Physikalische Chemie I

Größe: px
Ab Seite anzeigen:

Download "Physikalische Chemie I"

Transkript

1 Physikalische Chemie I Dozenten: Vorlesung Prof. Dr. Cornelia Palivan (Tel: Cornelia.Palivan@unibas.ch) Prof. Dr. Wolfgang Meier (Tel: Wolfgang.Meier@unibas.ch) Dr. Jens Gaitzsch (Tel: Jens.Gaitzsch@unibas.ch) Übungen: Dr. Anja Car (Tel: Anja.Car@unibas.ch) Dr. Jens Gaitzsch (Tel: , Jens.Gaitzsch@unibas.ch)

2 Physikalische Chemie I Format: Vorlesung, Übungen Zeit: Vorlesung: Do, 10:15-12h, Grosser Hörsaal PC 3.10 Fr, 10:15-12h, Grosser Hörsaal PC 3.10 Übungen: Di, 10:15-10h AC207 ( ) > Chemistry online > Physikalische Chemie 1: - enthält Vorlesungsunterhalten jeweils 1,2 Tage vor der Vorlesung zum Ausdrucken - allgemeine Informationen - Übungsblättern

3 Inhalt 1. Thermodynamik 1. Einleitung 2. Gase (ideale Gase, reale Gase, kinetische Gastheorie) 3. Der 1. Hautsatz der Thermodynamik 4. Der 2. Hautsatz der Thermodynamik 5. Physikalische Umwandlungen reiner Stoffe 6. Die Eigenschaften einfacher Mischungen 7. Phasendiagramme

4 Inhalt 2. Kinetik 1. Das chemische Gleichgewicht 2. Das Geschwindigkeit chemischer Reaktionen 3. Die Kinetik zusammengesetzter Reaktionen Weiterführende Literatur: P. Atkins, J. de Paula, Physikalische Chemie, Wiley-VCH Verlag GmbH& Co, 2013 G. Wedler, H-J. Freund, Lehrbuch der Physikalischen Chemie, Wiley-VCH Verlag GmbH& Co, 2013 F. Bergler, «Physikalische Chemie», Wiley-VCH Verlag GmbH& Co, 2013.

5 Physikalische Chemie I Warum beschäftigen wir uns mit Thermodynamik und Kinetik? Warum liefert eine chemisch Reaktion ein bestimmtes Produkt und nicht ein anderes? Warum faltet sich ein Protein in einer bestimmten Art? Warum bilden sich Wassertrofen aus Wolken? Warum wird Salat matschig wenn man den länger stehen lässt? Warum liefert eine Batterie elektrischen Strom? Warum kommen sich Moleküle nicht näher?

6 Actuelle Entdeckungen Lj Galaxie µm Neue Materialien 2-10 nm Biomolekülen: DNA, Proteine

7 Einleitung: Lernziele Die Aggregationszustände der Materie Der feste Zustand Der flüssige Zustand Lösungen Der Gaszustand

8 Physikalische Chemie Ideen, die man nicht überrüfen kann, haben nichts mit Wissenschaft zu tun. Zur Physikalische Chemie gehört auch die Matematik. Der mathematische Unterbau muss gesichert sein, wenn unsere Vorstellungen über das Verhalten von Molekülen und Systemen einer exerimentellen Ueberrüfung standhalten sollen. Die Mathematik oft Schwierigkeiten bereitet > das Erlernen dieses wichtigen Bestandteils der hysikalischen Chemie so einfach wie moglich zu machen.

9 Die Aggregationszustände der Materie Klassische Aggregationszustande Der feste Zustand Der flüssige Zustand Der Gaszustand Wärme

10 Nichtklassische Aggregationszustande: Plasma Plasma in einer Plasmalame Polarlicht Wird in anderen PC-i Vorlesungen diskutiert Sonnenatmoshäre

11 Klassische Aggregationszustande: Beisiele

12 Der feste Zustand Festkörer : Substanzen die volumenkonstant und formelastisch sind. Beisiele: Kristalle und Gläser - Bausteine: eriodisch in einem 3D Gitter angeordnet. - Kristalle sind homogen und anisotro - Eingefrorene Flüssigkeiten oder Festkörer, die unregelmässige Anordnung von Bausteine haben. - Jede Substanz kann durch Abschrecken der Schmelze in ein Glas überführt werden.

13 Actuelle Entdeckungen Grahenkristalle: Konstantin Novoselov und Andre Geim Nobelreis für Physik (2010).

14 Der flüssige Zustand o Die Flüssigkeiten können beliebige Formen annehmen. o Die Komressibilität von Flüssigkeiten ist mit der von Festkörer vergleichbar. o Die Molekülen sind freibeweglich > keine geordnete Struktur. o Oberhalb des Schmelzunktes > die ganze Probe geht in eine strukturlose Flüssigkeit über. o Viskosität = ein Mass für die Fliessfähigkeit einer Flüssigkeit (η). η e E RT E > Zwischenmolekulare Wechselwirkungen R = J/K mol T = Temeratur

15 Viskosität Einheiten: SI: [η] = Pa s CGS: [η] = P (Poise) 1Pa s = 10 P

16 Aktuelle Entdeckungen Wasser Trohen: Bilder/ Sekunde (2012) Wasser Trohen: 6000 Bilder/ Sekunde (2006)

17 Losungen o Solvatation = Ionenkristalle lösen sich oft in Lösungsmitteln. o Hydratation: Wasser als Lösungsmittel o Die Konzentration = Substanzmenge/Volumeneinheit der Lösung. Einheit: mol/ L, mol/dm 3 o Die Molalität: die Substanzmenge, geteilt durch die Masse des Losungsmittel. Einheit: mol/kg o Die Molarität: Wenn man 1 mol einer Substanz in soviel Lösungsmittel löst, dass man gerade 1dm 3 Lösung erhalt. Einheit: mol/dm 3 =1M

18 Beisiele o In einer wässrigen 1M NaCl- Lösung sind Na + und Cl - im Durchschnitt 1 nm voneinander entfernt > es assen 3 H 2 O Moleküle dazwischen. 1M H 2 O Moleküle Cl - Na + o In einer wässrigen 0.01M NaCl- Lösung sind Na + und Cl - weiter voneinander entfernt > es assen 10 H 2 O Moleküle dazwischen. o In einer sehr verdünnten wässrigen NaCl- Lösung sind Na + und Cl - noch weiter voneinander entfernt > die Wechselwirkungen zwischen Ionen keine Rolle mehr sielen.

19 Der Gaszustand o Ein Gas ist eine Form der Materie, die jedes Gefäss, in das man sie gibt, vollständig ausfühlt. o Der Gaszustand = die Moleküle in ständiger, regelloser Bewegung. o Der mittlere Abstand zwischen den Molekülen >> Moleküldurchmesser. Ar =1bar =10 bar o Zwischenmolekulare Wechselwirkungen sielen keine Rolle (beim niedrigen Druck).

