Zusammenfassung der ersten Vorlesung

Größe: px
Ab Seite anzeigen:

Download "Zusammenfassung der ersten Vorlesung"

Transkript

1 Zusammenfassung der ersten Vorlesung 1. Es geht um de Mechank.. Jedes mechansche System kann mttels ener Lagrangefunkton charaktersert werden. De Lagrangefunkton hängt von den verallgemenerten Koordnaten, den Geschwndgketen und der Zet ab. L({q }, { },t) 3. De Lagrangefunkton st durch de Dfferenz von knetscher und potenteller Energe des Systems gegeben. NX m ~ r L = T U L = U(~r 1, ~r,..,~r N ) 4. Integrert man de Lagrangefunkton über de Zet, bekommt man de Wrkung. =1 S[{q (t)}] = Z t dtl({q }, { },t),t), q (t 1 )=q,1, q (t )=q, t 1 5. De Bahn de de Wrkung mnmert ensprcht der Bewegung enes mechanschen Systems n der Natur. Dese Bahn st de Lösung der Euler-Lagrange Glechungen. @q

2 1. Prnzp der klensten Wrkung De unabhänggen Grössen, welche man braucht um en mechansches System vollständg zu beschreben nennt man Frehetsgrade. De Zahl der Frehetsgrade st durch Zwangsbednungen beschränkt. f(q 1,q,...q N,t)=0 z.b. x + y + z R =0 Es gbt zwe Möglchketen mt Zwangsbednungen umzugehen. Entweder elmnert man abhängge Koordnaten aus der Lagrangefunkton oder man benutzt Lagrangefaktoren und ändert damt de Lagrangefunkton. L! L 0 = L + f(q 1,...,q N,t) d 0 = ) 0=f(q 1,...q N,t)

3 1. Prnzp der klensten Wrkung En Bespel: We bewegt sch en Telchen auf ener Stange m Gravtatonsfeld? Wr nehmen an, dass das Telchen sch be t=0 mt null Geschwndgket m Punkt befndet. Es gbt ken Rebung. x =0, y = L cos Wr begnnen mt der Lagrangefunkton n kartesschen Koordnaten. L = mẋ + mẏ mgy 0 <x<lsn, 0 <y<lcos. De Koordnaten x und y snd ncht unabhängg! x = s sn, y = L cos s cos y sn + x cos L sn cos =0 Wr können dese Abhänggket entweder los werden oder de Lagrangefaktoren benutzen.

4 1. Prnzp der klensten Wrkung a) Zwangsbednungen explzt elmneren. Wr wählen de Länge s entlang der Stange als de neue Koordnate. L = mẋ + mẏ mgy 0 <s<l x = s sn, y = L cos s cos ẋ =ṡ sn, ẏ = ṡ cos L = mṡ mg(l cos s cos ) m s = mg cos ) s(t) = g cos t x = g cos sn t, y = L cos g cos t

5 b). Lagrangefaktoren 1. Prnzp der klensten Wrkung L = mẋ + mẏ mgy L = mẋ + mẏ mgy + (y sn + x cos L sn cos )) y sn + x cos L sn =0 y sn + x cos L sn cos =0 mẍ = cos mÿ = mg + sn ÿ sn +ẍ cos =0 mÿ = mg sn cos mÿ ÿ = g cos ẍ = g cos sn x = g cos sn t y = L cos g cos t

6 1. Prnzp der klensten Wrkung c) Das zwete newtonsche Gesetz. Zwe Kräfte: De Gravtatonskraft und de Zwangskraft. De Zwangsskraft wrkt orthogonal zur Stange, d.h. se hat kene Komponente entlang der Stange. De Komponente der Gravtatonskraft entlang der Stange bestmmt de Bewegung des Telchens. F = mg cos m s = mg cos s = g cos t

7 1. Prnzp der klensten Wrkung Zwe allgemene Bemerkungen. 1) Snd de Zwangsbednungen von Geschwndgketen abhängg, muss man de abhangge Grösse aus der Lagrangefunkton elmneren; Lagrangefaktoren kann man n desem Fall ncht benutzen. ) De Lagrangefunkton enes mechanschen Systems st nur bs auf de totale Zetabletung ener belebgen Funkton von verallgemenerten Koordnaten defnert. S = Z t t 1 dtl(q, q, t), q(t 1 )=q 1, q(t )=q L(q, q, t)! L(q, q, t)+ d Kene f(q, t) dt Abhanggket von der Geschwndgket! S new = Z t dt L(q, q, t)+ ddt f(q, t) = S + f(q,t ) f(q 1,t 1 ) t 1 S new = S Identsche Bewegungsglechungen!

