Skriptgesteuerte Berechnung des Stofftransports in unendlich fortsetzbaren Elementarzellen

Größe: px
Ab Seite anzeigen:

Download "Skriptgesteuerte Berechnung des Stofftransports in unendlich fortsetzbaren Elementarzellen"

Transkript

1 Skriptgesteuerte Berechnung des Stofftransports in unendlich fortsetzbaren Elementarzellen Stefan Binkowski, Hans Fahlenkamp Universität Dortmund, FB Bio- und Chemieingenieurwesen, Lehrstuhl Umwelttechnik, Einleitung Mit Hilfe von unendlich fortsetzbaren Elementarzellen können beispielsweise die Geschwindigkeits- und Konzentrationsprofile im Mantelraum von Hohlfaser-Membranmodulen berechnet werden. Die Fasern sind in solchen Modulen meist ungeoret gepackt. Um eine Vorhersage der Trennleistung eines solchen Moduls bei bekannter Faseranzahl und Packungsdichte, jedoch unbekannter Faserverteilung machen zu können, wird eine unendlich fortsetzbare Elementarzelle (Abb. ) per Zufallsalgorithmus in MATLAB erzeugt und mit Hilfe von symmetrischen Randbedingungen das entsprechende Multiphysics-Modell per m-skript automatisch generiert, gelöst und ausgewertet. Durch die Automatisierung wird es möglich, anhand einer sehr hohen Anzahl verschiedener Zufalls-Anorungen statistische Vorhersagen zur Trenngüte des Membranmoduls zu machen. Abb.. Erzeugung eines unendlichen Faserbündels mit einer Elementarzelle Modellbildung In dieser Arbeit wird nur die Strömung senkrecht zum Querschnitt betrachtet. Es werden folgende Annahmen getroffen: - axiale, laminare und voll entwickelte Strömung im Mantelraum, - Stofftransfer an den Faseroberflächen beeinflusst die Strömung nicht, - Stofftransfer an den Faseroberflächen ist konstant und an allen Fasern gleich, - axiale Diffusion gegenüber der Konvektion entlang den Fasern vernachlässigbar, - konstante Temperatur, - nur Fick sche Diffusion, - Eigenschaften des Fluids im Mantelraum konstant, - auf die Strömung wirken keine äußeren Kräfte.

2 . Geschwindigkeitsprofil Unter den oben gemachten Annahmen vereinfacht sich die Navier-Stokes-Gleichung, die das Geschwindigkeitsfeld beschreibt, zu: VZ VZ P + =. () X Y µ Z Durch Einführung der dimensionslosen Variablen X Y V x =, y =, v = ()-(4) R P R R µ Z lässt sich Gleichung () vereinfachen zu v v + =. (5) x y Aus den Annahmen ergeben sich außerdem folgende Randbedingungen: dv dv v = 0 auf den Faseroberflächen, v = v und = an den gegenüberliegenden äußeren Rändern der Elementarzelle. Damit ist das dimensionslose Geschwindigkeitsprofil vollständig beschrieben und eindeutig lösbar. In FEMLAB wird hierzu eine Poisson- Gleichung ( Classical PDEs ) ( c u) = f mit c = und f = verwendet. Die Haftbedingung auf den Faseroberflächen wird durch eine Dirichlet-Randbedingung in Koeffizientenform mit h = und r = 0 beschrieben. Auf den äußeren Rändern der Elementarzelle wird aufgrund der Symmetriebedingung zunächst die Neumann-Randbedingungen mit q = 0 und g = 0 gesetzt. Um die Poisson-Gleichung lösen zu können muss zusätzlich unter Physics Periodic Conditions Periodic Boundary Conditions der jeweilige Rand mit dem entsprechend gegenüberliegenden gekoppelt werden. Dabei müssen die Eckpunkte gleichermaßen gekoppelt werden, wobei hier auf die richtige Reihenfolge der Auswahl zu achten ist. Nun kann das Geschwindigkeitsfeld mit einem linearen stationären Solver gelöst werden.. Konzentrationsprofil Die Konzentration der Flüssigkeit im Mantelraum wird durch die Massenerhaltungsgleichung beschrieben (Bird et al. 966): C C C V = D +. (6) Z X Y Unter Einführung der dimensionslosen axialen Koordinate z und der dimensionslosen Konzentration c: ZD C C0 z =, c =, (7),(8) R 4 P R q µ Z w D wird der Radius der Hohlfasern in Gleichung (6) auf eins normiert und man erhält ein dimensionsloses Konzentrationsprofil (Bao & Lipscomb 00): c c c v = +, (9) z x y c dc dc mit = auf den Faseroberflächen sowie c = c n und = analog zu den Randbedingungen oben. In der Elementarzelle als Teil des Modul-Querschnitts wird nur die von x und y abhängige Konzentration c* betrachtet.

