1 Systeme mit einem Freiheitsgrad

Größe: px
Ab Seite anzeigen:

Download "1 Systeme mit einem Freiheitsgrad"

Transkript

1 Tragwersdynami und Schwingungsprobeme HS 9 Systeme mit einem Freiheitsgrad. Formuierung der Bewegungsgeichung.. Direte Formuierung ) Zweites Newtonsches Gesetz (Ationsprinzip) di F d ( mu ) ( Impus) (.) dt dt mu I Die Kraft entspricht der Änderung des Impuses nach der Zeit. Tragwersdynami und Schwingungsprobeme HS 9 ) Prinzip von d Aembert F + T (.4) Das Prinzip basiert auf die Idee einer fitiven Trägheitsraft, die geich dem Produt der Masse ma ihre Bescheunigung ist und die in entgegengesetzter Richtung zur Bescheunigung wirt. Der Massenpunt steht zu jeder Zeit unter der resutierenden Kraft F und der Trägheitsraft T mu im Geichgewicht. y x() t + + u s + ut () y x + u T my m( x + u ) F ( u s + u) cu + mg u s u cu + mg u cu (.5) (.6) (.7) (.8) F + T (.9) cu u mx mu (.) f () t f c () t + F() t mu () t (.) mu + cu + u mx (.) Mit der Federraft f () t u() t und der Dämpfungsraft f c () t cu () t wird Geichung (.) zu: mu () t + cu () t + u() t F() t (.3) Zur Hereitung der Bewegungsgeichung wird das dynamische Geichgewicht für jede Kraftomponente formuiert. Dazu müssen die Kräfte und gegebenfas auch die Momente in ihre Komponenten in den Koordinatenrichtungen zeregt werden. Aessandro Dazio Aessandro Dazio

2 Tragwersdynami und Schwingungsprobeme HS 9.. Prinzip der virtueen Arbeit Tragwersdynami und Schwingungsprobeme HS 9. Beispie Inverted Penduum δu (.) Virtuee Verschiebung gedachte infinitesimae Verschiebung Soen am Besten inematisch zuässig sein, sodass die noch unbeannten Reationsräfte eine Arbeit eisten Direte Formuierung m F m δa i δa a (.3) Dabei müssen auch die Trägheitsräfte und die Dämpfungsräfte berücsichtigt werden ( f m + f c + f )δu F()δu t..3 Energie Formuierung (.4) Kinetische Energie T (Arbeit, die eine äussere Kraft eisten muss, um eine Masse zu bewegen) Deformationsenergie U (wird aus der Arbeit bestimmt, die eine äussere Kraft eisten muss, um eine Deformation zu erzeugen) Potentiee Energie der äusseren Kräfte V Energieerhatungssatz (Konservative Systeme) E T+ U+ V T o + U o + V o onstant de dt (.5) (.6) O Federraft: F a sin( ϕ ) a ϕ (.7) Trägheitsraft: F m ϕ m (.8) Externe Kraft: m g (.9) Geichgewicht a F p a cos(ϕ ) a sin(ϕ ) ϕ F F a cos( ϕ ) + F m F p sin( ϕ ) sin(ϕ ) F p sin(ϕ ) ~ ϕ cos(ϕ ) ~ (.) Aessandro Dazio 3 Aessandro Dazio 4

3 Tragwersdynami und Schwingungsprobeme HS 9 Tragwersdynami und Schwingungsprobeme HS 9 m ϕ + ( a m ) ϕ Eigenreisfrequenz: (.) Federraft: F cos( ϕ ) a ϕ (.4) Trägheitsraft: F m ϕ m (.5) ω K a m M m g m -- a (.) Externe Kraft: F p sin( ϕ ) m ϕ (.6) Virtuee Verschiebungen: System stabi wenn: ω > : a > m (.3) δu δϕ a, δu m δϕ (.7) Prinzip der virtueen Arbeit: Formuierung mit dem Prinzip der virtueen Arbeit m ( F cos( ϕ )) δu + ( F m ( F p sin( ϕ ))) δu m ( a ϕ ) δϕ a + ( ϕ m m ϕ ) δϕ (.8) (.9) F m F p sin(ϕ ) Nach wegürzen von δϕ erhät man die Bewegungsgeichung: F cos(ϕ ) δu m m ϕ + ( a m ) ϕ (.3) Die Bewegungsgeichung (.3) entspricht Geichung (.). δu a ϕ δϕ O sin(ϕ ) ~ ϕ cos(ϕ ) ~ Aessandro Dazio 5 Aessandro Dazio 6

4 Tragwersdynami und Schwingungsprobeme HS 9 Tragwersdynami und Schwingungsprobeme HS 9 Energie Formuierung Für einen Winen git: ϕ m (-cos(ϕ )) ~.5 ϕ E pot,p a sin(ϕ ) E def, v m E in,m cos( ϕ ) ϕ ϕ und Geichung (.33) wird: E pot,p ( m g.5 ϕ ) bzw cos( ϕ (.35) ) (.36) O a Feder: E def, -- [ a sin( ϕ (.3) )] -- ( a ϕ ) Masse: E in,m -- m v (.3) m -- m ( ϕ ) cos( ϕ ) ann fogendermassen as Reihe ausgedruct werden: (.33) cos( ϕ ) ( ) x + (.34)! 4! ( )! ϕ E pot,p ( m g) ( cos( ϕ )) ϕ ϕ 4 sin(ϕ ) ~ ϕ cos(ϕ ) ~ Energiesatz E tot E def, + E in,m + E pot,p onstant E -- m ( ) ϕ -- a + ( m ) ϕ onstant Abeitung der Energie nach der Zeit: de dt (.37) (.38) Abeitungsrege: ( g f)' ( g' f) f' (.39) ( m ) ϕ ϕ + ( a m ) ϕ ϕ Nach Herausürzen der Geschwindigeit ϕ : m ϕ + ( a m ) ϕ (.4) (.4) Die Bewegungsgeichung (.4) entspricht Geichungen (.) und (.3). Aessandro Dazio 7 Aessandro Dazio 8