20 Aktuelle Entdeckungen Der Pferdekofnebel

21 1. Gase: Lernziele o o o o o o o o o o Die Zustände der Gase Der Nullte Hausatz der Thermodynamik; Temeraturskala Das Boylesche Gesetz-, das Charles Gesetg, Gay-Lussacsche Gesetz; die Avogadrosche Hyothese Das erfekte Gasgesetz Zustandfunktionen, artialle Ableitungen, totales Differential Gasmischungen; das Daltonsche Gesetz Der Unterschied zwischen realen Gasen und erfekten Gasen Die Virialgleichung Die Begriffe: Isotherme, Komressionsfaktor und Damfdruck Die van-der-waals sche Gleichung P. Atkins, J. de Paula, Physikalische Chemie, Wiley-VCH Verlag GmbH& Co, 2013, 1.

22 Die Zustände der Gase o Der hysikalische Zustand eines Stoffes = die hysikalische Eigenschaften. o Der Zustand eines reinen Gases ist durch Angabe der Werte für Volumen (V), Stoffmenge (n), Druck () und Temeratur (T) definiert. o Ein reines Gas ist durch eine Zustandsgleichung beschrieben: = f (T, V, n)

23 Druck o Der Druck = Kraft (F) dividiert durch die Fläche (A), auf die die Kraft wirkt. A F Einheiten: Pascal 1Pa = 1 N m -2 (SI) Bar 1 bar = 10 5 Pa Atmoshäre 1 atm = x 10 5 Pa Torr 1 Torr = Pa mm Quecksilbersäule 1 mm Hg = Pa o Zwei Gase befinden sich in voneinander getrennten Behältern mit einer gemeinsamen beweglichen Wand: Zeit 1 > 2 1 = 2 mechanischen Gleichgewicht

24 Temeratur o Die Eigenschaft Temeratur gibt die Richtung des Energieflusses durch eine Wärme leitende, starre Wand an. o Wenn Energie von A nach B fliesst (A und B miteinander in Kontakt kommen) > A hat eine höhere Temeratur als B A B Zeit A B T A > T B T A = T B Wandtyen: diathermisch adiabatisch thermisches Gleichgewicht

25 0. Hautsatz der Thermodynamik o 0. Hautsatt der Thermodynamik: Wenn A im thermischen Gleichgewicht mit B ist und desgleichen B mit C, so sind auch A und C miteinander im thermischen Gleichgewicht. A B C o Der 0. Hautsatz: rechtfertigt das Konzet der Temeratur ist von Bedeutung als Grundrinzi der Funktionsweise des Thermometers.

26 Temeraturskala o Celsius Temeraturskala: Temeraturen wurden mit Bezug auf die Länge einer Flüssigkeitssäule (Wasser) festgelegt: die Längendifferenz, die sich ergab, wenn das Thermometer erst in schmelzendes Eis und dann in siedendes Wasser getaucht wurde = 100 Grad. Symbol: θ (ºC) o Thermodynamische Temeraturskala: ein stofftunabhängige absolute Temeraturskala (mit Hilfe eines idealen Gases). Symbol: T(K) o Die Beziehung zwischen thermodynamischer und Celsius-Temeratur: T(K) = θ(ºc) θ(ºc) = T(K)

27 Wissen Sie dass? - 26ºC ist die minimale Temeratur für das Leben > die Mikroorganismen können nicht mehr roliferieren Die Moleküle weisen eine Temeratur von rund 173ºC (100K) im Aussenbereich von Pferdekofnebula, und -258ºC (15K) im Kernbereich des Nebels auf. DieTemeratur im Kernbereich des Sonnes von rund Milionen ºC ist. Die Temeratur am Oberfläche des Sonnes von rund 5800ºC ist.

28 Die Gasgesetze o Die Zustandsgleichung eines Gases wurde durch Kombination mehrerer emirischer Gesetzmässigkeiten aufgestellt. Variabel:, T, V, n o Das Boyle sche Gesetz (1661) : der Zusammenhang zwischen Druck und Volumen einer konstanten Stoffmenge eines Idealen Gases bei konstanten Temeraturen. V = Konstante (n, T - Konst.) Isotherme o Molekulares Bild: A F E 2F A A E = 2 A

29 Das Gesetz von Charles /Gay-Lussac o Das Gesetz von Charles und Gay-Lussac : der Zusammenhang zwischen Volumen oder Druck und Temeratur einer konstanten Stoffmenge eines Idealen Gases bei konstanten Druck oder Volumen. V = Konst. T (n, Konst.) Isobare V, = Konst. T (n, V Konst.) Isochore T

30 Die molekulare Erklärung des Gesetzes von Charles/Gay Lussac o Das Gesetz von Charles/Gay-Lussac ist ein Beisiel für einen Zusammenhang, der nur in einem bestimmten Grenzfall ( 0) exakt gilt. V f T f V T i T f = i f = i T i o Die mittlere Geschwindigkeit der Moleküle eines Gases nimmt mit steigender Temeratur zu > die Moleküle treffen häufiger und heftiger auf die Gefässwand, üben also einen grösseren Druck aus. T A F E F A A

31 Avogadro Prinzi o Avogadro Prinzi: Gleiche Volumina eines Gases bei gleicher Temeratur und gleichem Druck enthalten die selbe Anzahl Moleküle. V = Konst. n bei konstantem, und T o Avogadro Prinzi ist kein Gesetz im eigentlichen Sinne, weil es von der Gültigkeit eines Modells (die Existenz von Molekülen) abhängt. o Die Beziehungen sind nur bei 0 exakt gültig. o Die Beziehungen können auch bei alltäglichen = 1bar sinnvoll angewendet werden. Standarddruck

32 Die einzelnen Gasgesetze Isobare Isochore Isotherme

33 Die Zustandsgleichung des idealen Gases V = Konst. nt o Zustandsgleichung des idealen Gases ist die näherungsweise gültige Zustandsgleichung aller Gase: V = nrt V -1 T = ct R = Gaskonstante ( J K -1 mol -1 ) o Die Zustandsgleichung des idealen Gases trifft um so exakter zu, je kleiner der Druck des Gases ist! o Gas: - ideal (erfekt) - real

34 Die Zustandsgleichung des idealen Gases Eigenschaften der Zustandsgleichung für ideale Gase: o Sie ist universell (substanzunabhängig), d.h. sie gilt für alle Gase und Gasmischungen. o Sie ist eine Idealisierung, die üblicherweise bei hohen Temeraturen und tiefen Drücken gut geeignet ist, jedoch die Kondensation zu Flüssigkeiten nicht zu beschreiben vermag. o Sie ist mathematisch einfach. o Das Molvolumen, V m Alternative Formulierungen: extensive Formulierung (mit V und n): intensive Formulierung (mit V m ): V m = V n V = nrt V m = RT

35 Die Zustandsgleichung des idealen Gases o Standardbedingungen (STP): T = 0ºC und = 1 atm Molvolumen V m (gas) = L/mol o Standard Umgebungsbedingungen (SATP): T = 25ºC und = 1 bar Molvolumen V m (gas) = L/mol o z. B. Ein System: - am Anfang (n 1, 1,V 1, T 1 ) - am Ende (n 2, 2,V 2, T 2 ) V 1 n T = n 2 2 V T 2 2 T = 2 n1 2V2T n V

