Der erste Hauptsatz der TD- Lernziele

Größe: px
Ab Seite anzeigen:

Download "Der erste Hauptsatz der TD- Lernziele"

Transkript

1 Der erste Hautsatz der D- Lernziele o Einleitung o Zustandgrössen und funktionen o Wärme, Arbeit und Energie o Innere Energie o Der erste Hautsatz der hermodynamik o olumenarbeit o Wärmeübergänge o Die Enthalie o Adiabatiche Anderung o Anderungen der Inneren Energie o Der Joule-homson-Effeckt o hermochemie P. Atkins, J. de Paula, Physikalische hemie, Wiley- H erlag GmbH& o, 2010, 2.

2 Der erste Hautsatz der D o Wärme und Arbeit sind die Möglichkeiten die Energie eines Systems zu beeinflussen. o Mathematische Formulierung des ersten Hautsatz der D: ΔU Q + w o Für infinitesimale Änderung des Systems: Q Wärme, die dem System zugeführte Energie w Arbeit, die an einem System verrichtet ist du dq + dw o Makroskoisch messbare Änderungen thermodynamischer Grössen werden durch Integration über alle infinitesimalen Änderungsschritte erhalten. o Ein griechisches Δ bezeichnet eine messbare makroskoische Änderung der relevanten thermodynamischen Grösse, die nach der Integration über alle infinitesimal kleinen Änderungen erhalten wird; wir lassen das Δ für Q und w weg, weil der ransfer von Wärme und Arbeit immer bereits eine eränderung imliziert.

3 Wegfunktionen o w > 0, Q > 0 wenn dem Systems Energie zugeführt wird. o w < 0, Q < 0 wenn dem Systems Energie entnommen wird. o w und Q sind Wegfunktionen (sind nicht totale Differentiale). o Weggrössen (auch ransfergrössen) sind thermodynamische Grössen deren Wert vom Weg abhängt, in dem das System in den gegenwärtigen Zustand gelangt ist. o Möglichkeiten, einen thermodynamischen Prozess zu führen ( Wege ): isotherm: die emeratur bleibt konstant isobar: der Druck bleibt konstant isochor: das olumen bleibt konstant adiabatisch: kein Wärmefluss Q0

4 olumenarbeit o olumenarbeit die Form von Arbeit, die mit einer olumenänderung verbunden ist. o Die allgemeine Formulierung der olumenarbeit die Arbeit, die erforderlich ist, um ein Objekt um eine Strecke dz gegen den Widerstand einer Gegenkraft F zu bewegen. dw Fdz o Gemäss der Figur rechts ist die Arbeit, die geleistet wird, wenn sich das System (schematisch dargestellt als Zylinder) um die Distanz dz ausdehnt. o Das System hat eine Wand, die bildet einen masselosen, reibungsfreien, starren, erfekt eingeasstenr Kolben der ex dz Fläche A. A ex A o Die entgegen der Ausdehnung wirkende Kraft ist: F ex A System

5 olumenarbeit o Wenn das System um die Strecke dz exandiert wird (gegen den äusseren Druck ex ), ist die Arbeit: dw d Adz ex Adz dw o Die Arbeit die insgesamt bei der w d olumenänderung von A auf E verrichtet ex A ist: o Die auf den Kolben wirkende Kraft ist äquivalent zum Anheben einer Masse durch die Exansion des Systems. ex d E o Findet stattdessen eine Komression statt, so wird die gleiche Masse in der Umgebung abgesenkt (jetzt A < E ). Bei der Komression wird an dem System Arbeit geleistet. o Wenn das Gas komrimiert wird, sinkt jedoch die Flächigkeit der Umgebung, Arbeit zu verrichten, in einem Mass, das von der abgesenkten Masse bestimmt wird diese ist die Energie, die dem System zugeführt wird.

6 Andere Formen der Arbeit o Für andere Formen der Arbeit, die wir nicht mechanische oder zusätzliche Arbeit nennen wollen, gelten analoge Beziehungen, jede Arbeit w ist: w (eine intensive Grösse) x (eine extensive Grösse) o Oberflächenarbeit (bei Emulsionen): γda o Längenausdehnung (Sannung eines Gummis): fdl γ die Oberflächensannung da die Oberflächenänderung f die Sannung dl die Längeänderung o Elektrische Arbeit: φdq φ das elektrische Potenzial dq die Ladungsänderung

7 Exansion eines Systems o Freie Exansion findet statt, wenn keine Gegenkraft wirkt. ex 0 dw ex d dw 0 w 0 o Bei der freie Exansion wird folglich keine Arbeit verrichtet. o Exansion gegen einen konstanten Druck findet statt, wenn z.b. der Kolben unter Atmoshärendruck steht. ex konst dw ex d w d ex E A ex ( ) E A w ex Δ

8 Reversible Exansion o Alle diese Prozesse können reversibel oder irreversibel geführt werden: - reversibel: Der Prozess kann durch eine infinitesimal kleine Änderung der relevanten Grösse wieder umgekehrt werden, d.h. das System ist ständig im thermodynamischen Gleichgewicht mit seiner Umgebung. - irreversibel: Der Prozess kann nicht umgekehrt werden (er assiert sontan) o z. B. Das thermische Gleichgewicht zweier Systeme mit gleicher emeratur: die Wärmeaustausch zwischen beiden Systeme verläuft reversibel o z. B. Ein System im mechanischem Gleichgewicht mit seiner Umgebung (ein Gas befindet sich in einem geschlossenen Behälter). ex o Wenn ex Damit eine Exansion reversibel ist: ex

9 o Exansionsvorgang: Reversible Exansion o Die gesamte, bei einer reversiblen Exansion geleistete Arbeit: w E A d dw exd d Die Zustandsgleichung: f() o z. B. Isotherme reversible Exansion eines idealen Gases. nr o Die Arbeit bei reversibler, isothermer olumenänderung von E nach E bei : w E A d nr b a dx x E A ln d b a w nr ln E A

10 Isotherme Reversible Exansion o Die Arbeit bei reversibler, isothermer olumenänderung von E nach E bei : w nr ln E A o Exansion: E > A w < 0 Das System verrichtetet Arbeit an der Umgebung. Die Innere Energie ist gesunken Der Betrag der Arbeit ist gleich die Fläche unter der Isotherme (reversible Exansion) Die Rechteckfläche, die man für eine irreversible Exansion gegen einen konstanten äusseren Druck erhält Die maximale Arbeit, die wir aus einen System gewinnen können, wird erhalten, wenn das System reversibel arbeitet

11 Wärmeübergänge o Allgemein ist die Änderung der Inneren Energie eines Systems: du dq + dw dq + dw ol + dw e o Wird des olumens eines Systems konstant gehalten: o Das System keinerlei andere Arbeit verrichten kann: o Für eine endliche Zustandsänderung: dw ol d dw e dw ol dw e 0 ΔU Q 0 die olumenarbeit die extra-arbeit du dq Q < 0 (die Wärmemenge die aus dem System abgeführt ist), bei konst. Q > 0 (die Wärmemenge die einem System zugeführt ), bei konst.