3 Daher ergibt sich weiter vereinfacht ebenfalls eine Poisson-Gleichung: * * c c + = vk, (0) x y c * mit den Randbedingungen = auf den Faserrändern, n * * c = c und * dc * dc =. Durch Integration und Anwendung des Satz von Gauß erhält man aus Gleichung (0) sowie den entsprechenden Randbedingungen: φ K =. () vb φ Die Subdomain Settings für die zweite Poisson-Gleichung ( c u) = f, die im Multiphysics-Mode hinzugefügt wird, sind damit c = und f = K. Die Randbedingung für die äußeren Grenzen der Elementarzelle werden analog zur ersten Poisson-Gleichung definiert. Da aufgrund der Symmetriebedingung der Elementarzelle und des konstanten Stoffübergangs an den Faseroberflächen nur Neumann-Randbedingungen zur Verfügung stehen, ist die Poisson-Gleichung so nicht lösbar. Daher muss die Kompatibilitätsbedingung * c K v(x, y)dxdy = Ω ds () Ω n als integrale Nebenbedingung zusätzlich erfüllt werden. Dies bedeutet physikalisch, dass der Stofftransport durch die Faseroberflächen (Rand des Gebietes) die Änderung der Konzentration in der Subdomain des betrachteten Querschnitts (Quellterm der. Poisson-Gleichung) erzeugt. Deshalb wird unter Options Integration Coupling Variables Subdomain Variables das Integral über die Domäne nach der Variablen u, also der Konzentration, gebildet und hierfür der Name int vergeben. Für die Randstücke der Hohlfasern werden folgende Neumann-Randbedingungen definiert: q = 0 und g = int/(4*faseranzahl). Die zweite Poisson-Gleichung ist jetzt ebenfalls lösbar. 3 Skriptgesteuerte Berechnung Nachdem das Modell, wie im Beitrag Simulation der Geschwindigkeits- und Konzentrationsprofile in Hohlfaser-Membranmodulen ausführlich dargestellt, validiert wurde, erfolgt eine Automatisierung mit Hilfe von MATLAB-Skripten. Die Vorgehensweise wird im Folgenden erläutert. 3. Generierung der Elementarzelle Aus der vorgegebenen Packungsdichte und Faseranzahl wird zunächst eine rechteckige, vorläufige Elementarzelle ermittelt. Dabei wird die Zelle wie in Abbildung rechts dargestellt achtfach gespiegelt. So kann auf einfache Weise sichergestellt werden, dass eine neu hinzugefügte Faser im anschließenden Platzierungsalgorithmus keine Überschneidungen mit anderen Fasern aufweist. (In Abbildung links sind die Mittelpunkte der Fasern zu erkennen.) Sind alle Fasern erfolgreich platziert wird mit Hilfe der voronoi-funktion von MATLAB das jede Faser umgebende Polygon bestimmt. Gleichzeitig ergeben sich die exakten Außenränder der Elementarzelle. Der Vorteil dieser Vorgehensweise liegt insbesondere darin, dass nur ganze Fasern in der Elementarzelle liegen und die Randbedingungen klar definierbar sind, da z.b. die Geschwindigkeit auf den Voronoi-Linien maximal sein muss.

4 3. Geometrieerzeugung Die ermittelten Polygone werden mit der poly-funktion erzeugt und zusammengefasst. Danach werden mit circ die Fasern aus der Solid-Geometrie entfernt. Nachdem die verbleibenden inneren Ränder gelöscht worden sind, kann das fem.draw- bzw. das fem.geom-struct erzeugt werden. Für die spätere Definition der Periodic Boundary Conditions werden nach dem Erzeugen der Geometrie die jeweils korrespondierenden Kanten und Eckpunkte automatisch ermittelt und gespeichert. Das Ergebnis ist in Abbildung dargestellt. Abb.. Zuoren der korrespondierenden Kanten und Eckpunkte 3.3 Modellerzeugung Zur Beschreibung des dimensionslosen Geschwindigkeitsprofils nach Gleichung (5) wird fem.appl{}.mode.class = 'Poisson' gesetzt. Zusätzlich wird die Dirichlet-Randbedingung für die Faseroberflächen und die Neumann-Randbedingung für die äußeren Ränder der Elementarzelle mit fem.appl{}.bnd.type = {'dir','neu'} fem.appl{}.bnd.ind=ones(,kantenanzahl) fem.appl{}.bnd.ind(:kantenanzahl-faseranzahl*4)= definiert. Für die übrigen Einstellungen können die Standartwerte beibehalten werden. Das Konzentrationsprofil nach Gleichung (0) wird ebenfalls als Poisson-Gleichung umgesetzt. Es muss zusätzlich die neue Variable u für die Konzentration hinzugefügt werden: fem.appl{}.dim = {'u'}. Als Randbedingungen tritt nur die Neumann-Form fem.appl{}.bnd.type = 'neu' auf. Allerdings können die Standardeinstellungen hier nicht übernommen werden. Daher werden mit: fem.appl{}.bnd.g = {0,['int/4/' numstr(faseranzahl)]} fem.appl{}.bnd.ind=ones(,kantenanzahl) fem.appl{}.bnd.ind(kantenanzahl-faseranzahl*4+:kantenanzahl)= die Randbedingungen auf den äußeren Rändern bzw. die Kompatibilitätsbedingung nach Gleichung () auf den Faseroberflächen festgelegt. Als Quellterm der zweiten Poisson- Gleichung wird die rechte Seite der Gleichung (0) in der Form: fem.appl{}.equ.f = '-*u/v_b*phi/(-phi)' eingesetzt.

