Errata für Hermann Weyl, Einführung in die Funktionentheorie, Birkhäuser, Basel 2008

Größe: px
Ab Seite anzeigen:

Download "Errata für Hermann Weyl, Einführung in die Funktionentheorie, Birkhäuser, Basel 2008"

Transkript

1 Errata für Hermann Weyl, Einführung in die Funktionentheorie, Birkhäuser, Basel 008 Horst Petereit 0. Juli 0 Errata Seite Zeile statt: lies: vii 5 o viii 9 u Klein hat Klein had ix 5 u noting the Koebe noting that Koebe x 7 u contained the introductory contained in the introductory 7 5 o α β α β 7 4 u Größen die von Größen, die von 3 3 u Transformationpotenz Transformationspotenz 6 u von z nach z von z nach z 7 8 u Das Dass 9 0 u ganz ganze o Und außer das Und außer dass 4 Abb.. re x, y x, y 5 4 o eine direkt oder eine direkte oder 3 u Z t = e iα(t t) Z t Z t = e iα(t t) Z t 3 o Z t = a (t t) Z Z t = a (t t) Z t 33 3 o Z t = a t t e iα(t t) Z t Z t = a t t e iα(t t) Z t 33 o + tlog Z + tlog α 34 4 u nämlicher nämlich 34 u die Strecke die Strecken 38 4 o die entsprechenden die entsprechende 40 9 o Z = z ξ Z = z ξ 47 5 o az 3 + d az 3 + b 5 3 o z z + z z + (dreimal) 54 8 u rechen rechnen 55 9 u der Bogenlänge - der Bogenlängen - 56 u B = Rcosα B = Rsin(α) 57 0 o sinϑ + α, sin(ϑ + α), 59 8 u winketreu winkeltreu 59 5 u. Begriffe. Begriff 60 u (nz n 60 u 0 + n(n ) z0 n z +...) (z 0+ z) n z n 0 [nz n (z 0+ z) n z n 0 z 0 z 0 + n(n ) z n 0 z +...] horst.petereit@web.de

2 6 3 o f(z) f(z0) z z 0 nz n f(z) f(z0) z z 0 df 6 7 o df dz dz z0 nz n u Vorschrift z,z < oder Vorschrift z, z < oder 63 6 u z z 63 5 u wohl aber z< wohl aber z < 64 3 u ( u(x0+ x,y0) u(x0,y0) ) ( u(x0,y0+) u(x0,y0) ) 64 3 u ( v(x0+ x,y0) v(x0,y0) ) ( v(x0,y0+) v(x0,y0) ) 65 6 u x =0 z = u x z 68 u Raduis Radius 68 6 u kann und auch kann, und auch 7 5 o Die Bildkurven der Parabeln v =const Die Urbildkurven der Parallelen v =const 73 5 u wobei wir wenn wobei wir, wenn 75 o ganzahligen ganzzahligen 76 5 o falls z bereits falls z bereits 79 3 u (Q(α)P (α) P (α)q (α) ) (Q(α)P (α) P (α)q (α)) 87 3 o x-achse y-achse 87 9 o Fortsetzung Festsetzung dϱ dt +( ux x 88 3 u y )=0, ux + ϱ( x + uy y )=0, 9 u (by + dy)y (bx + dy)y 97 o noch die die erste noch die erste 97 5 o Differentialgleichng Differentialgleichung 0 3 u Nullpunkt und Nullpunkt, und 05 3 o RealU(x, y) RealW (x, y) (U ist der Realteil von W) 07 4 u f / f f / f o Exonentialfunktion Exponentialfunktion 7 o gesagten Gesagten 6 o auschließen ausschließen Abb..30 re (obere Grenze π, untere Grenze π ergänzen) u cosz = exi e xi cosz = exi +e xi 3 7 u cosz cosz ± sinz sinz cosz cosz sinz sinz 7 4 o Tangesfunktion Tangensfunktion 30 3 u αϕ α ϕ 3 Abb..38 αϕ α ϕ 3 6 o Je nachden Je nachdem 3 5 u ( z )α ( z )α 3 u e α logz = z α dϱ dt = e α logz z α 33 6 u ( ) α = ( ) α = α ( ) α =( )α. ( ) α = ( ) α = α ( ) α =( )α. 33 u e iαlogr αφ e iαlogr αϕ 33 5 u Riemmanschen Riemannschen 33 4 u die auf ihm liegenden die auf ihr liegenden 34 5 o demensprechend dementsprechend 34 3 o also γ = 0 also y =0 4 3 o liegende Wertepaar liegenden Wertepaar 4 9 u in hohem Masse in hohem Maße 4 7 u Darstellung; die Darstellung, die 4 u ergebene Funktion. ergebende Funktion. 4 7 u überschneidenen Linearzuge überschneidenden Linearzuge 43 9 o t n...t n t n...t n+ 43 o umfasen umfassen 43 7 o Bewegungen, als äquivalent Bewegungen als äquivalent