12 Die Wärmekaazität o Wird die emeratur des Systems um einen infinitesimal kleinen Betrag d geändert, so verändert sich die innere Energie um einen Betrag du roortional zu d: dq d o Die Proortionalitätskonstante wird Wärmekaazität genannt. o Die Wärmekaazität eines Stoffes ist eine extensive Eigenschaft. o Es gibt zwei verschiedene Wärmekaazitäten: Wärmekaazität bei konstantem olumen Wärmekaazität bei konstantem Druck o z. B. Der Index deutet an, dass die emeraturänderung bei konstantem olumen stattfindet.

13 Die Wärmekaazität o Die Wärmekaazität hängt von den Bedingungen ab, unter denen dem System Wärme zugeführt wird. o Bei konstantem Druck kann ein eil der ausgetauschten Energie auch in Form von Arbeit mit der Umgebung ausgetauscht werden: o ist ein Mass für die Fähigkeit (Kaazität) eines Stoffes, Energie (Wärme) bei einer emeraturerhöhung zu seichern. o Die Innere Energie eines Stoffes nimmt mit steigender emeratur zu. Das Ausmass dieser Energieerhöhung hängt von den Bedingungen ab, bei denen der orhang stattfindet. o z. B. konst. du dq dq d U

14 Die Wärmekaazität o Die Innere Energie in Abhängigkeit von der emeratur die Steigung der Kurve bei beliebiger emeratur nennt man die Wärmekaazität des Stoffes bei der betreffender emeratur. ( A) ( B) o Die Innere Energie in Abhängigkeit von der emeratur und dem olumen: die Änderung von U mit der emeratur bei bestimmtem konstantem, entsricht der eingezeichneten Kurve arallel zur -Achse die Steigung ist.

15 Die Wärmekaazität o Die molare Wärmekaazität bei konstanten olumen: o Die molare Wärmekaazität bei konstanten olumen eines einatomigen Gases ist: 25, 1bar, m 1 1 [ JK ] mol An afel: He Ar N2 O , m 3, m 2 n R o Die sezifische Wärmekaazität bei konstanten olumen: o Die Änderung der Inneren Energie für die emeraturanderung eines Systems mit konstanten olumen: Δ U Δ, s du m d

16 Die Enthalie o Wenn ein System bei konst., sein olumen ungehindert ändern kann: Δ U < Q Wärme w o Die zugeführte Wärme entsricht der Aenderung einer anderen D Eigenschaft des Systems, der Enthalie. o In der hermodynamik definiert man eine Reihe von Hilfsgrössen, die in bestimmten Situationen eine sezielle hysikalische Bedeutung annehmen. In der hemie ist eine der wichtigsten Hilfsgrössen die Enthalie H: H U + o Die Enthalie ist eine Zustandsfunktion (da U, und v Zustandsfunktionen sind)

17 Die Enthalie o Die Änderung der Enthalie H während eines Prozesses (wenn das System in Gleichgewicht mit der Ungebung ist und nur olumenarbeit verrichtet) ist: An afel: dh dq + d o Bei konstantem Druck, die Enthalieänderung ist gleich der zugeführten Wärmemenge: konst. dh dq o Die Enthalie H entsricht also der übertragenen Wärme Q bei konstantem Druck! o Weil die meisten chemischen Reaktionen unter konstantem Druck durchgeführt werden (offenes Reaktionsgefäss), sind im Labor gemessene Reaktionswärmen üblicherweise als Enthalie zu interretieren! o Eine messbare Änderung von H: ΔH Q

18 Die Enthalie ΔH < 0: Wärme wird vom System freigesetzt (exothermer Prozess) ΔH > 0: Wärme wird vom System aufgenommen (endothermer Prozess) o Wenn die emeratur des Stoffes steigt, nimmt auch seine Enthalie zu. o Das erhältnis zwischen beiden Zunahmen hängt von den Bedingungen des Prozesses ab (z. B. konst.) o Die Wärmekaazität bei konstantem Druck Die Steigung der angente an den Grahen H f(). o ist eine Extensive Eigenschaft. H o Die molare Wärmekaazität bei konstantem Druck :, m n

19 Die emeraturabhängigkeit der Enthalie o Die Enthalieänderung für infinitesimale emeraturänderung: dh d o Wenn konst. über den emeraturbereich, ist die Enthalieänderung : ΔH 2 1 d Δ o Eine Erhöhung der Enthalie kann stets der Zuführung einer Wärmemenge bei konstantem Druck gleichgesetzt werden: Q Δ

20 Die emeraturabhängigkeit der Enthalie o Für die Fälle, bei denen f(), hat sich die emirische Näherungsfunktion:, m a + b + o Die emirischen Parameter a, b, und c hängen nicht von der emeratur ab. c 2 a b/10-3 K -1 c/10 5 K 2 (s, Grahit) O 2 (g) H 2 O (l) N 2 (g) o In den meisten Fällen ist die Wärmekaazität eines Stoffes bei konstantem Druck grösser als die Wärmekaazität bei konstantem olumen. o Für ideale Gase: nr An afel:

21 Adiabatische Exansion o Adiabatische Exansion eines Gases: Das System verrichtet Arbeit ohne dass ihm von aussen Wärme zugeführt wurde. o Adiabatische Exansion: die Innere Energie und die emeratur nehmen ab. o Die Änderung der Innere Energie eines idealen Gases bei einer emeraturänderung des Gases von A nach E, bei konstantem olumen: du du Q + d dw ad Adiabatische Exansion: Q 0 du dw ad dw ad o Bei einer reversibler, adiabatischer Exansion eines idealen Gases, die emeraturänderung hängt mit der olumenänderung zusammen: An afel: A E E A γ 1 wobei: γ, m, m d

22 Poisson sche Gleichung o Poison sche Gleichung: die Gleichung, die eine adiabatiche Exansion beschreibt: γ konst. o Die adiabatischen Kurven (Adiabate) sind steiler als Isothermen Kurve. o Der Druck fällt steiler ab bei der Adiabate als bei der Isotherme 1 Isotherme 1 γ Adiabate Ursache: Die adiabatische Exansion ist auch mit der Abkühlung verbunden.