36 Die Zustandsgleichung des idealen Gases 3D Darstellung (, V, T) = f(t, V), V = f(, T), und T = f(, V) Zustandsfläche 0

37 Zustandsfunktionen o Zustandsfunktionen = Grössen, die nur von gegenwärtigem Zustand des Systems abhängen = Grössen die unabhängig sind, wie der Zustand erreicht wurde. o z. B.: In einem Gas hängt der Enddruck P f nach einer Temeratur- und Volumenänderung nur vom End- Volumen V f und der End-Temeratur T f ab und nicht, wie diese Änderung durchgeführt wurde. P 0 P f f T = T f i i

38 Eigenschaften von Zustandsfunktionen Beim Schifahren hängt Ihre otentielle Energie am Berg nur von Ihrem Standort ab und nicht, wie sie dort hin gekommen sind (die Höhendifferenzen sind wegunabhängig). o Mathematische Eigenschaften von Zustandsfunktionen: Sie sind eindeutig, d.h., für jede Wahl der unabhängigen Zustandsvariablen existiert genau ein Funktionswert. Sie sind stetig. Sie sind differenzierbar.

39 o Die Wegunabhängigkeit Differential geschreiben. Partielle Ableitungen die Grösse kann man als exaktes, totales Reetieren Sie den Stoff über Differentialrechnung aus Ihrer Mathematikvorlesung! Ableitung einer Funktion f von zwei unabhängigen Variablen (x,y) f(x,y): o Partielle Ableitung = Steigung der Funktion entlang einer Koordinate, wobei alle anderen Koordinaten konstant gehalten werden. Partielle Ableitung nach x bei konstantem y: f x Partielle Ableitung nach y bei konstantem x: y = lim x 0 f ( x + x, y) f ( x, y) x f y x = lim y 0 f ( x, y + z) f ( x, y) y

40 Totales Differential o Das totale Differential df gibt die totale infinitesimale Änderung einer Funktion f(x,y) bei einer infinitiesimalen Variation dx und dy der unabhängigen Variablen x und y an. df ( x + dx, y + dy ) f ( x y ) = dx + dy = f, f x y f y x z. B. f = 2x 2 y df = 4xy dx + 2x 2 dy Beachten Sie die Notation: f ist die artielle Ableitung, df das totale Differential von f!

41 Volumen als Zustandsgrösse o Volumen ist eine Zustandsgrösse = die Änderung ist unabhängig vom Weg (z. B. : T, ) o Die infinitesimale Änderung des molaren Volumens als totales Differential: dv m = V T m dt + V m T d f = V m x = T y = Thermische Ausdehnung Komressibilität

42 Differentialkoeffizienten des Volumens o Thermischer Ausdehnungskoeffizient: α α = 1 V V T o Sannungskoeffizient: β β = 1 T V m o Thermischer Komresibilitätkoeffizient: k k V V = 1 V T o Das negative Vorzeichen dient dazu, für ositive Zahlenwerte von k zu sorgen, denn bei einer Druckerhöhung nimmt das Volumen ab! Einheiten: [α] SI = K -1 [β] SI = K -1 [k] SI = atm -1

43 Differentialkoeffizienten des Volumens: Ideale Gase Die infinitesimale Änderung von Volumen als totales Differential: o Für dv dvm m = = 0 V T m dt + V m T d V T m V = m T T V m o Zusammenhang α, β, und k: k = 1 α β omessung eines exerimentell schwer zugänglichen Koeffizienten (k) kann man durch Messung von 2 leichteren Koeffizienten berechnen

44 Differentialkoeffizienten des Volumens: Ideale Gase Für ideale Gase: V = nrt α k 1 = T T V V 1 1 = = α 1 1 = = β β k = d V dt T V dv T m m m + = d V dt V dv m m m β α = α V V k T 1 1 = = T T m V = = β

45

46 Gasmischungen: Die Partialdrücke A: B: A = B = n n B A RT V RT V o Dalton sche Gesetz: Der Druck einer Mischung idealer Gase ist gleich die Summe der Drucke, die die Einzelkomonenten ausüben, wenn sie das Volumen der Mischung jeweils allein ausfüllen. = A + B = A + RT ( n n ) V B o Der Gesamtdruck wenn die Mischung aus mehreren Gasen, A, B, C,... Mit Stoffmengen n A, n B, n C,... bestehen: = j mit: j = n j RT V Partialdruck

47 Gasmischungen o Molenbruch (Stoffmengeanteil) = Stoffmenge n j im Verhältnis zur Gesamtzahl n der Moleküle in der Probe. n j x j = n = n A + n B + n C n j + n x j = 0 kein j Moleküle 1 Nur j Moleküle o Partialdruck j 1 j = x jnrt = x V o Die Summe der Molenbrücke aller Komonenten: j j x j = j n n j = 1

48 Gasmischungen o Der Gesamtdruck : mit: x = j j = j Partialdruck o Eine Zweikomonenten-Mischung ( A, B ) : = A + B B = x B reines A x A = 1 x B = 1 A = x A reines B

49 Wissen Sie dass...? Komonente Volumen anteil % kpa Partialdruck in: bar atm Luft Sauerstoff Stickstoff Argon Kohlenstoffdioxid

Physikalische Chemie I

Physikalische Chemie I Physikalische Chemie I 2017 Physikalische Chemie I Dozenten: Vorlesung Prof. Dr. Cornelia Palivan (Tel: 0612673839 Cornelia.Palivan@unibas.ch) Prof. Dr. Wolfgang Meier (Tel: 0612673802 Wolfgang.Meier@unibas.ch)

Mehr

Wolfgang Meier (Tel: Cornelia Palivan (Tel:

Wolfgang Meier (Tel: Cornelia Palivan (Tel: Einführung ng in die Physikalische Chemie Dozenten: Vorlesung Wolfgang Meier (Tel: 0612673802 Wolfgang.Meier@unibas.ch) Cornelia Palivan (Tel: 0612673839 Cornelia.Palivan@unibas.ch) Übungen: Anja Car (Tel:

Mehr

Physikalische Chemie I

Physikalische Chemie I Physikalische Chemie I Dozenten: orlesung Prof. Dr. Cornelia Palivan (Tel: 0612673839 Cornelia.Palivan@unibas.ch) Prof. Dr. Anatole von Lilienfeld (Tel: 0612673845, Anatole.vonLilienfeld@unibas.ch) Prof.

Mehr

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Einführung in die Phsikalische Chemie Teil 2: Makroskopische Phänomene und Thermodnamik Kapitel 7: Boltzmann-Verteilung Kapitel 8: Statistische Beschreibung makroskopischer Grössen Kapitel 9: Thermodnamik:

Mehr

Phasen, Komponenten, Freiheitsgrade

Phasen, Komponenten, Freiheitsgrade Phasendiagramme Lernziele: Phasen, Komonenten, Freiheitsgrade Die Phasenregel Zweikomonentensysteme: Damfdruckdiagramme, Hebelgesetz Zweikomonentensysteme: Siedediagramme (die Destillation von Mischungen,

Mehr

1 I. Thermodynamik. 1.1 Ideales Gasgesetz. 1.2 Vereinfachte kinetische Gastheorie. 1.3 Erster Hauptsatz der Thermodynamik.

