Elektrodenpotenziale und Galvanische Ketten

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Elektrodenpotenziale und Galvanische Ketten"

Transkript

1 Elektrodenpotenziale und Galvanische Ketten 1 Elektrodenpotenziale und Galvanische Ketten Die elektromotorische Kraft (EMK) verschiedener galvanischer Ketten soll gemessen werden, um die Gültigkeit der Nernstschen Gleichung anhand von Konzentrationsreihen zu überprüfen. Außerdem sollen die Aktivitätskoeffizienten von Ionen sowie die Standardpotenziale der Silberelektrode und der Silber-/Silberchloridelektrode mit Hilfe von EMK-Messungen experimentell bestimmt werden. Aus den ermittelten Standardpotenzialen lässt sich das Löslichkeitsprodukt von Silberchlorid ermitteln Stichworte Nernstsche Gleichung elektrochemisches Potenzial Elektrodenpotenzial elektrochemische Spannungsreihe galvanische Ketten, elektrochemische Zellen Kathode, Anode Aktivität, Aktivitätskoeffizient Debye Hückel Theorie Löslichkeitsprodukt Einen ausführlicheren Überblick zu diesen Themen finden Sie in dem Skript zu den Elektrochemieversuchen des Praktikums, im Detail werden diese Stichworte in den einschlägigen Lehrbüchern behandelt. Elektrochemische Zellen und Nernstsche Gleichung Elektrochemische Zellen kann man prinzipiell in Elektrolysezellen und galvanische Elemente unterteilen. Bei galvanischen Elementen laufen an den Elektroden Reaktionen freiwillig unter Stromlieferung ab ( G < : Umwandlung chemischer in elektrische Energie). Die an den Polen des galvanischen Elementes beobachtete Klemmenspannung (ohne Stromfluss) bezeichnet man als elektromotorische Kraft (EMK). In Elektrolysezellen werden Substanzen durch Stromzufuhr elektrochemisch zerlegt ( G > : Umwandlung elektrischer in chemische Energie). Unabhängig von der Art der elektrochemischen Zelle bezeichnet man diejenige Elektrode als Kathode, an der die negative Ladung in die Elektrolytlösung eintritt, also der Reduktionsvorgang eingeleitet wird. An der Anode verlässt negative Ladung die Lösung und Oxidationsvorgänge laufen ab. Taucht man eine Metallelektrode (Phase α) in eine Lösung (Phase β) ein, so unterscheiden sich in der Regel deren chemischen Potenziale µ: µ α µ β. Ist das chemische Potenzial der Metallkationen in der Elektrode größer als in der Lösung, so gehen Metallionen in Lösung und laden die Lösungsgrenzschicht positiv auf. Die zurückbleibenden überschüssigen Elektronen bewirken eine negative Aufladung der Elektrode. Auf diese Art und Weise entsteht eine elektrochemische Doppelschicht, und eine weitere Metallauflösung wird durch elektrostatische WS214/15

2 Elektrodenpotenziale und Galvanische Ketten 2 Rückhaltekräfte beendet. Die zwischen Elektrode und Lösung entstandene elektrische Potenzialdifferenz verhindert also die Einstellung des angestrebten chemischen Gleichgewichts mit µ α = µ β. Bringt man ein Mol einer z-fach geladenen Komponente beim elektrischen Potenzial E α ins Innere einer auf dem Potenzial E β befindlichen Mischphase, so muss zusätzlich zur Differenz der chemischen Potenziale Δµ noch die Differenz der elektrischen Potenziale zfδe aufgebracht oder frei werden. Folglich wird also das so genannte elektrochemische Potenzial μ betrachtet: μ = μ+z F E (1) Die Gleichgewichtsbedingung mit Ladungstrennung lautet dann folgendermaßen: μ α = μ α +zf E α = μ β = μ β +zf E β (2) E αg und E βg sind die elektrischen Potenziale im Gleichgewicht im Inneren der Phasen α und β. In der Praxis wird als Bezugspotenzial meist das Potenzial (des Inneren) der Lösung E L = E β gewählt. Im elektrochemischen Gleichgewicht gilt dann für die elektrische Potenzialdifferenz E = E α - E β über die Phasengrenze hinweg: E = 1 zf {μ β μα} (3) Da dass chemische Potenzial μ(a) = μ +RT ln a einer Spezies wiederum abhängig von deren Aktivität a ist, gilt: E G = Δμ zf + RT zf ln( a β G a αg ) (4) wobei Δμ =μ β μ α. Mit Δμ =zfe, a α = a red und a βg = a ox ergibt sich daraus die Nernst- Gleichung: E = E + RT zf ln( a ox a red ) (5) Häufig ist der reduzierte Zustand eine Reinphase (z.b. gasförmiges H 2 bei der Wasserstoffelektrode oder das reine Metall bei einer Metallelektrode), dann ist die Aktivität a red der reduzierten Spezies definitionsgemäß gleich 1. Das Elektrodenpotenzial E als Potenzialdifferenz zwischen der Elektrode und dem Inneren der Lösung ist nicht direkt experimentell messbar. Der Messung zugänglich ist lediglich die Potenzialdifferenz zwischen zwei Elektroden, die (bei stromloser Messung) als elektromotorische Kraft (EMK) bezeichnet wird. Wird als zweite Elektrode die Standard-(Normal)-Wasserstoffelektrode (NHE) benutzt, ist die gemessene EMK gleich dem Gleichgewichts-Elektrodenpotenzial E. Bei bekannten Aktivitäten der oxidierten und der reduzierten Spezies lassen sich daraus für Elemente und Verbindungen Werte für die Standard-Elektrodenpotenziale E gegen NHE ermitteln, die als so genannte Spannungsreihe tabelliert sind. Aus der Spannungsreihe ergeben sich wertvolle Erkenntnisse bezüglich des Redoxverhaltens verschiedener Systeme. WS214/15

3 Elektrodenpotenziale und Galvanische Ketten 3 Aktivität und Aktivitätskoeffizienten Nach der Debye Hückel Theorie befindet sich um ein Ion in einer Lösung eine entgegengesetzt geladene Ionenwolke. Damit ein solches Ion z.b. an einer Elektrodenoberfläche reagieren kann, muss es sich von dieser Hülle "befreien". Dieser Vorgang benötigt eine gewisse Energie, welche der eigentlichen Reaktion verloren geht, d.h. ein Ion ist in Bezug auf Umsetzungen weniger reaktiv als ein in ideal verdünnter Lösung isoliertes Ion. Der "Reaktionsverlust" steigt mit zunehmender Dichte der Ionenwolke an und ist damit von den Konzentrationen c i aller in der Lösung vorliegenden Ionensorten i abhängig. Um die tatsächlich wirksame Konzentration gelöster Ionen beschreiben zu können, verwendet man daher die Aktivität a i : a i = f i c i (6) Der Aktivitätskoeffizient f i beschreibt dabei die Abweichung vom idealen Verhalten. Da in unendlich verdünnten Lösungen die interionischen Wechselwirkungen vernachlässigt werden können, gilt: lim I a i = c i bzw. lim I f i = 1 (7) Dabei bezeichnet die Ionenstärke I eine mittlere Konzentration aller in der Lösung vorhandenen Ionen gemäß: I = 1 c z 2 2 i i (8) Da die Ladungszahl z i quadratisch in die Ionenstärke eingeht, besitzt ein zweifach geladenes Ion bei gleicher Konzentration das vierfache Gewicht bei der Berechnung der Ionenstärke.F ür einen einwertigen 1:1-Elektrolyten (z.b. NaCl) ist die Ionenstärke I einfach gleich der Konzentration c. In nicht idealen Lösungen ist eine Abnahme des Aktivitätskoeffizienten mit steigender Konzentration der Ionen, bzw. mit steigender Ionenstärke I zu erwarten. Weil Elektrolytlösungen niemals aus nur einer Ionensorte i bestehen können (Elektroneutralität), sind aus Messungen stets nur mittlere Aktivitätskoeffizienten zugänglich. Bei Elektrolyten, die in m Kationen und n Anionen zerfallen, definiert man den mittleren Aktivitätskoeffizienten f zu: f = m+n f + m f n (9) Für verdünnte Lösungen mit c < 1 2 mol/l erhält man aus der Debye-Hückel-Theorie folgende näherungsweise gültige Beziehung (Debye-Hückelsches Grenzgesetz) zwischen dem mittleren Aktivitätskoeffizienten f und der Ionenstärke I: ln f = C ln 1 z + z I (1) Die lösemittel- und temperaturabhängige Konstante C besitzt dabei für Wasser bei 25 C den Wert.599 (L 1/2 /mol 1/2 ). WS214/15