23 Adiabatische Exansion o Bei isothermer Exansion wird mehr Arbeit gewonnen als bei adiabatischer Exansion (die zusätzlichen emeraturabnahme der Druck nach Exansion ist im adiabatischen Fall geringer). o ergleich der olumenarbeit der Fläche unter der Isotherme oder der Adiabate. o Bei Komression ist es umgekehrt: die adiabatische Komression führt zu einen emeraturanstieg. w (isotherme Exansion) > w (adiabatische Exansion) w (isotherme Komression) < w (adiabatische Komression)

24 Änderung der Inneren Energie o Die Innere Energie ist eine Zustandsfunktion (der Zahlenwert von ΔU hängt nur von Anfangs- und Endzustand ab). o U ist ein totales Differential. o Die infinitezimale Änderung von auf +d, bei konst die Änderung der Inneren Energie: Uʹ U + U d o Die infinitesimale Änderung von auf +d, bei konst die Änderung der Inneren Energie: Uʹ U + U d

25 Änderung der Inneren Energie o Die infinitesimale Änderung von auf +d, und von auf +d die Änderung der Inneren Energie: Uʹ U + U d + U d U ʹ U + du du U d + U d o In einem geschlossenen System mit konstanter Zusammensetzung, jede infinitesimale Änderung des U ist den jeweiligen Änderungen von olumen und emeratur roortional. o Dir Proortionalitätsfaktoren die artiellen Ableitungen nach den Zustandsvariablen

26 Änderung der Inneren Energie o Partielle Ableitungen kann man in vielen Fällen direkt interretieren: du du U d U + π d + d d o Wärmekaazität bei konst. o Binnendruck: U π U o Wenn zwischen den Molekülen keinerlei Wechselwirkung vorhanden ist, hängt die Innere Energie nicht vom gegenseitigen Abstand der eilchen und daher auch nicht vom olumen der Probe ab.

27 Änderung der Inneren Energie U + α π o Die Änderung der Inneren Energie bei konstantem Druck: o Der Koeffizient der thermischen Ausdehnung, α: : d U + π 1 α d d du π + o Für ideale Gase die Wärmekaazität bei konstantem olumen ist gleich der Steigung des Grahen der Funktion U() sowohl bei konstantem Druck als auch bei konstantem olumen. U

28 Koeffizient der thermischen Ausdehnung und isotherme Komresibilität

29 hermochemie o Der Standardzustand deren reine Form bei der jeweiligen und einem Druck von 1 bar (10 5 Pa). o Die Änderung der Standardenthalie die Änderung der Enthalie eines Prozesses, dessen Ausgangsstoffe und Endrodukte sich jeweils im Standardzustand befinden. Enthalieänderung bei hysikalischen Zustandsänderung o Standard-erdamfungsenthalie molare Differenz der Enthalie, wenn eine Flüssigkeit bei einem Druck 1 bar in ein Gas unter einem Druck von 1 bar überführt wird. o Standard-Schmeltzenthalie molare Differenz der Enthalie, wenn eine Flüssigkeit bei einem Druck 1 bar in ein Gas unter einem Druck von 1 bar überführt wird. o Z. B. Wasser: Δ Sm H θ Δ H kj θ Δ H kj Sm ΔH Δ θ mol mol H θ θ

30 Enthalieänderung bei chemischer Reaktionen o Die hermodynamische Gleichung die Kombination zwischen der Reaktionsgleichung und der zugehörigen Enthalieänderung. H 4 (g) + 2 O 2 (g) O 2 (g) + 2H 2 O (l) Δ R H o Die Standardreaktionsenthalie Die molare Enthalieänderung beim Übergang von den Reaktanten in ihren Standardzuständen zu den Produkten in deren Standardzuständen. o Die Standardreaktionenthalie einer allgemeiner Reaktion: θ ΔH θ 890 kj mol Δ R H θ Pr od. νh θ m Re akt. νh θ m ν stoichiometrische Faktor θ H m molare Standarsenthalie o Der Satz von Hess: Die Standardenthalie einer Reaktion ist gleich der Summe der Standardenthalien einer Folge von Reaktionen, in die die betreffende Reaktion formal zerlegt werden kann.

31 Der erste Hautsatz der D- Lernziele ü Einleitung ü Zustandgrössen und funktionen ü Wärme, Arbeit und Energie ü Innere Energie ü Der erste Hautsatz der hermodynamik ü olumenarbeit ü Wärmeübergänge ü Die Enthalie ü Adiabatiche Anderung ü Anderungen der Inneren Energie ü hermochemie ü Der Joule-homson Effekt (Uebungsstunde) P. Atkins, J. de Paula, Physikalische hemie, Wiley- H erlag GmbH& o, 2010, 2.

Der Erste Hauptsatz der TD- Lernziele

Der Erste Hauptsatz der TD- Lernziele hermodynamik (D) Fundamentale heorie der makroskoischen Eigenschaften der Materie: - Sontane Prozesse - Konzet der emeratur - Phasenübergänge - Energetik makroskoischer Phasen und chemischer Reaktionen

Mehr

Der Erste Hauptsatz der TD- Lernziele

Der Erste Hauptsatz der TD- Lernziele hermodynamik (D) Fundamentale heorie der makroskoischen Eigenschaften der Materie: - Sontane Prozesse - Konzet der emeratur - Phasenübergänge - Energetik makroskoischer Phasen und chemischer Reaktionen

Mehr

Der Zweite Hauptsatz der TD- Lernziele

Der Zweite Hauptsatz der TD- Lernziele Der Zweite Hautsatz der D- Lernziele o Einleitung o Entroie (Definition, Entroie als Zustandsfunktion, die Clausius sche Ungleichung) o Der Zweite Hautzatz der D o Die Entroieänderungen bei seziellen Prozessen

Mehr

Der Zweite Hauptsatz der TD- Lernziele

Der Zweite Hauptsatz der TD- Lernziele Der Zweite Hautsatz der D- Lernziele o Einleitung o Entroie (Definition, Entroie als Zustandsfunktion, die Clausius sche Ungleichung) o Der Zweite Hautzatz der D o Die Entroieänderungen bei seziellen Prozessen

Mehr

Aufgaben Kreisprozesse. 1. Ein ideales Gas durchläuft den im V(T)- Diagramm dargestellten Kreisprozess. Es ist bekannt:

Aufgaben Kreisprozesse. 1. Ein ideales Gas durchläuft den im V(T)- Diagramm dargestellten Kreisprozess. Es ist bekannt: Aufgaben Kreisrozesse. Ein ideales Gas durchläuft den im ()- Diagramm dargestellten Kreisrozess. Es ist bekannt: 8 cm 6 cm 00 K 8MPa MPa a) Geben Sie die fehlenden Zustandsgrößen, und für die Zustände

Mehr

Thermische Energie kann nicht mehr beliebig in andere Energieformen umgewandelt werden.

Thermische Energie kann nicht mehr beliebig in andere Energieformen umgewandelt werden. Wärmemenge: hermische Energie kann nicht mehr beliebig in andere Energieformen umgewandelt werden. Sie kann aber unter gewissen oraussetzungen von einem Körer auf einen nderen übertragen werden. Dabei

Mehr

1 I. Thermodynamik. 1.1 Ideales Gasgesetz. 1.2 Vereinfachte kinetische Gastheorie. 1.3 Erster Hauptsatz der Thermodynamik.