1 I. Thermodynamik. 1.1 Ideales Gasgesetz. 1.2 Vereinfachte kinetische Gastheorie. 1.3 Erster Hauptsatz der Thermodynamik. 1 I. hermodynamik 1.1 Ideales Gasgesetz eilchenzahl N Stoffmenge: n [mol], N A = 6.022 10 23 mol 1 ; N = nn A molare Größen: X m = X/n ideales Gasgesetz: V = nr, R = 8.314JK 1 mol 1 Zustandsgrößen:, V,,

Mehr

Skript zur Vorlesung

Skript zur Vorlesung Skript zur Vorlesung 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für

Mehr

Grundlagen der Allgemeinen und Anorganischen Chemie. Atome

Grundlagen der Allgemeinen und Anorganischen Chemie. Atome Grundlagen der Allgemeinen und Anorganischen Chemie Atome Elemente Chemische Reaktionen Energie Verbindungen 361 4. Chemische Reaktionen 4.1. Allgemeine Grundlagen (Wiederholung) 4.2. Energieumsätze chemischer

Mehr

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I 05.12.2014 Wiederholung Teil 1 (28.11.2014) Fragenstellungen: Druckanstieg im Reaktor bei Temeraturerhöhung und Produktbildung? Wie groß

Mehr

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités)

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für die Temperatur Prinzip

Mehr

Gesetz von Boyle. Empirisch wurde beobachtet, dass bei konstanter Temperatur gilt: p.v = Konstant bzw V 1 / p bzw p 1 / V.

Gesetz von Boyle. Empirisch wurde beobachtet, dass bei konstanter Temperatur gilt: p.v = Konstant bzw V 1 / p bzw p 1 / V. Gesetz von Boyle Empirisch wurde beobachtet, dass bei konstanter Temperatur gilt: p.v = Konstant bzw V 1 / p bzw p 1 / V Isothermen Gesetz von Gay-Lussac Jacques Charles und Joseph-Louis Gay-Lussac fanden

Mehr

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System: Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar

Mehr

PC-Übung Nr.1 vom

PC-Übung Nr.1 vom PC-Übung Nr.1 vom 17.10.08 Sebastian Meiss 25. November 2008 1. Allgemeine Vorbereitung a) Geben Sie die Standardbedingungen in verschiedenen Einheiten an: Druck p in Pa, bar, Torr, atm Temperatur T in

Mehr

Ideale Gase. Abb.1: Versuchsanordnung von Torricelli

Ideale Gase. Abb.1: Versuchsanordnung von Torricelli Ideale Gase 1 Empirische Gasgesetze, Einblick in die Geschichte der Naturwissenschaften. Wie hängt das Volumen eines Gases von Druck, Temperatur und Stoffmenge ab? Definition Volumen V: Das Volumen V ist

Mehr

PC-Übung Nr.3 vom

PC-Übung Nr.3 vom PC-Übung Nr.3 vom 31.10.08 Sebastian Meiss 25. November 2008 1. Die Säulen der Thermodynamik Beantworten Sie folgende Fragen a) Welche Größen legen den Zustand eines Gases eindeutig fest? b) Welche physikalischen

Mehr

Phasen, Komponenten, Freiheitsgrade

Phasen, Komponenten, Freiheitsgrade Phasendiagramme 1 Lernziele: Ø Phasen, Komponenten, Freiheitsgrade Ø Die Phasenregel Ø Zweikomponentensysteme: Dampfdruckdiagramme, Hebelgesetz Ø Zweikomponentensysteme: Siedediagramme (die Destillation

Mehr

ELEMENTE DER WÄRMELEHRE

ELEMENTE DER WÄRMELEHRE ELEMENTE DER WÄRMELEHRE 3. Elemente der Wärmelehre 3.1 Grundlagen 3.2 Die kinetische Gastheorie 3.3 Energieumwandlungen 3.4 Hauptsätze der Thermodynamik 2 t =? 85 ºC t =? 61.7 ºC Warum wird der Kaffe eigentlich

Mehr

Lernziele: Phasen, Komponenten, Freiheitsgrade Die Phasenregel Zweikomponentensysteme: Dampfdruckdiagramme,

Lernziele: Phasen, Komponenten, Freiheitsgrade Die Phasenregel Zweikomponentensysteme: Dampfdruckdiagramme, Phasendiagramme Lernziele: ee Phasen, Komponenten, Freiheitsgrade Die Phasenregel Zweikomponentensysteme: Dampfdruckdiagramme, Hebelgesetz Zweikomponentensysteme: Siedediagramme (die Distillation von Mischungen,

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr

Die Eigenschaften einfacher

Die Eigenschaften einfacher Die Eigenschaften einfacher ischungen Lernziele: Thermodynamische eschreibung von ischungen Partielle molare Grössen, TD von Ischhasen Chemisches Potenzial flüssiger Phasen Eigenschaften von Lösungen,

Mehr

Lösungsvorschlag Übung 1

Lösungsvorschlag Übung 1 Lösungsvorschlag Übung Aufgabe : Physikalische Einheiten a) Es existieren insgesamt sieben Basisgrössen im SI-System. Diese sind mit der zugehörigen physikalischen Einheit und dem Einheitenzeichen in der

Mehr

Musterlösung zur Abschlussklausur PC I Übungen (27. Juni 2018)

Musterlösung zur Abschlussklausur PC I Übungen (27. Juni 2018) 1. Abkühlung (100 Punkte) Ein ideales Gas (genau 3 mol) durchläuft hintereinander zwei (reversible) Zustandsänderungen: Zuerst expandiert es isobar, wobei die Temperatur von 50 K auf 500 K steigt und sich

Mehr

d) Das ideale Gas makroskopisch

d) Das ideale Gas makroskopisch d) Das ideale Gas makroskopisch Beschreibung mit Zustandsgrößen p, V, T Brauchen trotzdem n, R dazu Immer auch Mikroskopische Argumente dazunehmen Annahmen aus mikroskopischer Betrachtung: Moleküle sind

Mehr

Modelle zur Beschreibung von Gasen und deren Eigenschaften

Modelle zur Beschreibung von Gasen und deren Eigenschaften Prof. Dr. Norbert Hampp 1/7 1. Das Ideale Gas Modelle zur Beschreibung von Gasen und deren Eigenschaften Modelle = vereinfachende mathematische Darstellungen der Realität Für Gase wollen wir drei Modelle

Mehr

Musterlösung Übung 3

Musterlösung Übung 3 Musterlösung Übung 3 Aufgabe 1: Der 1. Hautsatz der Thermodynamik a) Für ein geschlossenes System folgt aus der Energieerhaltung (Gleichung (94) im Skrit) du = dw + dq, (1.1) da ausser Arbeit und Wärme

Mehr

T 1 T T Zustandsverhalten einfacher Systeme (Starthilfe S ) - Prozess und Zustandsänderung. Prozess (Q 12

