Über die Zusammenarbeit mit dem Lehrstuhl für Wärmetechnik* der TU Posen, Polen

Größe: px
Ab Seite anzeigen:

Download "Über die Zusammenarbeit mit dem Lehrstuhl für Wärmetechnik* der TU Posen, Polen"

Transkript

1 Über die Zusammenarbeit mit dem Lehrstuhl für Wärmetechnik* der TU Posen, Polen Prof. Karl-Heinz Hoffmann, Dr. Nikolai Botkin Prof. Michał Ciałkowski*, Dr. Andrzej Frąckowiak*

2 Aufgaben 1. Inverses Wärmeleitungsproblem im Gebiet mit Löchern a) L 2 - Randanpassungsfunktional? b) H 1/2 - Randanpassungsfunktional 2. Regularisierung nichtstationärer inverser Wärmeleitungsprobleme? z(t) h(t) + Rauschen 3. Modellierung von Wärmeschutzelementen des Spaceshuttles 4. Modellierung zu einer experimentalen Anlage. Relaxationszeit? Wasser t=80 t=20 Kondenswasser Dampf, T=100% 5. Verbesserung der Wärmeabfuhr mithilfe geriffelter Oberflächen

3 Aufgabe 1: Inverse Wärmeleitungsproblem 1) 2) Eindeutige Minimumstelle 3) Streng konvex

4 Ableitung des Funktionals = Adjungierte Gleichung, - Langsame Konvergenz des Gradientenverfahrens - Das Funktional nutz die Regularität der Lösung nicht aus - Verwendung einer -Norm im Funktional ist schwer zu berechnen!

5 Implementierung eines - Funktionals Behauptung: = A. Frackowiak, N.D. Botkin, M. Cialkowski, and K.-H. Hoffmann. HMT (2010).

6 Die Methode von fiktiven Gebieten Unbekannte verteilte Wärmequelle. ist das Gebiet des Loches A. Frackowiak, N.D. Botkin, M. Cialkowski, and K.-H. Hoffmann. Submitted to HMT (2012).

7 Beispiele

8 Turbinenschaufel Temperature [K]

9 Aufgabe 2: Regularisierung nichtstationärer inverser Wärmeleitungsprobleme Dimensionslose Formulierung: gegeben =0 Messdaten unbekannte Funktion gegeben =0

10 Explizite Formel und Anpassungsbedingung Die Laplace-Transformation und der Residuensatz liefern:, Anpassungsbedingung : Diskretisierung: definiert die Zeithorizont

11 Die Matrixform des linearen algebraischen Systems (1), - Zufallsvariable auf [-1,1], e 0.05 Die exakte Funktion Lösung von (1) mit der Methode der kleinsten Quadraten.

12 Regularisierung 1. Anpassung der ersten Ableitungen; zwei benachbarte Segmente : χ χ(τ) nahe Steigungen der benachbarten Segmente h τ τ i-1 τ i τ i+1 Der Regularisierungsterm wird als interpretiert.

13 2. Anpassung der zweiten Ableitungen; drei benachbarte Segmente: Nahe zweite Ableitungen in diesen Punkten Der Regularisierungsterm wird als interpretiert.

14 3. Anpassung der dritten Ableitungen; vier benachbarte Segmente: cubic parabola cubic parabola Nahe dritte Ableitungen in diesen Punkten Interpretierung des Regularisierungsterms:

15 Die Methode der kleinsten Quadraten Überdefiniertes System: Die Methode der kleinsten Quadraten: min Die eindeutige Lösung ist voller Rang Bezeichne die Moore-Penrose Lösung der Gleichung mit, wobei ist.

16 Optimale Auswahl des Regularisierungsparameters Die passenden Werte von α sind lokale Minima dieser Funktion.

17 a=0 Die Temperatur bei x = 0, verschiedene a, δ = 5.0%, die zweite Ableitung.

18 Die Temperatur bei x = 0, verschiedene a, δ = 5.0%, die dritte Ableitung.

19 Aufgabe 3: Modellierung von Wärmeschutzelementen eines Spaceshuttles. Eine gebrauchte Fliese LI900 SIP LI-900 is a type of reusable surface insulation tile providing a good thermal resistance SIP is a thermal isolator made of NOMEX, a flame-resistant meta aramid material aluminum

20 Der Atmosphärendruck P A Mechanische Randbedingungen Wärmestrom Anisotrope Materialien: LI900: k z (T,P), k x (T,P) = k y (T,P), E z, E x =E y, G xy, G xz = G yz, C(T), a(t), e(t) SIP: k(t,p), C(T), E z, E x =E y, G xy, G xz = G yz, a(t) AL: k(t), C(T), E(T), a(t) Atmosphärendruck

21 ALUMINUM 2024 Beispiel mangelhafter Daten T ( ) C ( ) k ( ) E (GPa) ( ) Kommerzielle FE-Programme können solche Probleme nicht behandeln. FELICS: Interpolation und Extrapolation aller Tabellendaten!

