) FE [ Teilergebnis:R n P n () = (,5 2 +0,5 95) LE ] Unter allen Dreiecken P n Q n R n gibt es ein flächengrößtes: das Dreeick P 0 Q 0 R 0. Berechne dieses Maimum und die zugehörigen Koordinaten des Eckpunktes P 0. (d) Im Dreieck P 3 Q 3 R 3 hat der Mittelpunkt M 3 der Strecke P 3 R 3 den y-wert. Berechne die -Koordinate von M 3. Lösung: y R A Q O P B (a) p g: 0,5 2 +2,5+2 = +5 0,5 2 +3,5 3 = 0. [ = ] 2 = 6 in g: y = 6+5 = B(6 ). (b) Siehe Zeichnung. 6

7 (c) R n P n () = y Rn y Pn = [ 0,5 2 +2,5+2 ( 2 8 )] LE = (,5 2 +0,5 9) LE. A() = 0,5 (,5 2 +0,5 9) FE = ( 0, ,25 4,5) FE. A ma = 4,5 5,252 4 ( 0,75) FE 4,69 FE. = 5,25 = 3,5 liefert dieses Maimum. 2 ( 0,75) P 0 (3,5 3, ,5+) = (3,5 4,75) (d) y Mn () = (2 8+)+( 0,5 2 +2,5+2) 2 = 0,25 2 2,75+6,5 =. [ 8,37] 2 2, y O Gegeben sind die Parabel p : y = 0,25 2 0,5+3,25 sowie die Gerade g : y =, 5 + 2, 25. Ausschnitte aus diesen Graphen sind oben dargestellt. 7

8 (a) Begründe rechnerisch: Die Gerade g berührt die Parabel p. (b) DiePunkteM n (,5+2,25)aufderGeradeng sinddiediagonalenschnittpunkte von Rauten A n B n C n D n. Die Eckpunkte A n ( 0,25 2 0,5+3,25) der Rauten A n B n C n D n liegen auf der Parabel p. Die Eckpunkte C n besitzen stets den gleichen Abszissenwert wie die Punkte A n. Die Länge der Diagonalen [B n D n ] der Rauten A n B n C n D n beträgt stets 4LE. Zeichne für = 2,5 die Raute A B C D ein. (c) Zeige: Für den Flächeninhalt A der Rauten A n B n C n D n gilt: A() = ( ) FE [ Teilergebnis:A n M n () = (0, ) LE ] (d) Die Raute A 0 B 0 C 0 D 0 soll diejenige unter allen Rauten A n B n C n D n sein, die den minmalen Flächeninhalt besitzt. Berechnen Sie die zugehörige Belegung von. Es stellt sich heraus, dass der minimale Flächeninhalt 0 FE beträgt. Begründen Sie diesen Sachverhalt in Worten mit Hilfe Ihrer Zeichnung. (e) Geben Sie die Koordinaten der Rauteneckpunkte D n in Abhängigkeit von an. Lösung: 8

9 y T A O M B D (a) p g: 0,25 2 0,5+3,25 =,5+2,25 0, = 0 D = 2 4 0,25 = 0; also berührt die Gerade g die Parabel p. (b) Siehe Zeichnung. (c) A AnB nc nd n = 2 A nm n B n D n : A n M n = [ (0,25 2 0,5+3,25) (,5+2,25) ] LE A n M n () = 0, ) LE. A() = 2 2 (0,252 ++) 4 FE = ( ) FE (d) = 4 = 2. Dieser -Wert liefert das Minimum. 2 Für = 2 entartet die Raute zur Strecke, denn = 2 ist der Abszissenwert des Berührpunktes T der Geraden g mit der Parabel p (siehe Zeichnung). (e) D n (,5+2,25). C 7. 9

10 m Fliesen 6m m Eichenholz Der quadratische Boden eines Badezimmers mit einer Seitenlänge von 6 m ist einerseits gefliest, anderserseits mit Eichenbrettern L-förmig verlegt worden. Das L hat eine Breite von m. Die Fläche aus Holz ist halb so groß wie die gesamte Bodenfläche. (a) Zeige: = (b) In welchem Maßstab ist der Grundriss des Badezimmers in der obigen Figur dargestellt? Konstruiere mit Zirkel und Lineal in diesen Grundriss maßstabgerecht die Streckenlänge m = (6 3 2)m. Tipp: = 6 0, Vervollständige damit die Flächenaufteilung des Badezimmers. Lösung: (a) Wenn das L überall m dick ist, dann ist die geflieste Fläche ein Quadrat mit der Seitenlänge (6 )m. Wenn das L die Hälfte der Gesamtfläche ausmacht, dann muss die quadratische geflieste Fläche die andere Hälfte einnehmen. Als Maßzahlengleichung ergibt sich dann: (6 ) 2 = 0.5 (6 6) = 8, mit ]0, 6[ R. 6 = 8 = 9 2 = = = 3 2. = = Wegen ]0, 6[ R folgt = (b) Der Grundriss ist im Maßstab : 00 dargestellt. (m = 00cm). 0

11 m 0,5 6 2m 6m m Ein Quadrat, dessen Seitenlänge 6cm beträgt, hat eine Diagonalenlänge von 6 2cm. 0,5 6 2cm ist dann gerade die halbe Diagonalenlänge dieses Quadrates. Du erhältst, wenn du mit Hilfe des Kreisbogens die Differenz aus der Seitenlänge des großen Quadrates und seiner halben Diagonalenlänge abträgst. Der Rest ist klar. 8. D Q n C R n P n A S n B In das Rechteck ABCD mit AB = 8cm und BC = 6cm werden Parallelogramme P n Q n R n S n einbeschrieben, wobei gilt: BP n = DR n = 6kcm und AS n = CQ n = 8kcm mit k ]0; [ R. (a) ZeichnedasRechteck ABCD undfürk = 0,25dasParallelogrammP Q R S. (b) Zeige: FürdasVerhältnis q der Flächeninhalte der Parallelogramme P n Q n R n S n zum Rechteck ABCD gilt in Abhängigkeit von k: q(k) = A P nq nr ns n A ABCD = 2k( k). (c) k = 0,4 erzeugt das Parallelogramm P 2 Q 2 R 2 S 2. Wie viel Prozent der Fläche des Rechtecks ABCD wird von diesem Parallelogramm eingenommen?