5 Anschließend werden die Integration Coupling Variable int als 'elcplscalar' sowie die oben ermittelten Kanten- und Eckpunkt-Paare als lineare Extrusion Coupling Variables 'elcplextr' definiert. Die entsprechenden geomdim, src, und map Substructs werden zugeoret. Da mit der Koeffizientenform gearbeitet wird, werden die bei der Zuorung der Extrusion Coupling Variables verwendeten Constrains zu den Variablen u bzw. u unter 'elpconstr' in Bezug gesetzt. 3.4 Lösen des Modells Die beiden Poisson-Gleichungen werden mit multiphysics zu einem Modell zusammengeführt. Das Geschwindigkeitsfeld kann direkt gelöst werden. Hierzu wird mit meshinit und meshrefine das FEM-Gitter generiert und mit femlin das Modell für die erste Variable u gelöst. Damit das Konzentrationsfeld ebenfalls gelöst werden kann, muss nun mit postint über u und integriert werden, um die Bulk-Geschwindigkeit v b bzw. v_b zu ermitteln: v_b=postint(fem,'u','dl',[])/postint(fem,'','dl',[]). Das Ergebnis kann dann mit anderen notwendigen Konstanten übergeben werden: fem.const={'phi',numstr(packungsdichte),'v_b',numstr(v_b,'%5.8f')}. Mit den Lösungen für das Geschwindigkeitsfeld als Stored Solution wird abschließend die zweite Poisson-Gleichung gelöst. Für den betrachteten konstanten Stoffübergang an der Faseroberfläche lässt sich im weiteren Postprocessing eine lokalen Sherwood-Zahl (Bao & Lipscomb 00) für die Elementarzelle berechnen: Shloc,f =. (3) * * c c w b 4 Statistische Auswertung Die Automatisierung der gesamten Berechnung per MATLAB-Skript ermöglicht es, eine sehr große Anzahl von verschiedenen, zufällig gepackten Elementarzellen zu simulieren. Damit können Aussagen zur minimal notwendigen Faseranzahl in einer Elementarzelle sowie zum notwendigen Stichprobenumfang für eine gewünschtes Vertrauensniveau zur Vorhersage der Trennleistung eines Moduls erfolgen. Abbildung 3 zeigt links die nach Gleichung (3) berechnete Sherwood-Zahl, jeweils über 300 Zufallsanorungen gemittelt, in Abhängigkeit von der Anzahl der Fasern in der Elementarzelle für eine Packungsdichte von 0,5. Shloc_mean 0,6 0,5 0,4 0,3 0, Sh loc 0,5 0,4 0,3 0, Literature (95 % Conf.) 300 Fibres (95 % Conf.) 95 % Confidence I t ll 0, 0, 0,0 0, , 0,3 0,4 0,5 0,6 Number of fibres Packing Density Abb. 3. Einfluss der Faseranzahl in der Elementarzelle (links); Vergleich mit Literaturdaten (rechts)

6 Es ist deutlich zu erkennen, dass wenigstens circa 00 Fasern betrachtet werden sollten, um eine verlässliche Vorhersage zu erreichen. In der Literatur wurden bisher nur bis zu 00 Fasern betrachtet. Abbildung 3 rechts zeigt ebenfalls diesen Einfluss. Es ist zudem zu erkennen, dass aufgrund der geringen Anzahl berechneter Elementarzellen in der Literatur deutlich breitere Vertrauensniveaus auftreten. Abbildung 4 zeigt die Wahrscheinlichkeitsdichte und Summenverteilung für eine Packungsdichte von 0,6 und 300 betrachtete Fasern. Die Verteilung kann gut mit einer Lognormalverteilung beschrieben werden. Die vorgestellte skriptgesteuerte Berechnung des Stofftransports in unendlich fortsetzbaren Elementarzellen eignet sich damit zur Bewertung der Trennleistung von Hohlfaser-Membranmodulen. Abb. 4. Wahrscheinlichkeitsdichte und Summenverteilung Verwendete Formelzeichen µ dynamische Viskosität [kg/m s] φ Packungsdichte Ω, Ω Domäne, Rand der Domäne c, C dimensionslose Konzentration, Konzentration [mol/m³] c* dimensionslose Konzentration, die nur von x und y abhängt D Diffusionskoeffizient [m²/s] n Normalenvektor P Druck [Pa] q Stoffstrom [mol/m² s] R Faserradius [m] s Kantenlänge / Randlänge der Domäne v, V dimensionslose Geschwindigkeit, Geschwindigkeit [m/s] x,y,z, X,Y,Z dimensionslose Koordinaten, Koordinaten [m] c,f,h,r,q,g Koeffizienten in FEMLAB 0,b,w,f Indizes für Anfang, bulk, wall, konstanten Stofftransfer Literatur Bao, L.; Lipscomb, G.G. (00) Well-developed mass transfer in axial flows through randomly packed fiber bundles with constant wall flux. Chemical Engineering Science 57: 5-3 Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. (966) Transport Phenomena, New York: Wiley

Materialien WS 2014/15 Dozent: Dr. Andreas Will.

Materialien WS 2014/15 Dozent: Dr. Andreas Will. Master Umweltingenieur, 1. Semester, Modul 42439, Strömungsmechanik, 420607, VL, Do. 11:30-13:00, R. 3.21 420608, UE, Do. 13:45-15:15, R. 3.17 Materialien WS 2014/15 Dozent: Dr. Andreas Will will@tu-cottbus.de

Mehr

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1

Mehr

Multi-Physik-Simulation II Thermo-fluiddynamische Kopplung Freie Konvektion

Multi-Physik-Simulation II Thermo-fluiddynamische Kopplung Freie Konvektion Praktikum 5 zur Vorlesung Multi-Physik-Simulationen Prof. Dr. Christian Schröder Multi-Physik-Simulation II Thermo-fluiddynamische Kopplung Freie Konvektion In diesem Praktikum soll ein Strömungsphänomen