4 Elektrodenpotenziale und Galvanische Ketten 4 Elektrodenpotenziale Im Folgenden werden die im Versuch verwendeten Halbzellen anhand der stattfindenden Redoxreaktionen und der Nernstschen Gleichung für das Gleichgewichtspotenzial vorgestellt. Die Silber-/Silberchlorid-Elektrode sowie die Kalomelelektrode sind sogenannte Elektroden 2. Art, d.h. zusätzlich zu dem reinen Metall und dem gelösten Metallion liegt eine weitere feste Phase eines schwerlöslichen Salzes vor, dessen Anwesenheit die Aktivität des gelösten Metallions festlegt. Elektroden 2. Art besitzen daher ein konstantes Elektrodenpotenzial und werden häufig als Referenzelektrode bei elektrochemischen Messungen eingesetzt. Wasserstoffelektrode (Pt H 2 H + ): 2 H e H 2 (g) E = E Pt H2 H + Pt H 2 H + RT ln a E + F H + Pt H 2 H = V (11) + Silberelektrode (Ag Ag + ): Ag + + e Ag(s) E Ag Ag + = E Ag Ag + + RT ln a E F Ag + Ag Ag =.8 V (12) + Silber/Silberchloridelektrode (Ag AgCl(s) Cl ): AgCl(s) + e Ag(s) + Cl Das potenzialbestimmende Teilchen ist, wie bei der Ag Ag + -Elektrode, das Ag + -Ion. Durch die Anwesenheit von AgCl ist dessen Aktivität jedoch über die Löslichkeitskonstante AgCl K L mit der Aktivität a Cl der Chloridionen verknüpft: E Ag AgCl Cl = E Ag Ag + + RT ln a mit a = K AgCl L F Ag + Ag + a Cl (13) d.h. E Ag AgCl Cl mit E Ag AgCl Cl = E Ag AgCl Cl RT ln a (14) F Cl = E Ag Ag + + RT ln K AgCl F L Kalomelelektrode (Pt Hg Hg 2 Cl 2 Cl ): Hg 2 Cl 2 (s) + 2 e 2 Hg(l) + 2 Cl Das potenzialbestimmende Teilchen ist das Quecksilber-Ion, das als zweifach geladenes Hg 2 2+ gelöst ist. Auch hier verknüpft die Anwesenheit des schwerlöslichen Hg 2 Cl 2 die Aktivität von Hg 2 2+ über die Löslichkeitskonstante K L Hg 2 Cl 2 mit der Aktivität a Cl von Cl : E = E Pt Hg Hg 2 Cl 2 Cl 2+ Pt Hg Hg 2 + RT ln a 2+ 2F Hg 2 mit a 2+ Hg2 d.h. E Pt Hg Hg 2 Cl 2 Cl mit E Pt Hg Hg 2 Cl 2 Cl (15) = K Hg 2Cl 2 L 2 a Cl (16) = E Pt Hg Hg 2 Cl 2 Cl RT ln a (17) F Cl = E Pt Hg Hg 2+ + RT ln K Hg 2 Cl 2 2F L und E Pt Hg Hg 2+ 2 =.79 V (18) Häufig wird die Kalomelelektrode an gesättigter KCl-Lösung verwendet. Dafür ergibt sich unter Standardbedingungen ein konstantes Potenzial von V ( a Cl = 1.89 mol/l, K L Hg 2 Cl 2 = mol 2 /L 2 ) Die experimentell gemessene Spannung zwischen zwei dieser Halbzellen entspricht der Differenz der Potenziale (EMK), sofern die Messung stromlos erfolgt und eine Überspannung aufgrund von Diffusion vermieden wird. WS214/15

5 Elektrodenpotenziale und Galvanische Ketten 5 Bestimmung von Aktivitätskoeffizienten Die elektromotorische Kraft ist abhängig von der Aktivität der an der Redoxreaktion beteiligten Ionensorten und kann bei Kenntnis der Konzentration deshalb zur Bestimmung der Aktivitätskoeffizienten herangezogen werden. Die folgende Rechnung gilt für die Bestimmung der Aktivitätskoeffizienten am Beispiel der Kette Pt H 2 HCl AgCl(s) Ag. Die elektromotorische Kraft E der Messkette ergibt sich als Differenz der Halbzellenpotenziale E(Pt H 2 H + ) (s. Gl.(11)) und E(Ag AgCl(s) Cl ) (s. Gl.(13)) zu: Δ E = E E = E Pt H2 HCl AgCl Ag Ag AgCl Cl Pt H 2 H + Ag AgCl Cl RT ln a RT ln a (19) F Cl F H + Mit a H + = a Cl = f ± c HCl erhält man aus obiger Gleichung Δ E Pt H2 HCl AgCl Ag = E Ag AgCl Cl 2 RT ln c 2 RT ln f F HCl F ± (2) Sofern das Standardpotenzial E Ag AgCl Cl der Silber-/Silberchloridelektrode bekannt ist, kann aus der EMK Messung der mittlere Aktivitätskoeffzient f ± bestimmt werden: ln f ± = F (E 2RT Ag AgCl Cl ΔE Pt H2 HCl AgCl Ag) ln c HCl (21) Die Behandlung der Ag AgNO 3 KCl Hg 2 Cl 2 (s) Hg Messkette erfolgt in entsprechender Art und Weise. Geben Sie zunächst, analog zu Gl. (2), die EMK der Kette als Differenz der Halbzellpotenziale an ( Δ E Ag AgNO3 KCl Hg 2 Cl 2 (s ) Hg = E Ag Ag + E Pt Hg Hg2 Cl 2 ) und lösen Sie die Cl Gleichung nach lnf ± auf. Verwenden Sie für E Pt Hg Hg 2 Cl 2 den nach Gl. (18) angegebenen Cl Wert. Bestimmung von Standardpotenzialen und Löslichkeitsprodukten Sie können mit Hilfe von Gl. (2) das Standardpotenzial E Ag AgCl Cl der Silber-Silberchlorid- Elektrode bestimmen, wenn Sie für c HCl extrapolieren. Aus der zu Gl. (2) äquivalenten Formulierung für die AgNO 3 KCl Hg 2 Cl 2 (s) Hg Messkette erhalten Sie das Standardpotenzial E + Ag Ag der Silberelektrode. Aus diesen beiden Werten können Sie dann das Löslichkeitsprodukt von Silberchlorid gemäß Gl. (15) berechnen. Für die Extrapolationen müssen Sie aber erst lnf ± in Gl. (2) mittels der Debye-Hückel-Theorie durch die Konzentration c HCl ersetzen. Da sie für c HCl extrapolieren, können Sie dafür Beziehung (1) verwenden. Einsetzen in Gl. (2) ergibt den folgenden Zusammenhang: Δ E Pt H2 HCl AgCl Ag +2 RT F ln c HCl = E Ag AgCl Cl 2 RT ln1.599 F L mol c HCl (22) Sie erhalten E Ag AgCl Cl als y-achsen-abschnitt aus einer linearen Regressionsanalyse, wenn Sie Δ E Pt H2 HCl AgCl Ag+2 RT ln c gegen F HCl c HCl auftragen. Zur Bestimmung von E Ag Ag + aus den Messungen mit der Ag AgNO 3 KCl Hg 2 Cl 2 (s) Hg Messkette gehen Sie analog vor. WS214/15

