4. Freie Energie/Enthalpie & Gibbs Gleichungen

Größe: px
Ab Seite anzeigen:

Download "4. Freie Energie/Enthalpie & Gibbs Gleichungen"

Transkript

1 4. Freie Energie/Enthalie & Gibbs Gleichungen 4.3. Gibbs sche Gleichungen Fundamentalgleichungen der D weitere Fundamentalgleichungen basierend auf: einsetzen von (): d d d Ausdifferenzierung der Definition der Zustandsfunktionen für A, H und G einsetzen der ursrünglichen Fundamentalgleichung d = d - d freie Energie: A da da d d d ( d d) d d () da d d () Enthalie: H dh d d d einsetzen von (): dh ( d d) d d (3) dh d d freie Enthalie: G H einsetzen von (3): dh d d ( d d) d d (4) PC (0) Folien in Zusammenarbeit mit Julia Kunze in Anlehnung an Alexander Ogrodniks krit age: 03 d d

2 4. Freie Energie/Enthalie & Gibbs Gleichungen 4.3. Gibbs sche Gleichungen Fundamentalgleichungen der D d, dh, da, sind Zustandsfunktionen können durch vollständige Differentiale beschrieben werden innere Energie: d d d d d d alternativ: rein thermodynamische Definition der emeratur d d d für d=0 d d für d=0 d d PC (0) Folien in Zusammenarbeit mit Julia Kunze in Anlehnung an Alexander Ogrodniks krit age: 04

3 4. Freie Energie/Enthalie & Gibbs Gleichungen 4.3. Gibbs sche Gleichungen Fundamentalgleichungen der D d, dh, da, sind Zustandsfunktionen können durch vollständige Differentiale beschrieben werden freie Enthalie: d d G d G d G G alternativ: nützliche Beziehungen der - und -Abhängigkeit von G d d für d=0 d für d=0 PC (0) Folien in Zusammenarbeit mit Julia Kunze in Anlehnung an Alexander Ogrodniks krit age: 05 d G G

4 PC (0) age: 06 Folien in Zusammenarbeit mit Julia Kunze in Anlehnung an Alexander Ogrodniks krit Übersicht aller Gibbs schen Gleichungen mit ihren artiellen Ableitungen 4. Freie Energie/Enthalie & Gibbs Gleichungen 4.3. Gibbs sche Gleichungen Fundamentalgleichungen der D krit (Dr. Ogrodnik): Ka. 4. G G d d dh d d d d da d d d A H H A thermodynamische Definition der emeratur

5 4. Freie Energie/Enthalie & Gibbs Gleichungen 4.3. Gibbs sche Gleichungen Druckabhängigkeit von G G Druckabhängigkeit der freien Enthalie isotherm: da > 0, nimmt G mit dem Druck immer zu da molar von Gasen >> Flüssigkeiten, Feststoffe grössere Zunahme von G für Gase aus: P.W. Atkins, Physikalische Chemie (CH) isotherme Druckänderung: aus d G() G() d für Flüssigkeiten und Festkörer: konstant G () G( ) für ideale Gase: =nr G( ) G( ) d G( ) n R G( ) n R ln PC (0) Folien in Zusammenarbeit mit Julia Kunze in Anlehnung an Alexander Ogrodniks krit age: 07 afelanschrieb: Beisiel d

6 4. Freie Energie/Enthalie & Gibbs Gleichungen 4.3. Gibbs sche Gleichungen Druckabhängigkeit von G isotherme eränderung von G mit aus /-Diagramm gilt auch für reale Gase nicht verwechseln mit olumenarbeit! G d w d Isotherme Isotherme krit (Dr. Ogrodnik): Ka. 4. PC (0) Folien in Zusammenarbeit mit Julia Kunze in Anlehnung an Alexander Ogrodniks krit age: 08

7 4. Freie Energie/Enthalie & Gibbs Gleichungen 4.4. Gibbs-Helmholtz Gleichung emeraturabhängigkeit der freien Enthalie isobar: da die molar von Gasen >> Flüssigkeiten, Feststoffe (Grad der nordnung!) grössere -Abhängigkeit von G für Gase Gibbs-Helmholtz Gleichung: ausgehend von: G() H() () G H kombiniert mit artiellem Differential: G G H wir sehen säter, dass die Gleichgewichtskonstante einer Reaktion von G/ und nicht von G abhängt (G / ) suche Beziehung für:? afelanschrieb: Ableitung G PC (0) Folien in Zusammenarbeit mit Julia Kunze in Anlehnung an Alexander Ogrodniks krit age: 09 aus: P.W. Atkins, Physikalische Chemie (CH)

8 4. Freie Energie/Enthalie & Gibbs Gleichungen 4.4. Gibbs-Helmholtz Gleichung G / H Gibbs-Helmholtz Gleichung die -Abhängigkeit von G/ ist nur von der Enthalie H bestimmt und ist unabhängig von der Entroie! für chemische Reaktionen (isobar): RG / RH Fazit: bei bekanntem R H einer Reaktion is die -Abhängigkeit von G/ bekannt Anwendung: die Gleichgewichtskonstante K einer Reaktion ist eine Funtion in G/: Bestimmung der -Abhängigkeit von K nicht-kalorische Bestimmung von R H afelanschrieb: Erklärung RG R ln K PC (0) Folien in Zusammenarbeit mit Julia Kunze in Anlehnung an Alexander Ogrodniks krit age: 0