Mehr

Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften

Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften MÜNSTER Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften Christoph Fricke, Natascha von Aspern, Carla Tameling 12.06.2012

Mehr

Teil I Physikalische Grundlagen...1. Lernziel...1

Teil I Physikalische Grundlagen...1. Lernziel...1 Inhaltsverzeichnis Teil I Physikalische Grundlagen...1 Lernziel...1 1 Temperaturfelder und Wärmeübertragung...1 1.1 Einleitung... 1 1.2 Stationäre und instationäre Wärmeübertragung...2 1.3 Lineare und

Mehr

Iterative Methods for Improving Mesh Parameterizations

Iterative Methods for Improving Mesh Parameterizations Iterative Methods for Improving Mesh Parameterizations Autoren: Shen Dong & Michael Garland, SMI 07 Nicola Sheldrick Seminar Computergrafik April 6, 2010 Nicola Sheldrick (Seminar Computergrafik)Iterative

Mehr

Strömungen in Wasser und Luft

Strömungen in Wasser und Luft Strömungen in Wasser und Luft Strömungssimulationen im UZWR Daniel Nolte März 2009 Mathematische Strömungsmodelle Navier Stokes Gleichungen (Massenerhaltung, Impulserhaltung, Energieerhaltung) ρ + (ρ U)

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum Viskosität von Flüssigkeiten Laborbericht Korrigierte Version 9.Juni 2002 Andreas Hettler Inhalt Kapitel I Begriffserklärungen 5 Viskosität 5 Stokes sches

Mehr

10.1 Ampère sches Gesetz und einfache Stromverteilungen

10.1 Ampère sches Gesetz und einfache Stromverteilungen 1 Magnetostatik Solange keine Verwechslungen auftreten, werden wir in diesem und in den folgenden Kapiteln vom magnetischen Feld B an Stelle der magnetischen Induktion bzw. der magnetischen Flußdichte

Mehr

Modellieren in der Angewandten Geologie II. Sebastian Bauer

Modellieren in der Angewandten Geologie II. Sebastian Bauer Modellieren in der Angewandten Geologie II Geohydromodellierung Institut für Geowissenschaften Christian-Albrechts-Universität zu Kiel CAU 3-1 Die Finite Elemente Method (FEM) ist eine sehr allgemeine

Mehr

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung

Mehr

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung.

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Prinzip In einer langen Spule wird ein Magnetfeld mit variabler Frequenz

Mehr

von Festbettreaktoren für stark exotherme STAR-Konferenz Deutschland 09. und 10.11.2009 Kevin Seidler / Thomas Eppinger Fachgebiet Verfahrenstechnik

von Festbettreaktoren für stark exotherme STAR-Konferenz Deutschland 09. und 10.11.2009 Kevin Seidler / Thomas Eppinger Fachgebiet Verfahrenstechnik Kopplung von DEM und CFD zur Simulation von Festbettreaktoren für stark exotherme Reaktionen Cand.-Ing. Kevin Seidler Dipl.-Ing. Thom mas Eppinger thomas.eppinger@tu-berlin.de 314-8733 Gliederung Motivation

Mehr

( ) ( ). Dann heißt die Zahl

( ) ( ). Dann heißt die Zahl Der Euklidische Abstand Seite 1 von 6 Der Euklidische Abstand Der Abstand zweier Punkte P und Q in der Modellebene ist eine Zahl, die von den Koordinaten der Punkte abhängt. Der Term, mit dem die Berechnung

Mehr

Abiturprüfung Mathematik 0 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f() = ( sin() + 7) 5. Aufgabe : ( VP) Berechnen Sie eine Stammfunktion

Mehr

Mitschrift zu Wärmetransportphänomene bei Prof. Polifke SoSe 2010

Mitschrift zu Wärmetransportphänomene bei Prof. Polifke SoSe 2010 Inhalt 1. Einführung... 3 2. Grundbegriffe der Wärmeleitung... 3 2.1. Fourier sches Gesetz... 3 2.2. Fourier sche DGL... 3 3. Stationäre Wärmeleitung... 4 3.1. Wärmeleitung in einfachen Geometrien... 4

Mehr

Anleitung: Standardabweichung

Anleitung: Standardabweichung Anleitung: Standardabweichung So kann man mit dem V200 Erwartungswert und Varianz bzw. Standardabweichung bei Binomialverteilungen für bestimmte Werte von n, aber für allgemeines p nach der allgemeinen

Mehr

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P]

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] 3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] B = µ 0 I 4 π ds (r r ) r r 3 a) Beschreiben Sie die im Gesetz von Biot-Savart vorkommenden Größen (rechts vom Integral). b) Zeigen Sie, dass das Biot-Savartsche

Mehr

m2l 60.odt Klausur 12/I B 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen.

m2l 60.odt Klausur 12/I B 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen. 2. Klausur 12/I B Thema: Lagebeziehung Gerade, Ebene 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen. 5 6 s 3 0 11 10, g BC : x = 3 u 5 1 2. Gegeben

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Einführung. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009

Einführung. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009 Einführung Vita Rutka Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009 Was ist FEM? Die Finite-Elemente-Methode (FEM) ist ein numerisches Verfahren zur näherungsweisen Lösung,

Mehr

Kapitel 5 Strömung zu vertikal gefracten Bohrungen

Kapitel 5 Strömung zu vertikal gefracten Bohrungen Kapitel 5 Strömung zu vertikal gefracten Bohrungen Das schematische Strömungsmodell einer vertikal gefracten Bohrung ist in Abb 5 dargestellt, dabei ist vorausgesetzt, dass der Frac (Riss) die gesamte