22 Ergebnisse t=0s t=1000s t=3000s

23 Aufgabe 4: Modellierung zu einer experimentalen Anlage. Relaxationszeit? 1m Kupfer (h KU ) Wasser t=80 t=20 d in Wasser Kondenswasser Dichte und Wärmekapazität Wasser Wärmeleitfähigkeit Wasser Dampf, T D =100% Kreislänge Kondenswasser (h KW ) Kreisfläche Wärmedurchlasskoeffizient des Kupfer-Kondenswasser- System C=4440 J/kg K k KU =370 W/m K k KW =0.6 W/m K d in = 2cm h KU = 1cm h KW =1mm ; ;

24 Temperatur Dynamische Simulationen t 0 t 1 Abstand vom Eingang t 2 t f Relaxationszeit = t f - t 0

25 Explizite Formel für Temperaturprofile Hamilton-Jacobi-Gleichung: ; Gleichung der Charakteristiken: Explizite Formel:

26 Beharrungszustände (Temperaturprofile) - Die Rate der Kondenswasserbildung - Die Benötigte Leistung des Dampfgenerators - Schnelle Parameteridentifizierung, z.b. die Dicke der Kondenswasserschicht

27 Aufgabe 5:. Verbesserung der Wärmeabfuhr mithilfe geriffelter Oberflächen Luftstrom Gekühlte Hindernis Homogenisierung des Wärmetransports Homogenisierung des Lufttransports N.D. Botkin, K.-H. Hoffmann, A. Frackowiak, A.M. Cialkowsk. Study of the heat transfer between gases and solid surfaces covered with micro rods. Schlechte Übereinstimmung mit Messdaten, wenn die Länge der Stäbchen wächst.

28 Berücksichtigung des Strahlungstransports A.E.Kovtanyuk, N.D.Botkin, K.-H.Hoffmann. Numerical simulations of a coupled radiative-conductive heat transfer model using a modified Monte Carlo method International Journal of Heat and Mass Transfer 55 ( ) A.E.Kovtanyuk, N.D.Botkin, K.-H.Hoffmann. Three dimensional models of coupled radiative-conductive heat transfer. In preparation. Diffuse Approximation: ist die Strahlintensität ; ist die Temperatur

29 Ohne Strahlungseffekte Mit Strahlungseffekten Charakterisierung der Wärmeabfuhr:

30 Optimierung über Modelparameter: Simulation der Struktur mit Stäbchen:

Numerische Modellierung des Wärmetransports bei der Messung der Wärmeleitfähigkeit von Dämmstoffen

Numerische Modellierung des Wärmetransports bei der Messung der Wärmeleitfähigkeit von Dämmstoffen Numerische Modellierung des Wärmetransports bei der Messung der Wärmeleitfähigkeit von Dämmstoffen AK Thermophysik, Aachen 09.03.2015 Maya Krause, Eva Katharina Rafeld Überblick EMRP-Projekt SIB 52 Thermo

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Aufgaben zur nicht-linearen Optimierung Teil II Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Aufgabe 5 Bestimmen

Mehr

Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau,

Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau, Universität Siegen, Department Maschinenbau, 7.7. Aufgabe y 3 l 3 3 F l l x Das dargestellte Fachwerk soll statisch mit Hilfe der FEM untersucht werden. Die Knoten und Elemente sind in der Abbildung nummeriert.

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

So viel wie möglich Extremwertaufgaben aus Geometrie

So viel wie möglich Extremwertaufgaben aus Geometrie So viel wie möglich Extremwertaufgaben aus Geometrie Andreas Ulovec 1 Einführung Die meisten Leute sind mit Extremwertaufgaben vertraut: Was ist das flächengrößte Dreieck, das man in einen Kreis einschreiben

Mehr

Multivariate Verteilungen

Multivariate Verteilungen Multivariate Verteilungen Zufallsvektoren und Modellierung der Abhängigkeiten Ziel: Modellierung der Veränderungen der Risikofaktoren X n = (X n,1, X n,2,..., X n,d ) Annahme: X n,i und X n,j sind abhängig

Mehr

Nebenfach Mathematik im Informatik-Studium. Martin Gugat FAU: Friedrich-Alexander-Universität Erlangen-Nürnberg 26.

Nebenfach Mathematik im Informatik-Studium. Martin Gugat FAU: Friedrich-Alexander-Universität Erlangen-Nürnberg 26. Nebenfach Mathematik im Informatik-Studium Martin Gugat martin.gugat@fau.de FAU: Friedrich-Alexander-Universität Erlangen-Nürnberg 26. Oktober 2016 Motivation Die rigorose Analyse von Algorithmen erfordert

Mehr

Inverse Methoden in der FE

Inverse Methoden in der FE Inverse Methoden in der FE 12. Mai Übung: Vorwärtsmodellierung im Mikrowellenbereich (STP) 19. Mai VL: Statistische Inversionsverfahren (Regression, Neuronales Netz) 2. Juni Übung: spez. Aufgaben der Gruppen

Mehr

Berechnung von zweidimensionalen Wärmeströmen, Oberflächentemperaturen und außenmaßbezogenen Wärmebrückenverlustkoeffizienten