9 PC (0) age: Folien in Zusammenarbeit mit Julia Kunze in Anlehnung an Alexander Ogrodniks krit 4. Freie Energie/Enthalie & Gibbs Gleichungen 4.5. Maxwellgleichungen für jedes vollständige Differential (jede Zustandsfunktion): dy y F dx x F df x y hierfür gilt die chwarz sche Gleichung: (s. Aendix in Atkins oder krit Kaitel 4.4) y x x y x y F y x F d d d z.b. für die innere Energie: ergleich mit der Fundamentalgleichung: Maxwellgleichung:

10 PC (0) age: Folien in Zusammenarbeit mit Julia Kunze in Anlehnung an Alexander Ogrodniks krit 4. Freie Energie/Enthalie & Gibbs Gleichungen 4.5. Maxwellgleichungen Zusammenfassung der Maxwellgleichungen: d d d ) aus: d d dh ) aus: d d da 3) aus: d d 4) aus: mathematischer Zusammenhang thermodynamischer Grössen nützlich für weitere Ableitungen

11 PC (0) age: 3 Folien in Zusammenarbeit mit Julia Kunze in Anlehnung an Alexander Ogrodniks krit 4. Freie Energie/Enthalie & Gibbs Gleichungen 4.5. Maxwellgleichungen Anwendungsbeisiel - Binnendruck d d C d d d (s.. 06) zur Bestimmung von idealer und realer Gase (s.. 9) benötigen einen einfachen thermodynamischen Zusammenhang diesen liefert die Fundamentalgleichung: d d d Ableitung nach d bei d=0: kombiniert mit der Maxwellgleichuung: 0 ) ( Gas ideales m dw Gas a n a ) ( und (s.. 9)

12 4. Freie Energie/Enthalie & Gibbs Gleichungen 4.5. Maxwellgleichungen Anwendungsbeisiel - Joule-homson Koefficient J J H = Joule homson Koeffizient teigung der Isenthalen (s.. ) reales Gas J 0 d negativ Gas kühlt ab. reales Gas J 0 d ositiv Gas erwärmt sich. via Euler sche Kettenregel und Kehrwertregel (s.. 6): H Bestimmung von via Gibb sche Gleichung und Maxwellgleichung J C dh J C H d d afelanschrieb: Herleitung PC (0) Folien in Zusammenarbeit mit Julia Kunze in Anlehnung an Alexander Ogrodniks krit age: 4

13 4. Freie Energie/Enthalie & Gibbs Gleichungen 4.5. Maxwellgleichungen Anwendungsbeisiel - Joule-homson Koefficient J Korrelation mit dem erhalten eines idealen Gases ( J =0) J C ideal nr nr J C ideal = ideal < ideal > ideal J = 0 wie erwartet für ideales Gas J > 0, d.h. das Gas kühlt sich ab J < 0, d.h. das Gas wärmt sich auf weitere Details siehe krit (Dr. Ogrodnik): Ka. 4.5 PC (0) Folien in Zusammenarbeit mit Julia Kunze in Anlehnung an Alexander Ogrodniks krit age: 5

9.4 Der 2. Hautsatz: spontane Prozesse und Entropie

9.4 Der 2. Hautsatz: spontane Prozesse und Entropie 9.4 Der 2. Hautsatz: spontane Prozesse und Entropie Beispiele für spontane Prozesse: Ein heisser Körper kühlt sich auf Umgebungstemperatur ab. Ein kalter Köper erwärmt sich auf Umgebungstemperatur. Die

Mehr

Die innere Energie eines geschlossenen Systems ist konstant

Die innere Energie eines geschlossenen Systems ist konstant Rückblick auf vorherige Vorlesung Grundsätzlich sind alle möglichen Formen von Arbeit denkbar hier diskutiert: Mechanische Arbeit: Arbeit, die nötig ist um einen Massepunkt von A nach B zu bewegen Konservative

Mehr

Besprechung der thermodynamischen Grundlagen von Wärmekraftmaschinen und Wärmepumpen

Besprechung der thermodynamischen Grundlagen von Wärmekraftmaschinen und Wärmepumpen 3.5 Zustandsänderung nderung von Gasen Ziel: Besrehung der thermodynamishen Grundlagen von Wärmekraftmashinen und Wärmeumen Zustand von Gasen wird durh Druk, olumen, und emeratur beshrieben thermodyn.

Mehr

0.1 Barometrische Höhenformel

0.1 Barometrische Höhenformel 0. Barometrische Höhenformel Da, wie aus den bisherigen Überlegungen hervorgegeangen ist, Gase komressibel sind, kann deren Dichte nicht als konstant angesehen werden. Dies hat Konsequenzen auf den Schweredruck

Mehr

Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal

Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal 7.2 Die Enthalpie Die Enthalpie H ist definiert als H = U + pv, womit wir für die Änderung erhalten dh = pdv + TdS +

Mehr

Musterlösung zu Übung 7

Musterlösung zu Übung 7 PCI hermodynamik G. Jeschke FS 05 Musterlösung zu Übung 7 08.04.05 a Der Goldbarren wird beim Einbringen in das Reservoir sprunghaft erwärmt. Der Wärmeaustausch erfolgt daher auf irreversiblem Weg. Um

Mehr

PHYSIKALISCHE CHEMIE: Eine Einführung

PHYSIKALISCHE CHEMIE: Eine Einführung 1 PHYSIKALISCHE CHEMIE: Eine Einführung makroskoische Phänomene statische Phänomene Gleichgewichte in makroskoischen Systemen THERMODYNAMIK ELEKTROCHEMIE dynamische Phänomene Änderung der Konzentration

Mehr

Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie

Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie Kapitel 1: Quantenmechanik Kapitel 2: Atome Kapitel 3: Moleküle Mathematische Grundlagen Schrödingergleichung Einfache Beispiele