5 Tragwersdynami und Schwingungsprobeme HS 9 Vergeich der Energiemaxima Tragwersdynami und Schwingungsprobeme HS 9.3 Modebidung KE PE -- m ( ϕ,max ) -- ( a ϕ ) -- g m ϕ (.4) (.43).3. Struturen mit onzentrierten Massen Wasserbehäter F(t) F(t) Geichsteung von KE und PE ϕ,max a m m ϕ (.44) ϕ,max ω ϕ ω unabhängig vom Anfangswine ϕ (.45) je grösser die Ausenung, desto grösser die Maximageschwindigeit. Brüce in Querrichtung 3EI w H 3 F(t) F(t) Rahmen mit starrem Riege 3EI w H 3 EI s H 3 mu + u F() t (.46) Aessandro Dazio 9 Aessandro Dazio

6 Tragwersdynami und Schwingungsprobeme HS 9 Tragwersdynami und Schwingungsprobeme HS 9.3. Struturen mit verteiten Massen δa i ( EIu'' δ[ u'' ]) dx (.53) Umformungen: u'' ψ''u und u ψu (.54) Die virtuee Verschiebung ist affin zur gewähten Verformung: δu ψδu und δ[ u'' ] ψ''δu (.55) Mit Geichungen (.54) und (.55) wird die Arbeit der äusseren Kräften δa a : Verschiebung: uxt (, ) ψ( x)ut () (.47) Externe Kräfte: Prinzip der virtueen Arbeit δa i δa a δa a txt (, ) mu ( xt, ) fxt (, ) ( t δu) d x + ( f δu) dx ( mu δu) dx + ( f δu) dx δa i ( M δϕ) dx (.48) (.49) (.5) vobei: (.5) M EIu'' und δϕ δ[ u'' ] (.5) δa mψu a ( ψδu) dx + ( f ψδu) dx δu U mψ dx + fψdx (.56) Mit Geichungen (.54) und (.55) wird die Arbeit der inneren Kräften δa i : δa i ( EIψ''U ψ''δu) d x δu U ( EI( ψ'' ) ) dx (.57) Geichung (.49) ist gütig für ae virtueen Verschiebungen, deshab: U ( EI ( ψ'' ) ) d x U mψ dx + fψdx m * U + * U F * (.58) (.59) Aessandro Dazio Aessandro Dazio

7 Tragwersdynami und Schwingungsprobeme HS 9 Eigenreisfrequenz Tragwersdynami und Schwingungsprobeme HS 9 Beispie Nr. : Kragarm mit verteiter Masse * ω n m * ( EI( ψ'' ) ) dx mψ dx (.6) -> Rayeigh-Quotienten Wah der Verformungsfigur - Die Genauigeit der Modeierung ist von der Annahme der Verformungsfigur abhängig; - Die besten Resutate werden dann erziet, wenn die Verformungsfigur ae agerungsbedingungen erfüt; - Die agerungsbedingungen sind automatisch erfüt, wenn die Verformungsfigur die Biegeinie einer externen Beastung entspricht; - Eine mögiche externe Beastung ist das Eigengewicht der Strutur in der untersuchten Richtung. Eigenschaften des Rayeigh-Quotienten - Die geschätzte Eigenfrequenz ist immer höher as die Exate (Minimierung!); - Man beommt brauchbare Resutate auch wenn die angenommene Verformungsfigur nicht sehr reaistisch ist. x ψ cos------, ψ'' (.6) cos x m * x m cos dx + ψ ( x )M x 3x 8 sin x x + cos sin m ( 3 8) m + M.3m+ M + M (.6) Aessandro Dazio 3 Aessandro Dazio 4

8 Tragwersdynami und Schwingungsprobeme HS 9 Tragwersdynami und Schwingungsprobeme HS 9 Beispie Nr. : Kragarm mit verteiter Masse * EI cos x dx (.63) x EI x x + cos sin EI EI 3EI EI ω (.64) (.3m + M) 3 Kontroe der Randbedingungen der Verformungsfigur x ψ( )? -> ψ( x) cos : OK! ψ( ) ψ' ( )? -> ψ' ( x) x sin : OK! ψ' ( ) ψ'' ( )? -> ψ'' ( x) : OK! cos x ψ'' ( ) x ψ cos------, ψ'' (.65) cos x Berechnung der Masse m * m * x m cos dx ψ + x -- M + ψ ( x )M m * ( 3 8) m + cos-- M 4 + M m * ( 3 8) 3 m M + M m *.3m +.86M + M (.66) (.67) (.68) (.69) Aessandro Dazio 5 Aessandro Dazio 6

9 Tragwersdynami und Schwingungsprobeme HS 9 Tragwersdynami und Schwingungsprobeme HS 9 Berechnung der Steifigeit * 6 3 EI Nmm (.75) * EI cos x dx (.7) 4 EI Nm Aus Geichung (.73) (.76) * 4 EI EI 3EI Berechnung der Eigenreisfrequenz ω EI (.3m +.86M + M ) 3 ω (.7) (.7) EI ω M 3 3 f ω Hz Aus Geichung (.74) (.77) (.78) Speziafa: m und M M M ω 3.4EI (.86M) 3 EI M 3 (.73) Die genaue erste Eingenreisfrequenz eines Zweimassenschwingers mit onstanter Steifigeit und geichen Massen ist: ω EI.65 (.M) EI M 3 (.74) As numerischer Beispie ann die erste Eigenfrequenz eines Stahprofis HEB36 (Biegung um die stare Achse), m hoch und mit zwei Massen M M t: f EI Hz M 3 3 (.79) Die erste Eigenreisfrequenz von so einem Einmassenschwinger ann mit einem FE-Programm (z.b. Stati 5) berechnet werden. Sie beträgt: T.946s, f.77hz (.8) Die übereinstimmung der Geichungen (.78), (.79) und (.8) ist sehr gut. Die Darsteung der ersten Eigenfrequenz aus einem FE-Programm ist im nächsten Bid angegeben. 4 Aessandro Dazio 7 Aessandro Dazio 8