12 (d) UnterallenParallelogrammenP n Q n R n S n gibtesdieparallelogrammep 3 Q 3 R 3 S 3 und P 4 Q 4 R 4 S 4, die jeweils 58% der Fläche des Rechtecks ABCD einnehmen. Berechne die zugehörigen Belegungen von k. (e) Für k = 0,5 wird das Parallelogramm P 5 Q 5 R 5 S 5 erzeugt. Zeichne dieses Parallelogramm in einer anderen Farbe ein. Um welches besondere Parallelogramm handelt es sich hier? Begründe deine Antwort. Zeige: Unter allen Parallelogrammen P n Q n R n S n besitzt dieses Parallelogramm P 5 Q 5 R 5 S 5 den kleinsten Flächeninhalt. Lösung: (a) D Q 5 Q C R R 5 P 5 P A S (b) Es gilt S n BP n = Rn Q n D und P n CQ n = ASn R n. A ABCD = 48cm 2 A PnQ nr ns n = A ABCD 2 A SnBP n 2 A PnCQ n. 2 A SnBP n = 2 0,5 S n B BP n = ( k) 8cm 6kcm = 48cm 2 ( k) k. 2 A PnCQ n = 2 0,5 P n C CQ n = ( k) 6cm 8kcm = 48cm 2 ( k) k. S 5 B A PnQ nr ns n A PnQ nr ns n = 48cm cm 2 ( k) k = 48cm 2 [ 2k( k)] q(k) = A P nq nr ns n A ABCD (c) q(0,4) = 2 0,4 ( 0,4) = 0,52 = 52% (d) = 48cm2 [ 2k( k)] 48cm 2 = 2k( k). k = 0,3 und k 2 = 0,7 (e) Siehe Zeichnung. 2k( k) = 0,58 2k 2 2k + = 0,58 2k 2 2k +0,42 = 0 Es handelt sich um eine Raute. Begründung:DievierrechtwinkligenDreieckeS 5 BP 5,P 5 CQ 5,R 5 Q 5 D undas 5 R 5 2

13 sind kongruent, denn die besitzen jeweils Katheten, die jeweils 3cm bzw. 4cm lang sind. Also sind auch ihre Hypotenusen, die die Seiten des Parallelogramms P 5 Q 5 R 5 S 5 bilden, gleich lang. Also ist dieses Viereck eine Raute. q(k) = 2k( k) = 2k 2 2k+ = 2(k 2 k+0,5 2 0,25)+ = 2[(k 0,5) 2 0,25)+] = 2(k 0,5) 2 +0,5 k = 0,5 liefert den minimalen Flächenanteil von 0,5 = 50%. 3

Quadratische Funktionen

Quadratische Funktionen Quadratische Funktionen. Gegeben sind die Parabel p : y = 0,5 2 3 und die Gerade g : y = 0,5 4 auf G =R R. Die zugehörigen Funktionsgraphen sind in Ausschnitten dargestellt: y O Auf der Parabel p wandern

Mehr

Quadratische Funktionen

Quadratische Funktionen Quadratische Funktionen. (a) Gegeben sind die Parabel p : y = 0,25 2 + 5 und die Gerade g : y = 0,5+3 auf G = R R. Die zugehörigen Funktionsgraphen sind in Ausschnitten dargestellt. (b) Die Gerade g schneidet

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe 1. Wie weit kann man vom Chordach auf dem Mont-Saint-Michel (120 m) auf das Meer hinausschauen? (Erdradius 6370 km) 2. Konstruiere ein Quadrat, das den doppelten Flächeninhalt hat wie das Quadrat mit der

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe 1. Bestimme m so, dass die quadratische Gleichung nur 1 Lösung hat: 4x² - mx + 5m = 0 2.0 Von einer zentrischen Streckung sind A (-3/3), A (2/-2), B (-5/-1), B (2,5/-1) und C(-5/3) bekannt. 2.1 Konstruiere

Mehr

2. Mathematikschulaufgabe

2. Mathematikschulaufgabe 1.0 Lineare Funktionen: 1.1 Die Gerade g 1 hat die Steigung m 1 = - 0,5 und verläuft durch den Punkt P 1 (-1/-1,5). Bestimme die Gleichung der Geraden g 1. 1.2 Die Gerade g 2 steht auf der Geraden g 1

Mehr

Übungsaufgabe z. Th. lineare Funktionen und Parabeln

Übungsaufgabe z. Th. lineare Funktionen und Parabeln Übungsaufgabe z. Th. lineare Funktionen und Parabeln Gegeben sind die Parabeln: h(x) = 8 x + 3 x - 1 9 und k(x) = - 8 x - 1 1 8 x + 11 a) Bestimmen Sie die Koordinaten der Schnittpunkte A und C der Graphen

Mehr

Ermitteln Sie die Koordinaten des Schnittpunktes dieser beiden Geraden und erklären Sie Ihre Vorgehensweise!