6 Elektrodenpotenziale und Galvanische Ketten 6 Ausführung und Auswertung der Messung Verwenden Sie zum Ansetzen der Lösungen bidestilliertes Wasser. Die Gleichgewichtsspannungen der galvanischen Ketten werden mit Hilfe eines Digitalvoltmeters bestimmt. Beginnen Sie die Messungen jeweils mit den kleinsten Konzentrationen, um Konzentrationsfehler im experimentellen Aufbau durch Verschleppen der Lösungen möglichst gering zu halten. Ein sorgfältiges Spülen der verwendeten Geräte ist für verlässliche Ergebnisse notwendig! Den Aufbau der einzelnen Halbzellen sowie der Salzbrücke entnehmen Sie bitte den Skizzen am Ende. 1) Bauen Sie aus den folgenden Halbelementen eine galvanische Kette mit gesättigter KCl- Lösung als Brückenelektrolyt auf und messen Sie deren Gleichgewichtsspannung: Kalomelelektrode, gesättigt an KCl Silber-Silberchloridelektrode mit.1m KCl Überprüfen Sie das Messergebnis an Hand der gegebenen Elektrodenpotenziale im Kapitel "Elektrodenpotenziale" (Gl. (13) - (18)). Schlagen Sie die Löslichkeitskonstante von Silberchlorid in geeigneten Tabellenwerken nach. 2) Messen Sie für die folgenden AgNO 3 Konzentrationen die elektromotorische Kraft einer Ag AgNO 3 (c 1 ) AgNO 3 (c 2 ) Ag-Konzentrationsmesskette: c 1 =.1m c 2 =.1m c 1 =.1m c 2 =.1m c 1 =.1m c 2 =.1m Stellen Sie 5 ml Lösung je Konzentration her. Als Salzbrücke soll eine gesättigte Lösung von NH 4 NO 3 verwendet werden. Überprüfen Sie die Nernstsche Gleichung, indem Sie ihre Messwerte mit den aus der Nernstschen Gleichung berechneten vergleichen. Kommentieren Sie eventuelle Abweichungen. 3) Messen Sie die EMK der galvanischen Kette Pt H 2 HCl AgCl(s) Ag. Um ein Vergiften der Pt-Elektrode zu vermeiden, darf die Ag AgCl-Elektrode erst in die Halbzelle gestellt werden, wenn die Pt-Elektrode im H 2 -Strom steht. Warum ist das so? Verwenden Sie die folgenden Konzentrationen der HCl-Lösung: m m m m m m WS214/15

7 Elektrodenpotenziale und Galvanische Ketten 7 Stellen Sie dazu 2 ml einer.1m Lösung her, aus der dann je 1 ml der weiteren Konzentrationen hergestellt werden. Bestimmen Sie gemäß Gl. (21) die mittleren Aktivitätskoeffizienten f ± von HCl. Verwenden Sie für E Ag AgCl Cl einen Literaturwert. Vergleichen Sie Ihre Ergebnisse für die Aktivitätskoeffizienten mit Literaturwerten. 4) Messen Sie die EMK der galvanischen Kette Ag AgNO 3 KCl(ges.) Hg 2 Cl 2 (s) Hg. Verwenden Sie für die AgNO 3 -Lösungen (5 ml je Konzentration) die gleichen Konzentrationen wie in 3). Verwenden Sie als Salzbrücke eine gesättigte NH 4 NO 3 -Lösung. Leiten Sie sich die Bestimmungsgleichung für den Aktivitätskoeffizienten des Silbernitrats analog Gl. (21) her. Benutzen Sie für das Potenzial der Kalomelelektrode den konstanten Wert, der oben mittels Gl. (18) berechnet wurde. Bestimmen Sie die mittleren Aktivitätskoeffizienten f ± von AgNO 3. Vergleichen Sie Ihre Ergebnisse mit Literaturwerten und den Ergebnissen für die Salzsäure. 5) Bestimmen Sie gemäß Gl. (22) die Standardpotenziale E Ag AgCl Cl und E Ag Ag+ der Silber-Silberchloridelektrode sowie der Silberelektrode mittels linearer Regression. Beachten Sie bei der Extrapolation auf c HCl = gemäß dem Debye Hückelschen Grenzgesetz, dass Linearität erst im Gültigkeitsbereich jener Beziehung zu erwarten ist und dass außerhalb dieses Bereiches eine gekrümmte Kurve vorliegen wird. AgCl Berechnen Sie daraus die Löslichkeitskonstante K L unter Zuhilfenahme der Gl. (15). Geben Sie die experimentelle Messunsicherheit an und vergleichen Sie Ihre Ergebnisse AgCl mit dem Literaturwert. Den experimentellen Fehler für K L erhalten Sie mittels Fehlerfortpflanzung der Fehler (Standardabweichung) der Standardpotenziale E Ag AgCl Cl und E Ag Ag +. Nutzen Sie aus, dass für z=e ax+by gilt, dass z x =a eax+by =a z. WS214/15

8 Elektrodenpotenziale und Galvanische Ketten 8 Elektrode Elektrode Elektrodenraum Elektrolysiergefäß Elektrodenraum Ag/AgCl Kalomel KCl.1M KCl ges Ag Ag AgNO 3 (c 1 ) NH 4 NO 3 AgNO 3 (c 2 ) Pt/H 2 Ag/AgCl HCl(c) Ag Kalomel AgNO 3 (c 1 ) NH 4 NO Elektrodeneinsatz für Wasserstoffelektrode Elektrodeneinsatz mit Fritte offener Elektrodeneinsatz ohne Fritte WS214/15

Elektrodenpotenziale und Galvanische Ketten

Elektrodenpotenziale und Galvanische Ketten Elektrodenpotenziale und Galvanische Ketten 1 Elektrodenpotenziale und Galvanische Ketten Die elektromotorische Kraft (EMK) verschiedener galvanischer Ketten soll gemessen werden, um die Gültigkeit der

Mehr

ELEKTROCHEMIE. Elektrischer Strom: Fluß von elektrischer Ladung. elektrolytische (Ionen) Zwei Haupthemen der Elektrochemie.

ELEKTROCHEMIE. Elektrischer Strom: Fluß von elektrischer Ladung. elektrolytische (Ionen) Zwei Haupthemen der Elektrochemie. ELEKTROCHEMIE Elektrischer Strom: Fluß von elektrischer Ladung Elektrische Leitung: metallische (Elektronen) elektrolytische (Ionen) Zwei Haupthemen der Elektrochemie Galvanische Zellen Elektrolyse Die

Mehr

1. Elektroanalytik-I (Elektrochemie)

1. Elektroanalytik-I (Elektrochemie) Instrumentelle Analytik SS 2008 1. Elektroanalytik-I (Elektrochemie) 1 1. Elektroanalytik-I 1. Begriffe/Methoden (allgem.) 1.1 Elektroden 1.2 Elektrodenreaktionen 1.3 Galvanische Zellen 2 1. Elektroanalytik-I

Mehr

Standardelektrodenpotentiale und mittlere Aktivitätskoeffizienten

Standardelektrodenpotentiale und mittlere Aktivitätskoeffizienten Versuch PCA E 1 Standardelektrodenpotentiale und mittlere Aktivitätskoeffizienten Aufgabenstellung 1. Durch Messung der Zellspannung der galvanischen Zelle Ag/AgCl/HCl/H 2 /Pt sind zu bestimmen: a) das

Mehr

Elektrochemie II: Potentiometrie

Elektrochemie II: Potentiometrie ersuchsprotokoll ersuchsdatum: 25.10.04 Zweitabgabe: Sttempell Durchgeführt von: Elektrochemie II: Potentiometrie 1. Inhaltsangabe 1..Inhaltsangabe---------------------------------------------------------------------------------

Mehr

Elektrochemisches Gleichgewicht

Elektrochemisches Gleichgewicht Elektrochemisches Gleichgewicht - Me 2 - Me Me 2 - Me 2 - Me 2 Oxidation: Me Me z z e - Reduktion: Me z z e - Me ANODE Me 2 Me 2 Me 2 Me 2 Me Oxidation: Me Me z z e - Reduktion: Me z z e - Me KATHODE Instrumentelle

Mehr

Physikalische Chemie Praktikum. Elektrochemie: Elektromotorische Kraft und potentiometrische Titration

Physikalische Chemie Praktikum. Elektrochemie: Elektromotorische Kraft und potentiometrische Titration Hochschule Emden / Leer Physikalische Chemie Praktikum Vers.Nr.9 A / B Dez. 2015 Elektrochemie: Elektromotorische Kraft und potentiometrische Titration Allgemeine Grundlagen NERNST`sche Gleichung, Standard-Elektrodenpotentiale,

Mehr

E3 Aktivitätskoeffizient

E3 Aktivitätskoeffizient Physikalisch-Chemische Praktika E3 Aktivitätskoeffizient Stichworte zur Vorbereitung: Den Kontext der folgenden Stichworte sollten Sie zur Vorbesprechung und während der Durchführung des Praktikumstermins