Berechnung von zweidimensionalen Wärmeströmen, Oberflächentemperaturen und außenmaßbezogenen Wärmebrückenverlustkoeffizienten Passivhaus Institut Dr. Wolfgang Feist Rheinstr. 44/46 D-64283 Darmstadt Berechnung von zweidimensionalen Wärmeströmen, Oberflächentemperaturen und außenmaßbezogenen Wärmebrückenverlustkoeffizienten nach

Mehr

Mathias Hinkel, WS 2010/11

Mathias Hinkel, WS 2010/11 Mathias Hinkel, WS 2010/11 1. Motivation und Einführungsbeispiel 2. Mathematische Beschreibung des Ofenprozesses 3. Lösungsansätze für Differentialgleichung 4. Einführung der Laplace-Transformation 5.

Mehr

Mehrgitter-Verfahren für DG Finite-Elemente-Diskretisierungen von turbulenten Strömungen

Mehrgitter-Verfahren für DG Finite-Elemente-Diskretisierungen von turbulenten Strömungen www.dlr.de Folie 1 > STAB Workshop, 12.11.2013 > Marcel Wallraff, Tobias Leicht 12.11.2013 Mehrgitter-Verfahren für DG Finite-Elemente-Diskretisierungen von turbulenten Strömungen Marcel Wallraff, Tobias

Mehr

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 27.01.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten

Mehr

Differenzenquotient und Differenzialquotient

Differenzenquotient und Differenzialquotient 1 Differenzenquotient und Differenzialquotient 1. Die Oberfläche O eines kugelförmigen Ballons mit dem Radius r kann durch folgende Funktionsgleichung beschrieben werden: O(r)=4 r 2 π O(r) Oberfläche des

Mehr

Q y. dx dy dz. qdv. Bilanzgleichung des Wärmestroms

Q y. dx dy dz. qdv. Bilanzgleichung des Wärmestroms T( x, y, z, τ ) dv = dx dy dz Q z + dz Q y + dy Q * qdv x Q x + dx Q x+ dx Q x( x + dx, y, z, τ ) Q Q ( x, y + dy, z, τ ) y+ dy y Q Q ( x, y, z + dz, τ ) z+ dz z Q Q y Q z Bilanzgleichung des Wärmestroms

Mehr

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 06.07.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten

Mehr

Überbestimmte Gleichungssysteme

Überbestimmte Gleichungssysteme Siebente Vorlesung, 8. Mai 2008, Inhalt Überbestimmte Gleichungssysteme Kleinste Quadrate: einfaches Beispiel, elementare Herleitung Normalengleichungen Transformation mit QR-Zerlegung und SVD Nichtlineare

Mehr

Modellierung des Wärmetransports in Schüttungen im erweiterten Temperaturbereich Dipl.-Ing. Roland Schreiner Robert Hofmockel, M.Sc.

Modellierung des Wärmetransports in Schüttungen im erweiterten Temperaturbereich Dipl.-Ing. Roland Schreiner Robert Hofmockel, M.Sc. Modellierung des Wärmetransports in Schüttungen im erweiterten Temperaturbereich Dipl.-Ing. Roland Schreiner Robert Hofmockel, M.Sc. Forschungsinstitut für Wärmeschutz e.v. München Lochhamer Schlag 4 82166

Mehr

Die Anwendung druckbarer Heatsinks zur Lösung thermischer Probleme auf Leiterplatten

Die Anwendung druckbarer Heatsinks zur Lösung thermischer Probleme auf Leiterplatten Die Anwendung druckbarer Heatsinks zur Lösung thermischer Probleme auf Leiterplatten -Charakterisierung, Anwendung, Rationalisierung und Kosteneinsparungspotential 21.11.2011 / 1 Baugruppe ohne Heatsink

Mehr

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J} 9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen

Mehr

Institut für Strömungsmechanik und Elektron. Rechnen im Bauwesen der Universität Hannover

Institut für Strömungsmechanik und Elektron. Rechnen im Bauwesen der Universität Hannover ! H W B - Bibliothek!nv.-Nr. p Institut für Strömungsmechanik und Elektron. Rechnen im Bauwesen der Universität Hannover BERICHT NR. 24/1987 Technische Universität Darmslacit Bibliothek Wasser und Umwelt

Mehr

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ 7. Elektrische Leitfähigkeit von estkörpern 7.1 Die elektrischen Eigenschaften von Kristallen Die grundlegende Eigenschaften kennzeichnen das elektrische Verhalten von estkörpern: 1. Der spezifische Widerstand

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

SAFETY CONSIDERATIONS ON LIQUID HYDROGEN (PART 2)

SAFETY CONSIDERATIONS ON LIQUID HYDROGEN (PART 2) SAFETY CONSIDERATIONS ON LIQUID HYDROGEN (PART 2) Karl Verfondern Research Center Jülich, Germany 2 nd European Summer School on Hydrogen Safety Belfast, July 30 August 8, 2007 Types of Cryogen Release