Ermitteln Sie die Koordinaten des Schnittpunktes dieser beiden Geraden und erklären Sie Ihre Vorgehensweise! Aufgabe 2 Lagebeziehungen von Geraden im Raum Gegeben sind zwei Geraden g und h in 3. =( 3 Die Gerade g ist durch eine Parameterdarstellung X 4 2 Die Gerade h verläuft durch die Punkte A = (0 8 0 und B

Mehr

Abschlussprüfung 2010 an den Realschulen in Bayern

Abschlussprüfung 2010 an den Realschulen in Bayern Prüfungsdauer: 50 Minuten bschlussprüfung 00 an den Realschulen in ayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: ufgabe Nachtermin.0 ie nebenstehende Skizze zeigt ein Schrägbild des Würfels

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Prüfungsdauer: 150 Minuten Abschlussprüfung 011 an den Realschulen in Bayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Haupttermin A 1.0 In Deutschland wächst derzeit mehr Holz

Mehr

Aufgaben. Aufgabe A1. Prüfungsdauer: 150 Minuten

Aufgaben. Aufgabe A1. Prüfungsdauer: 150 Minuten Prüfungsdauer: 150 Minuten Aufgaben Aufgabe A1 A 1.0 Die nebenstehende Skizze zeigt den Axialschnitt einer massiven Edelstahlniete mit der Symmetrieachse MS. F M E Es gilt: _ AB = _ CD = 8,00 mm; _ MS

Mehr

Qualiaufgaben Konstruktionen

Qualiaufgaben Konstruktionen Qualiaufgabe 2008 Aufgabengruppe I Trage in ein Koordinatensystem mit der Einheit 1 cm die Punkte A (-2/2) und C (1/3) ein. a) Zeichne das gleichseitige Dreieck AMC. b) Ein regelmäßiges Sechseck mit der

Mehr

20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.

20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen. Flächeninhalte von Vielecken Parallelogramm Übungen - 9 20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.

Mehr

Raumgeometrie - schiefe Pyramide

Raumgeometrie - schiefe Pyramide 1.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 14 cm; f = 10 cm;

Mehr

A 2.2 Das waagrecht stehende Gefäß ist bis zu einer Höhe von 6 cm mit Wasser gefüllt. Ermitteln Sie rechnerisch das Volumen des Wassers im Gefäß.

A 2.2 Das waagrecht stehende Gefäß ist bis zu einer Höhe von 6 cm mit Wasser gefüllt. Ermitteln Sie rechnerisch das Volumen des Wassers im Gefäß. Prüfungsdauer: Abschlussprüfung 150 Minuten an den Realschulen in Bayern 009 Mathematik II Haupttermin Aufgabe A 1 Name: Vorname: Klasse: Platzziffer: Punkte: A 1.0 Die nebenstehende Skizze zeigt den Grundriss

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Klasse 0 / II.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 4 cm;

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Prüfungsdauer: 150 Minuten Abschlussprüfung 2011 an den Realschulen in Bayern Mathematik I Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Nachtermin A 1.0 Lebensmittelchemiker untersuchten das

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe 1.0 Gegeben: R = {(x/y) / y = 4 - Ix+1I } Π x Π 1.1 Stelle eine Wertetabelle im Bereich x [-5; 3] Ψ auf, x=1. 1. Zeichne R in ein Koordinatensystem, 1 LE 1cm.0 Lege ein kart. Koordinatensystem (1 LE 1cm)

Mehr

2. Mathematikschulaufgabe

2. Mathematikschulaufgabe . Mathematikschulaufgabe.0 Die Punkte A(-/-5) und B(6/) sind Eckpunkte von Dreiecken ABC n. Die Punkte C n liegen auf der Parabel p mit der Gleichung y = 0,5x +.. Zeichne die Parabel p sowie das Dreieck

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe 1.0 Gegeben ist die Funktion f: y = 1 ( ) 1 x + in G= x. 1.1 Tabellarisiere f für x = [ -1; 7 ] mit x = 1 sowie für x =,5 und x =,5. 1. Zeichne den Graphen von f. Für die Zeichnung: 1 LE = 1 cm - 1 x 8-1

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe . Bestimme die Lösungsmengen. G 4x + x = 0 x - 6x +69 = 0 c) (0 + p) (p - 3) 0 d) 4u - 5 > 0. Kürze soweit wie möglich folgende Bruchterme: xy, 3y 5 x y, ( x y x 6y c), x 9 x 6x 9 3. Ergänze die fehlenden

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe Achtung! Alle Ergebnisse auf zwei Stellen nach dem Komma runden. 1 1.0 Gegeben ist die Funktion f 1 mit y = x + bx + c (b, c ). Der Graph zu f 3 1 ist die Parabel p 1, die durch die Punkte A(-/-4) und

Mehr

Exponential- und Logarithmusfunktion

Exponential- und Logarithmusfunktion Eponential- und Logarithmusfunktion. Gegeben sind die Funktionen f : y = 0,5 log 3 ( + 2) und f 2 : y = 0,5 log 3 ( ) mit G =R R. (a) Geben Sie die Definitionsmenge und die Wertemenge der Funktion f 2

Mehr

Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte:

Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte: Prüfungsdauer: Abschlussprüfung 2006 150 Minuten an den Realschulen in Bayern R4/R6 Mathematik I Pflichtteil - Nachtermin Aufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1.0 Gegeben sind der

Mehr

Aufgabe A1. Prüfungsdauer: 150 Minuten

Aufgabe A1. Prüfungsdauer: 150 Minuten Prüfungsdauer: 150 Minuten Aufgabe A1 A1 Die nebenstehende Skizze dient als Vorlage für eine Pflanzschale. Sie zeigt den Axialschnitt ABCDEF eines Rotationskörpers mit der Rotationsachse KL. Es gilt: =1,4

Mehr

Raumgeometrie - gerade Pyramide

Raumgeometrie - gerade Pyramide 1.0 Das Quadrat ABCD mit der Seitenlänge 7 cm ist Grundfläche einer geraden Pyramide ABCDS mit der Höhe h = 8 cm. S ist die Pyramidenspitze. 1.1 Fertige ein Schrägbild der Pyramide ABCDS an. 1.2 Berechne