T 1 T T Zustandsverhalten einfacher Systeme (Starthilfe S ) - Prozess und Zustandsänderung. Prozess (Q 12 . Zustandserhalten einfacher Systeme (Starthilfe S. 9-38) - Prozess und Zustandsänderung Zustandsänderung δq Prozess (Q ) - thermodynamisch einfache Systeme reiner Stoff feste flüssige damfförmige Phase

Mehr

Grundlagen der statistischen Physik und Thermodynamik

Grundlagen der statistischen Physik und Thermodynamik Grundlagen der statistischen Physik und Thermodynamik "Feuer und Eis" von Guy Respaud 6/14/2013 S.Alexandrova FDIBA 1 Grundlagen der statistischen Physik und Thermodynamik Die statistische Physik und die

Mehr

2 Grundbegriffe der Thermodynamik

2 Grundbegriffe der Thermodynamik 2 Grundbegriffe der Thermodynamik 2.1 Thermodynamische Systeme (TDS) Aufteilung zwischen System und Umgebung (= Rest der Welt) führt zu einer Klassifikation der Systeme nach Art der Aufteilung: Dazu: adiabatisch

Mehr

3 Der 1. Hauptsatz der Thermodynamik

3 Der 1. Hauptsatz der Thermodynamik 3 Der 1. Hauptsatz der Thermodynamik 3.1 Der Begriff der inneren Energie Wir betrachten zunächst ein isoliertes System, d. h. es können weder Teilchen noch Energie mit der Umgebung ausgetauscht werden.

Mehr

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung.

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Nullter und Erster Hauptsatz der Thermodynamik. Thermodynamische

Mehr

1. Wärmelehre 1.1. Temperatur Wiederholung

1. Wärmelehre 1.1. Temperatur Wiederholung 1. Wärmelehre 1.1. Temperatur Wiederholung a) Zur Messung der Temperatur verwendet man physikalische Effekte, die von der Temperatur abhängen. Beispiele: Volumen einer Flüssigkeit (Hg-Thermometer), aber

Mehr

Zustandsbeschreibungen

Zustandsbeschreibungen Aggregatzustände fest Kristall, geordnet Modifikationen Fernordnung flüssig teilgeordnet Fluktuationen Nahordnung gasförmig regellose Bewegung Unabhängigkeit ngigkeit (ideales Gas) Zustandsbeschreibung

Mehr

1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen!

1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen! 1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen! http://www.physik.uni-giessen.de/dueren/ User: duerenvorlesung Password: ****** Druck und Volumen Gesetz von Boyle-Mariotte:

Mehr

Die kinetische Gastheorie beruht auf den folgenden drei Annahmen:

Die kinetische Gastheorie beruht auf den folgenden drei Annahmen: Physikalische Chemie Modul II Versuch: Reales Gas 20. Juli 2010 1 Einleitung Die kinetische Gastheorie beruht auf den folgenden drei Annahmen: 1. Das Gas besteht aus Molekülen der Masse m und dem Durchmesser

Mehr

Kapitel 10 - Gase. Kapitel 10 - Gase. Gase bestehen aus räumlich weit voneinander getrennten Atome/Moleküle in schneller Bewegung

Kapitel 10 - Gase. Kapitel 10 - Gase. Gase bestehen aus räumlich weit voneinander getrennten Atome/Moleküle in schneller Bewegung Kapitel 0 - Gase Gase bestehen aus räumlich weit voneinander getrennten Atome/Moleküle in schneller ewegung Druck Kraft pro Fläche in Pa(scal) oder bar Normdruck = 760mm = 0,35 KPa =,035 bar = atm Messung

Mehr

GPH2 Thermodynamik. 27. September Dieser Entwurf ist weder vollständig oder fehlerfrei noch ein offizielles Script zur Vorlesung.

GPH2 Thermodynamik. 27. September Dieser Entwurf ist weder vollständig oder fehlerfrei noch ein offizielles Script zur Vorlesung. GPH2 Thermodynamik Dieser Entwurf ist weder ollständig oder fehlerfrei noch ein offizielles Scrit zur Vorlesung. Für Anregungen und Kritik: mail@sibbar.de 27. Setember 2004 GPH2 Thermodynamik Seite 2 on

Mehr

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen IV. Wärmelehre 1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen Historisch: Wärme als Stoff, der übertragen und in beliebiger Menge erzeugt werden kann. Übertragung: Wärmezufuhr Joulesche

Mehr

Physikalische Chemie 0 Klausur, 22. Oktober 2011

Physikalische Chemie 0 Klausur, 22. Oktober 2011 Physikalische Chemie 0 Klausur, 22. Oktober 2011 Bitte beantworten Sie die Fragen direkt auf dem Blatt. Auf jedem Blatt bitte Name, Matrikelnummer und Platznummer angeben. Zu jeder der 25 Fragen werden

Mehr

Inhalt der Vorlesung. 1. Eigenschaften der Gase. 0. Einführung

Inhalt der Vorlesung. 1. Eigenschaften der Gase. 0. Einführung Inhalt der Vorlesung 0. Einführung 0.1 Themen der Physikal. Chemie 0.2 Grundbegriffe/ Zentrale Größe: Energie 0.3 Molekulare Deutung der inneren Energie U Molekülstruktur, Energieniveaus und elektromagn.

Mehr

Sekretariat (für alle organisatorischen Angelegenheiten): Frau Kogler und Frau Schmid Bereich Physikalische Chemie Heinrichstrasse 28, 2.

Sekretariat (für alle organisatorischen Angelegenheiten): Frau Kogler und Frau Schmid Bereich Physikalische Chemie Heinrichstrasse 28, 2. Physikalische Chemie 1, Sommersemester 2019 L. Grill, NAWI Graz Univ. Prof. Dr. Leonhard Grill Arbeitsgruppe Single-Molecule Chemistry Bereich Physikalische Chemie Universität Graz Heinrichstrasse 28,

Mehr

Physikalische Chemie 1

Physikalische Chemie 1 Physikalische Chemie 1 Christian Lehmann 31. Januar 2004 Inhaltsverzeichnis 1 Einführung 2 1.1 Teilgebiete der Physikalischen Chemie............... 2 1.1.1 Thermodynamik (Wärmelehre)............... 2 1.1.2

Mehr

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme 2 Wärmelehre Die Thermodynamik ist ein Musterbeispiel an axiomatisch aufgebauten Wissenschaft. Im Gegensatz zur klassischen Mechanik hat sie die Quantenrevolution überstanden, ohne in ihren Grundlagen

Mehr

IV T H E R M I S C H E V E R F A H R E N S T E C H N I K A G R U N D L A G E N

IV T H E R M I S C H E V E R F A H R E N S T E C H N I K A G R U N D L A G E N -IV A.1- IV T H E R M I S C H E V E R F A H R E N S T E C H N I K A G R U N D L A G E N 1 Einleitung Während heterogene Stoffgemische sich häufig durch mechanische Trennverfahren in ihre homogenen Phasen