3 45 3 u = l dx(s) (P (x(t),y(t) 0 dt + Q(x(t),y(t)) dy(s) dt )ds = l dx(s) (P (x(s),y(s) 0 ds + Q(x(s),y(s)) dy(s) ds )ds 46 8 o Integralrachnung Integralrechnung 47 3 o wenn wir einzelnen wenn wir die einzelnen 48 6 o nähmlich nämlich 48 8 o = τ τ 0 u(t(τ)) dt dτ + i... = τ τ u benutzten benutzen u(t(τ)) dt dτ dτ + i o L L f(z)dz L L f(z)dz 53 Abb. 3. u w (zweimal; damit konsistent mit dem Text) l dy 53 6 o (u 0 ds + v dx ds ds) l dy dx (u 0 ds ds + v ds ds) 55 6 u A f(x) v a f (x) y dx A f(x) v a f (x) y dydx U 6 7 u U l 0 dy (u L z = v z = v l dy 6 6 o 0 (u ds + v dx ds ) ds + v dx ds )ds 6 3 o (vdy udx) L (vdy udx) 6 4 o ( v x + u y )dxdy ( v x + u y )dxdy 66 8 o einfacher einfach 67 5 u gung einen solchen gung eines solchen 68 7 u die aus den Integranden die aus dem Integranden 7 4 u = πieπiµ e πiµ = πi e πiµ e πiµ = π sin(πµ) = πieπiµ e πiµ = πi e πiµ e πiµ = π sin(πµ) 73 7 u Voraussetzung, als unsere Voraussetzung als unsere 75 6 u q () und q() q () und q () 75 5 u den Weg, der den Weg L, der 79 u K r ζ z = K r ζ z dζ = 8 o eintwickeln entwickeln 8 5 o unendliche Reihem unendliche Reihen 83 o k= L f(z)dz k= L f k(z)dz 84 u L ζ z dζ K ζ z dζ 84 5 u unseres Kreise unseres Kreises 85 0 u integrieren und integrieren, und 85 9 u dζ dζ L ζ k+ K ζ k u zu einem beliebiegen zu einem beliebigen 85 3 u behalten als Eint- erhalten als Ent- 85 u L (ζ z 0) dζ k+ K (ζ z 0) dζ k o L ζ n (ζ z) dζ K ζ n (ζ z) dζ 86 4 o L ζ n (ζ z) dζ K ζ n (ζ z) dζ 90 6 u Konvergenskreises Konvergenzkreises 90 3 u innerhalb K innerhalb K 9 5 o <M k q k <M k q k 93 5 o anlytischen analytischen 94 3 o Definition von z Definition von z 94 5 o herausgestellt und herausgestellt, und (f(z) g(z))(l) z=z u c l = l! (f(z) g(z))l z=z 0 c l = l! 96 3 o (a 0 b k + a b k + a b k + (a 0 b k + a b k + a b k + + a h b + a h b 0 )(z z 0 ) h+k + a k b + a k b 0 )(z z 0 ) k 99 6 o F (z) = k= C k(z z 0 ) k F (z) = k=0 C k(z z 0 ) k 99 0 o = F (k) (z 0 ). = F (k) (z 0 )/k! o πi 99 5 o πi f k (ζ) K (x z 0) dx K πi f k (x) (ζ z 0) πi f k (ζ) K (ζ z 0) dζ K f k (ζ) (x z 0) dζ 00 o f (z) = F (z) = 0 7 o lim n A n (z) =F (z) lim n S n (z) =F (z) 3

4 0 0 o A n (z) F (z) <ɛ S n (z) F (z) <ɛ 0 4 o Real- uns Imaginärteil Real- und Imaginärteil π 03 5 o 0 dϕ π 0 dϕ 04 4 o außer das außer dass 05 3 o K (ζ z dζ, 0) K (ζ z dζ. 0) 06 9 o f(z) oberhalb f(z) oberhalb 08 4 u f(z) =A m z m + A m z m f(z) =A m z m + A m+ z m u A n = πi K A(ζ)ζ n dζ A n = πi K ζ n dζ 09 3 u A n = πi k A(ζ)ζ n dζ A n = πi k ζ n dζ 0 5 o f(z) = n= A nz n f(z) = n= A nz n 0 4 u Nun ist aber, wie wir wissen Nun ist aber, wie wir wissen, 7 o viele Glider viele Glieder 3 8 o in einer Laurentreihe in eine Laurentreihe 3 9 o in der Wegen in der wegen 3 9 o der Hauptteil gelten muss der Hauptteil entfallen muss 3 3 o g( z) = f(/z) g( z) = f(/ z) 3 3 u anders aussprechen nämlich so, anders aussprechen, nämlich so, 5 o Pole beitzen mag Pole besitzen mag 5 5 u A B f(z) = (z α ) + m (z α ) +... m A f(z) = (z α ) m + B (z α ) m u Pol m ter Ordnung P ol m ter Ordnung 6 3 o Algbra Algebra 8 4 o z = zurürck z = zurück 8 8 u f(z) in der Stelle f(z) an der Stelle 9 4 u mit nur endlichen mit nur endlich 0 u Residuum m Residuum m 8 u rationalen Funktion rationalen Funktionen 3 8 o µ von f(y) µ von f(y) 7 5 u F(F, z 0 ) r F(F, z 0 ) r 3 o Logaritmus Logarithmus 3 o Riemannschen Fläche Riemannsche Fläche 33 6 u Um in derselben Weise Beispiel 5.. Um in derselben Weise 33 4 u Allgemein findet man Beispiel 5.3. Allgemein findet man 34 4 u angekündigkten angekündigten 34 u Um die Riemann... Beispiel 5.4. Um die Riemann u Riemannschen Fläche Riemannsche Fläche 36 o Nun betrachten wir Beispiel 5.5. Nun betrachten wir 38 9 o rechten Hyperbel linken Hyperbel 39 9 o Endlich sei noch Beispiel 5.6. Endlich sei noch 40 o Nun soll noch Beispiel 5.7. Nun soll noch 40 0 o als eine sondern als eine, sondern 40 5 u Darum ensteht Darum entsteht 4 5 o lim z z0 f(z) = lim z z0 f(z) = 43 5 u enstehen entstehen 44 o kein Exponent 0 kein Exponent 0 49 u Zu der Umgebung In der Umgebung 50 5 o... + a k+ (z z 0 ) k a k+ (z z 0 ) k o... + a k+ (z z 0 ) l a l+ (z z 0 ) l o... + a k+ (z z 0 ) m a m+ (z z 0 ) m o Nun treffen wie die Nun treffen wir die 58 3 o genzkriterien genzkreise 58 7 u Konvergenzradius Konvergenzkreis 59 8 o in einer Laurentreihe in eine Laurentreihe 59 u die beiden Nachbarpunkt die beiden Nachbarpunkte 4