1 I. Thermodynamik. 1.1 Ideales Gasgesetz. 1.2 Vereinfachte kinetische Gastheorie. 1.3 Erster Hauptsatz der Thermodynamik. 1 I. hermodynamik 1.1 Ideales Gasgesetz eilchenzahl N Stoffmenge: n [mol], N A = 6.022 10 23 mol 1 ; N = nn A molare Größen: X m = X/n ideales Gasgesetz: V = nr, R = 8.314JK 1 mol 1 Zustandsgrößen:, V,,

Mehr

Musterlösung Übung 3

Musterlösung Übung 3 Musterlösung Übung 3 Aufgabe 1: Der 1. Hautsatz der Thermodynamik a) Für ein geschlossenes System folgt aus der Energieerhaltung (Gleichung (94) im Skrit) du = dw + dq, (1.1) da ausser Arbeit und Wärme

Mehr

Einführung in die Physikalische Chemie: Inhalt. Einführung in die Physikalische Chemie:

Einführung in die Physikalische Chemie: Inhalt. Einführung in die Physikalische Chemie: Einführung in die Physikalische Chemie: Inhalt Einführung in die Physikalische Chemie: Inhalt Kapitel 9: Prinzipien der Thermodynamik Inhalt: 9.1 Einführung und Definitionen 9.2 Der 0. Hauptsatz und seine

Mehr

Physikalische Chemie Physikalsiche Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/10 5. Zustandsfunktionen Idealer und Realer Gase. ZustandsÄnderungen

Physikalische Chemie Physikalsiche Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/10 5. Zustandsfunktionen Idealer und Realer Gase. ZustandsÄnderungen Prof. Dr. Norbert Ham 1/10 5. Zustandsfunktionen Idealer und Realer Gase ZustandsÄnderungen Die rennung zwischen unserem System und der ÅUmweltÇ wird durch eine Wand realisiert. WÄnde kånnen unterschiedliche

Mehr

4.6 Hauptsätze der Thermodynamik

4.6 Hauptsätze der Thermodynamik Thermodynamik.6 Hautsätze der Thermodynamik.6. Erster Hautsatz: Energieerhaltungssatz In einem abgeschlossenen System bleibt der gesamte Energievorrat, also die Summe aus Wärmeenergie, mechanischer Energie

Mehr

Zur Thermodynamik des idealen Gases (GK Physik 1)

Zur Thermodynamik des idealen Gases (GK Physik 1) Zur hermodynamik des idealen Gases (GK Physik 1 Zusammenfassung im Hinblick auf Prozesse. Reinhard Honegger, im Januar 2012. 1 Grundbegriffe 1.1 Zustandsgleichung = Ideale Gasgleichung Druck, olumen, emeratur

Mehr

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 6

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 6 Physik I U Dortmund WS07/8 Gudrun Hiller Shaukat Khan Kaitel 6 Seziische Wärme von Gasen Bei einatomigen Gasen (z.b. He): Bei zweiatomigen Gasen (z.b. N, O ): N k A Freiheitsgrade ür die kinetische Energie

Mehr

T 1 T T Zustandsverhalten einfacher Systeme (Starthilfe S ) - Prozess und Zustandsänderung. Prozess (Q 12

T 1 T T Zustandsverhalten einfacher Systeme (Starthilfe S ) - Prozess und Zustandsänderung. Prozess (Q 12 . Zustandserhalten einfacher Systeme (Starthilfe S. 9-38) - Prozess und Zustandsänderung Zustandsänderung δq Prozess (Q ) - thermodynamisch einfache Systeme reiner Stoff feste flüssige damfförmige Phase

Mehr

2. Hauptsätze der Thermodynamik

2. Hauptsätze der Thermodynamik . Hautsätze der hermodynamik ekannt sind vor allem der I. und II. Hautsatz der hermodynamik. Man sricht auch vom 0. Hautsatz und es gibt zusätzlich den III. Hautsatz. 0. HS: Einführung der emeratur als

Mehr

Lösungen zur Übungsklausur Thermodynamik WS 2003/04

Lösungen zur Übungsklausur Thermodynamik WS 2003/04 Lösungen zur Übungsklausur hermodynamik WS 003/04 Name: Vorname: Matrikelnummer: Aufgabe 3 4 5 Gesamt Note mögliche Punkte 9 0 8 9 4 40 erreichte Punkte Die Klausur wird bei Erreichen von insgesamt 0 Punkten

Mehr

C Metallkristalle. Allgemeine Chemie 60. Fluorit CaF 2 KZ(Ca) = 8, KZ(F) = 4. Tabelle 7: weiter Strukturtypen. kubisch innenzentriert KZ = 8

C Metallkristalle. Allgemeine Chemie 60. Fluorit CaF 2 KZ(Ca) = 8, KZ(F) = 4. Tabelle 7: weiter Strukturtypen. kubisch innenzentriert KZ = 8 Allgemeine Chemie 60 Fluorit CaF 2 KZ(Ca) = 8, KZ(F) = 4 Tabelle 7: weiter Strukturtypen C Metallkristalle kubisch primitiv KZ = 6 kubisch innenzentriert KZ = 8 kubisch flächenzentriert, kubisch dichteste

Mehr

1. Thermodynamische Potentiale, Maxwellgleichungen

1. Thermodynamische Potentiale, Maxwellgleichungen 69 KAPIEL G hermodynamische Potentiale 1. hermodynamische Potentiale, Maxwellgleichungen hermodynamische Potentiale sind Funktionen von den Zustandsvariablen. Wir haben schon die innere Energie kennengelernt,

Mehr

Physik 2 (B.Sc. EIT) 2. Übungsblatt

Physik 2 (B.Sc. EIT) 2. Übungsblatt Institut für Physik Werner-Heisenberg-Weg 9 Fakultät für Elektrotechnik 85577 München / Neubiberg Universität der Bundeswehr München / Neubiberg Prof Dr H Baumgärtner Übungen: Dr-Ing Tanja Stimpel-Lindner,

Mehr

Die zugeführte Wärmemenge bei isochorer Zustandsänderung berechnet sich aus

Die zugeführte Wärmemenge bei isochorer Zustandsänderung berechnet sich aus Ü 9. Aufheizung einer Preßluftflasche Eine Preßluftflasche, in der sich.84 kg Luft bei einem Druck on.74 bar und einer Temeratur on T 0 C befinden, heizt sich durch Sonneneinstrahlung auf 98 C auf. Gesucht

Mehr

Zur Erinnerung. Wärmetransport durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung. Planck sches Strahlungsgesetz. Stefan-Boltzman-Gesetz

Zur Erinnerung. Wärmetransport durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung. Planck sches Strahlungsgesetz. Stefan-Boltzman-Gesetz Zur Erinnerung Stichworte aus der 9. orlesung: Wärmetransort durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung Planck sches Strahlungsgesetz Stefan-Boltzman-Gesetz Wiensches erschiebungsgesetz Hautsätze

Mehr

3 Der 1. Hauptsatz der Thermodynamik

3 Der 1. Hauptsatz der Thermodynamik 3 Der 1. Hauptsatz der Thermodynamik 3.1 Der Begriff der inneren Energie Wir betrachten zunächst ein isoliertes System, d. h. es können weder Teilchen noch Energie mit der Umgebung ausgetauscht werden.