Mehr

Seminar zum Quantitativen Anorganischen Praktikum WS 2011/12

Seminar zum Quantitativen Anorganischen Praktikum WS 2011/12 Seminar zum Quantitativen Anorganischen Praktikum WS 211/12 Teil des Moduls MN-C-AlC Dr. Matthias Brühmann Dr. Christian Rustige Inhalt Montag, 9.1.212, 8-1 Uhr, HS III Allgemeine Einführung in die Quantitative

Mehr

Übung ph / pion. 1. Einleitung. Hauptseite Potenziometrie, Theorie. 1. Einleitung. 1. Potenziometrie, Theorie 2. ph-messung

Übung ph / pion. 1. Einleitung. Hauptseite Potenziometrie, Theorie. 1. Einleitung. 1. Potenziometrie, Theorie 2. ph-messung Übung ph / pion Hauptseite 1. Einleitung 1. Potenziometrie, Theorie 2. phmessung 1. phmessung mit Wasserstoffelektroden 2. ph Messung mit der Glaselektrode 3. Ionenselektive Messung 4. RedoxPotenziale

Mehr

Praktikumsprotokoll Physikalisch-Chemisches Anfängerpraktikum

Praktikumsprotokoll Physikalisch-Chemisches Anfängerpraktikum Tobias Schabel Datum des Praktikumstags: 16.11.2005 Matthias Ernst Protokoll-Datum: 22.11.2005 Gruppe A-11 7. Versuch: EM - Messung elektromotorischer Kräfte Assistent: G. Heusel Aufgabenstellung 1. Die

Mehr

Aufgabe 5 1 (L) Die folgende Redox-Reaktion läuft in der angegebenen Richtung spontan ab: Cr 2

Aufgabe 5 1 (L) Die folgende Redox-Reaktion läuft in der angegebenen Richtung spontan ab: Cr 2 Institut für Physikalische Chemie Lösungen zu den Übungen zur Vorlesung Physikalische Chemie II im WS 2015/2016 Prof. Dr. Eckhard Bartsch / Marcel Werner M.Sc. Aufgabenblatt 5 vom 27.11.15 Aufgabe 5 1

Mehr

Elektrochemische Thermodynamik. Wiederholung : Potentiale, Potentialbegriff

Elektrochemische Thermodynamik. Wiederholung : Potentiale, Potentialbegriff Elektrochemische Thermodynamik Wiederholung : Potentiale, Potentialbegriff Elektrische Potentiale in der EC Begriffe: Galvani-Potentialdifferenz, Galvani-Spannung: zwischen den inneren Potentialen zweier

Mehr

Martin Raiber 21.02.07 Elektrolyse: Strom - Spannungskurven

Martin Raiber 21.02.07 Elektrolyse: Strom - Spannungskurven Martin Raiber 21.02.07 Elektrolyse: Strom - Spannungskurven Geräte: U-Rohr, verschiedene Platin-Elektroden (blank, platiniert), Graphit-Elektroden, spannungsstabilisierte Gleichspannungsquelle, CASSY-Spannungs/Stromstärkemessgerät

Mehr

Bestimmung von thermodynamischen Daten aus elektrochemischen Messungen. Temperaturabhängigkeit der EMK

Bestimmung von thermodynamischen Daten aus elektrochemischen Messungen. Temperaturabhängigkeit der EMK V7 Bestimmung von thermodynamischen Daten aus elektrochemischen Messungen Temperaturabhängigkeit der EMK Versuch 7: Bestimmung von thermodynamischen Daten aus elektrochemischen Messungen. Temperaturabhängigkeit

Mehr

Elektrochemische Kinetik. FU Berlin Constanze Donner / Ludwig Pohlmann 2010 1

Elektrochemische Kinetik. FU Berlin Constanze Donner / Ludwig Pohlmann 2010 1 Elektrochemische Kinetik FU Berlin Constanze Donner / Ludwig Pohlmann 2010 1 FU Berlin Constanze Donner / Ludwig Pohlmann 2010 2 Elektrochemische Kinetik Was war: Die NernstGleichung beschreibt das thermodynamische

Mehr

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 4

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 4 Praktikum Physikalische Chemie I (C-2) Versuch Nr. 4 Bestimmung thermodynamischer Daten aus Zellpotentialmessungen des Systems / 2+ Praktikumsaufgaben 1. Bestimmung des Gleichgewichtszellpotentials bei

Mehr

Grundlagen der Chemie Elektrochemie

Grundlagen der Chemie Elektrochemie Elektrochemie Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Elektrischer Strom Ein elektrischer Strom ist ein

Mehr

Da eine Elektrolyse unter Anlegen einer äußeren Spannung erzwungen, d.h. mit G > 0, abläuft, ist der Zusammenhang zwischen G und U 0 nach

Da eine Elektrolyse unter Anlegen einer äußeren Spannung erzwungen, d.h. mit G > 0, abläuft, ist der Zusammenhang zwischen G und U 0 nach Versuch PCA E 2 Polarisation und Zersetzungsspannung Aufgabenstellung Es sind die Temperaturabhängigkeit der Zersetzungsspannung einer 1,2 M HCl-Lösung sowie die Konzentrationsabhängigkeit der Zersetzungsspannung

Mehr

ANWENDUNG EINER IONENSELEKTIVEN ELEKTRODE AUF DIE POTENTIOMETRISCHE BESTIMMUNG VON FLUORID

ANWENDUNG EINER IONENSELEKTIVEN ELEKTRODE AUF DIE POTENTIOMETRISCHE BESTIMMUNG VON FLUORID Thermodynamik Anwendung einer ionenselektiven Elektrode auf LUORID die potentiometrische Bestimmung von luorid ANWENDUNG EINER IONENSELEKTIVEN ELEKTRODE AU DIE POTENTIOMETRISCHE BESTIMMUNG VON LUORID 1.

Mehr

= n + + Thermodynamik von Elektrolytlösungen. Wdhlg: Chemisches Potential einer Teilchenart: Für Elektrolytlösungen gilt: wobei : und

= n + + Thermodynamik von Elektrolytlösungen. Wdhlg: Chemisches Potential einer Teilchenart: Für Elektrolytlösungen gilt: wobei : und Elektrolyte Teil III Solvatation, elektrische Leitfähigkeit, starke und schwache Elektrolyte, Ionenstärke, Debye Hückeltheorie, Migration, Diffusion, Festelektrolyte Thermodynamik von Elektrolytlösungen

Mehr

Was ist Elektrochemie?

Was ist Elektrochemie? Was ist Elektrochemie? Eine elektrochemische Reaktion erfüllt folgende vier Eigenschaften: Sie findet an Phasengrenzen statt. Die einzelnen Phasen sind unterschiedlich geladen. (unterschiedliche elektrische

Mehr

Versuch EM: Elektromotorische

Versuch EM: Elektromotorische Versuch EM: Elektromotorische Kraft Seite 1 Einleitung Der Begriff Elektromotorische Kraft (EMK), auch als Urspannung bezeichnet, beschreibt trotz seiner Bezeichnung keine Kraft im physikalischen Sinn,

Mehr

Standard. VII. Potentiometrie, Elektrogravimetrie, Konduktometrie. Seminar zum Praktikum

Standard. VII. Potentiometrie, Elektrogravimetrie, Konduktometrie. Seminar zum Praktikum Seminar zum Praktikum Quantitative Bestimmung von anorganischen Arznei-, Hilfsund Schadstoffen im 2. Fachsemester Pharmazie VII. Potentiometrie, Elektrogravimetrie, Konduktometrie Di, 27.05.2008 1 Elektrochemie

Mehr

Elektrochemie: Spannung galvanischer Ketten

Elektrochemie: Spannung galvanischer Ketten Elektrochemie: Spannung galvanischer Ketten 1 Theorie Bei einer Redoxreaktion werden Elektronen von einer Spezies auf eine andere übertragen. Der Elektronendonor, der selbst oxidiert wird, wird Reduktionsmittel

Mehr

Die ph-abhängigkeit des Redoxpotentials

Die ph-abhängigkeit des Redoxpotentials Die ph-abhängigkeit des Redoxpotentials Vortrag von Volker Engel im Rahmen der "Übungen im Vortragen mit Demonstrationen-AC" WS 99/00 Einstieg: Mit einem ph-messgerät wird der ph-wert von Leitungswasser