Mehr

Parallelogramme Rechtecke Quadrate

Parallelogramme Rechtecke Quadrate Parallelogramme Rechtecke Quadrate (Hinweis: Die ezeichnungen der Seiten entsprechen den ezeichnungen aus der Formelsammlung). erechne den Flächeninhalt des Parallelogramms mit der Seitenlänge a = 6,3

Mehr

Vektoren, Skalarprodukt, Ortslinien

Vektoren, Skalarprodukt, Ortslinien .0 Gegeben sind die Punkte A(0/-4), C(0/4), sowie die Pfeile mit α [ 90 ; 90 ]. 4cosα AB = 4sinα+ 4. Zeichne die drei Punkte B, B und B 3 mit α { 30;0;30 } in ein KOS.. Zeige: 4cosα CB =. 4sinα 4.3 Zeige,

Mehr

Viereck und Kreis Gibt es da etwas Besonderes zu entdecken?

Viereck und Kreis Gibt es da etwas Besonderes zu entdecken? Bekanntlich besitzt ein Dreieck einen Umkreis, dessen Mittelpunkt man konstruieren kann. 1) Zeichne in dein Heft ein beliebiges Dreieck und konstruiere den Außenkreis des Dreieckes nur mit Zirkel und Lineal.

Mehr

Quadratische Funktionen

Quadratische Funktionen Quadratische Funktionen Aufgabe 1 Verschieben Sie die gegebenen Parabeln so, dass ihr Scheitelpunkt in S liegt. Gesucht sind die Scheitelpunktsform und die allgemeine Form der Parabelgleichung a) y = x²,

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe .0 Berechne folgende Terme:.. x + 4 = x =. (y x) (x + y) =.0 Schreibe ohne Klammern und vereinfache soweit wie möglich:. (x + ) (x 4) =. (0,4x + y) (0,4x y) + (y) =. Ermittle den Extremwert durch Termumformung.

Mehr

Graph der linearen Funktion

Graph der linearen Funktion Graph der linearen Funktion Im unten stehenden Diagramm sind die Grafen der Funktionen f und g gezeichnet (a) Stelle die Gleichungen von f und g auf und berechne die Nullstellen der beiden Funktionen (b)

Mehr

Abbildungen im Koordinatensystem

Abbildungen im Koordinatensystem Klasse 0 I. Drehe die Gerade g mit y = x um O(0/0) mit α = 5. Bestimme die Gleichung der Bildgeraden g. Berechne das Maß des Winkels zwischen g und g.. Die Gerade g mit y = x + 5 soll um O(0/0) so gedreht

Mehr

Abschlussprüfung 150 Minuten an den Realschulen in Bayern

Abschlussprüfung 150 Minuten an den Realschulen in Bayern Prüfungsdauer: Abschlussprüfung 150 Minuten an den Realschulen in Bayern 009 Mathematik II Nachtermin Aufgabe A 1 Name: Vorname: Klasse: Platzziffer: Punkte: A 1 Die nebenstehende Skizze zeigt den Axialschnitt

Mehr

Mathematik II Pflichtteil Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte:

Mathematik II Pflichtteil Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte: Prüfungsdauer: Abschlussprüfung 006 50 Minuten an den Realschulen in Bayern R4/R6 Mathematik II Pflichtteil Nachtermin Aufgabe P Name: Vorname: Klasse: Platzziffer: Punkte: 3 P.0 Der Punkt A 3 3 4 liegt

Mehr

Vierte Schularbeit Mathematik Klasse 3B am

Vierte Schularbeit Mathematik Klasse 3B am Vierte Schularbeit Mathematik Klasse 3B am 23.05.2016 SCHÜLERNAME: Gruppe A Lehrer: Dr. D. B. Westra Punkteanzahl : von 24 Punkten NOTE: NOTENSCHLÜSSEL 23-24 Punkte Sehr Gut (1) 20-22 Punkte Gut (2) 16-19

Mehr

Übungsaufgaben Geometrie und lineare Algebra - Serie 1

Übungsaufgaben Geometrie und lineare Algebra - Serie 1 Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß

Mehr

Was kann ich? 1 Geometrie. Vierecke (Teil 1)

Was kann ich? 1 Geometrie. Vierecke (Teil 1) Was kann ich? 1 Geometrie. Vierecke (Teil 1) 1 Markiere Strecken rot und Geraden blau. 2 Welche Strecken und Geraden sind senkrecht zueinander, welche parallel? Schreibe mit den Zeichen und. 3 Zeichne

Mehr

Geometrie. in 15 Minuten. Geometrie. Klasse

Geometrie. in 15 Minuten. Geometrie. Klasse Klasse Geometrie Geometrie 6. Klasse in 5 Minuten Winkel und Kreis Zeichne und überprüfe in deinem Übungsheft: a) Wo liegen alle Punkte, die von einem Punkt A den Abstand cm haben? b) Färbe den Bereich,

Mehr

Raumgeometrie - schiefe Pyramide

Raumgeometrie - schiefe Pyramide 1.0 Das gleichseitige Dreieck ABC mit AB = 8 cm ist Grundfläche einer Pyramide ABCS. Die Spitze S liegt senkrecht über dem Mittelpunkt M der Seite [AC]. Die Höhe [MS] ist 6 cm lang. 1.1 Zeichne ein Schrägbild

Mehr

m2l 60.odt Klausur 12/I B 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen.

m2l 60.odt Klausur 12/I B 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen. 2. Klausur 12/I B Thema: Lagebeziehung Gerade, Ebene 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen. 5 6 s 3 0 11 10, g BC : x = 3 u 5 1 2. Gegeben

Mehr

Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN:

Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN: GRUNDWISSENTEST 06 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 9 DER REALSCHULE HINWEISE: Beim Kopieren der Aufgabenblätter ist auf die Maßhaltigkeit zu achten, um Verzerrungen zu vermeiden. Nicht zugelassen