Mehr

Allgemeine Speicherberechnung

Allgemeine Speicherberechnung doc 6. Seite von 5 Allgemeine Seicherberechnung echnische Daten Grundlage Die Berechnung eines Hydroseichers bezieht sich auf die Zustandsänderung des Gases im Hydroseicher. Die gleiche Veränderung erfolgt

Mehr

Kalorimetrie. Wärmekapazität idealer Gase, c p /c v (PHYWE)

Kalorimetrie. Wärmekapazität idealer Gase, c p /c v (PHYWE) Kalorimetrie Wärmekaazität idealer Gase, c /c (PHYWE) Ziel des Versuches ist, die Molwärmen C und C on Luft zu bestimmen. Dabei wird angenommen, dass die Luft sich unter den Versuchsbedingungen wie ein

Mehr

Skizze zur Veranschaulichung der Legendretransformation

Skizze zur Veranschaulichung der Legendretransformation 9 Die thermodynamischen Funktionen G und H Ehe das Schema des vorherigen Abschnittes zur Konstruktion weiterer thermodynamischer Potentiale zu Ende gebracht wird, kurz einige Erläuterungen zur Legendretransformation.

Mehr

Verhalten reiner, realer Stoffe. Maxwellsche Beziehungen. Kapitel 7

Verhalten reiner, realer Stoffe. Maxwellsche Beziehungen. Kapitel 7 Verhalten reiner, realer Stoffe Kaitel 7 Maxwellsche Beziehungen Verknüfen die energetischen Zustandsgrößen und die Entroie mit den thermischen Zustandsgrößen Zustandsgröße sezifische Innere Energie du

Mehr

Übungen zur VL Chemie für Biologen und Humanbiologen 05.12.2011 Lösung Übung 6

Übungen zur VL Chemie für Biologen und Humanbiologen 05.12.2011 Lösung Übung 6 Übungen zur VL Chemie für Biologen und Humanbiologen 05.12.2011 Lösung Übung 6 Thermodynamik und Gleichgewichte 1. a) Was sagt die Enthalpie aus? Die Enthalpie H beschreibt den Energiegehalt von Materie

Mehr

Physikalische Chemie I

Physikalische Chemie I Ideale Gase 0. Hautsatz der hermodynamik: Wenn A im thermischen Gleichgewicht mit b ist und desgleichen B mit C, so sind auch A und c miteinander im thermischen Gleichgewicht. Gesetz von Boyle: V = Konstante

Mehr

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur Thermodynamik Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur kann voraussagen, ob eine chemische Reaktion abläuft oder nicht kann nichts über den zeitlichen

Mehr

Thermodynamik. Thermodynamik

Thermodynamik. Thermodynamik Geschlossenes System: Energieaustausch, aber kein Materieaustausch mit der Umgebung. Innere Energie: Jeder Stoff hat in sich Energie in irgendeiner Form gespeichert: die innere Energie U. U 1 = innere

Mehr

Das chemische Potential- eine Übersicht wichtiger Beziehungen

Das chemische Potential- eine Übersicht wichtiger Beziehungen Das chemische Potential- eine Übersicht wichtiger Beziehungen Definition des chem. Potentials Das chemische Potential beschreibt die bhängigkeit der extensiven thermodynamischen Energiegrößen von der Stoffmenge.

Mehr

Übung 4. SS 2013 Übung - Einführung in die Verbrennung - Methling, Özuylasi 1

Übung 4. SS 2013 Übung - Einführung in die Verbrennung - Methling, Özuylasi 1 Ziel: Grundlagen der chemischen Reaktionskinetik verstehen Verstehen qualitativer Reaktionsverläufe Aufstellung des Zeitgesetzes Umgang mit nicht reagierenden Stoßpartner (M) Berechnung Geschwindigkeitskoeffizient

Mehr

Physikalische Chemie: Kreisprozesse

Physikalische Chemie: Kreisprozesse Physikalische Chemie: Kreisprozesse Version vom 29. Mai 2006 Inhaltsverzeichnis 1 Diesel Kreisprozess 2 1.1 Wärmemenge Q.................................. 2 1.2 Arbeit W.....................................

Mehr

erster Hauptsatz der Thermodynamik,

erster Hauptsatz der Thermodynamik, 1.2 Erster Hautsatz der hermodynamik Wir betrachten ein thermodynamisches System, dem wir eine beliebige Wärmemenge δq zuführen, und an dem wir eine Arbeit da leisten wollen. Werden umgekehrt dem System

Mehr

Thermodynamik II. für den Studiengang Computational Engineering Science. H. Pitsch, B. Binninger Institut für Technische Verbrennung Templergraben 64

Thermodynamik II. für den Studiengang Computational Engineering Science. H. Pitsch, B. Binninger Institut für Technische Verbrennung Templergraben 64 Thermodynamik II für den Studiengang Computational Engineering Science H. Pitsch, B. Binninger Institut für Technische Verbrennung Templergraben 64 Inhalt von Thermodynamik II 6. Beziehungen zwischen Zustandsgrößen

Mehr

Kapitel 6. Variationsrechnung

Kapitel 6. Variationsrechnung Kapitel 6 Variationsrechnung Die vorangegangenen Kapitel waren der relativistischen Kinematik gewidmet, also der Beschreibung der Bewegung von Teilchen, deren Geschwindigkeit nicht vernachlässigbar klein

Mehr

Erhöhung der inneren Energie durch Temperaturerhöhung um ΔT: 1. Hauptsatz (einfache Form): ΔU = ΔQ + ΔW ;