Mehr

Mitschrift zu Wärmetransportphänomene bei Prof. Polifke SoSe 2010

Mitschrift zu Wärmetransportphänomene bei Prof. Polifke SoSe 2010 Inhalt 1. Einführung... 3 2. Grundbegriffe der Wärmeleitung... 3 2.1. Fourier sches Gesetz... 3 2.2. Fourier sche DGL... 3 3. Stationäre Wärmeleitung... 4 3.1. Wärmeleitung in einfachen Geometrien... 4

Mehr

6.8 Newton Verfahren und Varianten

6.8 Newton Verfahren und Varianten 6. Numerische Optimierung 6.8 Newton Verfahren und Varianten In den vorherigen Kapiteln haben wir grundlegende Gradienten-basierte Verfahren kennen gelernt, die man zur numerischen Optimierung von (unbeschränkten)

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Featurebasierte 3D Modellierung

Featurebasierte 3D Modellierung 1 Featurebasierte 3D Modellierung Moderne 3D arbeiten häufig mit einer Feature Modellierung. Hierbei gibt es eine Reihe von vordefinierten Konstruktionen, die der Reihe nach angewandt werden. Diese Basis

Mehr

Seminar. Visual Computing. Poisson Surface Reconstruction. Peter Hagemann Andreas Meyer. Peter Eisert: Visual Computing SS 11.

Seminar. Visual Computing. Poisson Surface Reconstruction. Peter Hagemann Andreas Meyer. Peter Eisert: Visual Computing SS 11. Poisson Surface Reconstruction Peter Hagemann Andreas Meyer Seminar 1 Peter Eisert: SS 11 Motivation Zur 3D Darstellung von Objekten werden meist Scan-Daten erstellt Erstellung eines Dreieckmodells aus

Mehr

SC-PROJEKT EISWÜRFEL: HÖHE = 21MM. Patrick Kurer & Marcel Meschenmoser

SC-PROJEKT EISWÜRFEL: HÖHE = 21MM. Patrick Kurer & Marcel Meschenmoser SC-PROJEKT EISWÜRFEL: HÖHE = 21MM Patrick Kurer & Marcel Meschenmoser 2.1.2013 INHALTSVERZEICHNIS Inhaltsverzeichnis... 1 Allgemeine Parameter... 2 Aufgabe A Allgemeine Berechnung des Eiswürfels... 2 Aufgabe

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 11. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 11. 06.

Mehr

FLOXCOM - WP 7 Modelling and Optimisation of Wall Cooling - Wall Temperature and Stress Analysis

FLOXCOM - WP 7 Modelling and Optimisation of Wall Cooling - Wall Temperature and Stress Analysis FLOXCOM - WP 7 Modelling and Optimisation of Wall Cooling - Wall Temperature and Stress Analysis B&B-AGEMA Dr.-Ing. K. Kusterer 1. Status report 2. 3-D simulation of final combustor geometry 3. Publications

Mehr

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Übungsblatt 12: Ferromagnet

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Übungsblatt 12: Ferromagnet Freie Universität Berlin WS 2006/2007 Fachbereich Physik 26.01.2007 Statistische Physik - heorie der Wärme PD Dr. M. Falcke) Übungsblatt 12: Ferromagnet Aufgabe 1 6 Punkte) Ein ferromagnetisches System

Mehr

Bildverarbeitung: Filterung. D. Schlesinger () Bildverarbeitung: Filterung 1 / 17

Bildverarbeitung: Filterung. D. Schlesinger () Bildverarbeitung: Filterung 1 / 17 Bildverarbeitung: Filterung D. Schlesinger () Bildverarbeitung: Filterung 1 / 17 Allgemeines Klassische Anwendung: Entrauschung (Fast) jeder Filter basiert auf einem Modell (Annahme): Signal + Rauschen

Mehr

1 Singulärwertzerlegung und Pseudoinverse

1 Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung A sei eine Matrix mit n Spalten und m Zeilen. Zunächst sei n m. Bilde B = A A. Dies ist eine n n-matrix. Berechne die Eigenwerte von B. Diese

Mehr

Computational Biology: Bioelektromagnetismus und Biomechanik

Computational Biology: Bioelektromagnetismus und Biomechanik Computational Biology: Bioelektromagnetismus und Biomechanik Biomechanik III Gliederung Wiederholung: Biomechanik II Spannungsanalyse Materialgleichungen Bewegungsgleichungen Biomechanik III Statische

Mehr

Numerical analysis of the influence of turbulence on the exchange processes between porous-medium and free flow

Numerical analysis of the influence of turbulence on the exchange processes between porous-medium and free flow Numerical analysis of the influence of turbulence on the exchange processes between porous-medium and free flow T. Fetzer Institut für Wasser- und Umweltsystemmodellierung Universität Stuttgart January

Mehr

Grundlagen der Modellierung von Wärmetransport im Grundwasser. `ÉåíÉê=Ñçê=dêçìåÇï~íÉê=jçÇÉäáåÖ=áå=íÜÉ=aef=dêçìé