Mehr

Allgemeine Chemie für r Studierende der Zahnmedizin

Allgemeine Chemie für r Studierende der Zahnmedizin Allgemeine Chemie für r Studierende der Zahnmedizin Allgemeine und Anorganische Chemie Teil 6 Dr. Ulrich Schatzschneider Institut für Anorganische und Angewandte Chemie, Universität Hamburg Lehrstuhl für

Mehr

6.1 Elektrodenpotenzial und elektromotorische Kraft

6.1 Elektrodenpotenzial und elektromotorische Kraft 6.1 Elektrodenpotenzial und elektromotorische Kraft Zinkstab Kupferstab Cu 2+ Lösung Cu 2+ Lösung Zn + 2e Cu Cu 2+ + 2e Cu 2+ Eine Elektrode ist ein metallisch leitender Gegenstand, der zur Zu oder Ableitung

Mehr

Elektrolyte. (aus: Goldenberg, SOL)

Elektrolyte. (aus: Goldenberg, SOL) Elektrolyte Elektrolyte leiten in wässriger Lösung Strom. Zu den Elektrolyten zählen Säuren, Basen und Salze, denn diese alle liegen in wässriger Lösung zumindest teilweise in Ionenform vor. Das Ostwaldsche

Mehr

Universität zu Köln. Department Chemie Physikalisch-Chemisches Praktikum. Elektromotorische Kraft Galvanischer Zellen

Universität zu Köln. Department Chemie Physikalisch-Chemisches Praktikum. Elektromotorische Kraft Galvanischer Zellen Universität zu Köln Department Chemie Physikalisch-Chemisches Praktikum Elektromotorische Kraft Galvanischer Zellen Wahlpflichtmodul Physikalische Chemie Sommersemester 2013 Betreuer: Yvonne Pütz Raum:

Mehr

Schalter. 2.3 Spannungsquellen. 2.3.1 Kondensatoren 112 KAPITEL 2. STROMFLUSS DURCH LEITER; EL. WIDERSTAND

Schalter. 2.3 Spannungsquellen. 2.3.1 Kondensatoren 112 KAPITEL 2. STROMFLUSS DURCH LEITER; EL. WIDERSTAND 112 KAPTEL 2. STROMFLSS DRCH LETER; EL. WDERSTAND 2.3 Spannungsquellen n diesem Abschnitt wollen wir näher besprechen, welche Arten von Spannungsquellen real verwendet werden können. 2.3.1 Kondensatoren

Mehr

Die Rolle der Elektroden

Die Rolle der Elektroden Die Rolle der Elektroden Die meisten chemischen Reaktionen sind sogenannte Redox Reaktionen. Reduktion: A e A ; Oxidation: B B e Mischt man die Lösungen beider Substanzen, so läuft die Reaktion bei ausreichend

Mehr

ε 0 = Normalpotential Potentiometrie

ε 0 = Normalpotential Potentiometrie Potentiometrie Unter dem Name Potentiometrie werden diejenige analytische Methoden zusammengefasst, die auf der Messung des Elektrodenpotentials zurückzuführen sind (siehe dazu auch Mortimer, Kapitel 21,

Mehr

Übung 10 (Redox-Gleichgewichte und Elektrochemie)

Übung 10 (Redox-Gleichgewichte und Elektrochemie) Übung 10 (Redox-Gleichgewichte und Elektrochemie) Verwenden Sie neben den in der Aufgabenstellung gegebenen Potenzialen auch die Werte aus der Potenzial-Tabelle im Mortimer. 1. Ammoniak kann als Oxidationsmittel

Mehr

B Chemisch Wissenwertes. Arrhénius gab 1887 Definitionen für Säuren und Laugen an, die seither öfter erneuert wurden.

B Chemisch Wissenwertes. Arrhénius gab 1887 Definitionen für Säuren und Laugen an, die seither öfter erneuert wurden. -I B.1- B C H E M I S C H W ISSENWERTES 1 Säuren, Laugen und Salze 1.1 Definitionen von Arrhénius Arrhénius gab 1887 Definitionen für Säuren und Laugen an, die seither öfter erneuert wurden. Eine Säure

Mehr

Daniell-Element. Eine graphische Darstellung des Daniell-Elementes finden Sie in der Abbildung 1.

Daniell-Element. Eine graphische Darstellung des Daniell-Elementes finden Sie in der Abbildung 1. Dr. Roman Flesch Physikalisch-Chemische Praktika Fachbereich Biologie, Chemie, Pharmazie Takustr. 3, 14195 Berlin rflesch@zedat.fu-berlin.de Physikalisch-Chemische Praktika Daniell-Element 1 Grundlagen

Mehr

Elektrische Leitfähigkeit

Elektrische Leitfähigkeit A. Allgemeines Unter der elektrischen Leitfähigkeit versteht man die Fähigkeit F eines Stoffes, den elektrischen Strom zu leiten. Die Ladungsträger ger hierbei können k sein: Elektronen: Leiter 1. Art

Mehr

Redoxreaktionen. Elektrochemische Spannungsreihe

Redoxreaktionen. Elektrochemische Spannungsreihe Elektrochemische Spannungsreihe Eine galvanische Zelle bestehend aus einer Normal-Wasserstoffelektrode und einer anderen Halbzelle erzeugen eine Spannung, die, in 1-molarer Lösung gemessen, als Normal-

Mehr

Grundlagen: Galvanische Zellen:

Grundlagen: Galvanische Zellen: E1 : Ionenprodukt des Wassers Grundlagen: Galvanische Zellen: Die Galvanische Zelle ist eine elektrochemische Zelle. In ihr laufen spontan elektrochemische Reaktionen unter Erzeugung von elektrischer Energie

Mehr

+ O. Die Valenzelektronen der Natriumatome werden an das Sauerstoffatom abgegeben.

+ O. Die Valenzelektronen der Natriumatome werden an das Sauerstoffatom abgegeben. A Oxidation und Reduktion UrsprÄngliche Bedeutung der Begriffe UrsprÅnglich wurden Reaktionen, bei denen sich Stoffe mit Sauerstoff verbinden, als Oxidationen bezeichnet. Entsprechend waren Reaktionen,

Mehr

Elektrolytische Leitfähigkeit

Elektrolytische Leitfähigkeit Elektrolytische Leitfähigkeit 1 Elektrolytische Leitfähigkeit Gegenstand dieses Versuches ist der Zusammenhang der elektrolytischen Leitfähigkeit starker und schwacher Elektrolyten mit deren Konzentration.

Mehr

Protokoll zu. Versuch 17: Elektrochemische Zellen

Protokoll zu. Versuch 17: Elektrochemische Zellen Physikalisch-Chemisches Praktikum 1 26.04.2004 Daniel Meyer / Abdullah Atamer Protokoll zu Versuch 17: Elektrochemische Zellen 1. Versuchsziel Es sollen die EMK verschiedener Zellen mit Elektroden 1. Art

Mehr

MgO. Mg Mg e ½ O e O 2. 3 Mg 3 Mg e N e 2 N 3

MgO. Mg Mg e ½ O e O 2. 3 Mg 3 Mg e N e 2 N 3 Redox-Reaktionen Mg + ½ O 2 MgO 3 Mg + N 2 Mg 3 N 2 Mg Mg 2+ + 2 e ½ O 2 + 2 e O 2 3 Mg 3 Mg 2+ + 6 e N 2 + 6 e 2 N 3 Redox-Reaktionen Oxidation und Reduktion Eine Oxidation ist ein Elektronenverlust Na

Mehr

Elektrodenreaktion [electrode reaction] Die an einer Elektrode ablaufende elektrochemische Reaktion (siehe auch: Zellreaktion).