Erhöhung der inneren Energie durch Temperaturerhöhung um ΔT: 1. Hauptsatz (einfache Form): ΔU = ΔQ + ΔW ; 4.11. Innere Energie (ideals. Gas): U =!! nr Erhöhung der inneren Energie durch emperaturerhöhung um Δ: bei konstanten olumen (isochor): ΔU = C! Δ Differentiell: du = C v d δq=du=c d => d=δq/c 1. Hauptsatz

Mehr

7. Chemische Reaktionen

7. Chemische Reaktionen 7. Chemische Reaktionen 7.1 Thermodynamik chemischer Reaktionen Welche Reaktion läuft spontan freiwillig ab? H 2 + I 2 2HI H 2 + I 2 2HI H 2 + I 2 2HI Wie ist der Energieumsatz einer Reaktion? Welche Wärme

Mehr

24.1 Überblick. 24.2 Beispiele. A. Bestimmen einer ganzrationalen Funktion. 24. Interpolation mit Ableitungen

24.1 Überblick. 24.2 Beispiele. A. Bestimmen einer ganzrationalen Funktion. 24. Interpolation mit Ableitungen 4. Interpolation mit Ableitungen 4. Interpolation mit Ableitungen 4.1 Überblick Die Interpolationsaufgabe haben wir bereits in Kapitel 7 (Band Analysis 1) untersucht. Als Auffrischung: Zu n vorgegebenen

Mehr

Mathematischer Selbsttest für Studienanfänger(innen)

Mathematischer Selbsttest für Studienanfänger(innen) Mathematischer Selbsttest für Studienanfänger(innen) Der folgende Mathematiktest dient zur Einschätzung Ihrer eigenen mathematischen Fähigkeiten. Das Niveau entspricht ungefähr dem der gymnasialen Mittel-

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 2007 ladimir Dyakonov # am 25.0.2007 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E43, Tel. 888-5875,

Mehr

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch herodynaik _ herodynaik Prof. Dr.-Ing. Peter Hakenesch eter.hakenesch@h.edu www.lrz-uenchen.de/~hakenesch _ herodynaik Einleitung Grundbegriffe 3 Systebeschreibung 4 Zustandsgleichungen 5 Kinetische Gastheorie

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = x sin( x + ) Aufgabe : ( VP) Berechnen Sie das Integral

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Physikalische Chemie für das Lehramt

Physikalische Chemie für das Lehramt Physialische Chemie für das Lehramt orlesungsscrit Ernst-Peter Röth ersion. Inhaltsverzeichnis orbesrechung. Mathematische Grundlagen Differentiale Integralrechnung. Der erste Hautsatz der Wärmelehre

Mehr

Physikalische Chemie. Heinz Hug Wolfgang Reiser EHRMITTEL. EUROPA-FACHBUCHREIHE für Chemieberufe. 2. neu bearbeitete Auflage. von

Physikalische Chemie. Heinz Hug Wolfgang Reiser EHRMITTEL. EUROPA-FACHBUCHREIHE für Chemieberufe. 2. neu bearbeitete Auflage. von 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. EHRMITTEL EUROPA-FACHBUCHREIHE für Chemieberufe Physikalische Chemie

Mehr

Was ist Physikalische Chemie? Die klassischen Teilgebiete der Physikalischen Chemie sind:

Was ist Physikalische Chemie? Die klassischen Teilgebiete der Physikalischen Chemie sind: Was ist Physikalische Chemie? Die klassischen eilgebiete der Physikalischen Chemie sind: 1) hermodynamik (z. B. Energetik chemischer Reaktionen, Lage von Gleichgewichten). 2) Kinetik chemischer Reaktionen

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Das Chemische Gleichgewicht Massenwirkungsgesetz

Das Chemische Gleichgewicht Massenwirkungsgesetz Das Chemishe Gleihgewiht Massenwirkungsgesetz Reversible Reaktionen: Beisiel : (Bodenstein 899 Edukt (Reaktanden Produkt H + I HIH Beobahtung: Die Reaktion verläuft unvollständig! ndig! D.h. niht alle

Mehr

Übungen zu Physik 1 für Ingenieure Musterlösung Blatt 6

Übungen zu Physik 1 für Ingenieure Musterlösung Blatt 6 Übungen zu Physik 1 für Ingenieure Musterlösung Blatt 6 Aufgabe 1 Hook sches Gesetz für ein Federpendel Bei einer Feder, für die das Hook sche Gesetz gilt, ist die rücktreibende Kraft F F proportional

Mehr

4.2. Quadratische Funktionen

4.2. Quadratische Funktionen Definition: Normalform der Parabelgleichung.. Quadratische Funktionen Eine Funktion mit der Gleichung f() = a + b + c mit a R* und b,c R heißt quadratische Funktion oder ganzrationale Funktion. Grades

Mehr

Institut für Energiesysteme und Energietechnik. Vorlesungsübung 1. Musterlösung

Institut für Energiesysteme und Energietechnik. Vorlesungsübung 1. Musterlösung Institut für Energiesysteme und Energietechnik Vorlesungsübung 1 Musterlösung 3.1 Kohlekraftwerk Aufgabe 1 Gesucht: Aufgrund der Vernachlässigung des Temperaturunterschiedes des Luft-, Rauchgas- und Brennstoffstromes

Mehr

Name Charakteristik Beispiele

Name Charakteristik Beispiele hermodynamishe Grundrozesse: Name Charakteristik Beisiele Isohor Isobar Isotherm Isoenergetish ) Isenthal ) Isentro 3) V = onst P = onst = onst U = onst H = onst S = onst Erwärmung oder Abkühlung in festen

Mehr

a) Was ist der Unterschied zwischen einer intensiven und einer extensiven Zustandsgröße?

a) Was ist der Unterschied zwischen einer intensiven und einer extensiven Zustandsgröße? Übung 1 Aufgabe 2.6: Zustandsgrößen, Systeme und Hauptsätze a) Was ist der Unterschied zwischen einer intensiven und einer extensiven Zustandsgröße? b) G sei eine Zustandsgröße mit der Einheit [G] = J.