10 Tragwersdynami und Schwingungsprobeme HS 9 Tragwersdynami und Schwingungsprobeme HS 9 M t.3.3 Dämpfung Dämpfungsarten Dämpfung Interne Externe Materia Kontatbereiche innerhab der Tragwere M t Hysteresis (Visos, Reibung, Fiessen) Reativbewegung zwischen Teitragweren (ager, Fugen, etc.) Externer Kontat (nichttragende Eemente, Energieabstrahung im Boden, etc.) HEB 36 SAP v8 - Fie:HEB_36 - Mode Period.946 seconds - KN-m Units Angaben zur Dämpfung von Tragweren Materia Stahbeton (ungerissen) Stahbeton (gerissen) Stahbeton (Vorgespannt) Stahbeton (Teiweise Vorspannung) Verbundbauteie Stah Tabee C. aus [Bac+97] Dämpfung ζ Aessandro Dazio 9 Aessandro Dazio

11 Tragwersdynami und Schwingungsprobeme HS 9 ager HS 9 Dissipatoren Quee: A. Marioni: Innovative Anti-seismic Devices for Bridges. [SIA3] Aessandro Dazio Tragwersdynami und Schwingungsprobeme Quee: A. Marioni: Innovative Anti-seismic Devices for Bridges. [SIA3] Aessandro Dazio

Aus Kapitel 11. Technische Mechanik. Aufgaben = Der Faden eines Jo-Jos wird festgehalten, während das Jo-Jo nach unten beschleunigt.

Aus Kapitel 11. Technische Mechanik. Aufgaben = Der Faden eines Jo-Jos wird festgehalten, während das Jo-Jo nach unten beschleunigt. Aufgaben Kap. 7 Aus Kapite Aufgaben. Der Faden eines Jo-Jos wird festgehaten, während das Jo-Jo nach unten bescheunigt. Faden Ausführiche Lösung: Das System hat einen Freiheitsgrad. Wir können as generaisierte

Mehr

Blatt 5. - Lösungsvorschlag

Blatt 5. - Lösungsvorschlag Fautät für Physi der LMU München Lehrstuh für Kosoogie, Prof Dr V Muhanov Übungen zu Kassischer Mechani (T) i SoSe Batt 5 - Lösungsvorschag Aufgabe 5 Binäres Sternsyste a) Wieviee Freiheitsgrade hat das

Mehr

1 PdvV für ein System aus starren Körpern

1 PdvV für ein System aus starren Körpern Materiatheorie - LKM, Sekr. MS PdvV und PdvK Energiemethoden 06. Übungsbatt, WS 01/13, S. 1 1 PdvV für ein System aus starren Körpern Zur Bestimmung der fünf gesuchten Lagerreaktionen muss das System auf

Mehr

Beispiele zur Identifikation von Fehlvorstellungen in der Technischen Mechanik

Beispiele zur Identifikation von Fehlvorstellungen in der Technischen Mechanik Beispiee zur Identifikation von Fehvorsteungen in der Technischen Mechanik Urike Zwiers, Andrea Dederichs-Koch 9. Ingenieurpädagogische Regionatagung 6. 8. November 2014, Universität Siegen Giederung 1.

Mehr

Übungsblatt 3. Lagrange-Formalismus, Systeme von Schwingungen. Man betrachte ein ebenes Doppelpendel im dreidimensionalen Raum (siehe Abb.).

Übungsblatt 3. Lagrange-Formalismus, Systeme von Schwingungen. Man betrachte ein ebenes Doppelpendel im dreidimensionalen Raum (siehe Abb.). Technische Universität München Fautät für Phsi Ferienurs Theoretische Phsi 1 Übungsbatt 3 Lagrange-Foraisus, Sstee von Schwingungen 1. Ebenes Pende (*) Man betrachte ein ebenes Doppepende i dreidiensionaen

Mehr

bzw. m 2 sowie zwei Federn und einem viskosen Dämpfer. die Eigenfrequenz des Systems für die Drehschwingung um den Punkt A und starr 3, 0 m

bzw. m 2 sowie zwei Federn und einem viskosen Dämpfer. die Eigenfrequenz des Systems für die Drehschwingung um den Punkt A und starr 3, 0 m MODULPRÜFUNG BAUDYNAMIK 09.0.015 Aufgabe 1 Der nachfogend dargestete Einmassenschwinger so untersucht werden. Das System besteht aus einem starren Baken mit den bereichsweise konstanten Massen m 1 bzw.