Mehr

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin Geometrie Aufgabe G.1 Berechne die Innenwinkelsumme eines n-ecks. Aufgabe G.2 Zeige, dass

Mehr

Aufgabe A1. Prüfungsdauer: 150 Minuten

Aufgabe A1. Prüfungsdauer: 150 Minuten Prüfungsdauer: 150 Minuten Aufgabe A1 A 1.0 Gegeben ist das rechtwinklige Dreieck ABC mit der Hypotenuse [AC]. Punkte P n liegen auf der Kathete [AB] und legen zusammen mit den Punkten B und C Dreiecke

Mehr

5.3. Abstrakte Anwendungsaufgaben

5.3. Abstrakte Anwendungsaufgaben Aufgabe.. Abstrakte Anwendungsaufgaben In den Raum zwischen der x-achse und dem Graphen von f(x) = x x + soll ein Rechteck möglichst großer Fläche gelegt werden, dessen Ecken auf dem Graphen liegen. Wie

Mehr

Mitten-Dreiund Vier-Ecke

Mitten-Dreiund Vier-Ecke Alle Ergebnisse - dazu gehören auch Kopiene der Zeichnungen - sind im Heft zu notieren Du wirst im Folgenden einiges selbst herausfinden müssen. Nutze dazu auch die Hilfen, dei dir kig liefert. 1 Mittendreieck

Mehr

Gymnasium / Realschule. Extremwertaufgaben. Klassen 8 bis 10

Gymnasium / Realschule. Extremwertaufgaben. Klassen 8 bis 10 Überblick Die vorliegenden sind Textaufgaben, meist mit Zeichnungen versehen, bei denen die Frage gestellt wird, unter welchen Bedingungen ein Wert (z.b. Abstand, Länge, Fläche, Volumen) am größten oder

Mehr

Grundwissen Jahrgangsstufe 9. Lösungen. 144c 6 + = ( d)² 144c6 + = ( d)². Berechne ohne Taschenrechner: a) 2,

Grundwissen Jahrgangsstufe 9. Lösungen. 144c 6 + = ( d)² 144c6 + = ( d)². Berechne ohne Taschenrechner: a) 2, Grundwissen Jahrgangsstufe 9 Lösungen Berechne ohne Taschenrechner: a) 2,25 + 7 1 9 b) 16 000 000 4 c) 81a 8 Gib die Lösungsmenge der folgenden Gleichungen an: a) ( x)² = 9 b) x² = 5 c) 2x² + 50 = 0 Sind

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Arbeitszeit 40min 1.0 Gegeben sind die Punkte A (-I1) und B (6I-1), sowie die Gerade g mit der Gleichung y = 0,5x + 3. Führe die folgenden Berechnungen jeweils auf zwei Stellen gerundet aus. 1.1 Berechne

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Arbeitszeit 40min 1.0 Gegeben sind die Punkte A(-I1) und B(6I-1), sowie die Gerade g mit der Gleichung y = 0,5x + 3. Führe die folgenden Berechnungen jeweils auf zwei Stellen gerundet aus. 1.1 Berechne

Mehr

R4/R6. Prüfungsdauer: Abschlussprüfung Minuten an den Realschulen in Bayern. Mathematik II Nachtermin Aufgabe P 1.

R4/R6. Prüfungsdauer: Abschlussprüfung Minuten an den Realschulen in Bayern. Mathematik II Nachtermin Aufgabe P 1. Prüfungsdauer: Abschlussprüfung 008 150 Minuten an den Realschulen in Bayern R4/R6 Mathematik II Nachtermin Aufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1 Gegeben ist das Trapez ABCD mit AB

Mehr

Hauptschule Bad Lippspringe Schlangen Klassenarbeit Mathematik 9a/b Name: Dutkowski

Hauptschule Bad Lippspringe Schlangen Klassenarbeit Mathematik 9a/b Name: Dutkowski 02.12.2010 Aufgabe 1: Basiswissen a) Prozentrechnung (7 P.) a) b) c) d) Prozentzahl Bruch Dezimalzahl 30% 3 10 O,3 25% 25 1 = 100 4 0,25 50% 1 50 = 2 100 0,5 75 % 75 100 0,75 b) Zuordnungen (6 P.) Frau

Mehr

Themenbereich: Besondere Dreiecke Seite 1 von 6

Themenbereich: Besondere Dreiecke Seite 1 von 6 Themenbereich: Besondere Dreiecke Seite 1 von 6 Lernziele: - Kenntnis der Bezeichnungen für besondere Dreiecke - Kenntnis der Seiten- und Winkelbezeichnungen bei besonderen Dreiecken - Kenntnis der Eigenschaften

Mehr

Ganze und rationale Zahlen:

Ganze und rationale Zahlen: Ganze und rationale Zahlen: 1.1 Beantworte die Fragen. Welche Temperatur wird angezeigt? -2 C 2 C -0,2 C - C Um wieviel müsste es wärmer werden, damit es 10 C hat? 2 C 7 C 12 C 18 C Die Temperatur steigt

Mehr

b) Berechnen Sie die Koordinaten des Punktes D so, dass die Punkte A, B, C und D ein Quadrat bilden.

b) Berechnen Sie die Koordinaten des Punktes D so, dass die Punkte A, B, C und D ein Quadrat bilden. Aufgabe 1: 12 Punkte Gegeben sind die Punkte A(12 / -6 / 2), B(10 / 2 / 0) und C(4 / 2 / 6). a) Zeigen Sie, dass die Punkte A, B und C die Eckpunkte eines rechtwinkligen und gleichschenkligen Dreiecks

Mehr

Grundwissen Jahrgangsstufe 9. Lösungen. Berechne ohne Taschenrechner: a) 2, a) = -1, b) = = = 4000