Mehr

11 Stochastisches Integral und Itô-Formel

11 Stochastisches Integral und Itô-Formel 11 Stochastisches Integral und Itô-Formel Im diskreten Finanzmodell bei selbstfinanzierender Strategie ϑ = {ϑ n n=,...,n mit Anfangswert V gilt : Ṽ n ϑ = V + n ϑ T j S j. j=1 Dieser diskontierte Wertprozess

Mehr

1.4 Gradient, Divergenz und Rotation

1.4 Gradient, Divergenz und Rotation .4 Gradient, Divergenz und Rotation 5.4 Gradient, Divergenz und Rotation Die Begriffe Gradient, Divergenz und Rotation erfordern die partiellen Ableitung aus Abschnitt.. sowie das Konzept des Differentialoperators.

Mehr

VERSUCH 16 CHEMISCHES GLEICHGEWICHT IN DER GASPHASE

VERSUCH 16 CHEMISCHES GLEICHGEWICHT IN DER GASPHASE GRUNDPRAKTIKUM PHYSIKALISCHE CHEMIE VERSUCH 16 CHEMISCHES GLEICHGEWICHT IN DER GASPHASE Kurzbeschreibung: Die Temperaturabhängigkeit des chemischen Gasphasen-Gleichgewichts wird unter isobaren Bedingungen

Mehr

Differentialrechnung

Differentialrechnung Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 205/6 7 Differentialrechnung / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f () f ( 0) 0 heißt

Mehr

Allgemeine Chemie für Studierende mit Nebenfach Chemie Andreas Rammo

Allgemeine Chemie für Studierende mit Nebenfach Chemie Andreas Rammo Allgemeine Chemie für Studierende mit Nebenfach Chemie Andreas Rammo Allgemeine und Anorganische Chemie Universität des Saarlandes E-Mail: a.rammo@mx.uni-saarland.de innere Energie U Energieumsatz bei

Mehr

Die Berechnung von Korrekturfaktoren für Schwebekörperdurchflussmessgeräte bei geänderten Betriebsbedingungen

Die Berechnung von Korrekturfaktoren für Schwebekörperdurchflussmessgeräte bei geänderten Betriebsbedingungen ie Berechnung von orrekturfaktoren für Schwebekörerdurchflussmessgeräte bei geänderten Betriebsbedingungen il. Physiker Georg Rollmann 0 orwort ie alibrierung von Schwebekörerdurchflussmessgeräten für

Mehr

Kompressible Strömungsmechanik (Gasdynamik)

Kompressible Strömungsmechanik (Gasdynamik) Aerodynamik des Flugzeugs Komressible Strömungsmechanik (Gasdynamik) Folie von 94 Einleitung Strömungssimulation in Windkanälen 3 Numerische Strömungssimulation 4 Potentialströmungen 5 ragflügel unendlicher

Mehr

Verflüssigung von Gasen / Joule-Thomson-Effekt

Verflüssigung von Gasen / Joule-Thomson-Effekt Sieden und Kondensation: T p T p S S 0 1 RTSp0 1 ln p p0 Dampfdrucktopf, Autoklave zur Sterilisation absolute Luftfeuchtigkeit relative Luftfeuchtigkeit a ( g/m 3 ) a pw rel S ps rel 1 Taupunkt erflüssigung

Mehr

Hydrospeicher GRUNDLAGE OSP 050. Speicherberechnungen. Das ideale und das reale Gas. Gesetz nach Boyle-Mariotte. Zustandsgleichung reales Gas

Hydrospeicher GRUNDLAGE OSP 050. Speicherberechnungen. Das ideale und das reale Gas. Gesetz nach Boyle-Mariotte. Zustandsgleichung reales Gas The Professional Choice Hydroseicher - in Fluid Energy Management OSP 050 Seicherberechnungen GRUNDLAGE Zustandsgleichung reales Gas Bei konstanter Temeratur und isothermer Zustands änderung: Die Berechnung

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 1: Übersicht 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie 3.1.2 Innere Energie U 3.1.3 Energietransfer

Mehr

Mischungslücke in der flüssigen Phase

Mischungslücke in der flüssigen Phase Übungen in physikalischer Chemie für B. Sc.-Studierende Versuch Nr.: S05 Version 2015 Kurzbezeichnung: Mischungslücke Mischungslücke in der flüssigen Phase Aufgabenstellung Die Entmischungskurven von Phenol/Wasser

Mehr

Übungsserie 7: Anwendung der Differentialrechnung

Übungsserie 7: Anwendung der Differentialrechnung HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Wirtschaftsmathematik II Differentialrechnung Mathematik für Wirtschaftsingenieure - Übungsaufgaben Übungsserie 7: Anwendung der Differentialrechnung

Mehr

Formelsammlung Chemie

Formelsammlung Chemie 1 Formelsammlung Chemie Joachim Jakob, Kronberg-Gymnasium Aschaffenburg chemie-lernprogramme.de/daten/programme/js/formelsammlung/ Inhaltsverzeichnis 1 Avogadro Konstante N A 2 2 Molare Masse M 2 3 Molares