Mehr

2. Einmassenschwinger. Inhalt:

2. Einmassenschwinger. Inhalt: . Einmassenschwinger Inhalt:.1 Bewegungsdifferentialgleichung. Eigenschwingung.3 Harmonische Anregung.4 Schwingungsisolation.5 Stossartige Belastung.6 Allgemeine Belastung.7 Nichtlineare Systeme.8 Dämpfungsarten

Mehr

Fourierreihenentwicklung Prof. K. Weinberg Universität Siegen Lehrstuhl für Festkörpermechanik

Fourierreihenentwicklung Prof. K. Weinberg Universität Siegen Lehrstuhl für Festkörpermechanik Fourierreihenentwickung Prof. K. Weinberg Universität Siegen Lehrstuh für Festkörpermechanik Mathematische Grundagen für Einfachreihenentwickungen Für viee mathematische, physikaische und technische Probeme

Mehr

b) Bestimmen Sie den Geschwindigkeitsbetrag beim Auftreffen in B und die Beschleunigung

b) Bestimmen Sie den Geschwindigkeitsbetrag beim Auftreffen in B und die Beschleunigung Institut für Mechanik Prof. Dr.-Ing. habi. P. Betsch Prof. Dr.-Ing. habi. Th. Seeig Prüfung in Dynamik 11. März 25 Aufgabe 1 (ca. 20 % der Gesamtpunkte) A α 00 11 00 11 g β B Ein Motorschitten, angenommen

Mehr

Statik und Tragwerkslehre B

Statik und Tragwerkslehre B UMWELTINGENIEURWISSENSCHATEN, STATIK UND DYNAMIK Bacheor - Studiengang Bauingenieurwesen Prüfungsfach Statik und Tragwerksehre B Kausur am 21.02.2011 Name: Vorname: Matr.-Nr.: (bitte deutich schreiben)

Mehr

TU Dortmund. Vorname: Nachname: Matr.-Nr.:

TU Dortmund. Vorname: Nachname: Matr.-Nr.: Fakutät Maschinenbau Prof. Dr.-Ing. A. Menze Prof. Dr.-Ing. J. Moser Aufgabe 1 (Seite 1 von 3) a) Die nebenstehend skizzierte, inks eingespannte Konsoe wird wie dargestet durch Traktionen (eingeprägte

Mehr

Technische Mechanik III (Dynamik)

Technische Mechanik III (Dynamik) Institut für Mechanische Verfahrenstechnik und Mechanik Bereich Angewandte Mechanik Vorprüfung Technische Mechanik III (Dynamik) Montag, 31.08.009, 9:00 11:00 Uhr Bearbeitungszeit: h Aufgabe 1 (6 Punkte)

Mehr

Statische und dynamische Analyse eines Schildersystems. Esslingen

Statische und dynamische Analyse eines Schildersystems. Esslingen Statische und dynamische Analyse eines Schildersystems für Gebrüder Hohl GmbH Esslingen Dipl.-Ing. Torsten Wehner Lerchenstraße 23 72649 Wolfschlugen wehner@zinsmath.de 3. Dezember 2002 Inhaltsverzeichnis

Mehr

3 Kleine Schwingungen

3 Kleine Schwingungen 3 Keine Schwingungen (Arnod, Seiten 98ff.) In diesem Abschnitt behanden wir ineare Hamitonsche Systeme. Soche Systeme assen sich in geschossener Form ösen (sie sind, wie man sagt, integrabe.) In vieen

Mehr

Mechanische Schwingungen

Mechanische Schwingungen Dorn-Bader 12/13 S. 97 ff Mechanische Schwingungen 1. Beschreibung von Schwingungsvorgängen Versuch: Federpende Ein einfaches Federpende zeigt die typischen Merkmae einer Schwingung: An das untere Ende

Mehr

8.1 Lösung der Laplace-Gleichung durch Separation der Variablen

8.1 Lösung der Laplace-Gleichung durch Separation der Variablen 8 Methoen zur Lösung er Lapace-Geichung Gesucht: Lösung er Lapace-Geichung für gegebene Ranbeingungen. Strategie: φ = 0. Ermitte ie Symmetrien er Ranbeingungen. Diese bestimmen as geeignete Koorinatensystem.

Mehr

Baustatik 2. Berechnung statisch unbestimmter Tragwerke. von Raimond Dallmann. 1. Auflage

Baustatik 2. Berechnung statisch unbestimmter Tragwerke. von Raimond Dallmann. 1. Auflage Baustatik Berechnung statisch unbestimmter Tragwerke von Raimond Damann 1. Aufage Baustatik Damann schne und portofrei erhätich bei beck-shop.de DIE FACHBUCHHANDLUNG Hanser München 006 Verag C.H. Beck

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

2 Herleitung der FEM. 2.1 Lineare FEM

2 Herleitung der FEM. 2.1 Lineare FEM 2 Hereitung der FEM 2.1 Lineare FEM Wie im Fogenden für das Beispie eines Zugstabes gezeigt, ässt sich unter der Annahme sowoh geometrisch as auch physikaisch inearen Verhatens die Finite Eemente Methode

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Arbeit, Skalarprodukt, potentielle und kinetische Energie Energieerhaltungssatz Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 4. Nov.

Mehr

Das Trägheitsmoment und der Satz von Steiner

Das Trägheitsmoment und der Satz von Steiner Übungen zu Theoretische Physik I - echanik im Sommersemester 3 Batt 9 vom 4.6.3 Abgabe:.7. Aufgabe 38 Punkte Das Trägheitsmoment und der Satz von Steiner Berechnen Sie das Trägheitsmoment eines Zyinders

Mehr

Stabilitätsprobleme. Arten der Gleichgewichtslagen. Stabilitätskriterium. Verzweigungsproblem & Durchschlagsproblem

Stabilitätsprobleme. Arten der Gleichgewichtslagen. Stabilitätskriterium. Verzweigungsproblem & Durchschlagsproblem Stabiitätsprobeme Arten der Geichgewichtsagen Stabiitätskriterium Verzweigungsprobem & Durchschagsprobem Theorie II. II. Ordnung und Knickgeichung Arten der Geichgewichtsagen Ein Tragwerk muss in stabier

Mehr

PP - Physikalisches Pendel Blockpraktikum Frühjahr 2005

PP - Physikalisches Pendel Blockpraktikum Frühjahr 2005 PP - Physikaisches Pende Bockpraktikum Frühjahr 2005 Regina Schweizer, Aexander Seizinger, Tobias Müer Assistent Heiko Eite Tübingen, den 14. Apri 2005 1 Theoretische Grundagen 1.1 Mathematisches Pende