8 Wo kommt der Prnzp den klensten Wrkung her? VO1.UME 0, NUMBER Aran., 1948 Space-.. me A~~~roac. 1:o.5 on-. le..a1:vstc 4 uantuns.v. :ec.zanes R. P. I EvNMAN Cornell Unversty, Ithaca, Veto York Non-relatvstc quantum mechancs s formulated here n a dfferent way. It s, however, mathematcally equvalent to the famlar formulaton. In quantum mechancs the probablty of an event whch can happen n several dfferent ways s the absolute square of a sum of complex contrbutons, one from each alternatve way. The probablty that a partcle wll be found to have a path x(t) lyng somewhere wthn a regon of space tme s the square of a sum of contrbutons, one from each path n the regon. The contrbuton from a sngle path s postulated to be an exponental whose (magnary) phase s the classcal acton (n unts of h) for the path n queston. The total contrbuton from all paths reachng x, t from the past s the wave functon P(x, t). Ths s shown to satsfy Schroednger's equaton. The relaton to matrx and operator algebra s dscussed. Applcatons are ndcated, n partcular to elmnate the coordnates of the feld oscllators from the equatons of quantum electrodynamcs. Quanten Mechank: alle Bahnen snd erlaubt und kann auch n der Natur passeren. De Wahrschenlchketen das en Bahn verfolgt wrd unterscheden sch aber gewaltg. P[q(t)] e S[q(t)]/~ ~ = m kg/s

9 . Erhältungssätze Zetunabhängge Funktonen von Koordnaten und Geschwndgketen des Systems und auch von der Zet, hessen Bewegungsntegrale. I I({q }, { },t), di dt =0 q(t) + q(t) = I 1, q(t) q(t) = I r I1 ± I (q(t), q(t)) = En Bespel: Zetunabhängge Lagrangefunkton dl dt = X d dt dl dt = + @ + q = X dt L = L({q }, = q ) d L =0. Dese Grösse nennt man de Energe des Systems: E L L = T U({q }), T = 1 X m ({q }) q q ) E = T + U Falls en mechansches System durch ene zetunabhängge Lagrangefunkton beschreben wrd, st für deses System de Energe ene erhaltende Grösse.

Zusammenfassung. 1) Falls Zwangsbedinungen die Freiheitsgrade einschränken, kann man die abhängige Koordinaten aus der Lagrangfunktion elimieren;

Zusammenfassung. 1) Falls Zwangsbedinungen die Freiheitsgrade einschränken, kann man die abhängige Koordinaten aus der Lagrangfunktion elimieren; Zusammenfassung 1) Falls Zwangsbednungen de Frehetsgrade enschränken, kann man de abhängge Koordnaten aus der Lagrangfunkton elmeren; 2) Es st auch möglch de Zwangsbednungen mt Hlfe der Lagrangefaktoren

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretsche Physk 2 (Theoretsche Mechank Prof. Dr. Th. Feldmann 28. Oktober 2013 Kurzzusammenfassung Vorlesung 4 vom 25.10.2013 1.6 Dynamk mehrerer Massenpunkte Dynamk für = 1... N Massenpunkte mt.a. komplzerter

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferenkurs Theoretsche Physk: Mechank Sommer 2017 Vorlesung 2 (mt freundlcher Genehmgung von Merln Mtscheck und Verena Walbrecht) Technsche Unverstät München 1 Fakultät für Physk Inhaltsverzechns 1 Systeme

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferenkurs Theoretsche Physk: Mechank Sommer 2013 Vorlesung 2 Technsche Unverstät München 1 Fakultät für Physk Inhaltsverzechns 1 Systeme von Massenpunkten 3 1.1 Schwerpunktsmpuls..............................

Mehr

Zusammenfassung. 1. Die Bewegungsintegrale sind eng mit den Symmetrien der Wirkung verbunden. Was das genau bedeutet, zeigt das Noether-Theorem.

Zusammenfassung. 1. Die Bewegungsintegrale sind eng mit den Symmetrien der Wirkung verbunden. Was das genau bedeutet, zeigt das Noether-Theorem. Zusaenfassung 1. De Bewegungsntegrale snd eng t den Syetren der Wrkung verbunden. Was das genau bedeutet, zegt das Noether-Theore. Noether-Theore: Falls de Wrkung enes echansches Systes unter der folgenden

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferenkurs Theoretsche Physk: Mechank Sommer 018 Vorlesung 4 (mt freundlcher Genehmgung von Gramos Qerm, Jakob Unfred und Verena Walbrecht) Technsche Unverstät München 1 Fakultät für Physk Inhaltsverzechns

Mehr

18. Vorlesung Sommersemester

18. Vorlesung Sommersemester 8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten

Mehr

Lagrangesche Mechanik

Lagrangesche Mechanik Kaptel Lagrangesche Mechank De Newtonsche Mechank hat enge Nachtele. 1) De Bewegungsglechungen snd ncht kovarant, d.h. se haben n verschedenen Koordnatensystemen verschedene Form. Z.B., zwedmensonale Bewegungsglechungen