Mehr

VCH Verlag GmbH& Co, 2010, 1.2

VCH Verlag GmbH& Co, 2010, 1.2 1. Gase: Lernziele o o o o o o o o o o Die Zustände der Gase Der Nullte Haupsatz der Thermodynamik; Temperaturskala Das Boylesche Gesetz-, das Gay-Lussacsche Gesetz; die Avogadrosche Hypothese Das perfekte

Mehr

PHYSIKALISCHE CHEMIE: Eine Einführung

PHYSIKALISCHE CHEMIE: Eine Einführung 1 PHYSIKALISCHE CHEMIE: Eine Einführung makroskoische Phänomene statische Phänomene Gleichgewichte in makroskoischen Systemen THERMODYNAMIK ELEKTROCHEMIE dynamische Phänomene Änderung der Konzentration

Mehr

Die Zusammensetzung am Ausgang der 1. Verdampfereinheit (0) kann aus dem beigefügten T, x-diagramm abgelesen werden zu

Die Zusammensetzung am Ausgang der 1. Verdampfereinheit (0) kann aus dem beigefügten T, x-diagramm abgelesen werden zu Fragenteil : Aufgabe 1 Phasengleichgewichte 15 P a Eine binäre Mischung wird in einer Verdamfereinheit kontinuierlich teilweise verdamft. Messtechnisch wurden für die Ausgangsströme der Temeratur, der

Mehr

O. Sternal, V. Hankele. 5. Thermodynamik

O. Sternal, V. Hankele. 5. Thermodynamik 5. Thermodynamik 5. Thermodynamik 5.1 Temperatur und Wärme Systeme aus vielen Teilchen Quelle: Wikimedia Commons Datei: Translational_motion.gif Versuch: Beschreibe 1 m 3 Luft mit Newton-Mechanik Beschreibe

Mehr

(VIII) Wärmlehre. Wärmelehre Karim Kouz WS 2014/ Semester Biophysik

(VIII) Wärmlehre. Wärmelehre Karim Kouz WS 2014/ Semester Biophysik Quelle: http://www.pro-physik.de/details/news/1666619/neues_bauprinzip_fuer_ultrapraezise_nuklearuhr.html (VIII) Wärmlehre Karim Kouz WS 2014/2015 1. Semester Biophysik Wärmelehre Ein zentraler Begriff

Mehr

Der Zweite Hauptsatz der TD- Lernziele

Der Zweite Hauptsatz der TD- Lernziele Der Zweite Hautsatz der D- Lernziele o Einleitung o Entroie (Definition, Entroie als Zustandsfunktion, die Clausius sche Ungleichung) o Der Zweite Hautzatz der D o Die Entroieänderungen bei seziellen Prozessen

Mehr

PC I Thermodynamik und Transportprozesse

PC I Thermodynamik und Transportprozesse 20.06.2006 15:19 1 PC I Thermodynamik und Transportprozesse Kapitel 5 20.06.2006 15:19 2 V. Lösungen und Mischungen Im Winter des Jahres 1729 setzte ich Bier, Wein, Essig und Salzwasser in großen offenen

Mehr

Thermodynamik. Kapitel 4. Nicolas Thomas

Thermodynamik. Kapitel 4. Nicolas Thomas Thermodynamik Kapitel 4 Arbeit und Wärme Länge, x F Kolben Länge, x F Der Kolben wird sehr langsam um die Distanz -dx verschoben. dx Kolben Wieviel Arbeit mussten wir leisten, um den Kolben zu bewegen?

Mehr

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a)

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a) Aufgabe 1: Multiple Choice (10P) Geben Sie an, welche der Aussagen richtig sind. Unabhängig von der Form der Fragestellung (Singular oder Plural) können eine oder mehrere Antworten richtig sein. a) Welche

Mehr

Physikalisch-chemische Grundlagen der Verfahrenstechnik

Physikalisch-chemische Grundlagen der Verfahrenstechnik Physikalisch-chemische Grundlagen der Verfahrenstechnik Günter Tovar, Thomas Hirth, Institut für Grenzflächenverfahrenstechnik guenter.tovar@igvt.uni-stuttgart.de Physikalisch-chemische Grundlagen der

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/hermodynamik Wintersemester 7 ladimir Dyakonov #3 am..7 Folien unter: htt://www.hysik.uni-wuerzburg.de/ep6/teaching.html.3 Ideales Gas Exerimentelle Bestimmung der

Mehr

Allgemeines Gasgesetz. PV = K o T

Allgemeines Gasgesetz. PV = K o T Allgemeines Gasgesetz Die Kombination der beiden Gesetze von Gay-Lussac mit dem Gesetz von Boyle-Mariotte gibt den Zusammenhang der drei Zustandsgrößen Druck, Volumen, und Temperatur eines idealen Gases,

Mehr

Der Erste Hauptsatz der TD- Lernziele

Der Erste Hauptsatz der TD- Lernziele hermodynamik (D) Fundamentale heorie der makroskoischen Eigenschaften der Materie: - Sontane Prozesse - Konzet der emeratur - Phasenübergänge - Energetik makroskoischer Phasen und chemischer Reaktionen

Mehr

Musterlösung Übung 10

Musterlösung Übung 10 Musterlösung Übung 10 Aufgabe 1: Phasendiagramme Abbildung 1-1: Skizzen der Phasendiagramme von Wasser links) und Ethanol rechts). Die Steigung der Schmelzkurven sind zur besseren Anschaulichkeit überzogen

Mehr

Ist a > b, dann ist b < a. Ist a < b, dann ist b > a. Ist a > b und b > c, dann ist a > c. Ist a < b und b < c, dann ist a < c.

Ist a > b, dann ist b < a. Ist a < b, dann ist b > a. Ist a > b und b > c, dann ist a > c. Ist a < b und b < c, dann ist a < c. Teil Allgemeines zu Ungleichungen Die gebräuchlichsten Symbole für Ungleichungen sind > (ist grösser als), < (ist kleiner als), (ist grösser als oder gleich), (ist kleiner als oder gleich), (ist ungleich)

Mehr

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C?

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? (-> Tabelle p) A 1.1 b Wie groß ist der Auftrieb eines Helium (Wasserstoff) gefüllten

Mehr

1) Ein offenes System zeichnet sich immer durch eine konstante Temperatur aus. zeichnet sich immer durch eine konstante Masse aus.

1) Ein offenes System zeichnet sich immer durch eine konstante Temperatur aus. zeichnet sich immer durch eine konstante Masse aus. 1) Ein offenes System zeichnet sich immer durch eine konstante Temperatur aus. zeichnet sich immer durch eine konstante Masse aus. kann mit der Umgebung Energie austauschen. kann mit der Umgebung Entropie

Mehr

Physikalische Chemie 1 (Thermodyn. u. Elektrochemie) SS09 - Blatt 1 von 13. Klausur PC 1. Sommersemester :15 bis 11:45.