Grundwissen Jahrgangsstufe 9. Lösungen. Berechne ohne Taschenrechner: a) 2, a) = -1, b) = = = 4000 Grundwissen Jahrgangsstufe 9 Berechne ohne Taschenrechner: a),5 + 7 1 9 b) 16 000 000 4 c) 81a 8 Gib die Lösungsmenge der folgenden Gleichungen an: a) ( x)² = 9 b) -x² = -5 c) x² + 50 = 0 Sind folgende

Mehr

Juni 2015 Aufgabe 1: Flächenanteile (4)

Juni 2015 Aufgabe 1: Flächenanteile (4) Juni 015 Aufgabe 1 Flächenanteile (4) Die Strecke DB ist Diagonale im Rechteck ABCD. Der Punkt M ist Mittelpunkt der Strecke AD und der Punkt N Mittelpunkt der Strecke AB. a) Die Strecken MN, MC und NC

Mehr

Satz des Pythagoras Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA

Satz des Pythagoras Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA Satz des Pythagoras Aufgabe 1.1.1 Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA a ) Die Katheten in einem rechtwinkligen Dreieck sind 8 cm bzw. 15 cm lang. Berechne die Länge der Hypotenuse.

Mehr

Die Kanten der Grundfläche mit je 7 cm sind die Katheten a und b des rechtwinkligen Dreiecks, die Hypotenuse c ist die gesuchte Bodendiagonale c.

Die Kanten der Grundfläche mit je 7 cm sind die Katheten a und b des rechtwinkligen Dreiecks, die Hypotenuse c ist die gesuchte Bodendiagonale c. Aufgabe 1 Schritt 1: Ansatz und Skizze Bei einem Würfel, bei dem ja alle Kantenlängen gleich sind, kannst du mit einer Raumdiagonale, einer senkrechten Kante und einer Decken oder Bodendiagonalen ein rechtwinkliges

Mehr

1. Schularbeit, am 23. Oktober 1997

1. Schularbeit, am 23. Oktober 1997 Name:............ 3GR 1. Schularbeit, am 23. Oktober 1997 1) Eine 30 m lange Standlinie AB wird in einem Plan durch die Punkte A (0 0) und B (6 0) dargestellt. Einheit = 1 cm. Zu einem Geländepunkt P werden

Mehr

Aufgaben zu Anwendungen zur Vektorrechnung

Aufgaben zu Anwendungen zur Vektorrechnung Aufgaben zu Anwendungen zur Vektorrechnung 1. Von einer Strecke AB mit dem Mittelpunkt M sind bekannt: A(/5) und M(-4/3). Berechnen Sie B.. Die Punkte A(3/7) und B(11/-1) sind gegenüberliegende Ecken eines

Mehr

Der Satz des Pythagoras

Der Satz des Pythagoras Der Satz des Pythagoras Das rechtwinklige Dreieck Jedes rechtwinklige Dreieck besitzt eine Hypotenuse (c), das ist die längste Seite des Dreiecks (bzw. diejenige gegenüber dem rechten Winkel). Die anderen

Mehr

Zweidimensionale Vektorrechnung:

Zweidimensionale Vektorrechnung: Zweidimensionale Vektorrechnung: Gib jeweils den Vektor AB und seine Länge an! (a A(, B(6 5 (b A(, B( 4 (c A(, B( 0 (d A(0 0, B(4 (e A(0, B( 0 (f A(, B( Gib jeweils die Summe a + b und die Differenz a

Mehr

Mathematik I Prüfung für den Übertritt aus der 9. Klasse

Mathematik I Prüfung für den Übertritt aus der 9. Klasse Aufnahmeprüfung 017 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Aufwärmübung 1 Lösungen

Aufwärmübung 1 Lösungen Aufwärmübung 1 1) Die Tabellen gehören zu direkt proportionalen Zuordnungen. Ergänze die fehlenden Werte. a) b) Weg in km Zeit in h Menge in kg Preis in 20 1 1_ 4 4 1_ 4 60 120 12 24 2) Vereinfache. (n

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1. Gegeben ist das Gleichungssystem 2(x 7) = y 25 3y 2(x 7) = 35 (a) Berechne die Lösungsmenge mit einem selbst gewählten Verfahren. (b) Begründe, weshalb du gerade dieses und

Mehr

Abschlussprüfung 2010 an den Realschulen in Bayern

Abschlussprüfung 2010 an den Realschulen in Bayern Prüfungsdauer: 150 Minuten Abschlussprüfung 010 an den Realschulen in Bayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Haupttermin A 1.0 Das radioaktive Cäsium-137 wird in der

Mehr

Aufgaben zu Anwendungen zur Vektorrechnung

Aufgaben zu Anwendungen zur Vektorrechnung Aufgaben zu Anwendungen zur Vektorrechnung. Von einer Strecke AB mit dem Mittelpunkt M sind bekannt: A(/5) und M(-4/3). Berechnen Sie B.. Die Punkte A(3/7) und B(/-) sind gegenüberliegende Ecken eines

Mehr

Aufgaben. Aufgabe A1. Prüfungsdauer: 150 Minuten

Aufgaben. Aufgabe A1. Prüfungsdauer: 150 Minuten Prüfungsdauer: 150 Minuten Aufgaben Aufgabe A1 A 1.0 In einer Medikamentenstudie wird in drei zeitgleich beginnenden Laborversuchen die Vermehrung von Krankheitserregern untersucht. Bei allen Versuchen

Mehr

Quadratische Funktionen Die Normalparabel

Quadratische Funktionen Die Normalparabel Quadratische Funktionen Die Normalparabel Kreuze die Punkte an, die auf der Normalparabel liegen. A ( 9) B ( ) C ( 9) D ( ) E (9 ) F (0 0) Die Punkte A bis J sollen auf der Normalparabel liegen. Gib, falls