Mehr

Die Hamilton-Jacobi-Theorie

Die Hamilton-Jacobi-Theorie Kaptel 7 De Hamlton-Jacob-Theore Ausgearbetet von Rolf Horn und Bernhard Schmtz 7.1 Enletung Um de Hamlton schen Bewegungsglechungen H(q, p q k = p k H(p, q ṗ k = q k zu verenfachen, führten wr de kanonschen

Mehr

MOD-01 LAGRANGE FORMALISMUS -- TEIL 1

MOD-01 LAGRANGE FORMALISMUS -- TEIL 1 MOD- LAGRAGE FORMALISMUS -- EIL. Zustandsfunktonen Defnton -: Zustandsfunkton Ene Zustandsfunkton W( () t, t) = W(, t) bzw. W ( ) st jede belebge skalare Funkton der Zustandsgrößen () t und der Zet t,

Mehr

Hamiltonsche Mechanik

Hamiltonsche Mechanik Kaptel 3 Hamltonsche Mechank Das Lagrange-Formalsmus lefert uns de Bewegungsglechungen n der Form von enem System von Dfferentalglechungen zweter Ordnung für verallgemenerte Koordnaten. Solches System

Mehr

Noethertheorem. 30. Januar 2012

Noethertheorem. 30. Januar 2012 Noethertheorem 30. Januar 2012 1 Inhaltsverzechns 1 Symmetre 3 1.1 Symmetre n der Geometre................... 3 1.2 Symmetre n der Mathematk.................. 3 1.3 Symmetre n der Physk.....................

Mehr

3. Vorlesung Sommersemester

3. Vorlesung Sommersemester 3. Vorlesung Sommersemester 1 Bespele (Fortsetzung) 1. Der starre Körper: Formulerung der Zwangsbedngungen später. Anschaulch snd schon de Frehetsgrade: dre der Translaton (z. B. Schwerpuntsoordnaten)

Mehr

3 Vorlesung: Lagrange Mechanik I. 3.1 Zwangsbedingungen. Beispiele (nach Kuypers)

3 Vorlesung: Lagrange Mechanik I. 3.1 Zwangsbedingungen. Beispiele (nach Kuypers) 3 Vorlesung: Lagrange Mechank I 3.1 Zwangsbedngungen Im folgenden Kaptel werden wr uns mt Bewegungen beschäftgen, de geometrschen Zwangsbedngungen unterlegen, we etwa der Pendelbewegung, der Bewegung auf

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Insttut für Technologe Insttut für Theore der Kondenserten Matere Klasssche Theoretsche Physk II Theore B Sommersemester 016 Prof. Dr. Alexander Mrln Musterlösung: Blatt 7. PD Dr. Igor Gorny,

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Merln Mtschek, Verena Walbrecht Ferenkurs Theoretsche Physk: Mechank Sommer 2013 Vorlesung 3 Technsche Unverstät München 1 Fakultät für Physk Merln Mtschek, Verena Walbrecht Inhaltsverzechns 1 Symmetren

Mehr

29 zweite Ableitungen der thermodynamischen Potentiale spezifische Wärme (thermischer response) E = = = T V N V N V N = = κ T.

29 zweite Ableitungen der thermodynamischen Potentiale spezifische Wärme (thermischer response) E = = = T V N V N V N = = κ T. hermodynamsche resonse -unktonen: 9 zwete Abletungen der thermodynamschen Potentale sezfsche Wärme (thermscher resonse) E C S be konstantem olumen (sochor):,,, be konstantem Druck (sobar): C S Komressbltät

Mehr

I)1. Kinematik. EP WS 2009/10 Dünnweber/Faessler

I)1. Kinematik. EP WS 2009/10 Dünnweber/Faessler I)1. Knematk I) Mechank 1.Knematk (Bewegung) 2. Dynamk on Massenpunkten (Enfluss on Kräften) 3. Starre Körper 4.Deformerbare Meden 5. Schwngungen, Wellen, Akustk I)1. Knematk Bewegungslehre (Zel: Quanttate

Mehr

3.6 Molekulare Dynamik

3.6 Molekulare Dynamik 3.6 Molekulare Dynamk In den letzten 5 Jahrzehnten wurden drekte numersche Smulatonen zur statstschen Auswertung von Veltelchensystemen mmer wchtger. So lassen sch Phasenübergänge, aber auch makroskopsche

Mehr

Theoretische Physik II: Analytische Mechanik und Spezielle Relativitätstheorie

Theoretische Physik II: Analytische Mechanik und Spezielle Relativitätstheorie Theoretsche Physk II: Analytsche Mechank und Spezelle Relatvtätstheore Drk H. Rschke Sommersemester 2010 Inhaltsverzechns 1 Lagrange-Mechank 1 1.1 Zwangskräfte, Zwangsbedngungen und generalserte Koordnaten.....

Mehr

Kapitel 5. Symmetrien und Erhaltungsgrößen. 5.1 Symmetrietransformationen

Kapitel 5. Symmetrien und Erhaltungsgrößen. 5.1 Symmetrietransformationen Kaptel 5 Symmetren un Erhaltungsgrößen 5.1 Symmetretransformatonen Betrachte en mechansches System mt en Koornaten q 1,... q f un er Lagrangefunkton L(q 1,... q f, q 1,... q f, t). Nun soll ene Transformaton

Mehr

Kapitel 5 Systeme von Massenpunkten, Stöße

Kapitel 5 Systeme von Massenpunkten, Stöße Katel 5 ystee von Massenunkten, töße Drehoente und Drehuls enes Telchensystes O t : z r r r F x r F F F y F F t (acto = reacto) : F t äußeren Kräften F und F und nneren Kräften F = -F Drehoente : D D r

Mehr

Kreisel. koerperfestes KS. z y. raumfestes KS. Starrer Körper: System von Massepunkten m i, deren Abstände r i r j untereinander konstant sind.

Kreisel. koerperfestes KS. z y. raumfestes KS. Starrer Körper: System von Massepunkten m i, deren Abstände r i r j untereinander konstant sind. Kresel z y koerperfestes KS z y x raumfestes KS x Starrer Körper: System von Massepunkten m, deren Abstände r r j unterenander konstant snd. Der Zustand läßt sch beschreben durch: Poston des Schwerpunktes,

Mehr

4. Lagrange-Formalismus

4. Lagrange-Formalismus y(t) ϑ 4. Lagrange-Formalsmus 4.0 Enführung Abbldung 4.1: Das sphärsche Pendel mt bewegtem Aufhängepunkt. R F mg Zel st es, enen enfachen Zugang zu komplzerten mechanschen Systemen zu entwckeln. Nach ener

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

1 Finanzmathematik. 1.1 Das Modell. Sei Xt

1 Finanzmathematik. 1.1 Das Modell. Sei Xt 1.1 Das Modell Se Xt der Pres enes Assets zur Zet t und X = X ) 1 d der Rd +-dmensonale Presprozess. Das Geld kann auch zu dem rskolosen Znssatz r be ener Bank angelegt werden. Der Wert deser Anlage wrd

Mehr

Definition des linearen Korrelationskoeffizienten

Definition des linearen Korrelationskoeffizienten Defnton des lnearen Korrelatonskoeffzenten r xy x y y r x xy y 1 x x y y x Der Korrelatonskoeffzent st en Indkator dafür, we gut de Punkte (X,Y) zu ener Geraden passen. Sen Wert legt zwschen -1 und +1.

Mehr

Lösungen der Aufgaben zu Kapitel 2

Lösungen der Aufgaben zu Kapitel 2 Lösungen der Aufgaben zu Kaptel Abschntt 1 Aufgabe 1 Wr benutzen de Potenzrechenregeln, um ene Potenz von mt geradem Eponenten n oder mt ungeradem Eponenten n + 1 we folgt darzustellen: n n und n+1 n n

Mehr

I) Mechanik 1.Kinematik (Bewegung)

I) Mechanik 1.Kinematik (Bewegung) I)1. Knematk I) Mechank 1.Knematk (Bewegung) 2. Dynamk on Massenpunkten (Enfluss on Kräften) 3. Starre Körper 4.Deformerbare Meden 5. Schwngungen, Wellen, Akustk I)1. Knematk Bewegungslehre (Zel: Quanttate

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stchwörter von der letzten Vorlesung können Se sch noch ernnern? Gasgesetz ür deale Gase pv = nr Gelestete Arbet be sotherme Ausdehnung adabatsche Ausdehnung 2 n Reale Gase p + a 2 ( V nb) =

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Einführung in die Robotertechnik. Dr.-Ing. Ralf Westphal,

Einführung in die Robotertechnik. Dr.-Ing. Ralf Westphal, Enführung n de Robotertechnk Dr.-Ing. Ralf Westphal, 05.03.2012 Parallelknematken (SFB 562) Robotersteuerungsarchtekturen Montageplanung Moble Robotk Tefendatensensork Objekterkennung 3D Regstrerung Posenbestmmung

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Inhaltsverzeichnis. Vorbemerkungen 1

Inhaltsverzeichnis. Vorbemerkungen 1 Inhaltsverzechns Vorbemerkungen 1 1 Newtonsche Mechank 5 1.1 De Newtonschen Axome........................ 5 1.1.1 Wortlaut (übersetzt)...................... 5 1.1.2 Präzserung der knematschen Begrffe...........

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung Fachberech Mathematk Prof. K. Grosse-Brauckmann D. Frsch WS 27/8./.. 6. Übungsblatt zur Lnearen Algebra für Physker Gruppenübung Aufgabe G7 (Kern, Bld, Rang und Orthogonaltät) Gegeben se ene lneare Abbldung

Mehr

Kapitel V. Parameter der Verteilungen

Kapitel V. Parameter der Verteilungen Kaptel V Parameter der Vertelungen D. 5.. (Erwartungswert) Als Erwartungswert ener Zufallsvarablen X bezechnet man: E( X ) : Dabe se vorausgesetzt: = = + p falls X dskret f d falls X stetg und = + p

Mehr

Allgemeine Formulierung der Punktmechanik

Allgemeine Formulierung der Punktmechanik Kaptel 3 Allgemene Formulerung der Punktmechank Axom 2.2 besagt, daß der zetlche Bewegungsablauf enes Massenpunktes berechnet werden kann, wenn de Kräfte, welche auf den Massenpunkt wrken, vorgegeben snd.

Mehr

Dynamik starrer Körper

Dynamik starrer Körper Dynamk starrer Körper Bewegungen starrer Körper können n Translaton und Rotaton zerlegt werden. De Rotaton stellt enen nneren Frehetsgrad des Körpers dar, der be Punktmassen ncht exstert. Der Schwerpunkt

Mehr

2 Zufallsvariable und Verteilungen

2 Zufallsvariable und Verteilungen Zufallsvarable und Vertelungen 7 Zufallsvarable und Vertelungen Wr wollen uns jetzt mt Zufallsexpermenten beschäftgen, deren Ausgänge durch (reelle) Zahlen beschreben werden können, oder be denen man jedem

Mehr

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition Informatk II Raner Schrader und Implkanten Zentrum für Angewandte Informatk Köln 27. Oktober 2005 1 / 28 2 / 28 Was bsher geschah: jede Boolesche Funkton kann durch enfache Grundfunktonen dargestellt werden

Mehr

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ).

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Taylorentwcklung (Approxmaton durch Polynome). Problemstellung Se T( x ) de Tangente an den Graphen der Funkton f(x) m Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Dann kann man de

Mehr

Lehrveranstaltung Stereostatik

Lehrveranstaltung Stereostatik Lehrveranstaltung Stereostatk Thema 4: Vertelte Lasten Mechank 1 Vertelte Lasten 4.1 Problemstellung De Varablen n unseren Glechgewchtsbedngungen snd mmer Enzelkräfte (Bassenhet N) N bzw. Enzelmomente

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Theoretische Physik 1 Mechanik

Theoretische Physik 1 Mechanik Technsche Unverstät München Fakultät für Physk Ferenkurs Theoretsche Physk 1 Mechank Skrpt zu Vorlesung 4: Starrer Körper, Hamlton-Formalsmus gehalten von: Markus Krottenmüller & Markus Perner 30.08.01

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

Rotation (2. Versuch)

Rotation (2. Versuch) Rotaton 2. Versuch Bekannt snd berets Vektorfelder be denen das Lnenntegral über ene geschlossene Kurve Null wrd Stchworte: konservatve Kraft Potentalfelder Gradentenfeld. Es gbt auch Vektorfelder be denen

Mehr

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY)

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY) Bedngte Entrope Kaptel : Bedngte Entrope Das vorherge Theorem kann durch mehrfache Anwendung drekt verallgemenert werden H (... H ( = Ebenso kann de bedngt Entrope defnert werden Defnton: De bedngte Entrope

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Vorlesung 3 Differentialgeometrie in der Physik 13

Vorlesung 3 Differentialgeometrie in der Physik 13 Vorlesung 3 Dfferentalgeometre n der Physk 13 Bemerkung. Ist M Manngfaltgket, p M und φ : U R n Karte mt p U, so nennt man U auch Koordnatenumgebung und φ auch Koordnatensystem n p. Bespel 2.4 Seen R >

Mehr

d Alambert: Variationsprinzip in Differentialform (äquivalent zum Hamilton-Prinzip) = 0 (d Alambertsches Prinzip; δw = Z δr = 0 )

d Alambert: Variationsprinzip in Differentialform (äquivalent zum Hamilton-Prinzip) = 0 (d Alambertsches Prinzip; δw = Z δr = 0 ) Zusammenfassung Theoretsche Mechan d Alambert: Varatonsprnzp n Dfferentalform (äuvalent zum amlton-prnzp) δw ( F p ) * δr 0 (d Alambertsches Prnzp; δw Z δr 0 ) m allg.: p m * r m statschen Fall st: p 0

Mehr

Die mathematischen Grundlagen der Wellenmechanik

Die mathematischen Grundlagen der Wellenmechanik De mathematschen Grundlagen der Wellenmechank Zustände und deren Darstellung En physkalsches System wrd durch enen Zustand u charaktersert, ndem es durch ene bestmmte expermentelle Präparaton gebracht

Mehr

Übungen zur Theoretischen Physik Fb SS 18

Übungen zur Theoretischen Physik Fb SS 18 Karlsruher Insttut für Technologe Insttut für Theore der Kondenserten Matere Übungen zur Theoretschen Physk Fb SS 8 Prof Dr A Shnrman Blatt PD Dr B Narozhny Lösungsvorschlag Thermodynamk von Phononen:

Mehr

Physik A VL11 ( )

Physik A VL11 ( ) Physk A VL11 (0.11.01) Dynamk der Rotatonsbewegung I Kresbewegung und Kräfte Drehmoment und räghetsmoment Kresbewegung und Kräfte en Massepunkt (Schwerpunkt) führt nur ene ranslatonsbewegung aus ausgedehnte

Mehr

-70- Anhang: -Lineare Regression-

-70- Anhang: -Lineare Regression- -70- Anhang: -Lneare Regressn- Für ene Messgröße y f(x) gelte flgender mathematsche Zusammenhang: y a+ b x () In der Regel läßt sch durch enen Satz vn Messwerten (x, y ) aber kene Gerade zechnen, da de

Mehr

Finite Differenzen. Tino Kluge. January 17,

Finite Differenzen. Tino Kluge.   January 17, Enletung Explztes Fntes... Implzte Fnte... Startsete Ttelsete Fnte Dfferenzen Tno Kluge tno.kluge@hrz.tu-chemntz.de http://www.mathfnance.de/semnars/sdgl.html January 17, 2002 Sete 1 von 15 Vollbld Schleßen

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

Experimentalphysik 1. Vorlesung 1

Experimentalphysik 1. Vorlesung 1 Technsche Unverstät München Fakultät für Physk Ferenkurs Expermentalphysk 1 WS 2016/17 Vorlesung 1 Ronja Berg (ronja.berg@tum.de) Katharna Sche (katharna.sche@tum.de) Inhaltsverzechns 1 Klasssche Mechank

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) permentalphsk II (Kp SS 007) Zusatvorlesungen: Z-1 n- und mehrdmensonale Integraton Z- Gradent, Dvergen und Rotaton Z-3 Gaußscher und Stokesscher Integralsat Z-4 Kontnutätsglechung Z-5 lektromagnetsche

Mehr

22. Vorlesung Sommersemester

22. Vorlesung Sommersemester 22 Vorlesung Sommersemester 1 Bespel 2: Würfel mt festgehaltener Ecke In desem Fall wählt man den Koordnatenursprung n der Ecke und der Würfel st durch den Berech x = 0 a, y = 0 a und z = 0 a bestmmt De

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)

Mehr

Musterlösung zu Übung 4

Musterlösung zu Übung 4 PCI Thermodynamk G. Jeschke FS 05 Musterlösung zu Übung erson vom 6. Februar 05) Aufgabe a) En Lter flüssges Wasser egt m H O, l ρ H O, l L 998 g L 998 g. ) De Stoffmenge n H O, l) von enem Lter flüssgen

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression Beschrebung des Zusammenhangs zweer metrscher Merkmale Streudagramme Korrelatonskoeffzenten Regresson Alter und Gewcht be Kndern bs 36 Monaten Knd Monate Gewcht 9 9 5 8 3 4 7.5 4 3 6 5 3 6 4 3.5 7 35 5

Mehr

Eine kurze Einführung in die Dichtefunktionaltheorie (DFT)

Eine kurze Einführung in die Dichtefunktionaltheorie (DFT) Ene kurze Enführung n de Dchtefunktonaltheore (DFT) Mchael Martns Lteratur: W. Koch, M.C. Holthausen A Chemst s Gude to Densty Functonal Theory Wley-VCH 2001 Dchtefunktonaltheore p.1 Enletung Im Falle

Mehr

Tangentenvektoren und Tangentialraum

Tangentenvektoren und Tangentialraum angentenvektoren und angentalrau (kontravarante Vektoren oder enach Vektoren) Gegeben ene - densonale Manngaltgket M, denert an an ede Punkt den angentalrau M als den densonalen Vektorrau aller öglchen

Mehr

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)).

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)). 44 n n F F a) b) Abbldung 3.: Besetzungszahlen enes Fermgases m Grundzustand (a)) und für ene angeregte Konfguraton (b)). 3.3 Ferm Drac Statstk In desem Abschntt wollen wr de thermodynamschen Egenschaften

Mehr

Klassische Theoretische Physik II: Mechanik

Klassische Theoretische Physik II: Mechanik Klasssche Theoretsche Physk II: Mechank Alexaner Shnrman Insttut für Theore er Konenserten Matere Karlsruher Insttut für Technologe 9. Jul 010 1 1 Lagrange-Glechungen 1. Art 1.1 Motverenes Bespel: en Penel

Mehr

Gauss sche Fehlerrrechnung

Gauss sche Fehlerrrechnung Gauss sche Fehlerrrechnung T. Ihn 24. Oktober 206 Inhaltsverzechns Modell und Lkelhood 2 Alle Standardabwechungen σ snd bekannt, bzw. de Kovaranzmatrx der Daten st bekannt: Mnmeren der χ 2 -Funkton. 6

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

4. Energie, Arbeit, Leistung, Impuls

4. Energie, Arbeit, Leistung, Impuls 34 35 4. Energe, Arbet, Lestung, Ipuls Zentrale Größen der Physk: Energe E, Enhet Joule ( [J] [N] [kg /s ] Es gbt zwe grundsätzlche Foren on Energe: knetsche Energe: entelle Energe: Arbet, Enhet Joule

Mehr

Theoretische Physik B MECHANIK. Vorlesung SS 2003

Theoretische Physik B MECHANIK. Vorlesung SS 2003 Theoretsche Physk B MECHANIK Vorlesung SS 2003 P. Wölfle Insttut für Theore der Kondenserten Matere Fakultät für Physk Unverstät Karlsruhe Homepage: http://www.tkm.un-karlsruhe.de/lehre/ Textverarbetung:

Mehr

Einführung in die theoretische Physik 1

Einführung in die theoretische Physik 1 Enführung n de theoretsche hysk 1 rof. Dr. L. Mathey Denstag 15:45 16:45 und Donnerstag 10:45 12:00 Begnn: 23.10.12 Jungus 9, Hörs 2 Mathey Enführung n de theor. hysk 1 1 Grundhypothese der Thermostatk

Mehr

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n Regressonsgerade x x x x 3... x n y y y y 3... y n Bem Auswerten von Messrehen wrd häufg ene durch theoretsche Überlegungen nahegelegte lneare Bezehung zwschen den x- und y- Werten gesucht, d.h. ene Gerade

Mehr

Klassische Mechanik. von Herbert Goldstein, Charles P Poole, Jr, John L Safko, Sr. 1. Auflage

Klassische Mechanik. von Herbert Goldstein, Charles P Poole, Jr, John L Safko, Sr. 1. Auflage Klasssche Mechank von Herbert Goldsten, Charles P Poole, Jr, John L Safko, Sr 1. Auflage Klasssche Mechank Goldsten / Poole, Jr / Safko, Sr schnell und portofre erhältlch be beck-shop.de DIE FACHBUCHHANDLUNG

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statstk und Wahrschenlchketsrechnung Statstk und Wahrschenlchketsrechnung 5. Vorlesung Dr. Jochen Köhler.03.0 Statstk und Wahrschenlchketsrechnung Wchtg!!! Vorlesung Do 4.03.0 HCI G3 Übung 5 D 9.03.0 Fnk

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von

Mehr

Zur Erinnerung: System von Massenpunkten. dt i dt. 1 dt. Massenschwerpunkt

Zur Erinnerung: System von Massenpunkten. dt i dt. 1 dt. Massenschwerpunkt Massenschwerunkt r Zur rnnerung: yste on Massenunkten r dr dt r t M, M dr P dt M M M F dp d dt d M dt dt Ma chwerunktsyste Der chwerunkt enes ystes aus Massenunkten bewegt sch so, als ob er en Körer t

Mehr

1.6 Energie 1.6.1 Arbeit und Leistung Wird ein Körper unter Wirkung der Kraft F längs eines Weges s verschoben, so wird dabei die Arbeit

1.6 Energie 1.6.1 Arbeit und Leistung Wird ein Körper unter Wirkung der Kraft F längs eines Weges s verschoben, so wird dabei die Arbeit 3.6 Energe.6. Arbe und Lesung Wrd en Körper uner Wrkung der Kraf F längs enes Weges s verschoben, so wrd dabe de Arbe W = F s Arbe = Kraf Weg verrche. In deser enfachen Form gülg, wenn folgende Voraussezungen

Mehr

16. Vorlesung Sommersemester

16. Vorlesung Sommersemester 16. Vorlesung Sommersemester 1 Das Egenwertproblem In allgemener Form hat das Egenwertproblem de Form A x = λ x, (1) wobe A ene n n-matrx, x en n-dmensonaler Vektor und λ der Egenwert st (n Englsch: egenvector,

Mehr

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum Abgabe: Aufgabentext und Lösungen schrftlch bs zum 15. 6. 2012 I. Thema: Zehen mt und ohne Zurücklegen Lesen Se sch zunächst folgenden Text durch! Wr haben bsher Stchprobenzehungen aus Grundgesamtheten

Mehr

p : Impuls in Ns v : Geschwindigkeit in m/s

p : Impuls in Ns v : Geschwindigkeit in m/s -I.C9-4 Impuls 4. Impuls und Kraftstoß 4.. Impuls De Bewegung enes Körpers wrd bespelswese durch de Geschwndgket beschreben. Um de Bewegung enes Körpers zu ändern braucht man ene Kraft (Abb.). Dese führt

Mehr

Runge-Kutta-Theorie: Adjungierte Verfahren, A-Stabilität, Steife Systeme

Runge-Kutta-Theorie: Adjungierte Verfahren, A-Stabilität, Steife Systeme Runge-Kutta-Teore: Adjungerte Verfaren, A-Stabltät, Stefe Systeme Andre Neubert bat@un-paderborn.de Semnar Numerk für Informatker, SS2004: Runge-Kutta-Teore Sete Glederung : - Adjungerte Verfaren / Symmetrsce

Mehr

Der starre Körper. 1 Grundlagen. Dominik Fauser. 1.1 Denition. 1.2 Freiheitsgrade

Der starre Körper. 1 Grundlagen. Dominik Fauser. 1.1 Denition. 1.2 Freiheitsgrade Der starre Körper Domnk Fauser 1 Grundlagen 1.1 Denton Als enen starren Körper bezechnet man en System von Massepunkten m, deren Abstände zuenander konstant snd: r j = r r j. Mest betrachtet man ene sehr

Mehr

Resultate / "states of nature" / mögliche Zustände / möglicheentwicklungen

Resultate / states of nature / mögliche Zustände / möglicheentwicklungen Pay-off-Matrzen und Entschedung unter Rsko Es stehen verschedene Alternatven (Strategen) zur Wahl. Jede Stratege führt zu bestmmten Resultaten (outcomes). Man schätzt dese Resultate für jede Stratege und

Mehr

Die kanonische Zustandssumme (System) und ihr Zusammenhang mit der molekularen Zustandssumme (Einzelmolekül) unterscheidbare Teilchen:

Die kanonische Zustandssumme (System) und ihr Zusammenhang mit der molekularen Zustandssumme (Einzelmolekül) unterscheidbare Teilchen: De molekulare Zustandssumme βε = e mt β = De kanonsche Zustandssumme (System) und hr Zusammenhang mt der molekularen Zustandssumme (Enzelmolekül) unterschedbare elchen: Q = ununterschedbareelchen Q : =!

Mehr

7 Schrödingergleichung

7 Schrödingergleichung 36 7 Schrödngerglechung 7 Schrödngerglechung De Schrödngerglechung spelt n der Quantenmechank ene zentrale Rolle. Mt hr wrd de Wellenfunkton des Systems berechnet. Der erste Bestandtel der Schrödngerglechung

Mehr

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. .

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. . Neuronale Netze M. Gruber 7.11.015 Begnnen wr mt enem Bespel. Bespel 1 Wr konstrueren enen Klasskator auf der Menge X = [ 1; 1], dessen Wrkung man n Abb.1 rechts sehen kann. Auf der blauen Telmenge soll

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

8. Mathematische Begriffe der Thermodynamik. Basel, 2008

8. Mathematische Begriffe der Thermodynamik. Basel, 2008 8. Mathematsche Begre der Thermodnamk Basel, 2008 1. Enührung 8. Mathematsche Begre der Thermodnamk 2. Zustandsunktonen mehrerer Varabeln 3. Totales Derental 4. Homogene Funktonen 5. Mengen-Angaben 6.

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

Bei Strecken höherer Ordnung wird auch hier die Strecke durch die Methode der Ersatzzeitkonstante

Bei Strecken höherer Ordnung wird auch hier die Strecke durch die Methode der Ersatzzeitkonstante Lösung Übung 9 Aufgabe: eglerauslegung mt blnearer Transformaton n s In der kontnuerlchen egelungstechnk wrd für gewöhnlch en PI-egler verwendet, um de größte Zetkonstante zu kompenseren bzw. be IT-Strecken

Mehr

Symbol Grösse Einheit. Gravitationskonstante Naturkonstante. Abstand zwischen den Massenmittelpunkten. Federverlängerung m.

Symbol Grösse Einheit. Gravitationskonstante Naturkonstante. Abstand zwischen den Massenmittelpunkten. Federverlängerung m. Kräfte Das ravtatonsgesetz m m r ewchtskraft m g Symbol rösse nhet ravtatonskraft ravtatonskonstante aturkonstante m, m Masse kg r Abstand zwschen den Massenmttelpunkten m kg m Zwschen zwe Körpern wrkt

Mehr