Physikalische Chemie 1 (Thermodyn. u. Elektrochemie) SS09 - Blatt 1 von 13. Klausur PC 1. Sommersemester :15 bis 11:45. Physikalische Chemie 1 (Thermodyn. u. Elektrochemie) SS09 - Blatt 1 von 13 Klausur PC 1 Sommersemester 2009 03.08.2007 10:15 bis 11:45 Name: Vorname: geb. am: in: Matrikelnummer: Unterschrift: Für die

Mehr

Vorlesung Physik für Pharmazeuten PPh Wärmelehre

Vorlesung Physik für Pharmazeuten PPh Wärmelehre Vorlesung Physik für Pharmazeuten PPh - 07 Wärmelehre Aggregatzustände der Materie im atomistischen Bild Beispiel Wasser Eis Wasser Wasserdampf Dynamik an der Wasser-Luft Grenzfläche im atomistischen Bild

Mehr

Physikalische Aspekte der Respiration

Physikalische Aspekte der Respiration Physikalische Aspekte der Respiration Christoph Hitzenberger Zentrum für Biomedizinische Technik und Physik Themenübersicht Physik der Gase o Ideale Gasgleichung o Atmosphärische Luft o Partialdruck Strömungsmechanik

Mehr

Musterlösung Übungsklausur zur Vorlesung PC I Chemische Thermodynamik B.Sc.

Musterlösung Übungsklausur zur Vorlesung PC I Chemische Thermodynamik B.Sc. Musterlösung Übungsklausur zur Vorlesung PC I Chemische Thermodynamik B.Sc. Angaben zur Person: (bitte leserlich und in Druckbuchstaben) Name, Vorname: Geburtsdatum und ort: Matrikelnummer: Studienfach,

Mehr

Eigenschaften der Stoffe

Eigenschaften der Stoffe Eigenschaften der Stoffe 2 2.1 Formulierung des Zustands Die Transfers von Energien und Massen zu oder von einem System können durch die Eigenschaft seiner Grenzen beschrieben werden, nicht aber die Änderung

Mehr

Gasthermometer. durchgeführt am von Matthias Dräger, Alexander Narweleit und Fabian Pirzer

Gasthermometer. durchgeführt am von Matthias Dräger, Alexander Narweleit und Fabian Pirzer Gasthermometer 1 PHYSIKALISCHE GRUNDLAGEN durchgeführt am 21.06.2010 von Matthias Dräger, Alexander Narweleit und Fabian Pirzer 1 Physikalische Grundlagen 1.1 Zustandgleichung des idealen Gases Ein ideales

Mehr

3.2 Gasthermometer 203

3.2 Gasthermometer 203 3.2 Gasthermometer 203 3.2. Gasthermometer Ziel Verifizierung von Zusammenhängen, die durch die ideale Gasgleichung beschrieben werden (isotherme und isochore Zustandsänderung), Bestimmung des absoluten

Mehr

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert.

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert. Grundbegriffe der Thermodynamik Die Thermodynamik beschäftigt sich mit der Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur. Die Thermodynamik kann voraussagen,

Mehr

Kolligative Eigenschaften

Kolligative Eigenschaften Kolligative Eigenschaften Kolligative (lat. colligare, sammeln) Eigenschaften (in verdünnter Lösung): f(nzahl der eilchen des gelösten Stoffs) f(rt der eilchen des gelösten Stoffs) eispiel: Gefrierpunkt,

Mehr

Grundlagen der Physik II

Grundlagen der Physik II Grundlagen der Physik II Othmar Marti 12. 07. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Wärmelehre Grundlagen der Physik II 12. 07. 2007 Klausur Die Klausur

Mehr

11.2 Die absolute Temperatur und die Kelvin-Skala

11.2 Die absolute Temperatur und die Kelvin-Skala 11. Die absolute Temperatur und die Kelvin-Skala p p 0 Druck p = p(t ) bei konstantem olumen 1,0 0,5 100 50 0-50 -100-150 -00-73 T/ C Tripelpunkt des Wassers: T 3 = 73,16 K = 0,01 C T = 73,16 K p 3 p Windchill-Faktor

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 1. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 1. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 2, Teil 1 Prof. Dr. Ing. Heinz Pitsch Kapitel 2, Teil 1: Übersicht 2 Zustandsgrößen 2.1 Thermische Zustandsgrößen 2.1.1 Masse und Molzahl 2.1.2 Spezifisches

Mehr

Thermo Dynamik. Mechanische Bewegung (= Arbeit) Wärme (aus Reaktion) maximale Umsetzung

Thermo Dynamik. Mechanische Bewegung (= Arbeit) Wärme (aus Reaktion) maximale Umsetzung Thermo Dynamik Wärme (aus Reaktion) Mechanische Bewegung (= Arbeit) maximale Umsetzung Aussagen der Thermodynamik: Quantifizieren von: Enthalpie-Änderungen Entropie-Änderungen Arbeit, maximale (Gibbs Energie)

Mehr

Vorlesung Allgemeine Chemie Teil Physikalische Chemie WS 2009/10

Vorlesung Allgemeine Chemie Teil Physikalische Chemie WS 2009/10 Vorlesung Allgemeine Chemie Teil Physikalische Chemie WS 2009/10 Dr. Lars Birlenbach Physikalische Chemie, Universität Siegen Raum AR-F0102 Tel.: 0271 740 2817 email: birlenbach@chemie.uni-siegen.de Lars

Mehr

Thermische Energie kann nicht mehr beliebig in andere Energieformen umgewandelt werden.

Thermische Energie kann nicht mehr beliebig in andere Energieformen umgewandelt werden. Wärmemenge: hermische Energie kann nicht mehr beliebig in andere Energieformen umgewandelt werden. Sie kann aber unter gewissen oraussetzungen von einem Körer auf einen nderen übertragen werden. Dabei

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Einführung in die Wärmelehre - Prof. Dr. Ulrich Hahn WS 2008/09 Entwicklung der Wärmelehre Sinnesempfindung: Objekte warm kalt Beschreibung der thermische Eigenschaften

Mehr

Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden.

Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden. Fakultät für Physik der LMU München Prof. Ilka Brunner Michael Kay Vorlesung T4, WS11/12 Klausur am 18. Februar 2012 Name: Matrikelnummer: Erreichte Punktzahlen: 1 2 3 4 5 6 Hinweise Die Bearbeitungszeit

Mehr

1. Thermodynamische Potentiale, Maxwellgleichungen

1. Thermodynamische Potentiale, Maxwellgleichungen 69 KAPIEL G hermodynamische Potentiale 1. hermodynamische Potentiale, Maxwellgleichungen hermodynamische Potentiale sind Funktionen von den Zustandsvariablen. Wir haben schon die innere Energie kennengelernt,

Mehr

Experimentalphysik. Vorlesungsergänzung (VE), Wintersemester 2017 Modulnummer PTI 301

Experimentalphysik. Vorlesungsergänzung (VE), Wintersemester 2017 Modulnummer PTI 301 Experimentalphysik Vorlesungsergänzung (VE), Wintersemester 2017 Modulnummer PTI 301 Experimentalphysik, Inhalt VE 2.1: Temperatur und Wärmeausdehnung VE 2.2: Zustandsgleichung idealer Gase VE 2.3: Erster

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I W21 Name: Verdampfungswärme von Wasser Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Folgende Fragen

Mehr

Der Zweite Hauptsatz der TD- Lernziele

Der Zweite Hauptsatz der TD- Lernziele Der Zweite Hautsatz der D- Lernziele o Einleitung o Entroie (Definition, Entroie als Zustandsfunktion, die Clausius sche Ungleichung) o Der Zweite Hautzatz der D o Die Entroieänderungen bei seziellen Prozessen

Mehr

Theoretische Physik 4 Thermodynamik und Statistische Physik

Theoretische Physik 4 Thermodynamik und Statistische Physik Theoretische Phsik 4 Thermodnamik und Statistische Phsik Prof. Dr. Eric Lutz Universität Erlangen-Nürnberg Inhaltsverzeichnis 1 Thermodnamische Konzete 3 1.1 Was ist Thermodnamik?...........................