Grundlagen der Modellierung von Wärmetransport im Grundwasser. `ÉåíÉê=Ñçê=dêçìåÇï~íÉê=jçÇÉäáåÖ=áå=íÜÉ=aef=dêçìé Grundlagen der Modellierung von Wärmetransport im Grundwasser `ÉåíÉê=Ñçê=dêçìåÇï~íÉê=jçÇÉäáåÖ=áå=íÜÉ=aef=dêçìé Geothermische Energie Geothermische Energie gewinnt zunehmend an Bedeutung. Sei es im Bereich

Mehr

Hannah Wester Juan Jose Gonzalez

Hannah Wester Juan Jose Gonzalez Neuronale Netze Supervised Learning Proseminar Kognitive Robotik (SS12) Hannah Wester Juan Jose Gonzalez Kurze Einführung Warum braucht man Neuronale Netze und insbesondere Supervised Learning? Das Perzeptron

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 Vladimir Dyakonov #4 am 3.0.007 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E43, Tel. 888-5875,

Mehr

Klausur zu Analysis II - Lösungen

Klausur zu Analysis II - Lösungen Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Dr. Axel Grünrock WS 1/11 11..11 Klausur zu Analysis II - Lösungen 1. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind.

Mehr

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

Kupfer und Kupferlegierungen EN Werkstoff Nr: CW307G CuAl10Ni5Fe4 (OF 2232)

Kupfer und Kupferlegierungen EN Werkstoff Nr: CW307G CuAl10Ni5Fe4 (OF 2232) Kupfer und Kupferlegierungen KUPFER & KUPFERLEGIERUNGEN Seite 1 von 5 09/2013 Kupfer und Kupferlegierungen Cu Zn Pb Sn Fe Mn Ni Al Si As Co Cr Sonstige min. Rest - - - 3,0-4,0 8,5 - - - - - max. - 0.4

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

Be- und Entlüftung in Krematorien

Be- und Entlüftung in Krematorien Be- und Entlüftung in Krematorien IFE Gesellschaft mbh Trogerstr. 38 81675 München Techn. Entwicklung Planung Gutachten Zu heiß? Gliederung Gesetze / Normen Technische Aufgabenstellung Wärmequelle Ofen,

Mehr

NUMERISCHE MATHEMATIK I

NUMERISCHE MATHEMATIK I D-MATH ETH Zürich, 22. August 2011 Prof. Ch. Schwab NUMERISCHE MATHEMATIK I 1. Interpolation und Quadratur (25 P.) a) Sei [a, b] R 1 mit a < b ein beschränktes Intervall, und f C 2 ([a, b]). Zeigen Sie,

Mehr

Bayerisches Zentrum für Angewandte Energieforschung e.v.

Bayerisches Zentrum für Angewandte Energieforschung e.v. Bayerisches Zentrum für Angewandte Energieforschung e.v. Experimentelle Bestimmung der effektiven Wärmeleitfähigkeit von komplexen anisotropen Strukturen F. Hemberger Sitzung des AKT 09.03.2015 in Aachen

Mehr

Efficient Monte Carlo Simulation of Tunnel Currents in MOS Structures

Efficient Monte Carlo Simulation of Tunnel Currents in MOS Structures Efficient Monte Carlo Simulation of Tunnel Currents in MOS Structures D. Grgec, M.I. Vexler, C. Jungemann, B. Meinerhagen Grg-P/02-1 Presentation Outline Introduction: quantum effects in MOS structures

Mehr

10 Extremwerte mit Nebenbedingungen

10 Extremwerte mit Nebenbedingungen 10 Extremwerte mit Nebenbedingungen 49 10 Extremwerte mit Nebenbedingungen Wir betrachten nun Extremwertaufgaben, bei denen nach dem Extremwert einer fx 1,, x n gesucht wird, aber die Menge der zulässigen

Mehr

31 Die Potentialgleichung

31 Die Potentialgleichung 3 Die Potentialgleichung Die Potentialgleichung oder auch Poisson-Gleichung ist die lineare Gleichung zweiter Ordnung u = f in einem Gebiet R n. Im homogenen Fall f = 0 spricht man auch von der Laplace-

Mehr

Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla

Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla Sätze über Konvexität von Kapitel 4.7 bis 4.10 Theorem 4.7-1. Sei U ein konvexer Unterraum eines normierten Vektorraums. Dann

Mehr

Modellierung des Strahlungstransports in porösen Materialien

Modellierung des Strahlungstransports in porösen Materialien Bayerisches Zentrum für Angewandte Energieforschung e.v. Modellierung des Strahlungstransports in porösen Materialien Daniel Gerstenlauer, Ch. Doerffel, M. Arduini-Schuster, J. Manara AKT Dienstag, 18.