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge ÜBUNGSBLATT 0 LÖSUNGEN MAT/MAT3 ANALYSIS II FRÜHJAHRSSEMESTER 0 PROF DR CAMILLO DE LELLIS Aufgabe Finden Sie für folgende Funktionen jene Punkte im Bildraum, in welchen sie sich lokal umkehren lassen,

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur

Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromagnetische Felder und Wellen: zur Klausur 2014-2 1 Aufgabe 1 ( 7 Punkte) Eine ebene Welle der Form E = (E x, ie x, 0) exp{i(kz + ωt)} trifft aus dem Vakuum bei z = 0 auf ein Medium mit ε = 6 und

Mehr

2 Elektrischer Stromkreis

2 Elektrischer Stromkreis 2 Elektrischer Stromkreis 2.1 Aufbau des technischen Stromkreises Nach der Durcharbeitung dieses Kapitels haben Sie die Kompetenz... Stromkreise in äußere und innere Abschnitte einzuteilen und die Bedeutung

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 5

Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und

Mehr

ABA/S 1.2.1: Funktionsblock erstellen Vorgehensweise

ABA/S 1.2.1: Funktionsblock erstellen Vorgehensweise Schritt-für-Schritt Anleitung ABA/S 1.2.1: Funktionsblock erstellen Vorgehensweise GPG Building Automation Dok.-Nr. 9AKK106930A3756 Dok.-Version: 1.1 Abteilung: Global Support System: i-bus KNX Produkt:

Mehr

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist.

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist. Beim Differenzieren von Vektoren im Zusammenhang mit den Kreisbewegungen haben wir bereits gesehen, dass ein Vektor als dreiwertige Funktion a(x, y, z) aufgefasst werden kann, die an jedem Punkt im dreidimensionalen

Mehr

Spiel 1: Spielerische Simulation der Hardy-Weinberg-Regel

Spiel 1: Spielerische Simulation der Hardy-Weinberg-Regel Spiel : Spielerische Simulation der Hardy-Weinberg-Regel Spielbrett, Box Genpool, Taschenrechner Wichtig! Das Spiel wird fünf Runden gespielt!. Ziehen Sie aus dem Genpool ohne Hinschauen insgesamt 54 Individuen.

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

2. Praktikum. Die Abgabe der Vorbereitungsaufgaben erfolgt einzeln, im Praktikum kann dann wieder in 2er-Gruppen abgegeben werden.

2. Praktikum. Die Abgabe der Vorbereitungsaufgaben erfolgt einzeln, im Praktikum kann dann wieder in 2er-Gruppen abgegeben werden. Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Anne-Kathrin Hess Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Lehrveranstaltung

Mehr

Musterlösung: Partikelbewegung im Fluid

Musterlösung: Partikelbewegung im Fluid Musterlösung: Partikelbewegung im Fluid 0. Januar 016 Wiederholung Ein Ausschnitt notwendiger Grundlagen für die Berechnung stationärer Sinkgeschwindigkeiten von Partikeln im Fluid. Annahmen: Partikel

Mehr

Grundlagen der Strömungsmechanik

Grundlagen der Strömungsmechanik Franz Durst Grundlagen der Strömungsmechanik Eine Einführung in die Theorie der Strömungen von Fluiden Mit 349 Abbildungen, davon 8 farbig QA Springer Inhaltsverzeichnis Bedeutung und Entwicklung der Strömungsmechanik

Mehr

6 Bestimmung linearer Funktionen

6 Bestimmung linearer Funktionen 1 Bestimmung linearer Funktionen Um die Funktionsvorschrift einer linearen Funktion zu bestimmen, muss man ihre Steigung ermitteln. Dazu sind entweder Punkte gegeben oder man wählt zwei Punkte P 1 ( 1

Mehr

DSM Das Mathe-Sommer-Ferien-Vergnügen Klasse 7 auf 8 Juni Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 8

DSM Das Mathe-Sommer-Ferien-Vergnügen Klasse 7 auf 8 Juni Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 8 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 8 Ø Die Aufgaben sollen während der Sommerferien gelöst werden, damit notwendige Grundkenntnisse und Grundfertigkeiten nicht

Mehr

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren Länge eines Vektors und Abstand von zwei Punkten Aufgabe Bestimme die Länge des Vektors x. Die Länge beträgt: x ( ) =. Skalarprodukt und Winkel zwischen Vektoren Aufgabe Es sind die Eckpunkte A(; ), B(

Mehr

Membrandiffusion. Bericht für das Praktikum Chemieingenieurwesen I WS06/07. Andrea Michel

Membrandiffusion. Bericht für das Praktikum Chemieingenieurwesen I WS06/07. Andrea Michel Membrandiffusion Bericht für das Praktikum Chemieingenieurwesen I WS06/07 Zürich, 23. Januar 2007 Studenten: Francisco José Guerra Millán fguerram@student.ethz.ch Andrea Michel michela@student.ethz.ch

Mehr

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

Lehrskript Mathematik Q12 Analytische Geometrie

Lehrskript Mathematik Q12 Analytische Geometrie Lehrskript Mathematik Q1 Analytische Geometrie Repetitorium der analytischen Geometrie Eine Zusammenfassung der analytischen Geometrie an bayerischen Gymnasien von Markus Baur, StR Werdenfels-Gymnasium