5 60 5 u der analytische Fortsetzung der analytischen Fortsetzung 6 6 o Forsetzung Fortsetzung 6 o an einer dem ersten an einem dem ersten 6 o Funtionalelement Funktionselement 6 8 u der gegebene Gleichung der gegebenen Gleichung 65 o [,3,5,8,5,0] [,3,5,8,5,6,0,5] Bemerkungen:. Amplitude durch Azimut ersetzen. Weyl spricht nur auf den ersten Seiten von der Amplitude, später nur noch vom Azimut. Amplitude ist ungewöhnlich.. Von Seite 0 Mitte bis Seite 04 alle ξ s durch ζ s ersetzen. Dies macht die Darstellung konsistenter. 3. In Kapitel 5 werden mehrere Beispiele angeführt; nur das erste ist aber mit Beispiel 5. speziell gekennzeichnet. Ich habe die anderen (fehlenden) Kennzeichnungen in die Errata-Liste oben aufgenommen. 5

6

6 Komplexe Integration

6 Komplexe Integration 6 Komplexe Integration Ziel: Berechne für komplexe Funktion f : D W C Integral der Form f(z)dz =? wobei D C ein Weg im Definitionsbereich von f. Fragen: Wie ist ein solches komplexes Integral sinnvollerweise

Mehr

Lösungen zur Klausur Funktionentheorie I SS 2005

Lösungen zur Klausur Funktionentheorie I SS 2005 Universität Karlsruhe 29 September 25 Mathematisches Institut I Prof Dr M von Renteln Dr C Kaiser Aufgabe en zur Klausur Funktionentheorie I SS 25 Sei S die Möbiustransformation, die durch S(z) = i i z

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen Kapitel 7 Funktionentheorie In diesem Kapitel geht es meistens um Funktionen, die auf einem Gebiet G C definiert sind und komplexe Werte annehmen. Nach Lust, Laune und Bedarf wird C mit R identifiziert,

Mehr

Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6

Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6 Mathematisches Institut SS 29 Universität München Prof. Dr. M. Schottenloher C. Paleani A. Stadelmaier M. Schwingenheuer Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6. Gegeben sei folgende konforme

Mehr

Gesucht ist eine holomorphe oder meromorphe Funktion, die die Fakultäten interpoliert. z z + m 1 f(z +m+1) = ( 1)m 1

Gesucht ist eine holomorphe oder meromorphe Funktion, die die Fakultäten interpoliert. z z + m 1 f(z +m+1) = ( 1)m 1 23 3 Die Γ-Funktion Gesucht ist eine holomorphe oder meromorphe Funktion, die die Fakultäten interpoliert. f(n) = (n )! für n N. Das wird durch die Funktionalgleichung erreicht. Bemerkungen. f(z + ) =

Mehr

Komplexe Zahlen und konforme Abbildungen

Komplexe Zahlen und konforme Abbildungen Kapitel 1 Komplexe Zahlen und konforme Abbildungen 1.0 Geometrie der komplexen Zahlen Die Menge C der komplexen Zahlen, lässt sich mithilfe der bijektiven Abbildung C := {x + iy : x,y R}, C z = x + iy

Mehr

2. Stetigkeit und Differenzierbarkeit

2. Stetigkeit und Differenzierbarkeit 2. Stetigkeit Differenzierbarkeit 9 2. Stetigkeit Differenzierbarkeit Wir wollen uns nun komplexen Funktionen zuwenden dabei zunächst die ersten in der Analysis betrachteten Eigenschaften untersuchen,