Mehr

Musterlösung Klausur Physikalische Chemie I: Thermodynamik (Januar 2009)

Musterlösung Klausur Physikalische Chemie I: Thermodynamik (Januar 2009) Musterlösung Klausur Physikalische Chemie I: Thermodynamik (Januar 2009) Aufgabe 1: Reaktionsthermodynamik a) möglichst niedrige Temeratur (begünstigt exotherme Reaktionen) möglichst hoher Druck (begünstigt

Mehr

4 Hauptsätze der Thermodynamik

4 Hauptsätze der Thermodynamik I Wärmelehre -21-4 Hauptsätze der hermodynamik 4.1 Energieformen und Energieumwandlung Innere Energie U Die innere Energie U eines Körpers oder eines Systems ist die gesamte Energie die darin steckt. Es

Mehr

Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3

Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3 Aufgaben zum Stirlingschen Kreisrozess. Ein Stirling-Motor arbeite mit 50 g Luft ( M 0g mol )zwischen den emeraturen 50 C und 50 C sowie den olumina 000cm und 5000 cm. a) Skizzieren Sie das --Diagramm

Mehr

wegen adiabater Kompression, d.h. kein Wärmeaustausch mit der Umgebung, gilt:

wegen adiabater Kompression, d.h. kein Wärmeaustausch mit der Umgebung, gilt: Ü 7. Adiabate Komression on Luft Luft wird in einem adiabaten Zylinder on. bar, T 5 C solange erdichtet bis eine Endtemeratur on T 00 C erreicht wird. Gesucht sind die zur Verdichtung erforderliche Arbeit

Mehr

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Institut für Physikalische Chemie Albert-Ludigs-Universität Freiburg Lösungen zum 4. Übungsblatt zur orlesung Physikalische Chemie I SS 00 Prof. Dr. Bartsch 4. (6 Punkte) In einem Behälter mit der Grundfläche

Mehr

(b) Schritt I: freie adiabatische Expansion, also ist δw = 0, δq = 0 und damit T 2 = T 1. Folglich ist nach 1. Hauptsatz auch U = 0.

(b) Schritt I: freie adiabatische Expansion, also ist δw = 0, δq = 0 und damit T 2 = T 1. Folglich ist nach 1. Hauptsatz auch U = 0. 3 Lösungen Lösung zu 65. (a) Siehe Abbildung 1. (b) Schritt I: freie adiabatische Expansion, also ist δw 0, δq 0 und damit. Folglich ist nach 1. Hauptsatz auch U 0. Schritt II: isobare Kompression, also

Mehr

Thermodynamik. Kapitel 4. Nicolas Thomas

Thermodynamik. Kapitel 4. Nicolas Thomas Thermodynamik Kapitel 4 Arbeit und Wärme Länge, x F Kolben Länge, x F Der Kolben wird sehr langsam um die Distanz -dx verschoben. dx Kolben Wieviel Arbeit mussten wir leisten, um den Kolben zu bewegen?

Mehr

GPH2 Thermodynamik. 27. September Dieser Entwurf ist weder vollständig oder fehlerfrei noch ein offizielles Script zur Vorlesung.

GPH2 Thermodynamik. 27. September Dieser Entwurf ist weder vollständig oder fehlerfrei noch ein offizielles Script zur Vorlesung. GPH2 Thermodynamik Dieser Entwurf ist weder ollständig oder fehlerfrei noch ein offizielles Scrit zur Vorlesung. Für Anregungen und Kritik: mail@sibbar.de 27. Setember 2004 GPH2 Thermodynamik Seite 2 on

Mehr

5.5 Zustandsänderungen idealer Gase

5.5 Zustandsänderungen idealer Gase 5.5 Zustandsänderungen idealer Gase iele Gase verhalten sich bei technischen Anwendungen in guter Näherung wie ideale Gase (siehe Ka. 5..3). Bei einem technischen Prozess ändert sich nun der Zustand des

Mehr

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke)

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Freie Universität Berlin W 006/007 Fachbereich Physik 8..006 tatistische Physik - heorie der Wärme (PD Dr. M. Falcke) Übungsblatt 9: hermodynamische Identitäten, hermische/kalorische Zustandsgleichung,

Mehr

Der Zweite Hauptsatz der TD- Lernziele

Der Zweite Hauptsatz der TD- Lernziele Der Zweite Hauptsatz der D- Lernziele o Einleitung o Entropie (Definition, Entropie als Zustandsfunktion, die Clausius sche Ungleichung) o Der Zweite Hauptzatz der D o Die Entropieänderungen bei speziellen

Mehr

Mitschrift Thermodynamik

Mitschrift Thermodynamik Mitschrift hermodynamik Herleitung für den Gasdruck Berechnung des oberen Kreisradius d cosϕ dϕ dψ d N eilchen im Gesamtvolumen dn d N Aufschlagswahrscheinlichkeit eines eilchens Fläche df df sinϕ Gesamte

Mehr

Hauptsatz der Thermodynamik

Hauptsatz der Thermodynamik 0.7. Hauptsatz der Thermodynamik Die einem System von außen zugeführte Wärmemenge Q führt zu Erhöhung U der inneren Energie U und damit Erhöhung T der Temperatur T Expansion des olumens gegen den äußeren

Mehr

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17 Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie Moderne heoretische Physik III (heorie F Statistische Mechanik) SS 17 Prof. Dr. Alexander Mirlin Blatt 2 PD Dr. Igor Gornyi,

Mehr

4. Freie Energie/Enthalpie & Gibbs Gleichungen

4. Freie Energie/Enthalpie & Gibbs Gleichungen 4. Freie Energie/Enthalie & Gibbs Gleichungen 4.3. Gibbs sche Gleichungen Fundamentalgleichungen der D weitere Fundamentalgleichungen basierend auf: einsetzen von (): d d d Ausdifferenzierung der Definition

Mehr

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert.

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert. Grundbegriffe der Thermodynamik Die Thermodynamik beschäftigt sich mit der Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur. Die Thermodynamik kann voraussagen,

Mehr

Die Innere Energie U

Die Innere Energie U Die Innere Energie U U ist die Summe aller einem System innewohnenden Energien. Es ist unmöglich, diese zu berechnen. U kann nicht absolut angegeben werden! Differenzen in U ( U) können gemessen werden.