Mehr

Klausur Thermische Kraftwerke (Energieanlagentechnik I)

Klausur Thermische Kraftwerke (Energieanlagentechnik I) Klausur Thermische Kraftwerke (Energieanlagentechnik I) Datum: 09.03.2009 Dauer: 1,5 Std. Der Gebrauch von nicht-programmierbaren Taschenrechnern und schriftlichen Unterlagen ist erlaubt. Aufgabe 1 2 3

Mehr

1 Lambert-Beersches Gesetz

1 Lambert-Beersches Gesetz Physikalische Chemie II Lösung 6 23. Oktober 205 Lambert-Beersches Gesetz Anhand des idealen Gasgesetzes lässt sich die Teilchenkonzentration C wie folgt ausrechnen: C = N V = n N A V pv =nrt = N A p R

Mehr

Thermische Energiespeicher mit Phasenwechselmaterial

Thermische Energiespeicher mit Phasenwechselmaterial Thermische Energiespeicher mit Phasenwechselmaterial Gastvortrag am Lehrstuhl für Physikalische Chemie der Montanuni Leoben von Hermann Schranzhofer hermann.schranzhofer@tugraz.at 15.11.2013 1 von 20 Inhalt

Mehr

Übungsaufgaben zu Kapitel 7 und 8

Übungsaufgaben zu Kapitel 7 und 8 Hochschule für Technik und Wirtschaft Dresden Sommersemester 016 Fakultät Informatik/Mathematik Prof. Dr.. Jung Übungsaufgaben zu Kapitel 7 und 8 Aufgabe 1: Für die rennweite einer einfachen, bikonvexen

Mehr

Von Skalarprodukten induzierte Normen

Von Skalarprodukten induzierte Normen Von Skalarprodukten induzierte Normen Niklas Angleitner 4. Dezember 2011 Sei ein Skalarproduktraum X,, gegeben, daher ein Vektorraum X über C bzw. R mit einer positiv definiten Sesquilinearform,. Wie aus

Mehr

6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme

6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme 6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme 6.1 Nullstellen reeller Funktionen Bemerkung 6.1 (Problemstellung) geg.: f C[a, b] ges.: x [a, b] mit f(x ) = 0 Lösungstheorie f linear

Mehr

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p Wiederholungsaufgaben Algorithmische Mathematik Sommersemester Prof. Dr. Beuchler Markus Burkow Übungsaufgaben Aufgabe. (Jacobi-Verfahren) Gegeben sei das lineare Gleichungssystem Ax b = für A =, b = 3.

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #12 10/11/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Konvektion Verbunden mit Materietransport Ursache: Temperaturabhängigkeit der Dichte In Festkörpern

Mehr

Folgerungen aus dem Auflösungsatz

Folgerungen aus dem Auflösungsatz Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und

Mehr

Berechnen Sie den Umfang U des Grundstückes: a) mit Variablen (jeder Schritt muss ersichtlich sein). b) für a=5m.

Berechnen Sie den Umfang U des Grundstückes: a) mit Variablen (jeder Schritt muss ersichtlich sein). b) für a=5m. TG TECHNOLOGISCHE GRUNDLAGEN Seite 1 1 1.2.55 Berechnen Sie den Umfang U des Grundstückes: a) mit Variablen (jeder Schritt muss ersichtlich sein). b) für a5m. Kapitel 1 TG TECHNOLOGISCHE GRUNDLAGEN Seite

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, May 12, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Symmetrische Polynome,Diskriminante und Resultante, Fermatscher Satz für Polynome

Symmetrische Polynome,Diskriminante und Resultante, Fermatscher Satz für Polynome Proseminar Lineare Algebra SS10 Symmetrische Polynome,Diskriminante und Resultante, Fermatscher Satz für Polynome Natalja Shesterina Heinrich-Heine-Universität ASymmetrische Polynome Definition 1 Sei n

Mehr

Arbeitsblatt Mathematik

Arbeitsblatt Mathematik Teste dich! - (/6) Schreibe mithilfe von Potenzen. a) ( 5) ( 5) ( 5) ( 5) b) a a a a a a b b b c) r r r r 0 Cornelsen Verlag, Berlin. Alle Rechte vorbehalten. Berechne ohne Taschenrechner. a) 9 0 5 b)

Mehr

Analysis III Gewöhnliche Differentialgleichungen 3. Übungsblatt (mit Lösungshinweisen)

Analysis III Gewöhnliche Differentialgleichungen 3. Übungsblatt (mit Lösungshinweisen) Analysis III Gewöhnliche Differentialgleichungen 3. Übungsblatt (mit Lösungshinweisen) Fachbereich Mathematik Wintersemester 0/0 Prof. Dr. Burkhard Kümmerer./3. November 0 Andreas Gärtner Walter Reußwig

Mehr

Finite Elemente Berechnungen verklebter Strukturen

Finite Elemente Berechnungen verklebter Strukturen Finite Elemente Berechnungen verklebter Strukturen Dr. Pierre Jousset, Sika Technology AG 24.4.213 1 Sika Technology AG Agenda Motivation und Ziele Die strukturellen Epoxy Klebstoffe SikaPower Finite Element

Mehr

Statistik. Ronald Balestra CH St. Peter

Statistik. Ronald Balestra CH St. Peter Statistik Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch 17. Januar 2010 Inhaltsverzeichnis 1 Statistik 1 1.1 Beschreibende Statistik....................... 1 1.2 Charakterisierung von Häufigkeitsverteilungen...........