Mehr

2.6 Der komplexe Logarithmus und allgemeine Potenzen

2.6 Der komplexe Logarithmus und allgemeine Potenzen 2.6 Der komplexe Logarithmus und allgemeine Potenzen Ziel: Umkehrung der komplexen Exponentialfunktion fz) = expz). Beachte: Die Exponentialfunktion expz) ist für alle z C erklärt, und es gilt Dexp) =

Mehr

Einführung in die Funktionentheorie 1

Einführung in die Funktionentheorie 1 Einführung in die Funktionentheorie Martin Ziegler Freiburg, WS 994/95, WS 2000/0, SS 2006 Literatur [] Klaus Jänich. Funktionentheorie. Springer Verlag, 993. [2] H.Behnke und F.Sommer. Theorie der analytischen

Mehr

Zusammenfassung der Lebesgue-Integrationstheorie

Zusammenfassung der Lebesgue-Integrationstheorie Zusammenfassung der Lebesgue-Integrationstheorie Das Lebesguesche Integral verallgemeinert das Riemannsche Integral. Seine Vorteile liegen für unsere Anwendungen vor allem bei den wichtigen Konvergenzsätzen,

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Die komplexe Exponentialfunktion und die Winkelfunktionen

Die komplexe Exponentialfunktion und die Winkelfunktionen Die komplexe Exponentialfunktion und die Winkelfunktionen In dieser Zusammenfassung werden die für uns wichtigsten Eigenschaften der komplexen und reellen Exponentialfunktion sowie der Winkelfunktionen

Mehr

Kapitel I. Holomorphe Funktionen. 1 Potenzreihen

Kapitel I. Holomorphe Funktionen. 1 Potenzreihen Kapitel I Holomorphe Funktionen Potenzreihen Definition. Sei f a (z) = c n (z a) n eine Potenzreihe mit Entwicklungspunkt a. Die Zahl R := sup{r 0 z C, so daß f a (z) konvergent und r = z a ist.} heißt

Mehr

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld Analysis II für Ingenieure Übersicht: Integration 1 Kurvenintegral über ein Skalarfeld 1.1 erechnung c f ds = b a f ( c(t) ) c(t) dt 1. Kurve c parametrisieren: c : [a, b] R n, t c(t). 2. c(t) und dann

Mehr

1 Einführung. (ii) Exponentialfunktion, Winkelfunktionen, hyperbolische Winkelfunktionen, abgeleitete

1 Einführung. (ii) Exponentialfunktion, Winkelfunktionen, hyperbolische Winkelfunktionen, abgeleitete Inhaltsverzeichnis 1 Einführung I 1.1 Spezielle Funktionen in der Vorlesung.................. I 1. Mathematische Theorien und Konzepte................. I 1.3 Kurzübersicht...............................

Mehr

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen

Mehr

Mathematik für Physiker IV

Mathematik für Physiker IV Mathematik für Physiker IV Universität Tübingen Sommersemester 2 Prof. Dr. Christian Hainzl vervollständigt und getext von Mario Laux und Simon Mayer Inhaltsverzeichnis Komplexe Analysis (Funktionentheorie)

Mehr

Damian Rösslers Komplexe Analysis. SS 02 getext von Johannes Bader

Damian Rösslers Komplexe Analysis. SS 02 getext von Johannes Bader Damian Rösslers Komplexe Analysis SS 2 getext von Johannes Bader Copyright 22 Johannes Bader baderj@ee.ethz.ch Die Verteilung dieses Dokuments in elektronischer oder gedruckter Form ist nicht gestattet.

Mehr

2 Komplexe Funktionen

2 Komplexe Funktionen 2 Komplexe Funktionen Wir betrachten komplexwertige Funktionen f einer komplexen Variablen. 2.1 Begriff und geometrische Deutung Definition: Eine komplexe Funktion ist eine Funktion, deren Definitions-

Mehr

Integration über allgemeine Integrationsbereiche.

Integration über allgemeine Integrationsbereiche. Integration über allgemeine Integrationsbereiche. efinition: Sei R n eine kompakte und messbare Menge. Man nennt Z = { 1,..., m } eine allgemeine Zerlegung von, falls die Mengen k kompakt, messbar und

Mehr

Kapitel 6. Exponentialfunktion

Kapitel 6. Exponentialfunktion Kapitel 6. Exponentialfunktion 6.1. Potenzreihen In Kap. 4 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

Kapitel 7. Exponentialfunktion

Kapitel 7. Exponentialfunktion Kapitel 7. Exponentialfunktion 7.1. Potenzreihen In Kap. 5 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005 Einführung in die Integralrechnung Mag. Mone Denninger. November 5 INHALTSVERZEICHNIS 8. Klasse Inhaltsverzeichnis Einleitung Berechnung einfacher Stammfunktionen. Integrationsregeln.........................