Mehr

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Wärmekapazitäten isochore/isobare Zustandsänderungen Standardbildungsenthalpien Heizwert/Brennwert adiabatische Flammentemperatur WS 2013/14

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/hermodynamik Wintersemester 7 ladimir Dyakonov #3 am..7 Folien unter: htt://www.hysik.uni-wuerzburg.de/ep6/teaching.html.3 Ideales Gas Exerimentelle Bestimmung der

Mehr

5 Thermodynamische Potentiale

5 Thermodynamische Potentiale 3 Woche 5 hermodynamische Potentiale 51 Formale Einführung der Potentiale Es ist möglich, die extensiven Zustandsfunktionen (mit der Dimension der Energie) zu bilden, die die anderen ariablen als S,, N

Mehr

5. Die Thermodynamischen Potentiale

5. Die Thermodynamischen Potentiale 5. Die hermodynamischen Potentiale 5.1. Einführung der Potentiale Gibbs'sche Fundamentalgleichung. d = du + d, du + d δ Q d = = Ist die Entroie als Funktion von U und bekannt, = ( U, ) dann lassen sich

Mehr

Der 1. Hauptsatz. Energieerhaltung:

Der 1. Hauptsatz. Energieerhaltung: Der 1. Hauptsatz Energieerhaltung: Bei einer Zustandsänderung tauscht das betrachtete System Energie ( W, Q mit seiner Umgebung aus (oft ein Wärmereservoir bei konstantem. Für die Energiebilanz gilt: U

Mehr

Theoretische Physik IVa Thermodynamik und Statistik

Theoretische Physik IVa Thermodynamik und Statistik Institut für heoretische Physik echnische Universität Berlin heoretische Physik Ia hermodynamik und Statistik Udo Scherz Wintersemester 2006/07 1 emeratur und Wärmemenge Wir untersuchen in dieser orlesung

Mehr

Thermodynamik ist eine Theorie, in der, wie der Name sagt, die Begriffe Temperatur und. Länge, Zeit, Masse

Thermodynamik ist eine Theorie, in der, wie der Name sagt, die Begriffe Temperatur und. Länge, Zeit, Masse Biologische Thermodynamik (I) Wintersemester 007/08 orlesungen: Wolfram Liebermeister Literatur: G. Kluge & Neugebauer: Grundlagen der Thermodynamik, Sektrum Akadem. erlag, 994 R. Heinrich & S. Schuster,

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/8 15. Chemische Thermodynamik. ZustandsÄnderungen

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/8 15. Chemische Thermodynamik. ZustandsÄnderungen Physikalische Chemie Physikalische Chemie I oe 2009 Prof. Dr. Norbert Ham 1/8 15. Chemische hermodynamik Zustandsnderungen Mit Hilfe des chemischen Potentials, knnen wir offene und kommunizierende ysteme

Mehr

5 Das thermische Gleichgewicht (Phasengleichgewichte) Gleichgewichtsbedingungen Die Gibbsche Phasenregel... 78

5 Das thermische Gleichgewicht (Phasengleichgewichte) Gleichgewichtsbedingungen Die Gibbsche Phasenregel... 78 Inhaltsverzeichnis 1 Einführung 3 1.1 Betrachtungsweisen in der Physikalischen Chemie..................... 3 1.2 eilgebiete in der Physikalischen Chemie.......................... 3 1.3 hemenübersicht.......................................

Mehr

Versuch: Sieden durch Abkühlen

Versuch: Sieden durch Abkühlen ersuch: Sieden durch Abkühlen Ein Rundkolben wird zur Hälfte mit Wasser gefüllt und auf ein Dreibein mit Netz gestellt. Mit dem Bunsenbrenner bringt man das Wasser zum Sieden, nimmt dann die Flamme weg

Mehr

10. Thermodynamik Der erste Hauptsatz Der zweite Hauptsatz Thermodynamischer Wirkungsgrad Der Carnotsche Kreisprozess

10. Thermodynamik Der erste Hauptsatz Der zweite Hauptsatz Thermodynamischer Wirkungsgrad Der Carnotsche Kreisprozess Inhalt 10.10 Der zweite Hauptsatz 10.10.1 Thermodynamischer Wirkungsgrad 10.10.2 Der Carnotsche Kreisprozess Für kinetische Energie der ungeordneten Bewegung gilt: Frage: Frage: Wie kann man mit U Arbeit

Mehr

Polytrope Zustandsänderung

Polytrope Zustandsänderung Sowohl isotherme als auch isentroe Zustandsänderungen werden in Maschinen nie streng erreicht. Reale Komressions- und Exansionsrozesse lassen sich aber oft recht gut durch allgemeine Hyerbeln darstellen,

Mehr

Theoretische Physik IV

Theoretische Physik IV Sommersemester 2011 heoretische hysik IV hermodynamik und statistische hysik I Skriptum zur Vorlesung von Helmuth Hüffel Umgesetzt in L A EX von Horak Johannes LYX-Version von Bernhard Reiter Kapitel 1

Mehr

Die Eigenschaften einfacher

Die Eigenschaften einfacher Die Eigenschaften einfacher ischungen Lernziele: Thermodynamische eschreibung von ischungen Partielle molare Grössen, TD von Ischhasen Chemisches Potenzial flüssiger Phasen Eigenschaften von Lösungen,

Mehr

I el U el. P el W V 23+W F23. Musterlösung SS Aufgabe (34 Punkte) a) Energiebilanz für die Kammer A im Zeitintervall t 12 :

I el U el. P el W V 23+W F23. Musterlösung SS Aufgabe (34 Punkte) a) Energiebilanz für die Kammer A im Zeitintervall t 12 : Musterlösung SS. Aufgabe Punkte a Energiebilanz für die Kammer A im Zeitintervall t : W A, + W V A U A U A W A, P el t U el I el t W V A 0 U A U A m A c v A A 5 m A A V A R A 6 c v κ R 7 A A A A 8 A B

Mehr

T4p: Thermodynamik und Statistische Physik Prof. Dr. H. Ruhl Übungsblatt 10 Lösungsvorschlag

T4p: Thermodynamik und Statistische Physik Prof. Dr. H. Ruhl Übungsblatt 10 Lösungsvorschlag 4: hermodynamik und Statistische Physik Prof. Dr. H. Ruhl Übungsblatt 10 Lösungsvorschlag 1. Joule-homson-Effekt Ein Gasstrom wird von Bereich 1 (siehe Abbildung) mit einem Kolben durch eine oröse Wand

Mehr

Das Ideale Gas Kinetische Gastheorie (auf atomarer Ebene)

Das Ideale Gas Kinetische Gastheorie (auf atomarer Ebene) Das Ideale Gas Kinetische Gastheorie (auf atomarer Ebene) Wir haben gesehen, dass ein sogenanntes 'ideales Gas' durch die Zustandsgleichung pv = νr T [1] beschrieben wird; wir wollen nun verstehen, welchen

Mehr

Physikalisch-chemische Grundlagen der Verfahrenstechnik

Physikalisch-chemische Grundlagen der Verfahrenstechnik Physikalisch-chemische Grundlagen der Verfahrenstechnik Günter Tovar, Thomas Hirth, Institut für Grenzflächenverfahrenstechnik guenter.tovar@igvt.uni-stuttgart.de Physikalisch-chemische Grundlagen der

Mehr

PHYSIKALISCHE CHEMIE: Eine Einführung

PHYSIKALISCHE CHEMIE: Eine Einführung 1 PHYSIKALISCHE CHEMIE: Eine Einführung makroskoische Phänomene statische Phänomene Gleichgewichte in makroskoischen Systemen HERMODYNAMIK ELEKROCHEMIE dynamische Phänomene Änderung der Konzentration als