Mehr

VERSICHERUNGEN AUF MEHRERE LEBEN. Marta Ja lowiecka. 23 Januar 2009

VERSICHERUNGEN AUF MEHRERE LEBEN. Marta Ja lowiecka. 23 Januar 2009 VERSICHERUNGEN AUF MEHRERE LEBEN Marta Ja lowiecka 23 Januar 2009 1 1 Einführung Im Folgenden werden betrachtet- basierend auf Modellen und Formeln für einfache Versicherungen auf ein Leben- verschiedene

Mehr

Themengebiet: Thermodynamik. mol K. mol. ] eines Stoffes bestehend aus n Mol mit der Masse m gilt. M = m n. (2)

Themengebiet: Thermodynamik. mol K. mol. ] eines Stoffes bestehend aus n Mol mit der Masse m gilt. M = m n. (2) Seite 1 Themengebiet: Thermodynamik 1 Literatur D. Meschede, Gerthsen Physik, Springer F. Kohlrausch, Praktische Physik, Band 2, Teubner R.P. Feynman, R.B. Leighton und M. Sands, Feynman-Vorlesungen über

Mehr

2. Rechnen mit Wahrscheinlichkeiten

2. Rechnen mit Wahrscheinlichkeiten 2. Rechnen mit Wahrscheinlichkeiten 2.1 Axiome der Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung ist ein Teilgebiet der Mathematik. Es ist üblich, an den Anfang einer mathematischen Theorie

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 5, Teil 1. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 5, Teil 1. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 5, Teil 1 Prof. Dr. Ing. Heinz Pitsch Kapitel 5, Teil 1: Übersicht 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel isotherme

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/hermodynamik Wintersemester 2007 ladimir Dyakonov #2 am 10.01.2007 Raum E143, el. 888-5875, email: dyakonov@hysik.uni-wuerzburg.de 10.2 emeraturmessung Wärmeausdehnung

Mehr

Modul Chemische Thermodynamik: Reaktionsenthalpie

Modul Chemische Thermodynamik: Reaktionsenthalpie Modul Chemische Thermodynamik: Reaktionsenthalie M. Broszio, F. Noll, Oktober 27, Korrekturen Setember 28 Lernziele Der vorliegende Versuch beschäftigt sich mit Fragestellungen der Thermochemie, welche

Mehr

Übung 3. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) Verständnis des thermodynamischen Gleichgewichts

Übung 3. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) Verständnis des thermodynamischen Gleichgewichts Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) adiabatische Flammentemperatur Verständnis des thermodynamischen Gleichgewichts Definition von K X, K c, K p Berechnung von K

Mehr

6.3 Exakte Differentialgleichungen

6.3 Exakte Differentialgleichungen 6.3. EXAKTE DIFFERENTIALGLEICHUNGEN 23 6.3 Exakte Differentialgleichungen Andere Bezeichnungen: Pfaffsche Dgl., Dgl. für Kurvenscharen, Nullinien Pfaffscher Formen. 1. Definitionen Pfaffsche Dgl, Dgl.

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 2. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 2. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 2, Teil 2 Prof. Dr. Ing. Heinz Pitsch Kapitel 2, Teil 2: Übersicht 2 Zustandsgrößen 2.3 Bestimmung von Zustandsgrößen 2.3.1 Bestimmung der Phase 2.3.2 Der Sättigungszustand

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

3 Erzwungene Konvektion 1

3 Erzwungene Konvektion 1 3 Erzwungene Konvektion 3. Grunlagen er Konvektion a) erzwungene Konvektion (Strömung angetrieben urch Pumpe oer Gebläse) b) freie Konvektion (Dichteunterschiee aufgrun von Temperaturunterschieen) c) Konensation

Mehr

Felder ausgewählter Konfigurationen

Felder ausgewählter Konfigurationen Felde ausgewählte Konfiguationen Anwendung von Supepositionspinzip Gauß sche Satz Feldbeechung aus Potenzial. Feld und Potenzial innehalb und außehalb eine Vollkugel. Feld und Potenzial innehalb und außehalb

Mehr

Fakultät Chemie Physikalische Chemie I

Fakultät Chemie Physikalische Chemie I Fakultät Chemie Physikalische Chemie I Einstiegstraining für die Chemie-Olympiade 013 in Russland Physikalische Chemie Einheiten und Größen Ableiten und Integrieren Ideale Gase Thermodynamik chemischer

Mehr

UND MOSES SPRACH AUCH DIESE GEBOTE

UND MOSES SPRACH AUCH DIESE GEBOTE UND MOSES SPRACH AUCH DIESE GEBOTE 1. Gebot: Nur die DUMMEN kürzen SUMMEN! Und auch sonst läuft bei Summen und Differenzen nichts! 3x + y 3 darfst Du NICHT kürzen! x! y. Gebot: Vorsicht bei WURZELN und

Mehr

Tutorial: Regression Output von R

Tutorial: Regression Output von R Tutorial: Regression Output von R Eine Firma erzeugt Autositze. Ihr Chef ist besorgt über die Anzahl und die Kosten von Maschinenausfällen. Das Problem ist, dass die Maschinen schon alt sind und deswegen

Mehr

3. MESSUNG VON REAKTIONSWÄRMEN IM BOMBENKALORIMETER

3. MESSUNG VON REAKTIONSWÄRMEN IM BOMBENKALORIMETER 3. MESSUNG VON REAKTIONSWÄRMEN IM BOMBENKALORIMETER 1. Vorbereitung und Eingangskolloquium Bereiten Sie folgende Themengebiete vor: Die gründliche theoretische Vorbereitung dieser Themengebiete ist nötig

Mehr

Formelsammlung zur Vorlesung Physikalische Chemie I (Thermodynamik)