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92 Kapitel 4 Funktionen und Stetigkeit In diesem Kapitel beginnen wir Funktionen f : Ê Ê systematisch zu untersuchen. Dazu bauen wir auf den Begriff des metrischen Raumes auf und erhalten offene und abgeschlossene

Mehr

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden

Mehr

2. Mathematische Grundlagen

2. Mathematische Grundlagen 2. Mathematische Grundlagen Erforderliche mathematische Hilfsmittel: Summen und Produkte Exponential- und Logarithmusfunktionen 21 2.1 Endliche Summen und Produkte Betrachte n reelle Zahlen a 1, a 2,...,

Mehr

Zahlen und Gleichungen

Zahlen und Gleichungen Kapitel 2 Zahlen und Gleichungen 21 Reelle Zahlen Die Menge R der reellen Zahlen setzt sich zusammen aus den rationalen und den irrationalen Zahlen Die Mengen der natürlichen Zahlen N, der ganzen Zahlen

Mehr

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben. Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung

Mehr

Lösungen der Übungsaufgaben von Kapitel 4

Lösungen der Übungsaufgaben von Kapitel 4 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 4 zu 4.1 4.1.1 Eine Funktion f : R R sei als Nullfunktion für x 0 und als x x für x 0 definiert.

Mehr

Walter Strampp AUFGABEN ZUR WIEDERHOLUNG. Mathematik III

Walter Strampp AUFGABEN ZUR WIEDERHOLUNG. Mathematik III Walter Strampp AUFGABEN ZUR WIEDERHOLUNG Mathematik III Differenzialgleichungen erster Ordnung Aufgabe.: Richtungsfeld und Isoklinen skizzieren: Wie lauten die Isoklinen folgender Differenzialgleichungen:

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Die Riemannsche Zetafunktion. 1 Einführung

Die Riemannsche Zetafunktion. 1 Einführung Die Riemannsche Zetafunktion Vortrag zum Seminar zur Funktionentheorie,..8 Michael Hoschek Mit meinem Vortrag möchte ich die wichtigste Dirichletsche Reihe, die Riemannsche Zetafunktion mit einigen besonderen

Mehr

Prof. Dr. Rolf Linn

Prof. Dr. Rolf Linn Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen

Mehr

EINFÜHRUNG IN DIE KOMPLEXE ANALYSIS

EINFÜHRUNG IN DIE KOMPLEXE ANALYSIS EINFÜHRUNG IN DIE KOMPLEXE ANALYSIS WERNER MÜLLER Sommersemester 205 Inhaltsverzeichnis 0. Die komplexen Zahlen 3. Holomorphe Funktionen 6 2. Die Cauchy-Riemannschen Differentialgleichungen 9 3. Potenzreihen

Mehr

a n (z a) f (z) = für alle z K erfüllt ist. Dabei gilt a n = f (n) (a) für alle n N 0. Beispiel 1: Sei f (z) = z 3 3z + 4.

a n (z a) f (z) = für alle z K erfüllt ist. Dabei gilt a n = f (n) (a) für alle n N 0. Beispiel 1: Sei f (z) = z 3 3z + 4. Satz (VEKDF, Teil II) Sei D C und f : D C eine holomorphe Funktion. Dann ist f in einer Umgebung von jedem Punkt a D durch eine Potenzreihe darstellbar. Das bedeutet: Es gibt einen Kreis K um a und a 0,

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

13. Abzählen von Null- und Polstellen

13. Abzählen von Null- und Polstellen 13. Abzählen von Null- und Polstellen 77 13. Abzählen von Null- und Polstellen Als weitere Anwendung des Residuensatzes wollen wir nun sehen, wie man ot au einache Art berechnen kann, wie viele Null- bzw.

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

Skriptum zum Praktikum Einführung in die Mathematik 2

Skriptum zum Praktikum Einführung in die Mathematik 2 Skriptum zum Praktikum Einführung in die Mathematik Tobias Hell & Georg Spielberger Letzte Änderung:. Februar 0 Universität Innsbruck WS 00/ Inhaltsverzeichnis Präliminarien 4 Rechnen mit Potenzen und

Mehr

Formelsammlung zum Starterstudium Mathematik

Formelsammlung zum Starterstudium Mathematik Formelsammlung zum Starterstudium Mathematik Universität des Saarlandes ¼ Version.3 Inhaltsverzeichnis. Potenzgesetze. Vollständige Induktion 3. Betragsgleichungen, Betragsungleichungen 4 4. Folgen und

Mehr

31 Die Potentialgleichung

31 Die Potentialgleichung 3 Die Potentialgleichung Die Potentialgleichung oder auch Poisson-Gleichung ist die lineare Gleichung zweiter Ordnung u = f in einem Gebiet R n. Im homogenen Fall f = 0 spricht man auch von der Laplace-

Mehr

Modulformen, Teil 1. 1 Schwach modulare Funktionen

Modulformen, Teil 1. 1 Schwach modulare Funktionen Vortrag zum Seminar zur Funktionentheorie, 3.3.2 Robin Blöhm Dieser Vortrag führt uns zur Definition von Modulformen. Gemeinsam mit einem ersten Beispiel, den bereits bekannten Eisenstein-Reihen, ist sie

Mehr

Die Weierstaÿ'sche -Funktion

Die Weierstaÿ'sche -Funktion Die Weierstaÿ'sche -Funktion Kapitel : Konstruktion Motivation: Ziel dieses Kapitels ist es ein möglichst einfaches Beispiel für eine elliptische Funktion zu nden.wir wissen bereits, dass keine elliptische

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

Der Primzahlsatz. Es gibt eine Konstante A, so daß f(x) g(x) Ah(x) für alle genügend großen x.