Mehr

10 Untermannigfaltigkeiten

10 Untermannigfaltigkeiten 10. Untermannigfaltigkeiten 1 10 Untermannigfaltigkeiten Definition. Eine Menge M R n heißt k-dimensionale Untermannigfaltigkeit des R n, 1 k n, falls es zu jedem a M eine offene Umgebung U R n von a und

Mehr

GEA Heat Exchangers An/To: Von/From: Date/Datum. Dirk Graichen 2010. Product Manager BPHE

GEA Heat Exchangers An/To: Von/From: Date/Datum. Dirk Graichen 2010. Product Manager BPHE An/To: Von/From: Date/Datum Sales Dirk Graichen 2010 Product Manager BPHE 1. Isolierungen FCKW-frei PUR-Halbschalen, schwarz: Insulation: - FCKW-free polyurethane-foam with PS-folia, black GB../GN.. 100,200,220,240,300,400,418,420,500,525,700,

Mehr

Übungen mit dem Applet Interpolationspolynome

Übungen mit dem Applet Interpolationspolynome Interpolationspolynome 1 Übungen mit dem Applet Interpolationspolynome 1 Ziele des Applets... 2 2 Übungen mit dem Applet... 2 2.1 Punkte... 3 2.2 y=sin(x)... 3 2.3 y=exp(x)... 4 2.4 y=x 4 x 3 +2x 2 +x...

Mehr

Download. Führerscheine Funktionen. Schnell-Tests zur Lernstandserfassung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel:

Download. Führerscheine Funktionen. Schnell-Tests zur Lernstandserfassung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel: Download Jens Conrad, Hard Seifert Führerscheine Funktionen Schnell-Tests zur Lernstandserfassung Downloadauszug aus dem Originaltitel: Führerscheine Funktionen Schnell-Tests zur Lernstandserfassung Dieser

Mehr

Zusammenhänge zwischen metrischen Merkmalen

Zusammenhänge zwischen metrischen Merkmalen Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

Zweidimensionale Vektorrechnung:

Zweidimensionale Vektorrechnung: Zweidimensionale Vektorrechnung: Gib jeweils den Vektor AB und seine Länge an! (a A(, B(6 5 (b A(, B( 4 (c A(, B( 0 (d A(0 0, B(4 (e A(0, B( 0 (f A(, B( Gib jeweils die Summe a + b und die Differenz a

Mehr

Inhaltsverzeichnis. Vorwort... v Vorwort zur ersten Auflage... vi Bezeichnungen... xiii

Inhaltsverzeichnis. Vorwort... v Vorwort zur ersten Auflage... vi Bezeichnungen... xiii Inhaltsverzeichnis Vorwort... v Vorwort zur ersten Auflage... vi Bezeichnungen... xiii Kapitel I Einführung 1 1. Beispiele und Typeneinteilung... 2 Beispiele 2 Typeneinteilung 7 Sachgemäß gestellte Probleme

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 5

Technische Universität München Zentrum Mathematik. Übungsblatt 5 Technische Universität München Zentrum Mathematik Mathematik Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 5 Hausaufgaben Aufgabe 5. Bestimmen Sie folgende Grenzwerte. Benutzen

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik'

Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik' Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik' 1. Diskretisierung in der Zeit: Die Evolutionsgleichung Kurzzusammenfassung Zur Erprobung der Verfahren zur zeitlichen Diskretisierung

Mehr

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014 Mathematik für Universität Trier Wintersemester 2013 / 2014 Inhalt der Vorlesung 1. Gleichungen und Summen 2. Grundlagen der Funktionslehre 3. Rechnen mit Funktionen 4. Optimierung von Funktionen 5. Funktionen

Mehr

Materialdatenblatt. EOS MaragingSteel MS1 (200W) Beschreibung

Materialdatenblatt. EOS MaragingSteel MS1 (200W) Beschreibung EOS MaragingSteel MS1 (200W) EOS MaragingSteel MS1 ist ein Stahlpulver, welches speziell für die Verarbeitung in EOS M- Systemen optimiert wurde. Dieses Dokument bietet Informationen und Daten für Bauteile,

Mehr

Inhaltsverzeichnis. Vorwort zur ersten Auflage. Bezeichnungen

Inhaltsverzeichnis. Vorwort zur ersten Auflage. Bezeichnungen Inhaltsverzeichnis Vorwort zur vierten Auflage Vorwort zur ersten Auflage Bezeichnungen v vi xv Kapitel I Einführung 1 1. Beispiele und Typeneinteilung 2 Beispiele 2 Typeneinteilung 7 Sachgemäß gestellte

Mehr

Pyroelektrische. Gerätetechnik. V. Norkus

Pyroelektrische. Gerätetechnik. V. Norkus Institut für Festkörperelektronik Pyroelektrische Infrarotsensoren in der Gerätetechnik V. Norkus Gliederung 1 Einführung 2 Pyroelektrische Infrarotsensoren 3 Eigenschaften pyroelektrischer Sensoren 3.1

Mehr

Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor)

Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) 29 Neuronale Netze Gehirn: ca. 10 11 Neuronen stark vernetzt Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) Mustererkennung in 0.1s 100 Schritte Regel 30 Was ist ein künstl. neuronales Netz? Ein