Mehr

Der Zweite Hauptsatz der TD- Lernziele

Der Zweite Hauptsatz der TD- Lernziele Der Zweite Hauptsatz der D- Lernziele o Einleitung o Entropie (Definition, Entropie als Zustandsfunktion, die Clausius sche Ungleichung) o Der Zweite Hauptzath der D o Die Entropieänderungen bei speziellen

Mehr

Die innere Energie and die Entropie

Die innere Energie and die Entropie Die innere Energie and die Entropie Aber fangen wir mit der Entropie an... Stellen Sie sich ein System vor, das durch die Entropie S, das Volumen V und die Stoffmenge n beschrieben wird. U ' U(S,V,n) Wir

Mehr

II. Wärmelehre. II.2. Die Hauptsätze der Wärmelehre. Physik für Mediziner 1

II. Wärmelehre. II.2. Die Hauptsätze der Wärmelehre. Physik für Mediziner 1 II. Wärmelehre II.2. Die auptsätze der Wärmelehre Physik für Mediziner 1 1. auptsatz der Wärmelehre Formulierung des Energieerhaltungssatzes unter Einschluss der Wärmenergie: die Zunahme der Inneren Energie

Mehr

6 Thermodynamische Potentiale und Gleichgewichtsbedingungen

6 Thermodynamische Potentiale und Gleichgewichtsbedingungen 6 hermodynamische Potentiale und Gleichgewichtsbedingungen 6.1 Einführung Wir haben bereits folgende thermodynamische Potentiale untersucht: U(S,V ) S(U,V ) hermodynamische Potentiale sind Zustandsfunktionen

Mehr

3 Diskussion und Beispiele

3 Diskussion und Beispiele Woche 2 3 Diskussion und Beispiele 31 Abhängigkeit zwischen kalorischer und thermischer Zustandsgleichung Die kalorische und die thermische Zustandsgleichungen sind nicht unabhängig Aus den Integrabilitätsbedingungen

Mehr

14 Massenwirkungsgesetz

14 Massenwirkungsgesetz 14 Massenwirkungsgesetz Im vorherigen Abschnitt haben wir uns mit der Mischungsentroie beschäftigt, die aber nur einen Asekt der Mischung von idealen Gasen berücksichtigt, nämlich des Mischens und rennens

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 2 Prof. Dr. Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3Bilanzgleichungen 3.3.1Massenbilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Kapitel 7: Boltzmann-Verteilung Kapitel 8: Statistische Beschreibung makroskopischer Grössen Kapitel 9: Thermodynamik:

Mehr

PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test

PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test 1. Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Lösungswärme wird dieses Vorgespräch durch einen Multiple Choice

Mehr

Experimentalphysik II: Thermodynamik

Experimentalphysik II: Thermodynamik Exerimentalhysik II: Thermodynamik Zweitversuch-Ferienkurs Sommersemester 09 William Hefter 11/09/2009 Inhaltsverzeichnis 1 Temeratur, Wärme und Arbeit 2 1.1 Einschub zur mathematischen Schreibweise.........................

Mehr

(der sogenannte nullte Hauptsatz der Thermodynamik). Während des Vorganges kann sich die innere Energie U des Körpers

(der sogenannte nullte Hauptsatz der Thermodynamik). Während des Vorganges kann sich die innere Energie U des Körpers Kapitel 13 13.1 Der erste Hauptsatz der Das zentrale Konzept der ist die Existenz der Temperatur (der sogenannte nullte Hauptsatz der ). Wir betrachten z.b. zwei Körper A und B. Der Körper A erscheint

Mehr

Die Carnot-Maschine SCHRITT III. Isotherme Kompression bei einer Temperatur T 2 T 2. Wärmesenke T 2 = konstant. Nicolas Thomas

Die Carnot-Maschine SCHRITT III. Isotherme Kompression bei einer Temperatur T 2 T 2. Wärmesenke T 2 = konstant. Nicolas Thomas Die Carnot-Maschine SCHRITT III Isotherme Kompression bei einer Temperatur T 2 T 2 Wärmesenke T 2 = konstant Die Carnot-Maschine SCHRITT IV Man isoliert das Gas wieder thermisch und drückt den Kolben noch

Mehr

Der Zweite Hauptsatz der TD- Lernziele

Der Zweite Hauptsatz der TD- Lernziele Der Zweite Hauptsatz der D- Lernziele o Einleitung o Entropie (Definition, Entropie als Zustandsfunktion, die Clausius sche Ungleichung) o Der Zweite Hauptzatz der D o Die Entropieänderungen bei speziellen

Mehr

T p = T = RT. V b. ( ) 2 V p. V b. 2a(V b)2 V 3 RT. 2a(V b) V 3 (p+ a V 2 )

T p = T = RT. V b. ( ) 2 V p. V b. 2a(V b)2 V 3 RT. 2a(V b) V 3 (p+ a V 2 ) 3 Lösung zu 83. Lösungen ( C C = T ( = T ( ( ( 2 van-der-waals Gas: ( ( b + a 2 = T = T b a 2 Man beachte das dies nur eine andere Formulierung der van-der-waals Gleichung ist als auf dem letzten Aufgabenzettel.

Mehr

Theoretische Physik 4 Thermodynamik und Statistische Physik

Theoretische Physik 4 Thermodynamik und Statistische Physik Theoretische Phsik 4 Thermodnamik und Statistische Phsik Prof. Dr. Eric Lutz Universität Erlangen-Nürnberg Inhaltsverzeichnis 1 Thermodnamische Konzete 3 1.1 Was ist Thermodnamik?...........................

Mehr

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Institut für hysikalische heie Albert-Ludwigs-Universität Freiburg Lösungen zu 5. Übungsblatt zur orlesung hysikalische heie I SS 04 rof. Dr. Bartsch 5. M Leiten Sie einen allgeeinen Ausdruck für die Änderung

Mehr

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I 12.12.2014 Gase Flüssigkeiten Feststoffe Wiederholung Teil 2 (05.12.2014) Ideales Gasgesetz: pv Reale Gase: Zwischenmolekularen Wechselwirkungen

Mehr

Thermo Dynamik. Mechanische Bewegung (= Arbeit) Wärme (aus Reaktion) maximale Umsetzung

Thermo Dynamik. Mechanische Bewegung (= Arbeit) Wärme (aus Reaktion) maximale Umsetzung Thermo Dynamik Wärme (aus Reaktion) Mechanische Bewegung (= Arbeit) maximale Umsetzung Aussagen der Thermodynamik: Quantifizieren von: Enthalpie-Änderungen Entropie-Änderungen Arbeit, maximale (Gibbs Energie)

Mehr

1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases. f=5 Translation + Rotation. f=7 Translation + Rotation +Vibration. Wiederholung

1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases. f=5 Translation + Rotation. f=7 Translation + Rotation +Vibration. Wiederholung 1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases Wiederholung Speziische molare Wärmekapazität c m,v = 2 R R = N A k B = 8.315 J mol K =5 Translation + Rotation =7 Translation + Rotation +ibration 1.