Der Primzahlsatz. Es gibt eine Konstante A, so daß f(x) g(x) Ah(x) für alle genügend großen x. Der Primzahlsatz Zusammenfassung Im Jahr 896 wurde von Hadamard und de la Vallée Poussin der Primzahlsatz bewiesen: Die Anzahl der Primzahlen kleiner gleich verhält sich asymptotisch wie / log. Für ihren

Mehr

Faltung und Approximation von Funktionen

Faltung und Approximation von Funktionen Faltung und Approximation von Funktionen Lisa Bauer und Anja Moldenhauer 9. Juni 2008 1 Die Faltung von Funktionen 1.1 Die Faltung Eine kleine Widerholung mit einem Zusatz: Vergleiche den Vortrag von Benjamin

Mehr

Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema

Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema In diesem Kapitel befassen wir uns mit der Ableitung von Funktionen f : R m R n. Allein die Schreibweise

Mehr

Schnecke auf expandierendem Ballon

Schnecke auf expandierendem Ballon Schnecke auf expandierendem Ballon Kann in einem sich expandierenden Uniersum das Licht einer Galaxie auch die Punkte erreichen, die sich on ihr mit mehr als Lichtgeschwindigkeit entfernen? 1 Als einfaches

Mehr

Für alle Kommilitonen

Für alle Kommilitonen Für alle Kommilitonen Mitschrift der Vorlesung Differentialgleichungen und Funktionentheorie gehalten von Dr. Edgardo Stockmeyer an der Johannes Gutenberg-Universität Mainz im WS 2008/09 Skript FTDGL L

Mehr

Probeklausur am

Probeklausur am Mathematik IV für Studierende der Physik Dr. Vsevolod Shevchishin Probeklausur am 7.07.2010 Bearbeitungszeit: 60 min Name, Vorname:.......................................................................

Mehr

Langlands-Programm. Zahlentheorie = Algebra + Geometrie + Analysis. Torsten Wedhorn. 19. Januar 2012

Langlands-Programm. Zahlentheorie = Algebra + Geometrie + Analysis. Torsten Wedhorn. 19. Januar 2012 Zahlentheorie = Algebra + Geometrie + Analysis 19. Januar 2012 Inhalt 1 Dreieckszahlen 2 3 4 Dreieckszahlen Eine rationale Zahl D > 0 heißt Dreieckszahl (oder Kongruenzzahl), falls D die Fläche eines rechtwinkligen

Mehr

Aufgaben zur Analysis I aus dem Wiederholungskurs

Aufgaben zur Analysis I aus dem Wiederholungskurs Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 Hilfskräfte: A. Weiß, W. Thumann 6.3.29 NWF I - Mathematik Universität Regensburg Aufgaben zur Analysis I aus dem Wiederholungskurs Die folgenden

Mehr

Einführung in die Funktionentheorie

Einführung in die Funktionentheorie Einführung in die Funktionentheorie Andreas Gathmann Vorlesungsskript TU Kaiserslautern 204/5 Inhaltsverzeichnis 0. Einleitung und Motivation..................... 3. Komplexe Zahlen.......................

Mehr

Notizen zur Vorlesung. Funktionentheorie. G. Sweers

Notizen zur Vorlesung. Funktionentheorie. G. Sweers Notizen zur Vorlesung Funktionentheorie G. Sweers Sommersemester 0 ii Inhaltsverzeichnis Rechnen und Differenzieren in C. Komplexe Zahlen................................. Topologie und Geometrie in C..........................3

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

Leitfaden a tx t

Leitfaden a tx t Leitfaden -0.7. Potenz-Reihen. Definition: Es sei (a 0, a, a 2,...) eine Folge reeller Zahlen (wir beginnen hier mit dem Index t 0). Ist x R, so kann man die Folge (a 0, a x, a 2 x 2, a 3 x 3,...) und

Mehr

mit 0 < a < b um die z-achse entsteht.

mit 0 < a < b um die z-achse entsteht. Übungen (Aufg. u. Lösungen) zu Mathem. u. Lin. Alg. II SS 6 Blatt 8 13.6.6 Aufgabe 38: Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { (x, y, z) R 3 y, (x b) + z a } mit

Mehr

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom 27.10.2011 Aufgabe III.1 (4 Punkte) Sei Ω R

Mehr

17 Logarithmus und allgemeine Potenz

17 Logarithmus und allgemeine Potenz 7 Logarithmus und allgemeine Potenz 7. Der natürliche Logarithmus 7.3 Die allgemeine Potenz 7.4 Die Exponentialfunktion zur Basis a 7.5 Die Potenzfunktion zum Exponenten b 7.6 Die Logarithmusfunktion zur