Mehr

Finite Elemente in Materialwissenschaften

Finite Elemente in Materialwissenschaften Finite Elemente in Materialwissenschaften Dieter Süss Institut für Festkörperphysik (8. Stock gelb) Vienna University of Technology dieter.suess@tuwien.ac.at http:/// http:///suess/papers Outline Geschichte

Mehr

1. Schularbeit Stoffgebiete:

1. Schularbeit Stoffgebiete: 1. Schularbeit Stoffgebiete: Terme binomische Formeln lineare Gleichungen mit einer Variablen Maschine A produziert a Werkstücke, davon sind 2 % fehlerhaft, Maschine B produziert b Werkstücke, davon sind

Mehr

Abbildung 10.1: Das Bild zu Beispiel 10.1

Abbildung 10.1: Das Bild zu Beispiel 10.1 Analysis 3, Woche Mannigfaltigkeiten I. Definition einer Mannigfaltigkeit Die Definition einer Mannigfaltigkeit braucht den Begriff Diffeomorphismus, den wir in Definition 9.5 festgelegt haben. Seien U,

Mehr

Bemerkung 2.1: Das Newtonverahren kann auch als sequential quad. minimization verstanden werden: 2.1 Ein globalisiertes Newtonverfahren

Bemerkung 2.1: Das Newtonverahren kann auch als sequential quad. minimization verstanden werden: 2.1 Ein globalisiertes Newtonverfahren Kapitel 2 Newtonverfahren Ziel: Bestimmung von Nullstellen von f (=stationärer Punkt). Dies geschieht mit dem Newtonverfahren. x k+1 = x k ( 2 f (x k )) 1 f (x k ) (2.1) Bemerkung 2.1: Das Newtonverahren

Mehr

Übung 22: Gradient und Richtungsableitung; Extremwertaufgaben für Funktionen mehrerer Veränderlicher

Übung 22: Gradient und Richtungsableitung; Extremwertaufgaben für Funktionen mehrerer Veränderlicher Technische Universität Chemnitz 1. Juli 20 Fakultät für Mathematik Höhere Mathematik I.2 Übung 22: Gradient und Richtungsableitung; Extremwertaufgaben für Funktionen mehrerer Veränderlicher 1. Durch ein

Mehr

Numerische Behandlung linearer und semilinearer partieller differentiell-algebraischer Systeme mit Runge-Kutta-Methoden.

Numerische Behandlung linearer und semilinearer partieller differentiell-algebraischer Systeme mit Runge-Kutta-Methoden. Numerische Behandlung linearer und semilinearer partieller differentiell-algebraischer Systeme mit Runge-Kutta-Methoden Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer.

Mehr

Kupfer & Kupferlegierungen CuZn38As (OF 2765)

Kupfer & Kupferlegierungen CuZn38As (OF 2765) KUPFER & KUPFERLEGIERUNGEN Seite 1 von 5 Alle Angaben ohne Gewähr 10/2013 Cu Zn Pb Sn Fe Mn Ni Al Si As Co Cr Sonstige min. 61,5 Rest - - - - - - - 0,02 - - - max. 63,5-0,2 0,1 0,1 0,1* 0,3 0,05-0,15 -

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

Experimentalphysik I (EP I): Mathematische Ergänzungen

Experimentalphysik I (EP I): Mathematische Ergänzungen Experimentalphysik I (EP I): Mathematische Ergänzungen Prof. Dr. Niels e Jonge INM - Leibniz Institut für neue Materialien Experimentalphysik, Universität es Saarlanes Email: niels.ejonge@mx.uni-saarlan.e

Mehr

( ) 3. Lösungsblatt. Potenzrechnung und Potenzfunktionen. Teste dich! - Potenzrechnung und Potenzfunktionen (1/6)

( ) 3. Lösungsblatt. Potenzrechnung und Potenzfunktionen. Teste dich! - Potenzrechnung und Potenzfunktionen (1/6) Teste dich! - (/6) Schreibe mithilfe von Potenzen. a) ( 5) ( 5) ( 5) ( 5) ( 5) = 5 b) a a a a a a b b b a 6 b c) r r r r r ( ) 0 Cornelsen Verlag, Berlin. Alle Rechte vorbehalten. Berechne ohne Taschenrechner.

Mehr

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω 5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,

Mehr

Arten der Wärmeübertragung

Arten der Wärmeübertragung Wärmeleitung durch einen Festkörper oder ein Fluid Konvektion von einem Festkörper zu einem Fluid Strahlungsaustauch bei zwei festen Oberflächen Fluid bei T=T Oberfläche bei T=T 1 Oberfläche bei T=T 2

Mehr

Solvency II und die Standardformel

Solvency II und die Standardformel Fakultät Mathematik und Naturwissenschaften Institut für Mathematische Stochastik Solvency II und die Standardformel Festkolloquium 20 Jahre (neue) Versicherungsmathematik an der TU Dresden Sebastian Fuchs

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS/ / Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung 6Das Newton-Verfahren

Mehr