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Geometrisch nichtlineares Verhalten

Geometrisch nichtlineares Verhalten Geometrisch nichtineares Verhaten.1 Grundbegriffe der geometrischen Nichtinearitäten Bei einer geometrisch inearen Berechnung geht man von fogenden Voraussetzungen aus: 1. Geichgewicht am unverformten

Mehr

= p u. Ul x 0 U r x > 0

= p u. Ul x 0 U r x > 0 Das Riemann-Probem Das zu ösende Geichungssystem besteht aus den eindimensionaen hydrodynamischen Geichungen ohne Viskosität und externe Kräfte, den Euer-Geichungen. Beschränkung auf eine Dimension (x)

Mehr

2. Schwingungen eines Einmassenschwingers

2. Schwingungen eines Einmassenschwingers Baudynamik (Master) SS 2017 2. Schwingungen eines Einmassenschwingers 2.1 Freie Schwingungen 2.1.1 Freie ungedämpfte Schwingungen 2.1.2 Federzahlen und Federschaltungen 2.1.3 Freie gedämpfte Schwingungen

Mehr

12 Lineare Differentialgleichungen mit periodischen Koeffizienten

12 Lineare Differentialgleichungen mit periodischen Koeffizienten 56 Gewöhnliche Differentialgleichungen / Sommersemester 28 12 Lineare Differentialgleichungen mit eriodischen Koeffizienten 12.1 Homogene lineare Systeme mit eriodischen Koeffizienten haben für > die Form

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Newtonsche Axiome, Kräfte, Arbeit, Skalarprodukt, potentielle und kinetische Energie Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html

Mehr

:= (Energieprdoukt b x h) m 3

:= (Energieprdoukt b x h) m 3 - Feder: l F := 55 0 3 m (Länge der Feder) b F := 4 0 3 m (Breite der Feder) h F := 0.7 0 3 m (Dicke der Feder) E F 80 0 9 kg := (E-Modul) (=Pa) (Stahl) m s R m_federstahl := 800 0 6 Pa (Zugfestigkeit)

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

ENERGYMETER MID U1281/U1289/U1381/U1387/U1389 Elektronische Wirk- und Blindenergiezähler

ENERGYMETER MID U1281/U1289/U1381/U1387/U1389 Elektronische Wirk- und Blindenergiezähler 3-349-617-01 10/12.14 Professioneer Energiezäher für 2-, 3-, 4-eiter-Netze mit 65 A Diret- oder 1 A, 5 A Wanderanschuss Genauigeitsasse B für Industrie und Gewerbe sowie erhöhte Anforderungen in Haushaten

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen Prof. Dr.-Ing. Prof. E.h. P. Eberhard / Prof. Dr.-Ing. M. Hanss SS 17 Ü1 Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss Aufgabensammlung mit Kurzlösungen Sommersemester 017 Prof. Dr.-Ing.

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

Herleitung der Wellengleichung und Diskussion der schwingenden Saite

Herleitung der Wellengleichung und Diskussion der schwingenden Saite Anaysis III Seminar Hereitung der Weengeichung und Diskussion der schwingenden Saite Christina Bräutigam christina2.braeutigam@tu-dortmund.de TU Dortmund 29.4.213 Inhatsverzeichnis 1 Abstract 1 2 Probem

Mehr

Finite-Elemente-Methode

Finite-Elemente-Methode 11. Übung Prof. Dr.-Ing. W. Fischer Fachhochschue Dortmund Knicken und Beuen 1. Bestimmen Sie sowoh anaytisch wie auch mit Hife des FEM-Systems HyperWorks 14 für einen Stah-Kragträger der Länge = 1 m (quadratischer

Mehr

Wir untersuchen die Bewegungsleichung des mathematischen (gedämpften) Fadenpendels in einer Dimension. = 0, ϕ (0)

Wir untersuchen die Bewegungsleichung des mathematischen (gedämpften) Fadenpendels in einer Dimension. = 0, ϕ (0) 3.1 Beispiel: mathematisches Pendel Wir untersuchen die Bewegungsleichung des mathematischen (gedämpften) Fadenpendels in einer Dimension ϕ+α ϕ+ω 2 0 sinϕ = 0, Ω2 0 = g/l (1) Das äquivalente System 1.

Mehr

Übung zu Mechanik 4 Seite 28

Übung zu Mechanik 4 Seite 28 Übung zu Mechanik 4 Seite 28 Aufgabe 47 Auf ein Fundament (Masse m), dessen elastische Bettung durch zwei Ersatzfedern dargestellt wird, wirkt die periodische Kraft F(t) = F 0 cos (Ω t). Die seitliche

Mehr

Kinematik des starren Körpers

Kinematik des starren Körpers Technische Mechanik II Kinematik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes

Mehr

3.2 Gleitreibung und Haftreibung 95

3.2 Gleitreibung und Haftreibung 95 3.2 Geitreibung und Haftreibung 5 Lehrbeispie: Reibung in Ruhe und Bewegung Aufgabensteung: Zwei Körper A und B mit den Gewichtskräften F G1 und F G2 iegen übereinander auf einer ebenen Unterage. n den

Mehr

Mit s = l ϕ bekommt man dann aus der Newtonschen Gleichung (Beschleunigung a hat entgegengesetzte Richtung wie die Auslenkung s):

Mit s = l ϕ bekommt man dann aus der Newtonschen Gleichung (Beschleunigung a hat entgegengesetzte Richtung wie die Auslenkung s): S1 Matheatisches und physikaisches Pende Stoffgebiet: Versuchszie: Literatur: Schwingungen ageein, atheatisches Pende, physikaisches Pende, Steinerscher Satz Matheatische Behandung von Schwingungsvorgängen