Elektrodenreaktion [electrode reaction] Die an einer Elektrode ablaufende elektrochemische Reaktion (siehe auch: Zellreaktion). Glossar In diesem Glossar, das keinen Anspruch auf Vollständigkeit erhebt, werden einige Grundbegriffe der Elektrochemie erläutert. [In Klammern sind die englischen Begriffe angegeben.] Autor: Klaus-Michael

Mehr

Das chemische Gleichgewicht

Das chemische Gleichgewicht 1 Grundlagen Viele Substanzen sind in Wasser praktisch nicht löslich, l d.h. sie sind nur sehr geringfügig gig löslich. (Tatsächlich nicht lösliche Stoffe gibt es nicht! Schwerlösliche Verbindungen In

Mehr

4. Wässrige Lösungen schwacher Säuren und Basen

4. Wässrige Lösungen schwacher Säuren und Basen 4. Wässrige Lösungen schwacher Säuren und Basen Ziel dieses Kapitels ist es, das Vorgehenskonzept zur Berechnung von ph-werten weiter zu entwickeln und ph-werte von wässrigen Lösungen einprotoniger, schwacher

Mehr

Versuchsprotokoll E11 Potentiometrische ph-messungen mit der Wasserstoffelektrode und der Glaselektrode

Versuchsprotokoll E11 Potentiometrische ph-messungen mit der Wasserstoffelektrode und der Glaselektrode Dieses Werk steht unter der Creative-Commons-Lizenz CC BY-NC 3.0 1 Physikalische Chemie I Versuchsprotokoll E11 Potentiometrische ph-messungen mit der Wasserstoffelektrode und der Glaselektrode Inhaltsverzeichnis

Mehr

SS Thomas Schrader. der Universität Duisburg-Essen. (Teil 8: Redoxprozesse, Elektrochemie)

SS Thomas Schrader. der Universität Duisburg-Essen. (Teil 8: Redoxprozesse, Elektrochemie) Chemie für Biologen SS 2010 Thomas Schrader Institut t für Organische Chemie der Universität Duisburg-Essen (Teil 8: Redoxprozesse, Elektrochemie) Oxidation und Reduktion Redoxreaktionen: Ein Atom oder

Mehr

TU Clausthal Stand: 26.11.2007 Institut für Physikalische Chemie Praktikum C Cyclovoltammetrie Seite 1/10

TU Clausthal Stand: 26.11.2007 Institut für Physikalische Chemie Praktikum C Cyclovoltammetrie Seite 1/10 Praktikum C Cyclovoltammetrie Seite 1/10 Cyclovoltammetrie Grundlagen zum Versuch Komponenten - Potentiostat - Funktionsgenerator - Messzelle - Platin-Elektroden - gesättigte Kalomel-Referenzelektrode

Mehr

6. Tag: Chemisches Gleichgewicht und Reaktionskinetik

6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 1 6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 1. Das chemische Gleichgewicht Eine chemische Reaktion läuft in beiden Richtungen ab. Wenn

Mehr

Der Schmelzpunkt von Salzen

Der Schmelzpunkt von Salzen Der Schmelzpunkt von Salzen Vergleich die Smp. der Salze (links). Welche Rolle könnten die Ionenradien bzw. die Ladung der enthaltenen Ionen spielen? Der Schmelzpunkt von Salzen ist i.d.r. sehr hoch. Er

Mehr

Versuch 1. 1/48 Konzentrationsabhängigkeit des Elektrodenpotenzials

Versuch 1. 1/48 Konzentrationsabhängigkeit des Elektrodenpotenzials 1/48 Konzentrationsabhängigkeit des Elektrodenpotenzials Versuch 1 Wir stellen je 100 ml der folgenden Lösungen her: a) Silbernitrat AgNO3 (c = 0,1 mol/l) b) Kaliumnitrat KNO3 (c = 0,1 mol/l) 2/48 Konzentrationsabhängigkeit

Mehr

Übungsaufgaben Physikalische Chemie

Übungsaufgaben Physikalische Chemie Gleichgewichte: Übungsaufgaben Physikalische Chemie F1. Stellen Sie die Ausdrücke für die Gleichgewichtskonstanten folgender Reaktionen auf: a) CO (g) + Cl 2 (g) COCl (g) + Cl(g) b) 2 SO 2 (g) + O 2 (g)

Mehr

7. Chemische Reaktionen

7. Chemische Reaktionen 7. Chemische Reaktionen 7.1 Thermodynamik chemischer Reaktionen 7.2 Säure Base Gleichgewichte 7. Chemische Reaktionen 7.1 Thermodynamik chemischer Reaktionen 7.2 Säure Base Gleichgewichte 7.3 Redox - Reaktionen

Mehr

Kapitel 5 Elektrodenpotentiale. Physikalische Chemie III/2 (Elektrochemie)

Kapitel 5 Elektrodenpotentiale. Physikalische Chemie III/2 (Elektrochemie) Kapitel 5 Elektrodenpotentiale 5.1. Grundlegende Überlegungen Bis jetzt: rein ionischer Aspekt der Elektrochemie jetzt: wie sind die Gegebenheiten an einer Grenzfläche Elektrode-Elektrolyt? es sind zu

Mehr

Elektrodentypen - Intro. Elektrodentypen?! Was ist eine Elektrode? Was für Elektrodentypen gibt es? Betrachtung einzelner Elektroden:

Elektrodentypen - Intro. Elektrodentypen?! Was ist eine Elektrode? Was für Elektrodentypen gibt es? Betrachtung einzelner Elektroden: Elektrodentypen - Intro Elektrodentypen?! Was ist eine Elektrode? Was für Elektrodentypen gibt es? Betrachtung einzelner Elektroden: Elektrodentypen - Einleitung Was ist eine Elektrode? Eletrode leitet

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

Versuchsprotokoll E15 Potentiometrische Titration einer Chlorid/Iodid-Lösung

Versuchsprotokoll E15 Potentiometrische Titration einer Chlorid/Iodid-Lösung Dieses Werk steht unter der Creative-Commons-Lizenz CC BY-NC 3.0 1 Physikalische Chemie I Versuchsprotokoll E15 Potentiometrische Titration einer Chlorid/Iodid-Lösung Inhaltsverzeichnis 1 Ziel 2 2 Grundlagen

Mehr

Elektrodenpotenziale im Gleichgewicht

Elektrodenpotenziale im Gleichgewicht Elektrodenpotenziale im Gleichgewicht Zn e - e - e - Cu e - e - Zn 2+ e - Zn 2+ e - Cu 2+ Zn 2+ Zn 2+ Cu 2+ Wenn ein Metallstab in die Lösung seiner Ionen taucht, stellt sich definiertes Gleichgewichtspotential

Mehr

Stefan Reißmann ANORGANISCH-CHEMISCHES TUTORIUM WS 2000/2001

Stefan Reißmann ANORGANISCH-CHEMISCHES TUTORIUM WS 2000/2001 7. ELEKTROCHEMIE Im Prinzip sind alle chemischen Reaktionen elektrischer Natur, denn an allen chemischen Bindungen sind Elektronen beteiligt. Unter Elektrochemie versteht man jedoch vorrangig die Lehre

Mehr

Fällungsreaktion. Flammenfärbung. Fällungsreaktion:

Fällungsreaktion. Flammenfärbung. Fällungsreaktion: 2 Fällungsreaktion: 2 Fällungsreaktion Entsteht beim Zusammengießen zweier Salzlösungen ein Niederschlag eines schwer löslichen Salzes, so spricht man von einer Fällungsreaktion. Bsp: Na + (aq) + Cl -

Mehr

Elektrolyse. Zelle.. Bei der Elektrolyse handelt es sich im Prinzip um eine Umkehrung der in einer galvanischen Zelle Z ablaufenden Redox-Reaktion

Elektrolyse. Zelle.. Bei der Elektrolyse handelt es sich im Prinzip um eine Umkehrung der in einer galvanischen Zelle Z ablaufenden Redox-Reaktion (Graphit) Cl - Abgabe von Elektronen: Oxidation Anode Diaphragma H + Elektrolyse Wird in einer elektrochemischen Zelle eine nicht-spontane Reaktion durch eine äußere Stromquelle erzwungen Elektrolyse-Zelle

Mehr

Was ist Elektrochemie? Elektrochemie. Elektrochemie ist die Lehre von der Beziehung

Was ist Elektrochemie? Elektrochemie. Elektrochemie ist die Lehre von der Beziehung Was ist Elektrochemie? Elektrochemie Elektrochemie ist die Lehre von der Beziehung zwischen elektrischen und chemischen Prozessen. 131 Stromleitung in einem Metall Wir haben gelernt, dass die Stromleitung

Mehr

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie Name: Matrikelnummer: Bachelor Biowissenschaften E-Mail: Physikalisches Anfängerpraktikum II Dozenten: Assistenten: Protokoll des Versuches 7: Umwandlung von elektrischer Energie in ärmeenergie Verantwortlicher

Mehr

Membran- und Donnanpotentiale. (Zusammenfassung)