Formelsammlung zur Vorlesung Physikalische Chemie I (Thermodynamik) Formelsammlung zur Vorlesung Physikalische Chemie I (hermodynamik) Ulrich K. Deiters Institut für Physikalische Chemie, Universität zu Köln 1 Symbole M N N A n p R V Molmasse eilchenzahl Avogadro-Konstante,

Mehr

9.10.2 Der Carnotsche Kreisprozess

9.10.2 Der Carnotsche Kreisprozess 9. Thermodynamik 99 9.9 Der erste Hauptsatz 9.10 Der zweite Hauptsatz 9101 9.10.1 Thermodynamischer Wirkungsgrad 9.10.2 Der Carnotsche Kreisprozess 9.9 Der erste Hauptsatz Für kinetische Energie der ungeordneten

Mehr

Mathematik II. Vorlesung 49. Der Banachsche Fixpunktsatz

Mathematik II. Vorlesung 49. Der Banachsche Fixpunktsatz Prof. Dr. H. Brenner Osnabrück SS 2010 Mathematik II Vorlesung 49 Der Banachsche Fixpunktsatz Satz 49.1. Es sei M ein nicht-leerer vollständiger metrischer Raum und f :M M eine stark kontrahierende Abbildung.

Mehr

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie Innere Energie: U - thermisch - latent Äußere Energien: E a - kinetisch E kin - potentiell E pot Gesamtenergie: E = U + E kin + E pot 3.1-1 3.1.2 Die

Mehr

11. Ideale Gasgleichung

11. Ideale Gasgleichung . Ideale Gasgleichung.Ideale Gasgleichung Definition eines idealen Gases: Gasmoleküle sind harte punktförmige eilchen, die nur elastische Stöße ausführen und kein Eigenvolumen besitzen. iele Gase zeigen

Mehr

Kurzzusammenstellung der in der Vorlesung behandelten impliziten Gleichungen und deren Ableitungen

Kurzzusammenstellung der in der Vorlesung behandelten impliziten Gleichungen und deren Ableitungen Kurzzusammenstellung der in der Vorlesung behandelten impliziten Gleichungen und deren Ableitungen Einleitung: Funktion mit einer Veränderlichen Als Einleitung haben wir folgende Funktion besprochen: y

Mehr

Inhaltsverzeichnis. Gernot Wilhelms. Übungsaufgaben Technische Thermodynamik ISBN: 978-3-446-41512-6. Weitere Informationen oder Bestellungen unter

Inhaltsverzeichnis. Gernot Wilhelms. Übungsaufgaben Technische Thermodynamik ISBN: 978-3-446-41512-6. Weitere Informationen oder Bestellungen unter Inhaltsverzeichnis Gernot Wilhelms Übungsaufgaben Technische Thermodynamik ISBN: 978-3-446-41512-6 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41512-6 sowie im Buchhandel.

Mehr

Vorlesungsfolien 20.11.2003

Vorlesungsfolien 20.11.2003 Institut für Allgemeine Wirtschaftsforschung Abteilung Sozialpolitik: rof. r. G. Schulze Jahreskurs Mikroökonomie Teil 1 WS03/04 Vorlesungsfolien 20.11.2003 Nicholson, Walter, Microeconomic Theory Kapitel

Mehr

Der Joule-Thomson-Effekt

Der Joule-Thomson-Effekt Joule-homson-Effekt Der Joule-homson-Effekt In diesem ersuh werden die Joule-homson-Koeffizienten von vershiedenen Gasen (e, CO, N ) bestimmt, indem die emeraturänderung der Gase infolge einer Drukänderung

Mehr

Zustandsformen der Materie Thermische Eigenschaften der Materie. Temperatur. skalare Zustandsgröße der Materie Maß für die Bewegung der Moleküle

Zustandsformen der Materie Thermische Eigenschaften der Materie. Temperatur. skalare Zustandsgröße der Materie Maß für die Bewegung der Moleküle Zustandsformen der Materie hermische Eigenschaften der Materie Aggregatzustände: fest flüssig suprafluide gasförmig überkritisch emperatur skalare Zustandsgröße der Materie Maß für die Bewegung der Moleküle

Mehr

Klausur Physikalische Chemie für TUHH (Chemie III)

Klausur Physikalische Chemie für TUHH (Chemie III) 07.03.2012 14.00 Uhr 17.00 Uhr Moritz / Pauer Klausur Physikalische Chemie für TUHH (Chemie III) Die folgende Tabelle dient Korrekturzwecken und darf vom Studenten nicht ausgefüllt werden. 1 2 3 4 5 6

Mehr

Physikalische Chemie 2

Physikalische Chemie 2 Physikalische Chemie 0. SYMBOLE UND FORMELN... 1 0.1 LISE WICIGER SYMBOLE... 1 0. AUSWAL VON FORMELN... 0.3 LIERAURANGABEN... 1. EINFÜRUNG... 3 1.1 GESCICLICE ENWICKLUNG... 3 1. GEBIEE DER PYSIKALISCEN

Mehr

Lineare Gleichungen mit 2 Variablen

Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen sind sehr eng verwandt mit linearen Funktionen. Die Funktionsgleichung einer linearen Funktion f(x) = m x+q m: Steigung, q: y Achsenabschnitt

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 25. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 25. 06.