Mehr

c) Die Parabel ist nach oben geöffnet, der Scheitelpunkt liegt auf der x Achse und ist somit auch die einzige Nullstelle.

c) Die Parabel ist nach oben geöffnet, der Scheitelpunkt liegt auf der x Achse und ist somit auch die einzige Nullstelle. Aufgabe 1 Schritt 1: Koordinaten der Scheitelpunkte Die Funktionsgleichungen sind schon in der Scheitelform angegeben. Du musst die Scheitelpunkte eigentlich nur noch ablesen. a) 0,75; 3 b) 3; 1,5 c) ;

Mehr

Berechnungen am Dreieck

Berechnungen am Dreieck Berechnungen am Dreieck 1 ImDreieck OBAmitO(0 0),B(b 0)undA(0 a) ist H(x y) der Fußpunkt der Höhe von O auf AB Weitere Bezeichnungen: y a A h = OH, p = AH, q = HB und c = AB y p H(x y) Drücke c, h, p,

Mehr

Jgst. 11/I 2.Klausur

Jgst. 11/I 2.Klausur Jgst. 11/I 2.Klausur 10.12.2010 A1. Gegeben sind die vier Punkte A(2/2), B(3/6), C(7/5) und D(6/1). Berechne die Gleichung des größten Kreises, den man in das Viereck, das aus diesen Punkten gebildet wird,

Mehr

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 GK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Flächeninhalt und Umfangslänge Wer findet den Zusammenhang?

Flächeninhalt und Umfangslänge Wer findet den Zusammenhang? Aufgabe 1: Zeichne in dein Heft einen Kreis mit beliebigem Radius r (aber bitte nicht zu klein), und konstruiere ein umbeschriebenes Dreieck. Deine Zeichnung könnte etwa so aussehen wie die nebenstehende

Mehr

Mittlere-Reife-Prüfung 2007 Mathematik I Aufgabe B2

Mittlere-Reife-Prüfung 2007 Mathematik I Aufgabe B2 Seite http://www.realschulrep.de/ Seite 2 Mittlere-Reife-Prüfung 2007 Mathematik I Aufgabe B2 Aufgabe B2. Der Punkt A 2 2 ist gemeinsamer Eckpunkt von Rauten A B n C n D n. Die Eckpunkte B n 3 liegen auf

Mehr

Kursarbeit Nr.1 LK Mathematik NAME :

Kursarbeit Nr.1 LK Mathematik NAME : Kursarbeit Nr.1 LK Mathematik 7. 10. 2004 1. Bestimmen Sie eine Stammfunktion F zur angegebenen Funktion f! a) f :R R, f x =1 1 x 100 b) f :R R, f x =sin 2 x 5 x c) f :R R, f x = x 5 x 3 2 2 x 2 2. Berechnen

Mehr

1993 III Aufgabe. In einem kartesischen Koordinatensystem sind die Gerade

1993 III Aufgabe. In einem kartesischen Koordinatensystem sind die Gerade 993 III Aufgabe In einem kartesischen Koordinatensystem sind die Gerade = g : X mit R sowie die beiden Punkte A( -) und C(- 2 ) gegeben. A und C bestimmen die Gerade h..a) Begründen Sie, dass der Mittelpunkt

Mehr

Zeichnet man nun über die Seiten des Dreiecks die Quadrate der jeweiligen Seiten, dann ergibt sich folgendes Bild:

Zeichnet man nun über die Seiten des Dreiecks die Quadrate der jeweiligen Seiten, dann ergibt sich folgendes Bild: 9. Lehrsatz von Pythagoras Pythagoras von Samos war ein griechischer Philosoph und Mathematiker, der von ca. 570 v.chr. bis 510 n.chr lebte. Obwohl es über seine gesallschaftliche Stellung verschiedene

Mehr

Aufgaben für die Klassenstufen 11/12

Aufgaben für die Klassenstufen 11/12 Aufgaben für die Klassenstufen 11/12 mit Lösungen Einzelwettbewerb Gruppenwettbewerb Speedwettbewerb Aufgaben OE1, OE2, OE3 Aufgaben OG1, OG2, OG3, OG4 Aufgaben OS1, OS2, OS3, OS4, OS5, OS6, OS7, OS8 Aufgabe

Mehr

Vierte Schularbeit Mathematik Klasse 3E am

Vierte Schularbeit Mathematik Klasse 3E am Vierte Schularbeit Mathematik Klasse 3E am 22.05.2014 SCHÜLERNAME: Gruppe A Lehrer: Dr. D. B. Westra Punkteanzahl : von 24 Punkten NOTE: NOTENSCHLÜSSEL 23-24 Punkte Sehr Gut (1) 20-22 Punkte Gut (2) 16-19

Mehr

1. die ganzen Zahlen, denn 7= 1. a ist diejenige nicht negative Zahl, die quadriert a ergibt: 16 = 4; 0 = = 36 = 25 = e) Grundwissen 9.

1. die ganzen Zahlen, denn 7= 1. a ist diejenige nicht negative Zahl, die quadriert a ergibt: 16 = 4; 0 = = 36 = 25 = e) Grundwissen 9. Grundwissen 9. Klasse Quadratwurzel a ist diejenige nicht negative Zahl, die quadriert a ergibt: ( a ) a Die Zahl a unter der Wurzel heißt Radikand. Es gibt keine Quadratwurzel aus einer negativen Zahl.

Mehr

MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN 3. RUNDE LÖSUNGEN AUFGABENGRUPPE A 1. a) L = { 5; 0; 5}, denn x = 0 oder x 5 = 0 oder x 3 + 125 = 0 x = 0 oder x = 5 oder x 3 = 125 x = 0 oder x = 5 oder

Mehr

Aufgabe Welche Bedingungen müssen für die Koeffizienten der Funktion f(x) = x 2 + a 1 x + a 0 erfüllt sein, damit f(x) keine Nullstellen besitzt?