Membran- und Donnanpotentiale. (Zusammenfassung) Membranund Donnanpotentiale (Zusammenfassung) Inhaltsverzeichnis 1. Elektrochemische Membranen...Seite 2 2. Diffusionspotentiale...Seite 2 3. Donnanpotentiale...Seite 3 4. Zusammenhang der dargestellten

Mehr

Praktische Einführung in die Chemie Integriertes Praktikum:

Praktische Einführung in die Chemie Integriertes Praktikum: Praktische Einführung in die Chemie Integriertes Praktikum: Versuch 1-2 (MWG) Massenwirkungsgesetz Versuchs-Datum: 20. Juni 2012 Gruppenummer: 8 Gruppenmitglieder: Domenico Paone Patrick Küssner Michael

Mehr

GALVANISCHE ELEMENTE, BATTERIEN UND BRENNSTOFFZELLEN

GALVANISCHE ELEMENTE, BATTERIEN UND BRENNSTOFFZELLEN 10. Einheit: GALVANISCHE ELEMENTE, BATTERIEN UND BRENNSTOFFZELLEN Sebastian Spinnen, Ingrid Reisewitz-Swertz 1 von 17 ZIELE DER HEUTIGEN EINHEIT Am Ende der Einheit Galvanische Elemente, Batterien und

Mehr

Elektrochemie. Grundlagen und analytische Anwendungen. Jens Petersen S. 1/ 11

Elektrochemie. Grundlagen und analytische Anwendungen. Jens Petersen S. 1/ 11 lektrochemie Grundlagen und analytische Anwendungen Jens Petersen S. / Überblick lektrochemie im Gleichgewicht - lektrochemisches Potenzial - Messbarkeit der Potenzialdifferenz - Referenzmessung, Standardisierung

Mehr

7. Tag: Säuren und Basen

7. Tag: Säuren und Basen 7. Tag: Säuren und Basen 1 7. Tag: Säuren und Basen 1. Definitionen für Säuren und Basen In früheren Zeiten wußte man nicht genau, was eine Säure und was eine Base ist. Damals wurde eine Säure als ein

Mehr

EinFaCh 1. Studienvorbereitung Chemie. Einstieg in Freibergs anschauliches Chemiewissen Teil 1: Redoxreaktionen und Elektrochemie.

EinFaCh 1. Studienvorbereitung Chemie. Einstieg in Freibergs anschauliches Chemiewissen Teil 1: Redoxreaktionen und Elektrochemie. Studienvorbereitung Chemie EinFaCh 1 Einstieg in Freibergs anschauliches Chemiewissen Teil 1: Redoxreaktionen und Elektrochemie www.tu-freiberg.de http://tu-freiberg.de/fakultaet2/einfach Was ist eine

Mehr

Vergleich Protochemische und Elektrochemische Spannungsreihe. Protochemische Spannungsreihe. Korrespondierende Säure-Base-Paare

Vergleich Protochemische und Elektrochemische Spannungsreihe. Protochemische Spannungsreihe. Korrespondierende Säure-Base-Paare 165 19 Redoxgleichgewichte (Elektronenübertragungsreaktionen) Vergleich Protochemische und Elektrochemische Spannungsreihe Protochemische Spannungsreihe Korrespondierende SäureBasePaare Säure korrespondierende

Mehr

Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode

Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode Name: Matrikelnummer: Bachelor Biowissenschaften E-Mail: Physikalisches Anfängerpraktikum II Dozenten: Assistenten: Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode

Mehr

8.+9. Tag: Säuren und Basen (II) / Redoxreaktionen (II)

8.+9. Tag: Säuren und Basen (II) / Redoxreaktionen (II) 8.+9. Tag: Säuren und Basen (II) / Redoxreaktionen (II) 1 8.+9. Tag: Säuren und Basen (II) / Redoxreaktionen (II) 1. Säuren und Basen II : Puffersysteme Zuweilen benötigt man Lösungen, die einen definierten

Mehr

Chemie für Biologen. Vorlesung im. WS 2004/05 V2, Mi 10-12, S04 T01 A02. Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen

Chemie für Biologen. Vorlesung im. WS 2004/05 V2, Mi 10-12, S04 T01 A02. Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen Chemie für Biologen Vorlesung im WS 200/05 V2, Mi 10-12, S0 T01 A02 Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen (Teil : 03.11.200) MILESS: Chemie für Biologen 66 Chemische

Mehr

Universität des Saarlandes - Fachrichtung Anorganische Chemie Chemisches Einführungspraktikum. Elektrochemie

Universität des Saarlandes - Fachrichtung Anorganische Chemie Chemisches Einführungspraktikum. Elektrochemie Universität des Saarlandes Fachrichtung Anorganische Chemie Chemisches Einführungspraktikum Elektrochemie Elektrochemie bezeichnet mehrere verschiedene Teilgebiete innerhalb der Chemie. Sie ist zum einen

Mehr

Abb. 1: Exotherme und endotherme Reaktionen Quelle: http://www.seilnacht.com/lexikon/aktivi.htm#diagramm

Abb. 1: Exotherme und endotherme Reaktionen Quelle: http://www.seilnacht.com/lexikon/aktivi.htm#diagramm Energie bei chemischen Reaktionen Chemische Reaktionen sind Stoffumwandlungen bei denen Teilchen umgeordnet und chemische Bindungen gespalten und neu geknüpft werden, wodurch neue Stoffe mit neuen Eigenschaften

Mehr

Chemie für Biologen. Vorlesung im. WS 2004/05 V2, Mi 10-12, S04 T01 A02. Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen

Chemie für Biologen. Vorlesung im. WS 2004/05 V2, Mi 10-12, S04 T01 A02. Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen Chemie für Biologen Vorlesung im WS 2004/05 V2, Mi 10-12, S04 T01 A02 Paul Rademacher Institut für rganische Chemie der Universität Duisburg-Essen (Teil 6: 17.11.2004) MILESS: Chemie für Biologen 102 Reduktion

Mehr

Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement

Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement 1. Einleitung Die Wheatstonesche Brücke ist eine Brückenschaltung zur Bestimmung von Widerständen. Dabei wird der zu messende Widerstand

Mehr

Universität des Saarlandes - Fachrichtung Anorganische Chemie C h e m i s c h e s E i n f ü h r u n g s p r a k t i k u m.

Universität des Saarlandes - Fachrichtung Anorganische Chemie C h e m i s c h e s E i n f ü h r u n g s p r a k t i k u m. Universität des Saarlandes - Fachrichtung Anorganische Chemie C h e m i s c h e s E i n f ü h r u n g s p r a k t i k u m Elektrochemie Elektrochemie bezeichnet mehrere verschiedene Teilgebiete innerhalb

Mehr

Beispiele zur Anwendung der Nernst-Gleichung (II)

Beispiele zur Anwendung der Nernst-Gleichung (II) Chemie-Arbeitsblatt Klasse _ Name: Datum:.. Beispiele zur Anwendung der Nernst-Gleichung (II) 3 Aufgabe I: Gegeben sind die Standard-Elektrodenpotenziale für Cu/Cu : 0,35V, Au/Au : 1,4 V und Cl /Cl : 1,36

Mehr

Versuch 5: Zersetzungsspannung

Versuch 5: Zersetzungsspannung Gruppe : Christina Sauermann und Johannes Martin 1 Versuch 5: Zersetzungsspannung 1 Darstellung der theoretischen Hintergründe Wird an die beiden Elektroden einer galvanischen Zelle eine Gleichspannung

Mehr

Reduktion und Oxidation. Oxidationszahlen (OZ)

Reduktion und Oxidation. Oxidationszahlen (OZ) Redox-Reaktionen Reduktion und Oxidation Oxidationszahlen (OZ) REDOX Reaktionen / - Gleichungen Das elektrochemische Potential Die Spannungsreihe der Chemischen Elemente Die Nernstsche Gleichung Definitionen

Mehr

Physikalisches Anfaengerpraktikum. Dissoziationsgrad und Gefrierpunkterniedrigung

Physikalisches Anfaengerpraktikum. Dissoziationsgrad und Gefrierpunkterniedrigung Physikalisches Anfaengerpraktikum Dissoziationsgrad und Gefrierpunkterniedrigung Ausarbeitung von Marcel Engelhardt & David Weisgerber (Gruppe ) Montag, 1. Februar 00 1. Versuchsaufbau Um den Dissoziationsgrad

Mehr

Das Potenzial einer Halbzelle lässt sich mittels der Nernstschen Gleichung berechnen. oder