Mehr

Werner Langbein. Thermodynamik. Gleichgewicht, Irreversible Prozesse, Schwankungen. Verlag Harri Deutsch

Werner Langbein. Thermodynamik. Gleichgewicht, Irreversible Prozesse, Schwankungen. Verlag Harri Deutsch Werner Langbein Thermodynamik Gleichgewicht, Irreversible Prozesse, Schwankungen Verlag Harri Deutsch Einleitung 1 1 Gleichgewichtsthermodynaimiik 3 1 Thermodynamische Systeme 5 1.1 Geometrie und Inventar

Mehr

Lehrbuch der Thermodynamik

Lehrbuch der Thermodynamik Ulrich Nickel Lehrbuch der Thermodynamik Eine verständliche Einführung Ж HANSER Carl Hanser Verlag München Wien VII Inhaltsverzeichnis 1 GRUNDBEGRIFFE DER THERMODYNAMIK 1 Einführung 1 Systeme 3 offene

Mehr

Übung 3. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) Verständnis des thermodynamischen Gleichgewichts

Übung 3. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) Verständnis des thermodynamischen Gleichgewichts Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) adiabatische Flammentemperatur Verständnis des thermodynamischen Gleichgewichts Definition von K X, K c, K p Berechnung von K

Mehr

Höhere Experimentalphysik 1

Höhere Experimentalphysik 1 Höhere Experimentalphysik 1 Institut für Angewandte Physik Goethe-Universität Frankfurt am Main 9. Vorlesung 20.01.2017 Was bisher geschah Thermodynamik Thermodynamische Systeme und Zustandsgrößen Gleichgewichtszustand

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Vorlesung 1 Thermodynamik Andreas Brenneis, Marcus Jung, Ann-Kathrin Straub 13.09.2010 1 Allgemeines und Grundbegriffe Grundlegend für das nun folgende Kapitel Thermodynamik

Mehr

Wolfgang Heidemann. Technische Thermodynamik. Kompaktkurs für das Bachelorstudium. Wl LEY-VCH. Verlag GmbH & Co. KGaA

Wolfgang Heidemann. Technische Thermodynamik. Kompaktkurs für das Bachelorstudium. Wl LEY-VCH. Verlag GmbH & Co. KGaA Wolfgang Heidemann Technische Thermodynamik Kompaktkurs für das Bachelorstudium Wl LEY-VCH Verlag GmbH & Co. KGaA Inhaltsverzeichnis Vorwort XI Nomenklatur XIII 1 Einleitung 1 1.1 Technische Thermodynamik

Mehr

A 2.6 Wie ist die Zusammensetzung der Flüssigkeit und des Dampfes eines Stickstoff-Sauerstoff-Gemischs

A 2.6 Wie ist die Zusammensetzung der Flüssigkeit und des Dampfes eines Stickstoff-Sauerstoff-Gemischs A 2.1 Bei - 10 o C beträgt der Dampfdruck des Kohlendioxids 26,47 bar, die Dichte der Flüssigkeit 980,8 kg/m 3 und die Dichte des Dampfes 70,5 kg/m 3. Bei - 7,5 o C beträgt der Dampfdruck 28,44 bar. Man

Mehr

Onsagersche Gleichung. Energetische Beziehungen

Onsagersche Gleichung. Energetische Beziehungen Onsagersche Gleichung. Energetische Beziehungen R I 4 V t t 1 r 8... D A p l J LX c x Zustandsgrössen sind Grössen, die zur Beschreibung des Zustandes eines stofflichen Systems dienen, T, V, p, m,... T,

Mehr

Bernhard Härder. Einführung in die PHYSIKALISCHE CHEMIE ein Lehrbuch Chemische Thermodynamik W/ WESTAR.P WISSENSCHAFTEN. Skripte, Lehrbücher Band 2

Bernhard Härder. Einführung in die PHYSIKALISCHE CHEMIE ein Lehrbuch Chemische Thermodynamik W/ WESTAR.P WISSENSCHAFTEN. Skripte, Lehrbücher Band 2 Bernhard Härder Einführung in die PHYSIKALISCHE CHEMIE ein Lehrbuch Chemische Thermodynamik Skripte, Lehrbücher Band 2 W/ WESTAR.P WISSENSCHAFTEN Inhaltsverzeichnis Vorwort zur ersten Auflage Vorwort zur

Mehr

Aufgaben zur Wärmelehre

Aufgaben zur Wärmelehre Aufgaben zur Wärmelehre 1. Ein falsch kalibriertes Quecksilberthermometer zeigt -5 C eingetaucht im schmelzenden Eis und 103 C im kochenden Wasser. Welche ist die richtige Temperatur, wenn das Thermometer

Mehr

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer (vertreten durch Dr.

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer (vertreten durch Dr. Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I 28.11.2014 (vertreten durch Dr. Anna Klemmer) Intention der Vorlesung Grundverständnis für Chemie schaffen, so dass Sie keine schwerwiegenden

Mehr

1 Atmosphäre (atm) = 760 torr = 1013,25 mbar = Pa 760 mm Hg ( bei 0 0 C, g = 9,80665 m s -2 )

1 Atmosphäre (atm) = 760 torr = 1013,25 mbar = Pa 760 mm Hg ( bei 0 0 C, g = 9,80665 m s -2 ) Versuch Nr.51 Druck-Messung in Gasen (Bestimmung eines Gasvolumens) Stichworte: Druck, Druckeinheiten, Druckmeßgeräte (Manometer, Vakuummeter), Druckmessung in U-Rohr-Manometern, Gasgesetze, Isothermen

Mehr

Der erste Hauptsatz der TD- Lernziele

Der erste Hauptsatz der TD- Lernziele Der erste Hautsatz der D- Lernziele o Einleitung o Zustandgrössen und funktionen o Wärme, Arbeit und Energie o Innere Energie o Der erste Hautsatz der hermodynamik o olumenarbeit o Wärmeübergänge o Die

Mehr

1. Klausur zur Vorlesung Physikalische Chemie I

1. Klausur zur Vorlesung Physikalische Chemie I 1. Klausur zur Vorlesung Physikalische Chemie I Sommersemester 2006 8. Juni 2006 Angaben zur Person (BITTE LESERLICH UND IN DRUCKBUCHSTABEN) Name, Vorname... Geburtsdatum und -ort... Matrikelnummer...

Mehr