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 2 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen 3.3.1 Massebilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

22. Entropie; Zweiter Hauptsatz der Wärmelehre

22. Entropie; Zweiter Hauptsatz der Wärmelehre 22. Entropie; Zweiter Hauptsatz der Wärmelehre Nicht alle Prozesse, die dem Energiesatz genügen, finden auch wirklich statt Beispiel: Um alle Energieprobleme zu lösen, brauchte man keine Energie aus dem

Mehr

Musterlösung Klausur Physikalische Chemie I: Thermodynamik

Musterlösung Klausur Physikalische Chemie I: Thermodynamik Musterlösung Klausur Physikalische Chemie I: hermodynamik Aufgabe : Dimerisierung von Stickstoffdioxid a Nach dem Prinzip des kleinsten Zwanges von LeChatelier sollte der Druck p möglichst klein und die

Mehr

4.1.2 Quantitative Definition durch Wärmekapazitäten

4.1.2 Quantitative Definition durch Wärmekapazitäten 4 Energie Aus moderner (mikroskopischer Sicht ist klar, daß die Summe U der kinetischen Energien der Moleküle eines Gases (und ggf. ihrer Wechselwirkungsenergien eine thd. Zustandsgröße des Gases ist,

Mehr

Physikalische Chemie Ia + b

Physikalische Chemie Ia + b Physikalische Chemie Ia + b Matthias Jasch SS/WS 2008 1 Inhaltsverzeichnis 1 Einführung 6 1.1 Betrachtungsweisen in der Physikalischen Chemie................ 6 1.2 eilgebiete in der Physikalischen Chemie.....................

Mehr

Kapitel 8: Thermodynamik

Kapitel 8: Thermodynamik Kapitel 8: Thermodynamik 8.1 Der erste Hauptsatz der Thermodynamik 8.2 Mechanische Arbeit eines expandierenden Gases 8.3 Thermische Prozesse des idealen Gases 8.4 Wärmemaschine 8.5 Der zweite Hauptsatz

Mehr

m T 1 0.5kg 8.6K = 7535 m T 2 0.5kg 10.4K = 6923 J

m T 1 0.5kg 8.6K = 7535 m T 2 0.5kg 10.4K = 6923 J 3 Lösungen Lösung zu 39. Zugeführte Energie ro Schritt E W h 36kJ..5l Wasser nähern wir mit der Masse.5kg an. mol Wasser hat eine Masse von 8g. Also sind in dem Behälter 28.78mol Wasser. Aus den beiden

Mehr

1. Klausur zur Vorlesung Physikalische Chemie I

1. Klausur zur Vorlesung Physikalische Chemie I 1. Klausur zur Vorlesung Physikalische Chemie I Sommersemester 2006 8. Juni 2006 Angaben zur Person (BITTE LESERLICH UND IN DRUCKBUCHSTABEN) Name, Vorname... Geburtsdatum und -ort... Matrikelnummer...

Mehr

Ferienkurs Experimentalphysik II Elektro- und Thermodynamik. Thermodynamik Teil II. 12. September 2011 Michael Mittermair

Ferienkurs Experimentalphysik II Elektro- und Thermodynamik. Thermodynamik Teil II. 12. September 2011 Michael Mittermair Ferienkurs Experimentalphysik II Elektro- und Thermodynamik Thermodynamik Teil II 12. September 2011 Michael Mittermair Inhaltsverzeichnis 1 Allgemeines 3 1.1 Kategorisierung von Systemen..................

Mehr

Kompressor in CHEMCAD

Kompressor in CHEMCAD Komressor in CHEMCAD Berechnungsmethoden Die im Menü des Komressors zu wählenden Berechnungsmethoden sollen hier näher besrochen werden: Die Auswahl besteht aus. Adiabatic,. Polytroic und 3. Polytroic

Mehr

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I 05.12.2014 Wiederholung Teil 1 (28.11.2014) Fragenstellungen: Druckanstieg im Reaktor bei Temeraturerhöhung und Produktbildung? Wie groß

Mehr

Thermodynamik. Thermodynamics. Markus Arndt. Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008

Thermodynamik. Thermodynamics. Markus Arndt. Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008 Thermodynamik Thermodynamics Markus Arndt Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008 Die Hauptsätze der Thermodynamik & Anwendungen in Wärmekraft und Kältemaschinen

Mehr

Übungen zur Theoretischen Physik F SS Ideales Boltzmann-Gas: ( =25 Punkte, schriftlich)

Übungen zur Theoretischen Physik F SS Ideales Boltzmann-Gas: ( =25 Punkte, schriftlich) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Theoretischen Physik F SS 2016 Prof. Dr. A. Shnirman Blatt 2 Dr. B. Narozhny, Dipl.-Phys. P. Schad Lösungsvorschlag

Mehr

Musterlösung zur Abschlussklausur PC I Übungen (27. Juni 2018)

Musterlösung zur Abschlussklausur PC I Übungen (27. Juni 2018) 1. Abkühlung (100 Punkte) Ein ideales Gas (genau 3 mol) durchläuft hintereinander zwei (reversible) Zustandsänderungen: Zuerst expandiert es isobar, wobei die Temperatur von 50 K auf 500 K steigt und sich

Mehr

Einführung in die Verbrennungskraftmaschine

Einführung in die Verbrennungskraftmaschine Institut für erbrennungskraftmaschinen Einführung in die erbrennungskraftmaschine,.05.0 Institut für erbrennungskraftmaschinen Ed-Übung Übersicht Grundlagen der hermodynamik Prozess und thermischer Wirkungsgrad

Mehr

Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler

Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler TU München Reinhard Scholz Physik Department, T33 Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler http://www.wsi.tum.de/t33/teaching/teaching.htm Übung in Theoretischer Physik B (Thermodynamik)

Mehr

d) Das ideale Gas makroskopisch

d) Das ideale Gas makroskopisch d) Das ideale Gas makroskopisch Beschreibung mit Zustandsgrößen p, V, T Brauchen trotzdem n, R dazu Immer auch Mikroskopische Argumente dazunehmen Annahmen aus mikroskopischer Betrachtung: Moleküle sind

Mehr

Temperaturabhängigkeit von Enthalpie H und Entropie S

Temperaturabhängigkeit von Enthalpie H und Entropie S Prof. Dr. Norbert Ham 1/5 8. emeraturabhängigkeit von Enthalie und Entroie emeraturabhängigkeit von Enthalie H und Entroie S In abellenwerken sind Enthalien und Entroien in der Regel bezogen auf Standardbedingungen,

Mehr

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Einführung in die Phsikalische Chemie Teil 2: Makroskopische Phänomene und Thermodnamik Kapitel 7: Boltzmann-Verteilung Kapitel 8: Statistische Beschreibung makroskopischer Grössen Kapitel 9: Thermodnamik:

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

PCG Grundpraktikum Versuch 4 Neutralisationswärme Multiple Choice Test

PCG Grundpraktikum Versuch 4 Neutralisationswärme Multiple Choice Test PCG Grundpraktikum Versuch 4 Neutralisationswärme Multiple Choice Test 1. Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Neutralisationswärme wird dieses Vorgespräch durch einen

Mehr