Das Potenzial einer Halbzelle lässt sich mittels der Nernstschen Gleichung berechnen. oder Zusammenfassung Redoxreaktionen Oxidation entspricht einer Elektronenabgabe Reduktion entspricht einer Elektronenaufnahme Oxidation und Reduktion treten immer gemeinsam auf Oxidationszahlen sind ein Hilfsmittel

Mehr

Versuchsprotokoll E11 Potentiometrische Messungen mit der Glasund

Versuchsprotokoll E11 Potentiometrische Messungen mit der Glasund Praktikum Physikalische Chemie, 3. Semester Chemie, Elektrochemie Gruppe 7: Sven Brehme Manuel Gensler Aufgabe: Versuchsprotokoll E11 Potentiometrische Messungen mit der Glasund Chinon- Hydrochinon-Elektrode

Mehr

Messungen zum Laden und Entladen eines Modell-Bleiakkumulators

Messungen zum Laden und Entladen eines Modell-Bleiakkumulators Messungen zum und eines Modell-Bleiakkumulators Von Peter Keusch, Jörg Baran und Jürgen P. Pohl Die Messung des zeitlichen Ablaufs chemischer oder physikalischer Vorgänge mit Hilfe von Messdaten-Erfassungssystemen

Mehr

Didaktik der Physik Demonstrationsexperimente WS 2006/07

Didaktik der Physik Demonstrationsexperimente WS 2006/07 Didaktik der Physik Demonstrationsexperimente WS 2006/07 Messung von Widerständen und ihre Fehler Anwendung: Körperwiderstand Hand-Hand Fröhlich Klaus 22. Dezember 2006 1. Allgemeines zu Widerständen 1.1

Mehr

Physikalische Chemie Praktikum. Elektrolyte: Dissoziationskonstante von Essigsäure λ von NaCl ist zu ermitteln

Physikalische Chemie Praktikum. Elektrolyte: Dissoziationskonstante von Essigsäure λ von NaCl ist zu ermitteln Hochschule Emden/Leer Physikalische Chemie Praktikum Vers. Nr. 16 April 2017 Elektrolyte: Dissoziationskonstante von Essigsäure λ von NaCl ist zu ermitteln In diesem Versuch soll die Dissoziationskonstante

Mehr

4 Flaschen mit Stammlösung (0,001 M HCl, 0,001 M NaCl, 0,1 M Essigsäure, 0,001 M Natriumacetat), demineralisiertes Wasser.

4 Flaschen mit Stammlösung (0,001 M HCl, 0,001 M NaCl, 0,1 M Essigsäure, 0,001 M Natriumacetat), demineralisiertes Wasser. Juni 29, 2017 Physikalisch-Chemisches Praktikum Versuch Nr. 9 Thema: Aufgabenstellung: Material: Substanzen: Ablauf: 1: 2: 3: 4: 5: 6: 7: 8: Ladungstransport in Elektrolytlösungen Ermittlung der Dissoziationskonstanten

Mehr

E5: Faraday-Konstante

E5: Faraday-Konstante E5: Faraday-Konstante Theoretische Grundlagen: Elektrischer Strom ist ein Fluss von elektrischer Ladung; in Metallen sind Elektronen die Ladungsträger, in Elektrolyten übernehmen Ionen diese Aufgabe. Befinden

Mehr

Die spezifische Leitfähigkeit κ ist umgekehrt proportional zum Widerstand R:

Die spezifische Leitfähigkeit κ ist umgekehrt proportional zum Widerstand R: Institut für Physikalische Chemie Lösungen zu den Übungen zur Vorlesung Physikalische Chemie II im WS 205/206 Prof. Dr. Eckhard Bartsch / M. Werner M.Sc. Aufgabenblatt 3 vom 3..5 Aufgabe 3 (L) Leitfähigkeiten

Mehr

Silbercoulometer / Elektrolyse. Bestimmung der Faraday schen Zahl mit dem Silbercoulometer

Silbercoulometer / Elektrolyse. Bestimmung der Faraday schen Zahl mit dem Silbercoulometer Institut f. Experimentalphysik Technische Universität Graz Petersgasse 16, A-8010 Graz Laborübungen: Elektrizität und Optik 20. Mai 2010 Silbercoulometer / Elektrolyse Stichworte zur Vorbereitung: Elektrolytische

Mehr

2. Vergleiche die Werte, die bei Methode A bzw. B herauskommen, miteinander!

2. Vergleiche die Werte, die bei Methode A bzw. B herauskommen, miteinander! Chemie-Arbeitsblatt Klasse _ Name: Datum:.. Beispiele zur Anwendung der Nernst-Gleichung (II) Aufgabe I: Gegeben sind die Standard-Elektrodenpotenziale für Cu/Cu 2+ : +0,35V, Au/Au 3+ : +1,42 V und 2ClG/Cl

Mehr

Einführung. Galvanische Zelle. Korrosion + - Univ.-Prof. Dr. Max J. Setzer Vorlesung - Korrosion Seite 1

Einführung. Galvanische Zelle. Korrosion + - Univ.-Prof. Dr. Max J. Setzer Vorlesung - Korrosion Seite 1 Univ.-Prof. Dr. Max J. Setzer Vorlesung - Korrosion Seite 1 Einführung MWG 8 / Die Korrosion ist ein Redox-Prozess Bei der Änderung der Oxidationsstufe entstehen Ionen geladene Teilchen. Der Oxidationsprozess

Mehr

Aufgabe: Untersuchung der Kinetik der Zersetzung von Harnstoff durch Urease.

Aufgabe: Untersuchung der Kinetik der Zersetzung von Harnstoff durch Urease. A 36 Michaelis-Menten-Kinetik: Hydrolyse von Harnstoff Aufgabe: Untersuchung der Kinetik der Zersetzung von Harnstoff durch Urease. Grundlagen: a) Michaelis-Menten-Kinetik Im Bereich der Biochemie spielen

Mehr

2.5 Strom in Flüssigkeiten. 2.5 Strom in Flüssigkeiten. 2.5 Strom in Flüssigkeiten. 2.5 Strom in Flüssigkeiten. 2.5 Strom in Flüssigkeiten

2.5 Strom in Flüssigkeiten. 2.5 Strom in Flüssigkeiten. 2.5 Strom in Flüssigkeiten. 2.5 Strom in Flüssigkeiten. 2.5 Strom in Flüssigkeiten Leitungsversuche: Destilliertes Wasser Leitungswasser NaCl i Wasser Abhängigkeiten: Vorhandensein von Ladungsträgern Beweglichkeit der Ladungsträger ("Häufigkeit von Stößen", " Reibung") Anode + Kathode

Mehr

0.3 Formeln, Gleichungen, Reaktionen

0.3 Formeln, Gleichungen, Reaktionen 0.3 Formeln, Gleichungen, Reaktionen Aussage von chemischen Formeln Formeln von ionischen Verbindungen - Metallkation, ein- oder mehratomiges Anion - Formel entsteht durch Ausgleich der Ladungen - Bildung

Mehr

Examensfragen zur Elektrochemie

Examensfragen zur Elektrochemie 1 Examensfragen zur Elektrochemie 1. Standardpotentiale a. Was versteht man unter Standardpotential? Standardpotential E 0 ist die Spannung eines Redoxpaars in Bezug auf die Standardwasserstoffelektrode

Mehr

Praktikum Physikalische Chemie I 26. November Zersetzungsspannung. Guido Petri Anastasiya Knoch PC111/112, Gruppe 11

Praktikum Physikalische Chemie I 26. November Zersetzungsspannung. Guido Petri Anastasiya Knoch PC111/112, Gruppe 11 Praktikum Physikalische Chemie I 26. November 2015 Zersetzungsspannung Guido Petri Anastasiya Knoch PC111/112, Gruppe 11 Aufgabenstellung Die Zersetzungsspannung von HCl und HI wird mit Hilfe einer Strom-Spannungskurve

Mehr

Grundpraktikum Physikalische Chemie. Versuch 16 Kinetischer Salzeffekt

Grundpraktikum Physikalische Chemie. Versuch 16 Kinetischer Salzeffekt Grundpraktikum Physikalische Chemie Versuch 16 Kinetischer Salzeffekt Version: März 2016 1. Theorie 1.1. Kinetischer Salzeffekt Eine bimolekulare chemische Reaktion lässt sich mithilfe von Konzepten der

Mehr