Aufgabe Welche Bedingungen müssen für die Koeffizienten der Funktion f(x) = x 2 + a 1 x + a 0 erfüllt sein, damit f(x) keine Nullstellen besitzt? R. Brinkmann http://brinkmann-du.de Seite 0.0.0 Lösungen Parabeln aus gegebenen Bedingungen I en: A A A A Welche Bedingungen müssen für die Koeffizienten der Funktion f() = + a + a 0 erfüllt sein, damit

Mehr

Serie W1 Klasse 8 RS. 1. 7,4 dm³ = cm³ 2. 5 (13-6) = 3. Berechne für a = - 4,5 b = - 3

Serie W1 Klasse 8 RS. 1. 7,4 dm³ = cm³ 2. 5 (13-6) = 3. Berechne für a = - 4,5 b = - 3 Serie W1 Klasse 8 RS 1. 7,4 dm³ = cm³ 2. 5 (13-6) = 3. Berechne für a = - 4,5 b = - 3 3 c = 4 2a - b; a + b; b : c 4. 36:0,4 = 5. Vergleiche. 30+2 10+5 30+2 (10+5) 6. Kürze 12 44 7. Berechne a 8a - 28

Mehr

1. Schularbeit Stoffgebiete:

1. Schularbeit Stoffgebiete: 1. Schularbeit Stoffgebiete: Grundrechnungsarten mit ganzen Zahlen Koordinatensystem a) Berechne: 6 Punkte [( 36) + ( 64)] : ( 4) + ( 144) : ( 12) 16 ( 2) = b) Löse die drei Gleichungen und mache die Probe:

Mehr

Klasse 9 (Pluszweig) Lösungen

Klasse 9 (Pluszweig) Lösungen . Beschreibe den Term : unter Verwendung der mathematischen Fachbegriffe. Berechne den Termwert nachvollziehbar ohne Taschenrechner und erkläre dabei, was man unter Erweitern und Kürzen eines Bruches versteht.

Mehr

Parabeln. quadratische Gleichungen. Extremwerte

Parabeln. quadratische Gleichungen. Extremwerte Parabeln quadratische Gleichungen Extremwerte -----------------Alle folgenden Seiten sind ohne Ausnahme zu lernen, bearbeiten und verstehen. -----------------Sämtliche Aufgaben sind grundlegend für die

Mehr

Herbst b) Bestimmen Sie die Gleichung der Tangente t und Ihren Schnittpunkte A mit der x-achse. t geht durch B(1/2) und hat die Steigung m=-6 :

Herbst b) Bestimmen Sie die Gleichung der Tangente t und Ihren Schnittpunkte A mit der x-achse. t geht durch B(1/2) und hat die Steigung m=-6 : Herbst 24 1. Gegeben ist eine Funktion f : mit den Parametern a und b. a) Bestimmen Sie a und b so, dass der Graph von f durch den Punkt B(1/2) verläuft und die Tangente t in B parallel ist zur Geraden

Mehr

1. Selbsttest Heron-Verfahren Gleichungen

1. Selbsttest Heron-Verfahren Gleichungen 1. Selbsttest 1.1. Heron-Verfahren Mit dem Heron-Verfahren soll ein Näherungswert für 15 gefunden werden. Führe die ersten drei Schritte des Heron- Verfahrens durch. Gib dann unter Verwendung der Werte

Mehr

Ü b u n g s a r b e i t

Ü b u n g s a r b e i t Ü b u n g s a r b e i t Aufgabe. a) Die Querschnittsfläche eines Abwasserkanals ist im unteren Teil von einer Parabel k begrenzt, an die sich nach oben die beiden Geraden g und h anschließen. Bestimmen

Mehr

SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Jahrgangsstufe 10 (Realschule)

SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Jahrgangsstufe 10 (Realschule) SMRT Sammlung mathematischer ufgaben als Hypertext mit TEX Jahrgangsstufe 10 (Realschule) herausgegeben vom Zentrum zur Förderung des mathematisch-naturwissenschaftlichen Unterrichts der Universität ayreuth

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

Herbst mit den Parametern a und b

Herbst mit den Parametern a und b Herbst 4. Gegeben ist eine Funktion f :f()=a+ b mit den Parametern a und b. a) Bestimmen Sie a und b so, dass der Graph von f durch den Punkt B(/) verläuft und die Tangente t in B parallel ist zur Geraden

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie 1 Punkte und Vektoren im Raum G 1.1 Gegeben sind die Vektoren in nebenstehender Abbildung. Drücke die Vektoren AC durch a und b AB durch z und w BC durch c und d DB durch b und u

Mehr

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 01 Blatt 7 0.06.01 Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag 5. a Um ein rechtwinkliges Dreieck in seiner Gestalt

Mehr

Mathematik I Prüfung für den Übertritt aus der 9. Klasse

Mathematik I Prüfung für den Übertritt aus der 9. Klasse Aufnahmeprüfung 014 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Mathematik I Nachtermin Aufgabe P 1. Name: Vorname: Klasse: Platzziffer: Punkte: O 1

Mathematik I Nachtermin Aufgabe P 1. Name: Vorname: Klasse: Platzziffer: Punkte: O 1 Prüfungsdauer: Abschlussprüfung 007 150 Minuten an den Realschulen in Bayern R4/R6 Mathematik I Nachtermin Aufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1.0 Gegeben ist die Funktion f 1 mit

Mehr

Übungsaufgaben Repetitionen

Übungsaufgaben Repetitionen TG TECHNOLOGISCHE GRUNDLAGEN LÖSUNGSSATZ Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Übungsaufgaben Repetitionen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut

Mehr