Mehr

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt: Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Experimentelle Hydromechanik Wehrüberfall und Ausfluss am Planschütz

Experimentelle Hydromechanik Wehrüberfall und Ausfluss am Planschütz UNIVERSITÄT DER BUNDESWEHR MÜNCHEN Fakultät für Bauingenieur- und Vermessungswesen Institut für Wasserwesen Dr.-Ing. H. Kulisch Universitätsprofessor Dr.-Ing. Andreas Malcherek Hydromechanik und Wasserbau

Mehr

Mögliche Lösung. Ebenen im Haus

Mögliche Lösung. Ebenen im Haus Lineare Algebra und Analytische Geometrie XX Ebenen im Raum Ebenen im Haus Ermitteln Sie die Koordinaten aller bezeichneten Punkte. Erstellen Sie für die Dachflächen E und E jeweils eine Ebenengleichung

Mehr

Divergenz und Rotation von Vektorfeldern

Divergenz und Rotation von Vektorfeldern Divergenz und Rotation von Vektorfeldern Mit Hilfe des Nabla-Operators können nun zwei weitere wichtige elementare Operationen definiert werden, welche formal der Bildung des Skalarproduktes bzw. des äußeren

Mehr

Das lineare Gleichungssystem

Das lineare Gleichungssystem 26/27 Grundwissen Analytische Geometrie I m1 as lineare Gleichungssystem Man startet zuerst mit der Betrachtung eines linearen Gleichungssystem mit zwei Unbekannten.(Genaueres siehe Skript) Einführung

Mehr

Elastizität Hooke sches Gesetz

Elastizität Hooke sches Gesetz Elastizität Hooke sches Gesetz Im linearen (elastischen) Bereich gilt: Die Spannung ist proportional zur Dehnung F E A E l l Die Proportionalitätskonstante heißt: Elastizitätsmodul. Das makroskopische

Mehr

Mathematik 1, Teil B. Inhalt:

Mathematik 1, Teil B. Inhalt: FH Emden-Leer Fachb. Technik, Abt. Elektrotechnik u. Informatik Prof. Dr. J. Wiebe www.et-inf.fho-emden.de/~wiebe Mathematik 1, Teil B Inhalt: 1.) Grundbegriffe der Mengenlehre 2.) Matrizen, Determinanten

Mehr

lokaler und globaler konvektiver Wärmeübergang (Oberflächentemperatur T s = const.)

lokaler und globaler konvektiver Wärmeübergang (Oberflächentemperatur T s = const.) lokaler und globaler konvektiver Wärmeübergang (Oberflächentemperatur T s = const.) Temperaturgrenzschicht Geschwindigkeitsgrenzschicht Vergleich von Geschwindigkeits- und Temperaturgrenzschicht laminare

Mehr

Doppelintegrale. rd dr. Folie 1

Doppelintegrale. rd dr. Folie 1 Doppelintegrale G fda f, dd R R G 1 f ( rcos, rsin) rd dr Folie 1 Doppelintegrale einführendes Beispiel Als Vorwissen sollten Sie die Grundlagen ur Integration mitbringen (s..b. L. Papula, Mathematik für

Mehr

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme V. Grundbegriffe und -ergebnisse der Magnetostatik 5 V..4 Magnetisches Feld induziert durch einfache Ladungsströme m Fall eines Ladungsstroms durch einen dünnen Draht vereinfacht sich das ntegral im Biot

Mehr

Berechnung der Fahrzeugaeroakustik

Berechnung der Fahrzeugaeroakustik Berechnung der Fahrzeugaeroakustik Reinhard Blumrich Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart Workshop "Mess- und Analysetechnik in der ", 29.-30.09.2009, Stuttgart. R. Blumrich,

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

12.1 Fluideigenschaften

12.1 Fluideigenschaften 79 Als Fluide bezeichnet man Kontinua mit leicht verschieblichen Teilen. Im Unterschied zu festen Körpern setzen sie langsamen Formänderungen ohne Volumenänderung nur geringen Widerstand entgegen. Entsprechend

Mehr

Dynamische Programmierung. Problemlösungsstrategie der Informatik

Dynamische Programmierung. Problemlösungsstrategie der Informatik als Problemlösungsstrategie der Informatik und ihre Anwedung in der Diskreten Mathematik und Graphentheorie Fabian Cordt Enisa Metovic Wissenschaftliche Arbeiten und Präsentationen, WS 2010/2011 Gliederung

Mehr

Aufgabe 11. Laminaren Rohrströmung. (Analyse mit ANSYS CFX)

Aufgabe 11. Laminaren Rohrströmung. (Analyse mit ANSYS CFX) Aufgabe 11 Laminaren Rohrströmung (Analyse mit ANSYS CFX) Arbeitsschritte: 1. Starte AnsysWB und lege ein Fluid-Flow-(CFX)-Projekt an. 2. Doppelklicke auf [Geometry ] im Projektfluss um den DesignModeller

Mehr

Kapitel 2: Mathematische Grundlagen

Kapitel 2: Mathematische Grundlagen [ Computeranimation ] Kapitel 2: Mathematische Grundlagen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 2. Mathematische Grundlagen

Mehr

Klassifikation von partiellen Differentialgleichungen

Klassifikation von partiellen Differentialgleichungen Kapitel 2 Klassifikation von partiellen Differentialgleichungen Die meisten partiellen Differentialgleichungen sind von 3 Grundtypen: elliptisch, hyperbolisch, parabolisch. Betrachte die allgemeine Dgl.