Mehr

Bestimmung von thermodynamischen Daten aus elektrochemischen Messungen. Temperaturabhängigkeit der EMK

Bestimmung von thermodynamischen Daten aus elektrochemischen Messungen. Temperaturabhängigkeit der EMK V7 Bestimmung von thermodynamischen Daten aus elektrochemischen Messungen Temperaturabhängigkeit der EMK Versuch 7: Bestimmung von thermodynamischen Daten aus elektrochemischen Messungen. Temperaturabhängigkeit

Mehr

Thermodynamik: Definition von System und Prozess

Thermodynamik: Definition von System und Prozess Thermodynamik: Definition von System und Prozess Unter dem System verstehen wir den Teil der elt, an dem wir interessiert sind. Den Rest bezeichnen wir als Umgebung. Ein System ist: abgeschlossen oder

Mehr

Chemische Thermodynamik

Chemische Thermodynamik Walter Schreiter Chemische Thermodynamik Grundlagen, Übungen, Lösungen 2. überarbeitete und ergänzte Auflage De Gruyter Energie Verwendete Symbole und Größen XIII 1 Theoretische Grundlagen 1 1.1 Nullter

Mehr

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1 I. Mechanik I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen Physik für Mediziner Stromdichte Stromstärke = durch einen Querschnitt (senkrecht zur Flussrichtung) fließende Menge pro Zeit ( Menge

Mehr

Thermodynamik. Grundlagen und technische Anwendungen

Thermodynamik. Grundlagen und technische Anwendungen Springer-Lehrbuch Thermodynamik. Grundlagen und technische Anwendungen Band 2: Mehrstoffsysteme und chemische Reaktionen Bearbeitet von Peter Stephan, Karlheinz Schaber, Karl Stephan, Franz Mayinger Neuausgabe

Mehr

Grundlagen und Bauelemente der Elektrotechnik

Grundlagen und Bauelemente der Elektrotechnik Heinz Josef Bauckholt Grundlagen und Bauelemente der Elektrotechnik ISBN-10: 3-446-41257-3 ISBN-13: 978-3-446-41257-6 Leseprobe Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41257-6

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Zwischenwertsatz Gegeben: f : [a, b] R stetig Dann gilt: f(a) < f(b) y [f(a), f(b)] x [a, b] mit f(x) = y 9.1. Grundbegriffe

Mehr

Skript zur Vorlesung: Physikalische Chemie I: Thermodynamik und Kinetik (PC I) WS 2006/07

Skript zur Vorlesung: Physikalische Chemie I: Thermodynamik und Kinetik (PC I) WS 2006/07 Skrit zur Vorlesung: Physikalische Chemie I: hermodynamik und Kinetik (PC I) WS 006/07 gehalten von Dr. Weiss/Prof. Dr. Schuster Mitschrieb von Nils Middendorf 10. August 007 Inhaltsverzeichnis 1 Einleitung

Mehr

Vorlesungen: 16.1. 2006 30.1. 2006. 7 Differentialgleichungen. Inhaltsverzeichnis

Vorlesungen: 16.1. 2006 30.1. 2006. 7 Differentialgleichungen. Inhaltsverzeichnis Vorlesungen: 16.1. 2006 30.1. 2006 7 Differentialgleichungen Inhaltsverzeichnis 7 Differentialgleichungen 1 7.1 Differentialgleichungen 1. Ordnung...................... 2 7.1.1 Allgemeine Bemerkungen zu

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/7 11. Phasendiagramme. Phasendiagramme

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/7 11. Phasendiagramme. Phasendiagramme Physikalische Cheie Physikalische Cheie I SoSe 29 Prof. Dr. Norbert Ha /7. Phasendiagrae Phasendiagrae In Phasendiagraen wird die eeratur- und Druckabhngigkeit der Aggregatzustnde von Stoffen bzw. Stoffischungen

Mehr

Lehrbücher der Physikalischen Chemie

Lehrbücher der Physikalischen Chemie VERSUCH - Dampfdruckkure VERSUCH DAMPFDRUCKKURVE hema Messung der Dampfdruckkuren leicht erdampfbarer Flüssigkeiten Grundlagen thermodynamische Gesetze der Phasenübergänge Dampfdruckkure Beschreibung der

Mehr

Matura2016-Lösung. Problemstellung 1

Matura2016-Lösung. Problemstellung 1 Matura-Lösung Problemstellung. Die Funktion f( = + 9k + müsste bei = den Wert annehmen, also gilt + 9k + = k =. Wir betrachten den Bereich mit positiven Werten. Dann gilt: f ( = 8 + 8 = = ; = Bei liegt

Mehr

Praktische Einführung in die Chemie Integriertes Praktikum:

Praktische Einführung in die Chemie Integriertes Praktikum: Praktische Einführung in die Chemie Integriertes Praktikum: Versuch 1-2 (MWG) Massenwirkungsgesetz Versuchs-Datum: 20. Juni 2012 Gruppenummer: 8 Gruppenmitglieder: Domenico Paone Patrick Küssner Michael

Mehr

W3 PhysikalischesGrundpraktikum

W3 PhysikalischesGrundpraktikum W3 PhysikalischesGrundpraktikum Abteilung Wärmelehre Luftdruck und Luftdichte 1 Lernziele Bestimmen der Luftdichte auf verschiedenen Wegen. Abklären, ob Luft als ideales Gas betrachtet werden darf (bei

Mehr

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C?

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? (-> Tabelle p) A 1.1 b Wie groß ist der Auftrieb eines Helium (Wasserstoff) gefüllten

Mehr

1. Übungsaufgabe zu Exponentialfunktionen

1. Übungsaufgabe zu Exponentialfunktionen 1. Übungsaufgabe zu Exponentialfunktionen Die folgende Funktion y = f(t) = 8 t e stellt die Konzentration eines Stoffes in einer Flüssigkeit dar. y ist die Konzentration des Stoffes in mg / Liter. t ist

Mehr