Mehr

Zusammenfassung Zahlbereiche

Zusammenfassung Zahlbereiche Zusammenfassung Zahlbereiche Ekkehard Batzies 7. Mai 2008 1 Die rationalen Zahlen 1.1 Zahlbereiche in der Schule Als Zahlbereiche kennt man aus der Schule die natürlichen Zahlen, N = {0, 1, 2, 3,...},

Mehr

Aufgabe Summe max. P Punkte

Aufgabe Summe max. P Punkte Klausur Theoretische Elektrotechnik TET Probeklausur xx.xx.206 Name Matr.-Nr. Vorname Note Aufgabe 2 3 4 5 6 7 Summe max. P. 5 0 5 5 5 5 5 00 Punkte Allgemeine Hinweise: Erlaubte Hilfsmittel: Taschenrechner,

Mehr

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $ $Id: stetig.tex,v 1.11 2012/06/26 15:40:18 hk Exp $ 9 Stetigkeit 9.1 Eigenschaften stetiger Funktionen Am Ende der letzten Sitzung hatten wir eine der Grundeigenschaften stetiger Funktionen nachgewiesen,

Mehr

Script. zur. Vorlesung. Mathematik für Physiker IV Funktionentheorie. Prof. Dr. Frank Loose SS 2008 Eberhard-Karls-Universität Tübingen

Script. zur. Vorlesung. Mathematik für Physiker IV Funktionentheorie. Prof. Dr. Frank Loose SS 2008 Eberhard-Karls-Universität Tübingen Script zur Vorlesung Mathematik für Physiker IV Funktionentheorie Prof. Dr. Frank Loose SS 2008 Eberhard-Karls-Universität Tübingen Florian Jessen Jessen@pit.physik.uni-tuebingen.de 05. Oktober 2008 Made

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

14. Die Riemannsche Zetafunktion

14. Die Riemannsche Zetafunktion 4. Die Riemannsche Zetafunktion 83 4. Die Riemannsche Zetafunktion Zum Abschluss dieses Skripts wollen wir noch ein paar sehr interessante Anwendungen unserer erarbeiteten Theorie betrachten, die zum einen

Mehr

Übungen zu Integralsätzen Lösungen zu Übung 19

Übungen zu Integralsätzen Lösungen zu Übung 19 9. Sei IR 3 der Einheitswürfel Übungen zu Integralsätzen Lösungen zu Übung 9 erifizieren Sie für : {(x, y, z) IR 3 : x, y, z.} den Gaußschen Divergenzsatz. Lösung: v(x, y, z) : (4xz, y, yz) erifizieren

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 1. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 1. Übungsblatt Prof Dr M Gerdts Dr A Dreves J Michael Wintertrimester 216 Mathematische Methoden in den Ingenieurwissenschaften 1 Übungsblatt Aufgabe 1 : (Schwimmer Ein Schwimmer möchte einen Fluss der Breite b > überqueren,

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Diplomvorprüfung HÖHERE MATHEMATIK I und II für Maschinenwesen und Chemie-Ingenieurwesen

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Diplomvorprüfung HÖHERE MATHEMATIK I und II für Maschinenwesen und Chemie-Ingenieurwesen ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Die Riemann'sche Vermutung

Die Riemann'sche Vermutung Die Riemann'sche Vermutung Julián Cancino (ETH Zürich) 7. Juni 7 Leonhard Euler (77-783) und Bernhard Riemann (86-866) sind sicher die bedeutendsten Mathematiker aller Zeiten für ihre Beiträge zu verschiedenen

Mehr

Bernd Dreseler. Funktionentheorie I. Sommersemester Vorlesungsmitschrift von J.Breitenbach. Siegen 2002

Bernd Dreseler. Funktionentheorie I. Sommersemester Vorlesungsmitschrift von J.Breitenbach. Siegen 2002 Bernd Dreseler Funktionentheorie I Sommersemester 1991 Vorlesungsmitschrift von J.Breitenbach Siegen 2002 Inhaltsverzeichnis Vorbemerkung ii 0 Abbildungen f : U lc lc, (x, y) f(x, y) 2 1 Holomorphe Funktionen

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

14.3 Berechnung gekrümmter Flächen

14.3 Berechnung gekrümmter Flächen 4.3 Berechnung gekrümmter Flächen Gekrümmte Flächen werden berechnet, indem sie als Graph einer Funktion zweier Veränderlicher aufgefasst werden. Fläche des Graphen einer Funktion zweier Veränderlicher

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

8 Die Riemannsche Zahlenkugel

8 Die Riemannsche Zahlenkugel 8 Die Riemannsche Zahlenkugel Wir untersuchen zunächst Geraden- und Kreisgleichungen in der komplexen Ebene C = R 2. Geradengleichungen Die Parameterdarstellung einer Geraden durch zwei Punkte z 1 z 2

Mehr

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe:

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe: Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II Mathematik Symbol, Definition N N 0 Z Q Z + + Q 0 A = {a 1,, a n } Deutsch Erklärung Mengenbegriffe: natürlichen Zahlen natürlichen Zahlen

Mehr

Klassifikation von partiellen Differentialgleichungen

Klassifikation von partiellen Differentialgleichungen Kapitel 2 Klassifikation von partiellen Differentialgleichungen Die meisten partiellen Differentialgleichungen sind von 3 Grundtypen: elliptisch, hyperbolisch, parabolisch. Betrachte die allgemeine Dgl.