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2012-2 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Aufgabe 13: Aufgabe

Mehr

Q y. dx dy dz. qdv. Bilanzgleichung des Wärmestroms

Q y. dx dy dz. qdv. Bilanzgleichung des Wärmestroms T( x, y, z, τ ) dv = dx dy dz Q z + dz Q y + dy Q * qdv x Q x + dx Q x+ dx Q x( x + dx, y, z, τ ) Q Q ( x, y + dy, z, τ ) y+ dy y Q Q ( x, y, z + dz, τ ) z+ dz z Q Q y Q z Bilanzgleichung des Wärmestroms

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2

LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2 LK Lorentzkraft Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Magnetfeld dünner Leiter und Spulen......... 2 2.2 Lorentzkraft........................

Mehr

Morphologische Bildverarbeitung II

Morphologische Bildverarbeitung II FAKULTÄT FÜR MATHEMATIK UNIVERSITÄT ULM ABT. STOCHASTIK ABT. ANGEWANDTE INFORMATIONSVERARBEITUNG Seminar Simulation und Bildanalyse mit Java Morphologische Bildverarbeitung II BETREUER: JOHANNES MAYER

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = x sin( x + ) Aufgabe : ( VP) Berechnen Sie das Integral

Mehr

Versuch V1 - Viskosität, Flammpunkt, Dichte

Versuch V1 - Viskosität, Flammpunkt, Dichte Versuch V1 - Viskosität, Flammpunkt, Dichte 1.1 Bestimmung der Viskosität Grundlagen Die Viskosität eines Fluids ist eine Stoffeigenschaft, die durch den molekularen Impulsaustausch der einzelnen Fluidpartikel

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I Name: Kugelfallviskosimeter Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von

Mehr

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Ähnlichkeitstheorie Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Verringerung der Anzahl der physikalischen Größen ( Anzahl der Experimente) Experimentelle Ergebnisse sind unabhängig

Mehr

4 Grenzflächen, Leiter und das elektrostatische Randwertproblem

4 Grenzflächen, Leiter und das elektrostatische Randwertproblem 4 Grenzflächen, Leiter und das elektrostatische Randwertproblem Bei der Berechnung elektrostatischer Felder und Potentiale mussten wir bisher voraussetzen, dass wir die Ladungsverteilungen im gesamten

Mehr

Vergleich Auslaufbecher und Rotationsviskosimeter

Vergleich Auslaufbecher und Rotationsviskosimeter Vergleich Auslaufbecher und Rotationsviskosimeter Die Viskositätsmessung mit dem Auslaufbecher ist, man sollte es kaum glauben, auch in unserer Zeit der allgemeinen Automatisierung und ISO 9 Zertifizierungen

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

16 Vektorfelder und 1-Formen

16 Vektorfelder und 1-Formen 45 16 Vektorfelder und 1-Formen 16.1 Vektorfelder Ein Vektorfeld v auf D R n ist eine Abbildung v : D R n, x v(x). Beispiele. Elektrisches und Magnetisches Feld E(x), B(x), Geschwindigkeitsfeld einer Strömung

Mehr

Übungsaufgabe z. Th. lineare Funktionen und Parabeln

Übungsaufgabe z. Th. lineare Funktionen und Parabeln Übungsaufgabe z. Th. lineare Funktionen und Parabeln Gegeben sind die Parabeln: h(x) = 8 x + 3 x - 1 9 und k(x) = - 8 x - 1 1 8 x + 11 a) Bestimmen Sie die Koordinaten der Schnittpunkte A und C der Graphen

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Übungsblatt 3 - Lösungen

Übungsblatt 3 - Lösungen Übungsblatt 3 - Lösungen zur Vorlesung EP2 (Prof. Grüner) im 2010 3. Juni 2011 Aufgabe 1: Plattenkondensator Ein Kondensator besteht aus parallelen Platten mit einer quadratischen Grundäche von 20cm Kantenlänge.

Mehr

Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 02/2002 Laborunterlagen

Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 02/2002 Laborunterlagen Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 0/00 7 Magnetismus 7. Grundlagen magnetischer Kreise Im folgenden wird die Vorgehensweise bei der Untersuchung eines magnetischen Kreises

Mehr

Approximation flächenhaft harmonischer Funktionen mittels bikubisch finiter Elemente

Approximation flächenhaft harmonischer Funktionen mittels bikubisch finiter Elemente . Session 6: Theoretische Geodäsie Approximation flächenhaft harmonischer Funktionen mittels bikubisch finiter Elemente 1 Jessica Franken Institut für Geodäsie und Geoinformation Professur für Theoretische

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Statistik, Geostatistik

Statistik, Geostatistik Geostatistik Statistik, Geostatistik Statistik Zusammenfassung von Methoden (Methodik), die sich mit der wahrscheinlichkeitsbezogenen Auswertung empirischer (d.h. beobachteter, gemessener) Daten befassen.

Mehr

3. Die Divergenz und die Quellen des elektrischen Feldes

3. Die Divergenz und die Quellen des elektrischen Feldes 3. Die Divergenz und die Quellen des elektrischen Feldes Das Gauß sche Gesetz V E d f = ɛ Q in = ɛ V ρ el dv stellte eine beachtliche Verbindung her zwischen dem elektrischen Feld E und seinen Quellen,

Mehr

Algebra 3.