Mehr

5 Schwingungen und Wellen

5 Schwingungen und Wellen 5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung

Mehr

Lineare Systeme mit einem Freiheitsgrad

Lineare Systeme mit einem Freiheitsgrad Höhere Technische Mechanik Lineare Systeme mit einem Freiheitsgrad Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/200 Übersicht. Grundlagen der Analytischen

Mehr

405. Ein Strommesser hat einen Messwiderstand von 200 Ohm und einen Endausschlag. Aufgaben zur E-Lehre (Widerstand)

405. Ein Strommesser hat einen Messwiderstand von 200 Ohm und einen Endausschlag. Aufgaben zur E-Lehre (Widerstand) ufgaben zur E-Lehre (Widerstand) 6. In eine aten Haus wurden die uiniueitungen durch Kupfereitungen ersetzt; insgesat wurden 50 Kabe veregt. Jedes Kabe besteht aus einer Hin- und einer ückeitung und hat

Mehr

Aus Kapitel 6. Technische Mechanik. Aufgaben. 6.1 Berechnen Sie mithilfe des Arbeitssatzes die Lagerreaktionen des abgebildeten Trägers.

Aus Kapitel 6. Technische Mechanik. Aufgaben. 6.1 Berechnen Sie mithilfe des Arbeitssatzes die Lagerreaktionen des abgebildeten Trägers. 6 ufgaben Kap 6 us Kapite 6 ufgaben 6 erechnen Sie mithife des rbeitssatzes die Lagerreaktionen des abgebideten Trägers 6 erechnen Sie mithife des rbeitssatzes die Veräufe von Querkraft und iegemoment

Mehr

Beispiel 3: Ersatzstabverfahren

Beispiel 3: Ersatzstabverfahren Beispiel: Ersatzstabverfahren Blatt: Seite 1 von 9 Beispiel 3: Ersatzstabverfahren Bestimmung der maßgeblichen Knickfigur und zugehörigen Knicklänge in der Ebene. Nachweis gegen Biegeknicken nach dem Ersatzstabverfahren

Mehr

Cusanus-Gymnasium Wittlich. Physik Schwingungen. Fachlehrer : W.Zimmer. Definition

Cusanus-Gymnasium Wittlich. Physik Schwingungen. Fachlehrer : W.Zimmer. Definition Physik Schwingungen Definition Fachlehrer : W.Zimmer Eine Schwingung ist eine Zustandsänderung eines Masseteilchens bzw. eines Systems von Masseteilchen bei der das System durch eine rücktreibende Kraft

Mehr

Vorkurs Mathematik Übungen zu Kurven im R n

Vorkurs Mathematik Übungen zu Kurven im R n Vorkurs Mathematik Übungen zu urven im R n Als bekannt setzen wir die folgende Berechnung voraus: Sei f : [a, b] R eine urve im R. Die Länge L der urve berechnet sich durch L b a f t dt urven in R Aufgabe.

Mehr

1 Satz von Maxwell und Betti

1 Satz von Maxwell und Betti Univ. Prof. Dr. rer nt. Wofgng H. Müer Technische Universität Berin Fkutät V Lehrstuh für Kontinuumsmechnik und Mteritheorie - LKM, Sekr. MS 2 Einsteinufer 5, 1587 Berin Sätze von Mxwe und Betti / Cstigino

Mehr

Probeklausur zur Theoretischen Physik I: Mechanik

Probeklausur zur Theoretischen Physik I: Mechanik Prof. Dr. H. Friedrich Physik-Department T3a Technische Universität München Probeklausur zur Theoretischen Physik I: Mechanik Montag, 2.7.29 Hörsaal 1 1:15-11:5 Aufgabe 1 (8 Punkte) Geben Sie möglichst

Mehr

Festigkeitslehre. Aufgaben

Festigkeitslehre. Aufgaben Modurüfung in Technischer Mechanik am 8. März 06 Festigkeitsehre Aufgaben Name: Vorname: Matr.-Nr.: Fachrichtung: Hinweise: Bitte schreiben Sie deutich esbar. Zeichnungen müssen sauber und übersichtich

Mehr

Physik 1 ET, WS 2012 Aufgaben mit Lösung 4. Übung (KW 46)

Physik 1 ET, WS 2012 Aufgaben mit Lösung 4. Übung (KW 46) 4. Übung (KW 46) Aufgabe 1 (M 3.12 Förderanage ) Bei einer Förderanage hat der eere Förderkorb die Masse m L, der beadene die Masse m V und das Fördersei die Masse m S. Die Masse des Förderrades wird vernachässigt.

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) Seite /9 Frage ( Punkte) Eine Waschmaschine hat einen mit Feder und Dämpfer gelagerten Motor (Masse m), an dem ohne Unwucht die Trommel befestigt ist. Wieviel Wäsche m u kann geschleudert werden, wenn

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf

Mehr

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 6

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 6 Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 6 KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Mehr

I.6.3 Potentielle Energie eines Teilchensystems. m i. N z i. i=1. = gmz M. i=1. I.6.4 Kinetische Energie eines Teilchensystems

I.6.3 Potentielle Energie eines Teilchensystems. m i. N z i. i=1. = gmz M. i=1. I.6.4 Kinetische Energie eines Teilchensystems I.6.3 Potentielle Energie eines Teilchensystems Beispiel: Einzelmassen im Schwerefeld U i = m i gz i jetzt viele Massen im Schwerefeld: Gesamtenergie U = m i gz i m i z i = gm m i = gmz M Man muss also

Mehr

Übungen mit dem Applet Schiefer Wurf

Übungen mit dem Applet Schiefer Wurf Schiefer Wurf 1 Übungen mit dem Applet Schiefer Wurf 1 Mathematischer Hintergrund... Übungen mit dem Applet...5.1 Einfluss des Abwurfwinkels... 5. Einfluss der Abwurfhöhe... 6.3 Einfluss der Abwurfgeschwindigkeit

Mehr

METALLGUMMI. Berechnungsgrundlagen

METALLGUMMI. Berechnungsgrundlagen METLLGUMMI Berechnungsgrundlagen Formelzeichen Die verwendeten Formelzeichen entsprechen der DIN 1304. Dort nicht aufgeführte Formelzeichen sind in diesem Programm mit den üblichen Buchstaben bezeichnet.

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

Lösung Serie 3 (Modellieren (SIMULINK + MATLAB))

Lösung Serie 3 (Modellieren (SIMULINK + MATLAB)) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lösung Serie 3 (Modellieren (SIMULINK + MATLAB Dozent: Roger Burkhardt Klasse: Studiengang ST Büro:

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen 3.1 Grundlagen 3.2 Tilger 3.3 Kragbalken 3.4 Fahrbahnanregung 3.3-1 3.1 Grundlagen Untersucht wird die Antwort des Systems auf eine Anregung mit harmonischem Zeitverlauf. Bewegungsgleichung:

Mehr

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 19. März AUFGABE 1 (16 Punkte)

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 19. März AUFGABE 1 (16 Punkte) KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 9. März 2 AUFGABE (6 Punkte) Der Stab 2 in Abb. mit l =,5 m ist in gelenkig gelagert und in 2 abgestützt. In wirkt die Kraft F = 5. N. a) Man bestimme die Reaktionen

Mehr

Elektrische Energiezähler Grundlagen und Applikationen. Handbuch für den Einsatz von Energiezählern

Elektrische Energiezähler Grundlagen und Applikationen. Handbuch für den Einsatz von Energiezählern Handbuch für den Einsatz von Energiezähern Inhat 1 EINFÜHRUNG... 4 2 ANSCHUSS DER ENERGIEZÄHER... 7 2.1 ZWEIEITER-WECHSESTROMNETZ... 7 2.2 DREIEITER-DREHSTROMNETZ BEIEBIGER BEASTUNG... 8 2.3 VIEREITER-DREHSTROMNETZ

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

1. Prinzip von d'alembert

1. Prinzip von d'alembert 1. Prinzip von d'alembert 1.1 Freiheitsgrade 1.2 Zwangsbedingungen 1.3 Virtuelle Geschwindigkeiten 1.4 Prinzip der virtuellen Leistung Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik 2 5.1-1 1.1

Mehr

ε 1 ε 2 Sie beginnen an positiven und enden an negativen Ladungen (Quellenfeld). Insgesamt existieren genau so viele positive wie negative Ladungen.

ε 1 ε 2 Sie beginnen an positiven und enden an negativen Ladungen (Quellenfeld). Insgesamt existieren genau so viele positive wie negative Ladungen. Grundagen der Eektrotechnik I: Große Übung Eektrisches Fed ufgabe Ü1 In der bbidung sind zwei Kondensa- 1 toren mit verschieden angeordneten Dieektrika dargestet. Die Pattenfäche beträgt, der Pattenabstand.

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 7. Übung Lösungen 7.1 Pende im Fahrstuh In einem Fahrstuh,

Mehr

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 17. März 2012 Die Bearbeitungszeit für alle drei Aufgaben beträgt 90 Minuten.

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 17. März 2012 Die Bearbeitungszeit für alle drei Aufgaben beträgt 90 Minuten. KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 7. März Die Bearbeitungszeit für alle drei Aufgaben beträgt 9 Minuten. AUFGABE (6 Punkte) Der Stab in Abb. mit l =,5 m ist in gelenkig gelagert und in abgestützt.

Mehr

Gleichgewicht von Kräften in der Ebene

Gleichgewicht von Kräften in der Ebene TKM 1 Kräfte- und Momentengeichgewicht Geichgewicht von Kräften in der Ebene Betrachtung einer 1m breiten Scheibe aus einem Gebäude: Schnitt Lasten, die auf jeden 1m breiten Streifen wirken TKM 1 Kräfte-

Mehr

Bestimmung der Erdbeschleunigung Laborübung 2

Bestimmung der Erdbeschleunigung Laborübung 2 Eektrische Messtechnik, Sensorik und Messdatenerfassung (EMSM) Bestimmung der Erdbescheunigung Laborübung 2 Dip.-Ing. Dr. Friedrich Hanser 3. Mai 2 z x m Kurzbeschreibung: Ein mathematisches Pende mit

Mehr

Institut für Allgemeine Mechanik der RWTH Aachen

Institut für Allgemeine Mechanik der RWTH Aachen Institut für Agemeine Mechanik der RWTH Aachen Prof. Dr.-Ing. D. Weichert 9.Übung Mechanik II SS 27 18.6.6 Abgabetermin 9.Übung: 25.7.6 14: Uhr 1. Aufgabe Der skizzierte, statisch unbestimmte aken wird

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

Fakultät Grundlagen. Februar 2016

Fakultät Grundlagen. Februar 2016 Schwingungsdifferenzialgleichung Fakultät Grundlagen Hochschule Esslingen Februar 016 Fakultät Grundlagen Schwingungsdifferenzialgleichung Übersicht 1 Schwingungsdifferenzialgleichung Fakultät Grundlagen

Mehr

Biegelinie

Biegelinie 3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung

Mehr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr Dynamik der ebenen Kreisbewegung Eine Kreis- oder Rotationsbewegung entsteht, wenn ein Drehmoment:: M = Fr um den Aufhängungspunkt des Kraftarms r (von der Drehachse) wirkt; die Einheit des Drehmoments

Mehr

c) Wie groß ist dann die Winkelverdrehung bei C, wenn Welle 2 bei A festgehalten wird?

c) Wie groß ist dann die Winkelverdrehung bei C, wenn Welle 2 bei A festgehalten wird? M I WS 0/ Übungsbatt Woche Prof Ostermeer Aufgabe Das dargestete Getriebe besteht aus wei Voween geichen Materias, die über Zahnräder verbunden sind Wee wird durch das Moment M beastet a) Wie groß muss

Mehr

Aufgabe 1: Elektro-mechanischer Oszillator

Aufgabe 1: Elektro-mechanischer Oszillator 37. Internationale Physik-Olympiade Singapur 6 Lösungen zur zweiten Runde R. Reindl Aufgabe : Elektro-mechanischer Oszillator Formeln zum Plattenkondensator mit der Plattenfläche S, dem Plattenabstand

Mehr

MR Mechanische Resonanz

MR Mechanische Resonanz MR Mechanische Resonanz Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis Grundlagen 2. Freie, ungedämpfte Schwingung....................... 2.2 Freie, gedämpfte Schwingung........................

Mehr

Die Phasenkonstante ) 2. Loslassen nach Auslenkung. Anstoßen in Ruhelage: -0,500,00 5,00 10,00 15,00 2,00 1,50 1,00 0,50 0,00.

Die Phasenkonstante ) 2. Loslassen nach Auslenkung. Anstoßen in Ruhelage: -0,500,00 5,00 10,00 15,00 2,00 1,50 1,00 0,50 0,00. Die Phasenkonstante Auslenkung 2,50 2,00 1,50 1,00 0,50 0,00-0,500,00 5,00 10,00 15,00-1,00-1,50-2,00-2,50 Zeit Loslassen nach Auslenkung. y y0 sin( t ) 2 2 Auslenkung 2,50 2,00 1,50 1,00 0,50 0,00-0,500,00

Mehr

Kapitel 2: Fourieranalyse. Analoge, periodische Signale

Kapitel 2: Fourieranalyse. Analoge, periodische Signale ZHW, NM, 5/, Rur Kapitel : Fourieranalyse Analoge, periodische Signale Inhaltsverzeichnis. EINLEIUNG.... LINEARER MIELWER... 3. LEISUNG UND EFFEKIVWER...3 4. WINKELFUNKIONEN...3 5. FOURIERREIHE...4 6.

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Viele physikalische Probleme können mathematisch als gewöhnliche Differentialgleichungen formuliert werden nur eine unabhängige Variable (meist t), z.b. Bewegungsgleichungen: gleichmäßig

Mehr

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c)

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c) Komplexe Zahlen Wir betrachten Zahlenpaare (a, b, (c, d R und definieren eine Addition und eine Multiplikation wie folgt: (a, b + (c, d := (a + c, b + d (a, b (c, d := (a c b d, a d + b c Satz: R mit dieser

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/ Grundlagen der Physik Schwingungen und Wärmelehre 3. 04. 006 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. / Physikalisches Pendel

Mehr

Biegelinie

Biegelinie 3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung

Mehr

Gekoppelte Fadenpendel

Gekoppelte Fadenpendel Gekoppete adenpende Water endt 8. August 2007 Von gekoppeten Schwingungen spricht man, wenn sich mehrere schwingungsfähige Objekte gegenseitig beeinfussen. Ein bekanntes Beispie wird im ogenden näher beschrieben.

Mehr

Formelsammlung Elektrotechnik von Sascha Spors V1.3 /

Formelsammlung Elektrotechnik von Sascha Spors V1.3 / Formelsammlung Elektrotechnik von Sascha Spors V.3 /..96 Mathematische Formeln : arctan( b a Z a + jb Y arg(z ; arctan( b a arctan( b < a für a >, b +π für a π für a

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Punkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf einem

Mehr

Das mathematische Pendel

Das mathematische Pendel 1 Das mathematische Pendel A. Krumbholz, S. Effendi 25. Juni 2013 2 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 1.1 Das mathematische Pendel........................... 3 1.2

Mehr

10. und 11. Vorlesung Sommersemester

10. und 11. Vorlesung Sommersemester 10. und 11. Vorlesung Sommersemester 1 Die Legendre-Transformation 1.1 Noch einmal mit mehr Details Diese Ableitung wirkt einfach, ist aber in dieser Form sicher nicht so leicht verständlich. Deswegen

Mehr

dt transportiert. x Beim Entzug dieser Wärmemenge wird die Masse d m = neu gebildet. A dm = ρ dv =ρ A dx : T x bzw.

dt transportiert. x Beim Entzug dieser Wärmemenge wird die Masse d m = neu gebildet. A dm = ρ dv =ρ A dx : T x bzw. Feiwiige Aufgaben zu Voesung WS 00/00, Batt 4 40) Auf einem keinen Teich befindet sich eine 1 cm dicke Eisschicht. Die Luft daübe hat die Tempeatu - 10 C. Wie ange dauet es, bis die Eisschicht auf eine

Mehr

WANDERUNGSGESCHWINDIGKEIT

WANDERUNGSGESCHWINDIGKEIT Praktikum Tei A und B 1a. WANDRUNGSGSCHWINDIGKIT Stand 11/0/01 WANDRUNGSGSCHWINDIGKIT 1. Versuchspatz Komponenten: URohr Vorratsgefäß zum Unterschichten mit der KLösung ektroden K Lösung K Lösung. Agemeines

Mehr

Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte)

Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 8/9 K 6. Februar 9 Klausur in Technische Mechanik III Nachname Vorname Aufgabe (5 Punkte) Der

Mehr

Lagrange sche Bewegungsgleichungen

Lagrange sche Bewegungsgleichungen Kapitel 2 Lagrange sche Bewegungsgleichungen Ausgearbeitet von Christine Cronjäger, Klaus Grambach und Ulrike Wacker 2.1 Zwangsbedingungen: Zwangsbedingungen schränken die 3 Freiheitsgrade des Teilchens

Mehr