Mehr

Musterlösung zu Übungsblatt 11

Musterlösung zu Übungsblatt 11 Prof. R. Pandharipande J. Schmitt, C. Schießl Funktionentheorie 2. Dezember 16 HS 2016 Musterlösung zu Übungsblatt 11 Aufgabe 1. Sei U C offen und a U. Seien f, g : U {a} folgende Formeln zur Berechnung

Mehr

Weitere Aufgaben zu Mathematik C

Weitere Aufgaben zu Mathematik C Bergische Universität Wuppertal Fachbereich C PD Dr. Schuster Weitere Aufgaben zu Mathematik C A. Kurvenintegrale und Stammfunktionen. Das Vektorfeld F: R 3 R 3 sei gegeben durch F(x, y, z) = 2z(x + y)

Mehr

Sommersemester < 2 2 < 1+π = g,

Sommersemester < 2 2 < 1+π = g, D. Garmatter C. Apprich, B. Krinn J. Hörner, M. Werth 7. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 04 M. Künzer M. Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 53. Gleichheitsproblem

Mehr

ATZ: Die Zahl π ist transzendent.

ATZ: Die Zahl π ist transzendent. ATZ: Die Zahl π ist transzendent. SATZ Die Transzendenz von π Es ist das Verdienst von Ferdinand Lindemann, erkannt zu haben, da auf Grund eines lange bekannten Zusammenhanges der Zahlen e und π der Hermite

Mehr

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen Kapitel III Stetige Funktionen 14 Stetigkeit und Rechenregeln für stetige Funktionen 15 Hauptsätze über stetige Funktionen 16 Konvergenz von Funktionen 17 Logarithmus und allgemeine Potenz C 1 14 Stetigkeit

Mehr

f : C C, z f(z) = zz komplex differenzierbar? Gibt es ein Gebiet G so dass f G analytisch ist?

f : C C, z f(z) = zz komplex differenzierbar? Gibt es ein Gebiet G so dass f G analytisch ist? Tutor: Martin Friesen, martin.friesen@gmx.de Klausurvorbereitung - Lösungsvorschläge- Funktionentheorie Hier eine kleine Sammlung von Klausurvorbereitungsaufgaben vom Sommersemester 008 aus der Vorlesung

Mehr

Mathematik I Herbstsemester 2014

Mathematik I Herbstsemester 2014 Mathematik I Herbstsemester 2014 www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 32 1 Stetigkeit Grenzwert einer

Mehr

Mitschrift der Vorlesung. Funktionentheorie I. von Prof. G. Wiese im SS 11 an der Universität Duisburg-Essen

Mitschrift der Vorlesung. Funktionentheorie I. von Prof. G. Wiese im SS 11 an der Universität Duisburg-Essen Mitschrift der Vorlesung Funktionentheorie I von Prof. G. Wiese im SS an der Universität Duisburg-Essen Klausur Samstag 6.07.20 Zeit: 9 00 2 00 Uhr Ort: T03 R02 D39 Nachklausur Mittwoch 24.08.20 Zeit:

Mehr

Analysis IV, SS 2012 Freitag $Id: residuum.tex,v /06/29 17:27:57 hk Exp $

Analysis IV, SS 2012 Freitag $Id: residuum.tex,v /06/29 17:27:57 hk Exp $ $Id: residuum.tex,v.6 202/06/29 7:27:57 hk Exp $ 6 Der Residuenkalkül 6. Der Residuensatz Am Ende der letzten Sitzung hatten wir den Begriff des Residuums einer holomorphen Funktion f : U C in einer isolierten

Mehr

Potenzgesetze und Logarithmengesetze im Komplexen

Potenzgesetze und Logarithmengesetze im Komplexen Potenzgesetze und Logarithmengesetze im Komplexen Man kennt die Potenzgesetze und die Logarithmengesetze gewöhnlich schon aus der Schule und ist es gewohnt, mit diesen leicht zu agieren und ohne große

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen 9 Stetigkeit von Funktionen Definition 9.1 : Sei D R oder C und f : D R, C. f stetig in a D : ε > 0 δ > 0 mit f(z) f(a) < ε für alle z D, z a < δ. f stetig auf D : f stetig in jedem Punkt a D. f(a) ε a

Mehr

1 Potenzen und Polynome

1 Potenzen und Polynome 1 Potenzen und Polynome Für eine reelle Zahl x R und eine natürliche Zahl n N definieren wir x n := x x x... x }{{} n-mal Einschub über die bisher aufgetretenen mathematischen Symbole: Definition mittels

Mehr

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016 Übungen zu Einführung in die Numerische Mathematik (VE) Sommersemester 6 Prof. Dr. Martin Rumpf Pascal Huber Sascha Tölkes Übungsblatt 8 Abgabe:.6.6 Aufgabe 5 (Elliptisches Randwertproblem auf einem Ring)

Mehr