Algebra 3. Algebra 3 www.schulmathe.npage.de Aufgaben 1. In einem kartesischen Koordinatensystem sind die Punkte A( 3), B( ) sowie für jedes a (a R) ein Punkt P a (a a a) gegeben. a) Zeigen Sie, dass alle Punkte

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

Mathematische Erfrischungen III - Vektoren und Matrizen

Mathematische Erfrischungen III - Vektoren und Matrizen Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen

Mehr

Analytische Chemie (für Biol. / Pharm. Wiss.)

Analytische Chemie (für Biol. / Pharm. Wiss.) Analytische Chemie (für Biol. / Pharm. Wiss.) Teil: Trenntechniken (Chromatographie, Elektrophorese) Dr. Martin Pabst HCI D323 Martin.pabst@org.chem.ethz.ch http://www.analytik.ethz.ch/ Zusammenfassung

Mehr

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015 Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum

Mehr

12 Der Abstand eines Punktes von einer Geraden Seite 1 von Der Abstand eines Punktes von einer Geraden

12 Der Abstand eines Punktes von einer Geraden Seite 1 von Der Abstand eines Punktes von einer Geraden 12 Der Abstand eines Punktes von einer Geraden Seite 1 von 5 12 Der Abstand eines Punktes von einer Geraden Die Bestimmung des Abstands eines Punktes von einer Geraden gehört zu den zentralen Problemen

Mehr

Hydroinformatik II Prozess-Simulation und Systemanalyse

Hydroinformatik II Prozess-Simulation und Systemanalyse Version 7.01-10. August 2016 Hydroinformatik II Prozess-Simulation und Systemanalyse Prof. Dr.-Ing. Olaf Kolditz TU Dresden / UFZ Leipzig Angewandte Umweltsystemanalyse Department Umweltinformatik Sommersemester

Mehr

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen Experimentalphysik für ET Aufgabensammlung 1. Erhaltungsgrößen An einem massenlosen Faden der Länge L = 1 m hängt ein Holzklotz mit der Masse m 2 = 1 kg. Eine Kugel der Masse m 1 = 15 g wird mit der Geschwindigkeit

Mehr

Praktikum CA-Techniken FT 2016

Praktikum CA-Techniken FT 2016 Praktikum CA-Techniken FT 2016 Professur für Fahrzeugtechnik Juni 2016 1 Einleitung Die Bearbeitung dieses Praktikums soll von jedem Studenten eigenständig durchgeführt werden. Die Anmeldung für das Praktikum

Mehr

Themenheft mit viel Trainingsmaterial (Siehe Vorwort!) Unabhänge Vektoren und Erzeugung von Vektoren Gauß-Algorithmus Rang einer Matrix.

Themenheft mit viel Trainingsmaterial (Siehe Vorwort!) Unabhänge Vektoren und Erzeugung von Vektoren Gauß-Algorithmus Rang einer Matrix. LINEARE ALGEBRA Lösbarkeit von linearen Gleichungssystemen Themenheft mit viel Trainingsmaterial (Siehe Vorwort!) Unabhänge Vektoren und Erzeugung von Vektoren Gauß-Algorithmus Rang einer Matrix Gleichungssysteme

Mehr

Modell der Punktmasse

Modell der Punktmasse Kinematik Die Kinematik (kinema, griech., Bewegung) ist die Lehre von der Bewegung von Punkten und Körpern im Raum, beschrieben durch die Größen Weg (Änderung der Ortskoordinate) s, Geschwindigkeit v und

Mehr

Theory Swiss German (Liechtenstein) Lies die Anweisungen in dem separaten Umschlag, bevor Du mit dieser Aufgabe beginnst.

Theory Swiss German (Liechtenstein) Lies die Anweisungen in dem separaten Umschlag, bevor Du mit dieser Aufgabe beginnst. Q2-1 Nichtlineare Dynamik in Stromkreisen (10 Punkte) Lies die Anweisungen in dem separaten Umschlag, bevor Du mit dieser Aufgabe beginnst. Einleitung Bistabile nichtlineare halbleitende Komponenten (z.b.

Mehr

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel 11. Elektrodynamik 11.5.4 Das Amperesche Gesetz 11.5.5 Der Maxwellsche Verschiebungsstrom 11.5.6 Magnetische Induktion 11.5.7 Lenzsche Regel 11.6 Maxwellsche Gleichungen 11.7 Elektromagnetische Wellen

Mehr

1.9. Hydrodynamik Volumenstrom und Massenstrom Die Strömungsgeschwindigkeit

1.9. Hydrodynamik Volumenstrom und Massenstrom Die Strömungsgeschwindigkeit 1.9.1. Volumenstrom und Massenstrom 1.9. Hydrodynamik Strömt eine Flüssigkeit durch ein Gefäss, so bezeichnet der Volumenstrom V an einer gegebenen Querschnittsfläche das durchgeströmte Volumen dv in der

Mehr

FEM isoparametrisches Konzept

FEM isoparametrisches Konzept FEM isoparametrisches Konzept /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/deckblatt.tex Seite von 25. p./25 Inhaltsverzeichnis. Interpolationsfunktion für die finiten Elemente 2. Finite-Element-Typen

Mehr

Einführung in die linearen Funktionen. Autor: Benedikt Menne

Einführung in die linearen Funktionen. Autor: Benedikt Menne Einführung in die linearen Funktionen Autor: Benedikt Menne Inhaltsverzeichnis Vorwort... 3 Allgemeine Definition... 3 3 Bestimmung der Steigung einer linearen Funktion... 4 3. Bestimmung der Steigung

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 09. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 09. 06.

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr