8. Sprachhierarchien und Komplexität

Größe: px
Ab Seite anzeigen:

Download "8. Sprachhierarchien und Komplexität"

Transkript

1 Kpitel 8: Sprchhierrchien und Komplexität Sprchhierrchien und Komplexität 81 Formlismus der PS-grmmr 811 Ursprüngliche Definition Von dem meriknischen Logiker E Post 1936 ls rewrite oder Post production system publiziert, ist dieser Formlismus in der Rekursionstheorie entstnden und steht in enger Beziehung zur Automtentheorie 812 Erste Anwendung uf ntürliche Sprche Posts rewrite systems wurden von N homsky 1957 erstmls uf die ntürlichen Sprchen ngewendet, und zwr ls sogennnte phrse structure grmmrs 813 Algebrische Definition der PS-Grmmtik Eine PS-Grmmtik ist ein Qudrupel < V, V T, S, P > 1 V ist eine Menge von Zeichen 2 V T ist eine echte Untermenge von V, gennnt terminle Zeichen 3 S ist ein Zeichen in V ohne V T, gennnt Strtsymbol 4 P ist eine Menge von Ersetzungsregeln der Form α β, wobei α ein Element von V + und β ein Element von V ist c Rolnd Husser

2 Kpitel 8: Sprchhierrchien und Komplexität Restriktionstypen des PS-Regelschems 0 Unbeschränkte PS-Regel: Bei einer Typ-0 Regel stehen uf der linken und rechten Regelseite beliebige Folgen von Terminlen und Vriblen 1 Kontextsensitive PS-Regel: Bei einer Typ-1 Regel stehen uf der linken und rechten Regelseite beliebige Folgen von Terminlen und Vriblen, wobei die rechte Regelseite mindestens so lng sein muß wie die linke Beispiel: A B A D E 2 Kontextfreie PS-Regel: Bei einer Typ-2 Regel steht uf der linken Regelseite genu eine Vrible Auf der rechten Regelseite steht eine Zeichenkette us V + Beispiele: A B, A bbc, etc 3 Reguläre PS-Regel: Bei einer Typ-3 Regel steht uf der linken Regelseite genu eine Vrible Auf der rechten Regelseite steht genu ein Terminl, gefolgt von höchstens einer Vriblen Beispiele: A b, A b c Rolnd Husser

3 Kpitel 8: Sprchhierrchien und Komplexität Sprchklssen und ihre Komplexität 821 Verschiedene Beschränkungen der genertive Regelschemt führen zu 1 unterschiedlichen Arten von Grmmtiken, die über 2 unterschiedliche Grde genertiver Kpzität 3 unterschiedliche Sprchklssen erzeugen, die wiederum 4 unterschiedliche Komplexitätsgrde ufweisen 822 Grde der Komplexität 1 Linere Komplexität n, 2n, 3n etc 2 Polynomile Komplexität n 2, n 3, n 4 etc 3 Exponentielle Komplexität 2 n, 3 n, 4 n etc 4 Unentscheidbr n c Rolnd Husser

4 Kpitel 8: Sprchhierrchien und Komplexität Komplexität polynomiler und exponentieller Algorithmen Problemgröße n Zeitkomplexität n 3 2 n Sekunden Sekunden Sekunden Sekunden Jhre Jhrhunderte 824 Anwendung uf ntürliche Sprche Ds Limskorpus enthält insgesmt Sätze Von diesen bestehen genu 50 us 100 Wortformen oder mehr, wobei der längste Stz im Korpus us 165 Wörtern besteht c Rolnd Husser

5 Kpitel 8: Sprchhierrchien und Komplexität PS-grmmtische Hierrchie der formlen Sprchen (homsky-hierrchie) Regel Beschränkung Unterklssen der PS-Grmmtik Sprchklssen Komplexitätsgrd Typ-3 reguläre PSG reguläre Spr liner Typ-2 kontextfreie PSG kontextfreie Spr polynominl Typ-1 kontextsensitive PSG kontextsensitive Spr exponentiell Typ-0 unbeschränkte PSG rek enumerble Spr unentscheidbr c Rolnd Husser

6 Kpitel 8: Sprchhierrchien und Komplexität Genertive Kpzität und formle Sprchklssen 831 Linguistische Huptfrge n die PS-grmmtik Gibt es einen Typ der PS-Grmmtik der genu die Strukturen erzeugt, die für die ntürlichen SPrchen chrkteristisch sind? 832 Struktureigenschften der regulären PS-Grmmtik Die genertive Kpzität der regulären PS-Grmmtik erlubt die rekursive Wiederholung einzelner Wörter, ber ohne irgendwelche rekursive Korrespondenzen 833 Reguläre PS-Grmmtik für b k (k 1) V = def {S, B,, b} V T = def {, b} P = def {S B, B b B, B b} c Rolnd Husser

7 Kpitel 8: Sprchhierrchien und Komplexität Reguläre PS-Grmmtik für {, b} + V = def {S,, b} V T = def {, b} P = def {S S, S b S, S, S b} 835 Reguläre PS-Grmmtik für m b k (k,m 1) Regulr PS-grmmr for m b k (k,m 1) V = def {S, S 1, S 2,, b} V T = def {, b} P = def {S S 1, S 1 S 1, S 1 b S 2, S 2 b} c Rolnd Husser

8 Kpitel 8: Sprchhierrchien und Komplexität Struktureigenschften der kontextfreien PS-Grmmtik Die genertive Kpzität der kontextfreien PS-Grmmtik erlubt die rekursive Erzeugung von inversprweisen Korrespondenzen, z B b c c b 837 Kontextfreie PS-Grmmtik für k b 3k V = def {S,, b} V T = def {, b} P = def { S S b b b, S b b b} 838 Kontextfreie PS-Grmmtik für WW R V = def {S,, b, c, d}, V T = def {, b, c, d}, P = def { S S, S b S b, S c S c, S d S d, S, S b b, S c c, S d d} c Rolnd Husser

9 Kpitel 8: Sprchhierrchien und Komplexität Wrum WW die genertive Kpzität der kontextfreien PS-Grmmtik übersteigt bb bcbc bcdbcd hben keine inverse Struktur Deshlb ist es trotz der Ähnlichkeit zwischen WW R und WW unmöglich, eine kontextfreie PS-Grmmtik wie 838 für WW zu schreiben 8310 Wrum k b k c k die genertive Kpzität der kontextfreien PS-Grmmtik übersteigt b c b b c c b b b c c c knn nicht von einer kontextfreien PS-Grmmtik generiert werden, weil Korrespondenzen zwischen drei verschiedenen Bereichen ufrecht erhlten werden müssen ws die prweis inverse Struktur der kontextfreien Sprchen, wie sie z B von den Sprchen k b k und WW R illustriert wird, übersteigt c Rolnd Husser

10 Kpitel 8: Sprchhierrchien und Komplexität Struktureigenschften der kontextsensitiven PS-Grmmtik Almost ny lnguge one cn think of is context-sensitive; the only known proofs tht certin lnguges re not SL s re ultimtely bsed on digonliztion [Fst jede erdenkliche Sprche ist kontextsensitiv; die einzigen beknnten Beweise, dß bestimmte Sprchen nicht kontextsensitiv sind, beruhen letztlich uf Digonlisierung] JE Hopcroft nd JD Ullmn 1979, p PS-Grmmtik für kontextsensitives k b k c k V = def {S, B,, D 1, D 2,, b, c} V T = def {, b, c} P = def { S S B, rule 1 S b, rule 2 B D 1 B, rule 3 D 1 B D 1 D 2, rule 3b D 1 D 2 B D 2, rule 3c B D 2 B, rule 3d b B b b, rule 4 b b c, rule 5 c c c} rule 6 c Rolnd Husser

11 Kpitel 8: Sprchhierrchien und Komplexität 139 Die Regeln 3 bis 3d hben zusmmen denselben Effekt wie die Regel 3 B B 8313 Ableitung von b b b c c c Zwischenketten Regeln S S S B B b b b b b b b b b b b b b b B B B B B B B b b b b B c c c B B c c c (1) (1) (2) (3) (3) (3) (4) (4) (5) (6) (6) c Rolnd Husser

12 Kpitel 8: Sprchhierrchien und Komplexität Struktureigenschften der rekursiven Sprchen Die kontextsensitiven Sprchen sind eine echte Untermenge der rekursiven Sprchen Die Klsse der rekursiven Sprchen knn in der PS-grmmtischen Hierrchie nicht drgestellt werden Der Grund dfür ist, dß ds PS-grmmtische Regelschem keinen Restriktionstyp (vgl 814) bereithält, dessen zuhörige PS-Grmmtiken genu die rekursiven Sprchen generieren würden Eine Sprche ist genu dnn rekursiv, wenn sie entscheidbr ist, d h, wenn es einen Algorithmus gibt, der für jede beliebige Eingbe in endlich vielen Schritten entscheiden knn, ob die Eingbe zur Sprche gehört oder nicht Eine rekursive Sprche, die nicht kontextsensitiv ist (weil sie die genertive Kpzität der kontextsensitiven Grmmtiken überfordert), ist die sogennnte Ackermnn-Funktion 8315 Struktureigenschften der unbeschränkten PS-Grmmtik In unbeschränkten PS-Grmmtiken knn die rechte Regelseite kürzer ls die linke sein, wodurch die Möglichkeit besteht, bereits erzeugte Sequenzen wieder zu tilgen Deshlb ist die Klsse der rekursiv ufzählbren Sprchen unentscheidbr c Rolnd Husser

13 Kpitel 8: Sprchhierrchien und Komplexität PS-Grmmtik für ntürliche Sprchen 841 Eine PS-Grmmtik für Beispiel 754 V = def {S, NP, VP, V, N, DET, ADJ, die, Hunde, kleinen, schlfen, schwrzen} V T = def {die, Hunde, kleinen, schlfen, schwrzen} P = def { S NP VP, VP V, NP DET N, N ADJ N, N Hunde, ADJ kleinen, ADJ schwrzen, DET die, V schlfen} c Rolnd Husser

14 Kpitel 8: Sprchhierrchien und Komplexität PS-grmmtische Anlyse von Beispiel 754 S NP N N VP DET ADJ ADJ N V die kleinen schwrzen Hunde schlfen 843 Definition der Konstituentenstruktur 1 Wörter oder Konstituenten, die semntisch zusmmengehören, müssen direkt und exhustiv von einem Knoten dominiert werden 2 Die Linien einer Konstituentenstruktur dürfen sich nicht überkreuzen (nontngling condition) c Rolnd Husser

15 Kpitel 8: Sprchhierrchien und Komplexität Akzeptble Konstituentenstrukturnlyse S VP NP NP DET N V DET N der Mnn ls ein Buch 845 Nichtkzeptble Konstituentenstrukturnlyse S SP NP NP DET N V DET N der Mnn ls ein Buch c Rolnd Husser

16 Kpitel 8: Sprchhierrchien und Komplexität Ursprung der Konstituentenstruktur Historisch ht sich der Begriff der Konstituentenstruktur us der immedite constituent nlysis des meriknischen Strukturlisten L BLOOMFIELD ( ) und den Distributionstests seines Schülers Z Hrris entwickelt 847 Immedite constituents in PS-grmmr: Korrekt: ADJ Flsch: ADJ N ADJ gentle mn ly gentle mn ly c Rolnd Husser

17 Kpitel 8: Sprchhierrchien und Komplexität Substitutionsprobe Akzeptble Substitution: Susnne liest [ein gutes Buch] [eine dicke Zeitung] Nicht-kzeptble Substitution: Susnne liest ein [gutes Buch] *Susnne liest ein [dicke Zeitung] 849 Bewegungsprobe Akzeptble Bewegung: [der kleine Hund] sieht Juli = sieht [der kleine Hund] Juli (?) Nicht-kzeptble Bewegung: der [kleine Hund] sieht Juli = *der sieht [kleine Hund] Juli c Rolnd Husser

18 Kpitel 8: Sprchhierrchien und Komplexität Bebsichtigter Zweck der Konstituentenstruktur Distributionstests erschienen den meriknischen Strukturlisten methodisch wichtig zu sein, um ihre Intuitionen über die korrekte Zerlegung (Segmentierung) von Sätzen zu objektivieren Die Unterscheidung zwischen linguistisch wohlmotivierten und unkzeptblen immedite-constituent-anlysen schien wiederum notwendig, weil jeder endlichen terminlen Kette (lso jeder Sequenz von Wortformen) unendlich viele verschiedene Bumstrukturen zugrunde gelegt werden können 8411 Unendliche Anzhl von Bäumen über einem einzigen Wort Kontextfreie Regeln: S S, S A Indizierte Klmmerung: (A) S, ((A) S ) S, (((A) S ) S ) S, ((((A) S ) S ) S ) S, etc Entsprechende Bäume: S S S S A S S S A S S A S A c Rolnd Husser

19 Kpitel 8: Sprchhierrchien und Komplexität Konstituentenstrukturprdox 851 Konstituentenstrukturen us der Sicht der SLIM-Sprchtheorie Konstituentenstrukturen und die Distributionstests, die ihnen zugrundegelegt werden, widersprechen der zeitlineren Struktur der ntürlichen Sprchen Die us der Konstituentenstrukturnlyse resultierenden Phrsenstrukturbäume hben keinerlei kommuniktive Funktion Die Prinzipien der Konstituentenstruktur können bei der empirischen Anlyse ntürlicher Sprchen nicht immer erfüllt werden c Rolnd Husser

20 Kpitel 8: Sprchhierrchien und Komplexität Verletzung der zweiten Bedingung S VP VP NP NP V DET N DE Peter schlug ds Wort nch c Rolnd Husser

21 Kpitel 8: Sprchhierrchien und Komplexität Verletzung der ersten Bedingung S VP NP V NP DET N DE Peter schlug ds Wort nch c Rolnd Husser

22 Kpitel 8: Sprchhierrchien und Komplexität Annhmen der Trnsformtionsgrmmtik Um die Konstituentenstruktur ls ngeboren zu erhlten, unterscheidet die Trnsformtionsgrmmtik zwischen hypothetischen Tiefenstrukturen, die ngeblich universl sind, und den konkreten sprchbhängigen Oberflächenstrukturen Dbei wird ngenommen, dß die beiden Ebenen semntisch äquivlent sind, dß die Tiefenstrukturen nicht grmmtisch wohlgeformt sein müssen, ber die Bedingungen der Konstituentenstruktur erfüllen müssen, und dß die Oberflächenstrukturen grmmtisch sein müssen, ber nicht die Bedingungen der Konstituentenstruktur erfüllen müssen c Rolnd Husser

23 Kpitel 8: Sprchhierrchien und Komplexität Beispiel einer formlen Trnsformtion [[V DE] V [DET N] NP ] VP [V [DET N] NP DE] VP 856 Anwendung der Trnsformtion 855 Tiefenstruktur: S Trnsformtion Oberflächenstruktur: S VP NP V DE VP V DET NP N NP V NP DET N DE Peter schlug nch ds Wort = Peter schlug ds Wort nch c Rolnd Husser

24 Kpitel 8: Sprchhierrchien und Komplexität Mthemtische Folgen us dem Einbu von Trnsformtionen in die PS-Grmmtik Während die kontextfreie Tiefenstruktur von niedriger polynomiler Komplexität ist (n 3 ), hebt der Einbu von Trnsformtionen die Komplexität zu rekursiv ufzählbr MW, die Trnsformtionsgrmmtik ist unentscheidbr 858 Beispiel eines Bch-Peters-Stzes Der Mnn, der ihn verdient, bekommt den Preis, den er will 859 Tiefenstruktur eines Bch-Peters-Stzes [Der Mnn] bekommt [den Preis] [der Mnn verdient [den Preis]] [den Preis will [der Mnn]] [der Mnn v [den Preis]] [den Preis will [der Mnn]] [den Preis will [der [der Mnn v [den Preis]] c Rolnd Husser

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }. Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,

Mehr

Theoretische Informatik WS 2014/2015

Theoretische Informatik WS 2014/2015 Prof. Dr. Andres Podelski Mtthis Heizmnn Alexnder Nutz Christin Schilling Probeklusur zur Vorlesung Theoretische Informtik WS 2014/2015 Die Klusur besteht us diesem Deckbltt und sieben Blättern mit je

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmnn W Wu Herbstsemester 206 Linere Algebr und Numerische Mthemtik für D-BAUG Beispiellösung für Serie 5 ETH Zürich D-MATH Aufgbe 5 5) Seien u und v Lösungen des LGS Ax = b mit n Unbeknnten

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

Wintersemester 2016/2017 Scheinklausur Formale Sprachen und Automatentheorie

Wintersemester 2016/2017 Scheinklausur Formale Sprachen und Automatentheorie Wintersemester 2016/2017 Scheinklusur Formle Sprchen und Automtentheorie 21.12.2016 Üungsgruppe, Tutor: Anzhl Zustzlätter: Zugelssene Hilfsmittel: Keine. Bereitungszeit: 60 Minuten Hinweise: Lesen Sie

Mehr

2.6 Reduktion endlicher Automaten

2.6 Reduktion endlicher Automaten Endliche Automten Jörg Roth 153 2.6 Reduktion endlicher Automten Motivtion: Wir sind n Automten interessiert, die mit möglichst wenigen Zuständen uskommen. Automten, die eine Sprche mit einem Minimum n

Mehr

Berechenbarkeitstheorie 4. Vorlesung

Berechenbarkeitstheorie 4. Vorlesung 1 Berechenbrkeitstheorie Dr. Institut für Mthemtische Logik und Grundlgenforschung WWU Münster WS 15/16 Alle Folien unter Cretive Commons Attribution-NonCommercil 3.0 Unported Lizenz. Reguläre Ausdrücke

Mehr

Klausur Formale Sprachen und Automaten Grundlagen des Compilerbaus

Klausur Formale Sprachen und Automaten Grundlagen des Compilerbaus Klusur Formle Sprchen und Automten Grundlgen des Compilerus 25. Novemer 2014 Nme: Unterschrift: Mtrikelnummer: Kurs: Note: Aufge erreichre erreichte Nr. Punkte Punkte 1 10 2 10 3 12 4 11 5 9 6 6 7 11 8

Mehr

Scheinklausur: Theoretische Informatik I

Scheinklausur: Theoretische Informatik I +//+ Scheinklusur: Theoretische Informtik I WS / Hinweise: Hlten Sie die Klusur geschlossen, is der Beginn durch die Aufsichtspersonen ngezeigt wird Betrugsversuche oder Stören hen sofortigen Ausschluss

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 6 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 6 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle ysteme, utomten, Prozesse 2010 M rockschmidt, F Emmes, C Fuhs, C Otto, T tröder Hinweise: Die Husufgben sollen in Gruppen von je 2 tudierenden us dem gleichen Tutorium berbeitet

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung) Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein

Mehr

Universität Karlsruhe Institut für Theoretische Informatik. Klausur: Informatik III

Universität Karlsruhe Institut für Theoretische Informatik. Klausur: Informatik III Nme Vornme Mtrikelnummer Lösungsvorschlg Universität Krlsruhe Institut für Theoretische Informtik o. Prof. Dr. P. Snders 8. März 2006 Klusur: Informtik III Aufgbe 1. Multiple Choice 10 Punkte Aufgbe 2.

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Lineren Algebr Lösungen Wintersemester 9/ Universität Heidelberg Mthemtisches Institut Lösungen Bltt Dr. D. Vogel Michel Mier Aufgbe 44. b 4 b b 4 ( )b Fll : = ( )b 4 b ( ) b ( ) ( )(b ) b

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informtik Johnnes Köler Institut für Informtik Humoldt-Universität zu Berlin WS 2011/12 Minimierung von DFAs Frge Wie können wir feststellen, o ein DFA M = (Z, Σ, δ, q 0,

Mehr

FORMALE SYSTEME. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. November Markus Krötzsch

FORMALE SYSTEME. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. November Markus Krötzsch FORMALE SYSTEME 7. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch TU Dresden, 2. November 2017 Rndll Munroe, https://xkcd.com/851_mke_it_better/, CC-BY-NC 2.5 Mrkus Krötzsch, 2. November 2017 Formle Systeme

Mehr

Mitschrift Repetitorium Theoretische Informatik und Logik

Mitschrift Repetitorium Theoretische Informatik und Logik Mitschrift Repetitorium Theoretische Informtik und Logik Teil 1: Formle Sprchen, 15.01.2010, 1. Edit Allgemeine Hinweise für die Prüfung Ds Pumping-Lemm für kontextfreie Sprchen kommt nicht (sehr wohl

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlgen der Theoretischen Informtik 3. Endliche Automten (II) 28.04.2016 Vioric Sofronie-Stokkermns e-mil: sofronie@uni-koblenz.de 1 Übersicht 1. Motivtion 2. Terminologie 3. Endliche Automten und reguläre

Mehr

2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2016/2017

2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2016/2017 2. Klusur zur Vorlesung Theoretische Grundlgen der Informtik Wintersemester 2016/2017 Lösung! echten Sie: ringen Sie den Aufkleber mit Ihrem Nmen und Mtrikelnummer uf diesem Deckbltt n und beschriften

Mehr

FORMALE SYSTEME. 6. Vorlesung: Reguläre Ausdrücke. TU Dresden, 27. Oktober Markus Krötzsch

FORMALE SYSTEME. 6. Vorlesung: Reguläre Ausdrücke. TU Dresden, 27. Oktober Markus Krötzsch FORMALE SYSTEME 6. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch TU Dresden, 27. Oktober 2016 Rückblick Mrkus Krötzsch, 27. Oktober 2016 Formle Systeme Folie 2 von 29 Wiederholung: Opertionen uf Automten

Mehr

1.5. Abbildung. DEFINITION injektiv, surjektiv, bijektiv Eine Abbildung f ist injektiv, falls es zu jedem y Y höchstens ein x X gibt mit

1.5. Abbildung. DEFINITION injektiv, surjektiv, bijektiv Eine Abbildung f ist injektiv, falls es zu jedem y Y höchstens ein x X gibt mit CHAPTER. MENGEN UND R ELATIONEN.5. ABBILDUNG.5. Abbildung Eine Abbildung (oder Funktion ist eine Reltion f über X Y mit der Eigenschft: für jedes x us X gibt es genu ein y Y mit (x,y f. Die übliche Schreibweise

Mehr

Informatik I WS 07/08 Tutorium 24

Informatik I WS 07/08 Tutorium 24 Info I Tutorium 24 Informtik I WS 07/08 Tutorium 24 10.01.08 Bstin Molkenthin E-Mil: infotut@sunshine2k.de Web: http://infotut.sunshine2k.de Anmeldung IPK Eine inoffizielle Info-1 Probeklusur findet m

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung Theoretische Informtik und Logik Üungsltt 2 (2013S) en Aufge 2.1 Geen Sie jeweils eine kontextfreie Grmmtik n, welche die folgenden Sprchen erzeugt, sowie einen Aleitungsum für ein von Ihnen gewähltes

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011 Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 011 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Snder Bruggink Automten und Formle Sprchen 1 Reguläre Sprchen Wir eschäftigen uns

Mehr

Ergänzungsblatt 6. Letzte Änderung: 24. November 2018

Ergänzungsblatt 6. Letzte Änderung: 24. November 2018 Ergänzungsltt 6 Letzte Änderung: 24. Novemer 2018 Theoretische Informtik I WS 2018 Crlos Cmino Erinnerung: Die Besprechungstermine für die Ergänzungen 7 is 10 fllen is uf Weiteres us. Aufgen, Lösungen

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunktion eines NFA (Folien 107 und 108) Wie sieht die Üerführungsfunktion us? δ : Z Σ P(Z) Ds heißt, jedem Pr us Zustnd

Mehr

Inhalt. Endliche Automaten. Automaten und Formale Sprachen. Franz Binder. Endliche Automaten. Deterministische Automaten

Inhalt. Endliche Automaten. Automaten und Formale Sprachen. Franz Binder. Endliche Automaten. Deterministische Automaten Formle Inhlt Reguläre Reguläre Formle Zustndsdigrmm Reguläre δ: Σ (Q Q Ω) Beispiel δ 0 δ 0 1 2 1 2 0 1 2 δ Formle Automt Reguläre Definition Ein nicht-deterministischer, endlicher Automt esteht us einer

Mehr

1.2 Eigenschaften der reellen Zahlen

1.2 Eigenschaften der reellen Zahlen 12 Kpitel 1 Mthemtisches Hndwerkszeug 12 Eigenschften der reellen Zhlen Alle Rechenregeln der Grundrechenrten der reellen Zhlen lssen sich uf einige wenige Rechengesetze zurückführen, die in der folgenden

Mehr

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz.

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz. Vorlesung Theoretische Informtik Sommersemester 2015 Prof. S. Lnge 6. Üungsltt 1. Aufge Es sei die folgende Grmmtik G = [Σ, V, S, R] gegeen. Dei seien Σ = {, } und V = {S, B}, woei S ds Strtsymol ist.

Mehr

Uebersicht. Asymptotische Notation. Komplexitätsanalyse. Mengenschreibweise. O-Notation (obere Schranke) Datenstrukturen & Algorithmen

Uebersicht. Asymptotische Notation. Komplexitätsanalyse. Mengenschreibweise. O-Notation (obere Schranke) Datenstrukturen & Algorithmen Dtenstrukturen & Algorithmen Uebersicht Mthemtische Hilfsmittel zur Komplexitätsnlyse Wchstum von Funktionen Rekursionsgleichungen Mtthis Zwicker Universität Bern Frühling 2010 2 Komplexitätsnlyse Wie

Mehr

Algebraische Topologie WS 2016/17 Lösungen der Woche 9

Algebraische Topologie WS 2016/17 Lösungen der Woche 9 6.132 - Algebrische Topologie WS 2016/17 Lösungen der Woche 9 Mrtin Frnklnd 5.1.2017 Aufgbe 1. Es sei X ein Rum und X = α U α eine disjunkte Vereinigung offener Teilmengen U α X. Zeigen Sie, dss X ds Koprodukt

Mehr

Vorlesung Theoretische Informatik Sommersemester 2018 Dr. B. Baumgarten

Vorlesung Theoretische Informatik Sommersemester 2018 Dr. B. Baumgarten Vorlesung Theoretische Informtik Sommersemester 28 Dr. B. Bumgrten Üungen zur Wiederholung quer durch den Stoff Mit Lösungseispielen Vollständigkeit wird nicht grntiert, und einige sind klusuruntypisch

Mehr

Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012

Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012 Institut für Theoretische Informtik Lehrstuhl Prof. Dr. D. Wgner Huptklusur zur Vorlesung Theoretische Grundlgen der Informtik Wintersemester 2011/2012 Hier Aufkleber mit Nme und Mtrikelnr. nbringen Vornme:

Mehr

Lineare Algebra I 5. Tutorium mit Lösungshinweisen

Lineare Algebra I 5. Tutorium mit Lösungshinweisen Fchbereich Mthemtik Prof Dr JH Bruinier Mrtin Fuchssteiner Ky Schwieger TECHNISCHE UNIVERSITÄT DARMSTADT AWS 07/08 0607 (T ) Linere Algebr I 5 Tutorium mit Lösungshinweisen Welche Gruppen kennen Sie? Welche

Mehr

Kapitel 7. Integralrechnung für Funktionen einer Variablen

Kapitel 7. Integralrechnung für Funktionen einer Variablen Kpitel 7. Integrlrechnung für Funktionen einer Vriblen In diesem Kpitel sei stets D R, und I R ein Intervll. 7. Ds unbestimmte Integrl (Stmmfunktion) Es sei f : I R eine Funktion. Eine differenzierbre

Mehr

2.6 Unendliche Reihen

2.6 Unendliche Reihen 2.6 Unendliche Reihen In normierten Räumen steht ds wichtige Werkzeug der Bildung von unendlichen Reihen zur Verfügung. Mn denke in diesem Zusmmenhng drn, dss mn in der Anlysis Potenz- und Fourierreihen

Mehr

2 2 Reguläre Sprachen. 2.6 Minimale DFAs und der Satz von Myhill-Nerode. Übersicht

2 2 Reguläre Sprachen. 2.6 Minimale DFAs und der Satz von Myhill-Nerode. Übersicht Formle Systeme, Automten, Prozesse Übersicht 2 2.1 Reguläre Ausdrücke 2.2 Endliche Automten 2.3 Nichtdeterministische endliche Automten 2.4 Die Potenzmengenkonstruktion 2.5 NFAs mit ɛ-übergängen 2.7 Berechnung

Mehr

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren.

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren. .. Orthogonle Bsen und Schmistsche Orthogonlisierungsverfhren. Definition.. Eine Bsis B = { b, b,..., b n } heit orthogonl, wenn die Vektoren b i, i =,,..., n, prweise orthogonl sind, d.h. bi b j = fur

Mehr

Franz Binder. Vorlesung im 2006W

Franz Binder. Vorlesung im 2006W Formle Reguläre und Formle Institut für Alger Johnnes Kepler Universität Linz Vorlesung im 2006W http://www.lger.uni-linz.c.t/students/win/ml Formle Inhlt Reguläre Reguläre Formle Zustndsdigrmm δ: Σ (Q

Mehr

Resultat: Hauptsatz der Differential- und Integralrechnung

Resultat: Hauptsatz der Differential- und Integralrechnung 17 Der Huptstz der Differentil- und Integrlrechnung Lernziele: Konzept: Stmmfunktion Resultt: Huptstz der Differentil- und Integrlrechnung Methoden: prtielle Integrtion, Substitutionsregel Kompetenzen:

Mehr

Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel als auch die partielle Integration zur Anwendung kommt.

Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel als auch die partielle Integration zur Anwendung kommt. 64 Kpitel. Integrlrechnung Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel ls uch die prtielle Integrtion zur Anwendung kommt..4.6 Beispiel Um eine Stmmfunktion für rctn zu finden, beginnen

Mehr

Algebra - Lineare Abbildungen

Algebra - Lineare Abbildungen Algebr - Linere Abbildungen oger Burkhrdt (roger.burkhrdt@fhnw.ch) 8 Hochschule für Technik . Der Vektorrum Hochschule für Technik Hochschule für Technik 4 Vektorrum Definition: Ein Vektorrum über einen

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten 2 Mthemtik Rechenfertigkeiten Skript Freitg Dominik Tsndy, Mthemtik Institut, Universität Zürich Winterthurerstrsse 9, 857 Zürich Irmgrd Bühler (Überrbeitung: Dominik Tsndy) 9.August 2 Inhltsverzeichnis

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fkultät für Informtik Prof. Tois Nipkow, Ph.D. Ssch Böhme, Lrs Noschinski Sommersemester 2011 Lösungsltt 4 20. Juni 2011 Einführung in die Theoretische Informtik Hinweis:

Mehr

Reduktion. Seien A Σ und B Γ. Man sagt A ist reduzierbar auf B (A B) gdw. von speziellem Interesse: Polynomialzeitreduktion

Reduktion. Seien A Σ und B Γ. Man sagt A ist reduzierbar auf B (A B) gdw. von speziellem Interesse: Polynomialzeitreduktion Reduktion Seien A Σ und B Γ. Mn sgt A ist reduzierr uf B (A B) gdw. f : Σ Γ. x Σ.x A f(x) B Í* * A B von speziellem Interesse: Polynomilzeitreduktion ( pol ), logrithmische-pltz- Reduktion ( log ). F3

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunction eines DFA (Folie 92) Wie sieht die Üerführungfunktion us? δ : Z Σ Z Ds heißt: Ein Pr us Zustnd und Alphetsymol

Mehr

26. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen

26. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen 26. Mthemtik Olympide 2. Stufe (Kreisolympide) Klsse 7 Sison 986/987 Aufgben und Lösungen OJM 26. Mthemtik-Olympide 2. Stufe (Kreisolympide) Klsse 7 Aufgben Hinweis: Der Lösungsweg mit Begründungen und

Mehr

LR(k)-Parser. CYK-Algorithmus ist zu langsam.

LR(k)-Parser. CYK-Algorithmus ist zu langsam. LR(k)-Prser Ziele: Effizienter (und deterministischer) Test, ob ein gegebenes Wort w in der Sprche L(G) enthlten ist. Flls j: Konstruktion des Syntxbums Flls nein: Hinweise zum Fehler CYK-Algorithmus ist

Mehr

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2.

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. FORMALE SYSTEME 7. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch Rndll Munroe, https://xkcd.com/851_mke_it_etter/, CC-BY-NC 2.5 TU Dresden, 2. Novemer 2017 Mrkus Krötzsch, 2. Novemer 2017 Formle Systeme

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl

Mehr

Numerische Integration

Numerische Integration Kpitel 4 Numerische Integrtion Problem: Berechne für gegebene Funktion f :[, b] R ds Riemnn-Integrl I(f) := Oft ist nur eine numerische Näherung möglich. f(x)dx. Beispiel 9. (i) Rechteckregel: Wir pproximieren

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

Name... Matrikel-Nr... Studiengang...

Name... Matrikel-Nr... Studiengang... Proeklusur zum ersten Teil der Vorlesung Berechenrkeitstheorie WS 2015/16 30. Novemer 2015 Dr. Frnzisk Jhnke, Dr. Dniel Plcín Bereitungszeit: 80 Minuten Nme... Mtrikel-Nr.... Studiengng... 1. So oder so

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien DFA Reguläre Grmmtik (Folie 89) Stz. Jede von einem endlichen Automten kzeptierte Sprche ist regulär. Beweis. Nch Definition, ist eine

Mehr

Berlin Klassik Mehr. 2. Helft Vater Huber bei der Entscheidung, indem ihr die Tabelle ausfüllt kwh kostet der Strom pro Jahr:

Berlin Klassik Mehr. 2. Helft Vater Huber bei der Entscheidung, indem ihr die Tabelle ausfüllt kwh kostet der Strom pro Jahr: 4 Terme, Vriblen und Gleichungen LS 01.M1 Fmilie Huber zieht in Kürze von Byern nch Berlin um. Sie hben eine schöne Wohnung gefun. Leider hben sie noch keinen Strom! Nun sitzt Vter Huber uf Umzugskisten

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

Minimalautomat. Wir stellen uns die Frage nach dem. kleinsten DFA für eine reguläre Sprache L, d.h. nach einem DFA mit möglichst wenigen Zuständen.

Minimalautomat. Wir stellen uns die Frage nach dem. kleinsten DFA für eine reguläre Sprache L, d.h. nach einem DFA mit möglichst wenigen Zuständen. Rechtslinere Sprchen Minimlutomt Es git lso sehr verschiedene endliche Beschreiungen einer regulären Sprche (DFA, NFA, rechtslinere Grmmtiken, reguläre Ausdrücke). Diese können ineinnder üersetzt werden.

Mehr

vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimalautomat: minimaler vollständiger DFA

vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimalautomat: minimaler vollständiger DFA Ws isher geschh NFA A = (X, Q, δ, I, F ) vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimlutomt: minimler vollständiger DFA Für jede Sprche L X sind die folgenden Aussgen

Mehr

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen Die ntürlichen Zhlen (zusmmen mit der Addition und der Multipliktion) wurden in Kpitel 3 xiomtisch eingeführt. Aus den ntürlichen Zhlen knn mn nun die gnzen Zhlen Z = {..., 2, 1, 0, 1, 2,...} die rtionlen

Mehr

38 Das Riemann-Integral vektorwertiger Funktionen über [a, b]

38 Das Riemann-Integral vektorwertiger Funktionen über [a, b] 38 Ds Riemnn-Integrl vektorwertiger Funktionen über [, b] 38.2 Riemnn-Integrierbrkeit von Wegen 38.4 Ds Riemnn-Integrl ist eine linere Abbildung von R([, b], V ) in V 38.9 Integrlbschätzung 38.10 Huptstz

Mehr

5.2 BASIC MSC (BMSC) BASIC MSC. Kommunikation zwischen Instanzen. Message Sequence Charts

5.2 BASIC MSC (BMSC) BASIC MSC. Kommunikation zwischen Instanzen. Message Sequence Charts BASIC MSC Ein System besteht us Instnzen. Eine Instnz ist eine bstrkte Einheit, deren Interktion mit nderen Instnzen oder mit der Umgebung mn (teilweise) beobchten knn. Instnzen kommunizieren untereinnder

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

29 Uneigentliche Riemann-Integrale

29 Uneigentliche Riemann-Integrale 29 Uneigentlihe Riemnn-Integrle 29.2 Uneigentlihe Riemnn-Integrle bei einer kritishen Integrtionsgrenze 29.3 Zusmmenhng des uneigentlihen mit dem eigentlihen Riemnn-Integrl 29.5 Cuhy-Kriterium für uneigentlihe

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Ingenieure II, SS 29 Dienstg 9.5 $Id: uneigentlich.te,v.5 29/5/9 6:23:8 hk Ep $ $Id: prmeter.te,v.2 29/5/9 6:8:3 hk Ep $ 3 Uneigentliche Integrle Mn knn die eben nchgerechnete Aussge e d =,

Mehr

b) Dasselbe System, die Unbekannten sind diesmal durchnummeriert:

b) Dasselbe System, die Unbekannten sind diesmal durchnummeriert: 1 Linere Gleichungssysteme 1. Begriffe Bspl.: ) 2 x - 3 y + z = 1 3 x - 2 z = 0 Dies ist ein Gleichungssystem mit 3 Unbeknnten ( Vriblen ) und 2 Gleichungen. Die Zhlen vor den Unbeknnten heißen Koeffizienten.

Mehr

6-1 Elementare Zahlentheorie. mit 1 b n und 0 a b (zusammen mit der Ordnung ) nennt man die n-te Farey-Folge, zum Beispiel ist

6-1 Elementare Zahlentheorie. mit 1 b n und 0 a b (zusammen mit der Ordnung ) nennt man die n-te Farey-Folge, zum Beispiel ist 6- Elementre Zhlentheorie 6 Frey-Folgen Die Menge F n der rtionlen Zhlen mit n und (zusmmen mit der Ordnung ) nennt mn die n-te Frey-Folge, zum Beispiel ist F = { < < < < < < < < < < } Offensichtlich gilt:

Mehr

6. Quadratische Gleichungen

6. Quadratische Gleichungen 6. Qudrtische Gleichungen 6. Vorbemerkungen Potenzieren und Wurzelziehen, somit uch Qudrieren und Ziehen der Qudrtwurzel, sind entgegengesetzte Opertionen. Sie heben sich gegenseitig uf. qudrieren Qudrtwurzel

Mehr

a) Eine Menge, die aus jeder Äquivalenzklasse genau ein Element enthält, ist

a) Eine Menge, die aus jeder Äquivalenzklasse genau ein Element enthält, ist Lösungen zu den Fschingsufgen Aufge 15 ) Eine Menge, die us jeder Äquivlenzklsse genu ein Element enthält, ist { n n N 0 } { n n N 0 } {}. ) n N 0 : w = n {w {, } ww L} = { k n+k k N 0 }. c) Nein. n N

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlgen der Informtik Übung 9. Übungstermin 09. Februr 2017 Mrcel Rdermcher INSTITUT FÜR THEORETISCHE INFORMATIK LEHRSTUHL ALGORITHMIK KIT Universität des Lndes Bden-Württemberg und ntionles

Mehr

ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018

ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018 ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018 KARLHEINZ GRÖCHENIG So wie Sort Trining erfordert, erfordert Mthemtik ds selbständige Lösen von Übungsufgben. Ds wesentliche n den Übungen ist ds Selbermchen!

Mehr

Technische Universität München SS 2006 Fakultät für Informatik Übungsblatt 5 Prof. Dr. A. Knoll 30. Juni 2006

Technische Universität München SS 2006 Fakultät für Informatik Übungsblatt 5 Prof. Dr. A. Knoll 30. Juni 2006 Technische Universität München SS 26 Fkultät für Informtik Übungsbltt 5 Prof. Dr. A. Knoll 3. Juni 26 Übungen zu Einführung in die Informtik II Aufgbe 5 Kleidung ) Wir definieren zunächst die Aktionenmenge

Mehr

Grundbegriffe der Informatik Aufgabenblatt 5

Grundbegriffe der Informatik Aufgabenblatt 5 Grundegriffe der Informtik Aufgenltt 5 Mtr.nr.: Nchnme: Vornme: Tutorium: Nr. Nme des Tutors: Ausge: 20. Novemer 2013 Age: 29. Novemer 2013, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Geäude 50.34

Mehr

Effiziente Algorithmen und Komplexitätstheorie

Effiziente Algorithmen und Komplexitätstheorie Effiziente Algorithmen und Komplexitätstheorie Vorlesung Ingo Wegener Vertretung Thoms Jnsen 10042006 1 Ws letzten Donnerstg geschh Linere Optimierung Wiederholung der Grundbegriffe und Aussgen M konvex

Mehr

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9 D-MAVT/D-MATL Anlysis I HS 26 Dr. Andres Steiger Lösung - Serie 9. MC-Aufgben (Online-Abgbe). Es sei f die Funktion f() = e + 7. Welche der folgenden Funktionen sind Stmmfunktionen von f? () g() = 2 2

Mehr

Vorkurs Mathematik Frankfurt University Of Applied Sciences, Fachbereich 2 1

Vorkurs Mathematik Frankfurt University Of Applied Sciences, Fachbereich 2 1 Vorkurs Mthemtik Frnkfurt University Of Applied Sciences, Fchbereich 1 Rechnen mit Potenzen N bezeichnet die Menge der ntürlichen Zhlen, Q die Menge der rtionlen Zhlen und R die Menge der reellen Zhlen.

Mehr

Beweis: Sind ϕ 1,ϕ 2 C 1 (Ω) Stammfunktionen von F, so folgt. grad(ϕ 2 ϕ 1 ) = gradϕ 2 gradϕ 1 = F F = 0,

Beweis: Sind ϕ 1,ϕ 2 C 1 (Ω) Stammfunktionen von F, so folgt. grad(ϕ 2 ϕ 1 ) = gradϕ 2 gradϕ 1 = F F = 0, Die Physiker nennen ds Grvittionsfeld konservtiv, weil der Energieerhltungsstz gilt. Die verrichtete Arbeit zum Beispiel bei Trnsport einer Msse vom Mthemtischen Institut zum Kndel entspricht genu der

Mehr

Mathematik Name: Vorbereitung KA2 K1 Punkte:

Mathematik Name: Vorbereitung KA2 K1 Punkte: Pflichtteil (etw 40 min) Ohne Tschenrechner und ohne Formelsmmlung (Dieser Teil muss mit den Lösungen bgegeben sein, ehe der GTR und die Formlsmmlung verwendet werden dürfen.) Aufgbe : [4P] Leiten Sie

Mehr

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf:

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf: Aufgbe : ) Lösen Sie die folgenden Gleichungen nch uf: = kein Problem einfch die Wurel iehen und ds ± nicht vergessen.. = = ±, b) + 5 = 0 Hier hben wir bei jedem Ausdruck ein, lso können wir usklmmern:

Mehr

Formal Languages and Automata

Formal Languages and Automata Forml Lnguges nd Automt Aufgensmmlung Jn Hldik und Stephn Schulz 10. Novemer 2014 1 Üungsufgen 1.1 Endliche Automten 1.1.1 Aufge Sei Σ = {, }. Geen Sie für die folgenden Sprchen einen DFA n L 0 = {w Σ

Mehr

Strophoiden DEMO. Text Nr Stand 17. April 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Strophoiden DEMO. Text Nr Stand 17. April 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Strophoiden Tet Nr. 5415 Stnd 17. April 016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5415 Strophoiden Vorwort Strophoiden sind wenig beknnte Kurven. Sie werden über eine

Mehr

F - 2 Unendliche Wahrscheinlichkeitsräume

F - 2 Unendliche Wahrscheinlichkeitsräume Diskrete Whrscheinlichkeitsräume Diskrete Whrscheinlichkeitsräume F - Definition F.45 (Diskreter Whrscheinlichkeitsrum) Seien Ω eine höchstens bzählbre Menge und P : P(Ω) [0, ] eine Funktion. Dnn heißt

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

3 Hyperbolische Geometrie

3 Hyperbolische Geometrie Ausgewählte Kpitel der Geometrie 3 Hperbolische Geometrie [... ] Im Folgenden betrchten wir nun spezielle gebrochen-linere Abbildungen, nämlich solche, für die (mit den Bezeichnungen ϕ,b,c,d wie oben die

Mehr

F - 2 Unendliche Wahrscheinlichkeitsräume

F - 2 Unendliche Wahrscheinlichkeitsräume Diskrete Whrscheinlichkeitsräume F - Definition F.45 (Diskreter Whrscheinlichkeitsrum) Seien Ω eine höchstens bzählbre Menge und P : P(Ω) [0, ] eine Funktion. Dnn heißt (Ω, P) ein diskreter Whrscheinlichkeitsrum,

Mehr

Theoretische Informatik I

Theoretische Informatik I Theoretische Informtik I Prof.-Dr. Peter Brezny Institut für Softwrewissenschft Universität Wien, Liechtensteinstrße 22 1090 Wien Tel. : 01/4277 38825 -mil : brezny@pr.univie.c.t Sprechstunde: Dienstg,

Mehr

Grundlagen der Informatik II Übungsblatt: 2, WS 17/18 mit Lösungen

Grundlagen der Informatik II Übungsblatt: 2, WS 17/18 mit Lösungen PD. Dr. Prdyumn Shukl Mrlon Brun Micel Wünsche Dr. Friederike Pfeiffer-Bohnen Dr. Luks König Institut für ngewndte Informtik und Formle Beschreibungsverfhren Grundlgen der Informtik II Übungsbltt: 2, WS

Mehr

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen.

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen. Trnsformtionsstz von Sebstin üller Integrtion über Normlgebiete Allgemein knn mn im R n ein Normlgebiet wie folgt definieren: G : { R n 1 b, ϕ 1 ( 1 ) ψ 1 ( 1 ), ϕ ( 1, ) 3 ψ ( 1, ),... ϕ n 1 ( 1,...,

Mehr

FK03 Mathematik I: Übungsblatt 1; Lösungen

FK03 Mathematik I: Übungsblatt 1; Lösungen FK03 Mthemtik I: Übungsbltt 1; Lösungen Verständnisfrgen: 1. Woher stmmen die Objekte in einer Menge? Die Objekte einer Menge entstmmen unserer Anschuung und unserem Denken. 2. Welche Drstellungen von

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip.

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip. Reguläre Sprchen Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 0 Ds Pumping-Lemm Wir hen is jetzt vier Formlismen kennengelernt, mit denen wir eine reguläre Sprche ngeen können:

Mehr

Prof. Dr. Siegfried Echterhoff.. 1 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG

Prof. Dr. Siegfried Echterhoff.. 1 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG Vorlesung SS 29 Anlysis 2 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG Teil : Fortsetzung des Studiums von Funktionen in einer reellen Vriblen (Integrtion und Tylorreihen). Huptstz der Integrl und Differentilrechnung

Mehr

Übungen zur Wiederholung quer durch den Stoff Vollständigkeit wird nicht garantiert, und einige sind umfangreicher als klausurtypisch.

Übungen zur Wiederholung quer durch den Stoff Vollständigkeit wird nicht garantiert, und einige sind umfangreicher als klausurtypisch. Vorlesung Theoretische Informtik Sommersemester 2017 Dr. B. Bumgrten Üungen zur Wiederholung quer durch den Stoff Vollständigkeit wird nicht grntiert, und einige sind umfngreicher ls klusurtypisch. 1.

Mehr

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen.

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen. Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.1.017 Themen: Reelle Zhlen, Qudrtwurzeln LGS mit drei Unbeknnten Checkliste Ws ich lles können soll Ich knn LGS mit drei Gleichungen und drei Unbeknnten

Mehr

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2 Zum Stz von Tylor Klus-R. Loeffler Inhltsverzeichnis 1 Der verllgemeinerte Stz von Rolle 1 2 Der Stz von Tylor 2 3 Folgerungen, Anwendungen und Gegenbeispiele 4 3.1 Jede gnzrtionle Funktion ist ihr eigenes

Mehr

2. Flächenberechnungen

2. Flächenberechnungen Anlysis Integrlrechnung. Flächenberechnungen.. Die Flächenfunktion ) Flächenfunktionen ufzeichnen Skizziere zur gegebenen Funktion diejenige Funktion, welche die Fläche unterhlb der Funktionskurve misst.

Mehr

Mathematik K1, 2017 Lösungen Vorbereitung KA 1

Mathematik K1, 2017 Lösungen Vorbereitung KA 1 Mthemtik K, 07 Lösungen Vorbereitung KA Pflichtteil (etw 0..0 min) Ohne Tschenrechner und ohne Formelsmmlung (Dieser Teil muss mit den Lösungen bgegeben sein, ehe der GTR und die Formlsmmlung verwendet

Mehr

Universität Stuttgart Wintersemester 2014/2015

Universität Stuttgart Wintersemester 2014/2015 Universität Stuttgrt Wintersemester 2014/2015 Fkultät 5, Institut IPVS Christoph Stch Übungen zu PSE ufgbenbltt 1. EBNF I Gegeben sei dieses Regelsystem einer EBNF: S = B c B ; = ( C); B = ( b b B); C

Mehr

Grundbegriffe der Informatik Aufgabenblatt 6

Grundbegriffe der Informatik Aufgabenblatt 6 Mtr.nr.: Nchnme: Vornme: Grundbegriffe der Informtik Aufgbenbltt 6 Tutorium: Nr. Nme des Tutors: Ausgbe: 2. Dezember 2015 Abgbe: 11. Dezember 2015, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Gebäude

Mehr