4. Freie Energie/Enthalpie & Gibbs Gleichungen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "4. Freie Energie/Enthalpie & Gibbs Gleichungen"

Transkript

1 4. Freie Energie/Enthalie & Gibbs Gleichungen 4.3. Gibbs sche Gleichungen Fundamentalgleichungen der D weitere Fundamentalgleichungen basierend auf: einsetzen von (): d d d Ausdifferenzierung der Definition der Zustandsfunktionen für A, H und G einsetzen der ursrünglichen Fundamentalgleichung d = d - d freie Energie: A da da d d d ( d d) d d () da d d () Enthalie: H dh d d d einsetzen von (): dh ( d d) d d (3) dh d d freie Enthalie: G H einsetzen von (3): dh d d ( d d) d d (4) PC (0) Folien in Zusammenarbeit mit Julia Kunze in Anlehnung an Alexander Ogrodniks krit age: 03 d d

2 4. Freie Energie/Enthalie & Gibbs Gleichungen 4.3. Gibbs sche Gleichungen Fundamentalgleichungen der D d, dh, da, sind Zustandsfunktionen können durch vollständige Differentiale beschrieben werden innere Energie: d d d d d d alternativ: rein thermodynamische Definition der emeratur d d d für d=0 d d für d=0 d d PC (0) Folien in Zusammenarbeit mit Julia Kunze in Anlehnung an Alexander Ogrodniks krit age: 04

3 4. Freie Energie/Enthalie & Gibbs Gleichungen 4.3. Gibbs sche Gleichungen Fundamentalgleichungen der D d, dh, da, sind Zustandsfunktionen können durch vollständige Differentiale beschrieben werden freie Enthalie: d d G d G d G G alternativ: nützliche Beziehungen der - und -Abhängigkeit von G d d für d=0 d für d=0 PC (0) Folien in Zusammenarbeit mit Julia Kunze in Anlehnung an Alexander Ogrodniks krit age: 05 d G G

4 PC (0) age: 06 Folien in Zusammenarbeit mit Julia Kunze in Anlehnung an Alexander Ogrodniks krit Übersicht aller Gibbs schen Gleichungen mit ihren artiellen Ableitungen 4. Freie Energie/Enthalie & Gibbs Gleichungen 4.3. Gibbs sche Gleichungen Fundamentalgleichungen der D krit (Dr. Ogrodnik): Ka. 4. G G d d dh d d d d da d d d A H H A thermodynamische Definition der emeratur

5 4. Freie Energie/Enthalie & Gibbs Gleichungen 4.3. Gibbs sche Gleichungen Druckabhängigkeit von G G Druckabhängigkeit der freien Enthalie isotherm: da > 0, nimmt G mit dem Druck immer zu da molar von Gasen >> Flüssigkeiten, Feststoffe grössere Zunahme von G für Gase aus: P.W. Atkins, Physikalische Chemie (CH) isotherme Druckänderung: aus d G() G() d für Flüssigkeiten und Festkörer: konstant G () G( ) für ideale Gase: =nr G( ) G( ) d G( ) n R G( ) n R ln PC (0) Folien in Zusammenarbeit mit Julia Kunze in Anlehnung an Alexander Ogrodniks krit age: 07 afelanschrieb: Beisiel d

6 4. Freie Energie/Enthalie & Gibbs Gleichungen 4.3. Gibbs sche Gleichungen Druckabhängigkeit von G isotherme eränderung von G mit aus /-Diagramm gilt auch für reale Gase nicht verwechseln mit olumenarbeit! G d w d Isotherme Isotherme krit (Dr. Ogrodnik): Ka. 4. PC (0) Folien in Zusammenarbeit mit Julia Kunze in Anlehnung an Alexander Ogrodniks krit age: 08

7 4. Freie Energie/Enthalie & Gibbs Gleichungen 4.4. Gibbs-Helmholtz Gleichung emeraturabhängigkeit der freien Enthalie isobar: da die molar von Gasen >> Flüssigkeiten, Feststoffe (Grad der nordnung!) grössere -Abhängigkeit von G für Gase Gibbs-Helmholtz Gleichung: ausgehend von: G() H() () G H kombiniert mit artiellem Differential: G G H wir sehen säter, dass die Gleichgewichtskonstante einer Reaktion von G/ und nicht von G abhängt (G / ) suche Beziehung für:? afelanschrieb: Ableitung G PC (0) Folien in Zusammenarbeit mit Julia Kunze in Anlehnung an Alexander Ogrodniks krit age: 09 aus: P.W. Atkins, Physikalische Chemie (CH)

8 4. Freie Energie/Enthalie & Gibbs Gleichungen 4.4. Gibbs-Helmholtz Gleichung G / H Gibbs-Helmholtz Gleichung die -Abhängigkeit von G/ ist nur von der Enthalie H bestimmt und ist unabhängig von der Entroie! für chemische Reaktionen (isobar): RG / RH Fazit: bei bekanntem R H einer Reaktion is die -Abhängigkeit von G/ bekannt Anwendung: die Gleichgewichtskonstante K einer Reaktion ist eine Funtion in G/: Bestimmung der -Abhängigkeit von K nicht-kalorische Bestimmung von R H afelanschrieb: Erklärung RG R ln K PC (0) Folien in Zusammenarbeit mit Julia Kunze in Anlehnung an Alexander Ogrodniks krit age: 0

9 PC (0) age: Folien in Zusammenarbeit mit Julia Kunze in Anlehnung an Alexander Ogrodniks krit 4. Freie Energie/Enthalie & Gibbs Gleichungen 4.5. Maxwellgleichungen für jedes vollständige Differential (jede Zustandsfunktion): dy y F dx x F df x y hierfür gilt die chwarz sche Gleichung: (s. Aendix in Atkins oder krit Kaitel 4.4) y x x y x y F y x F d d d z.b. für die innere Energie: ergleich mit der Fundamentalgleichung: Maxwellgleichung:

10 PC (0) age: Folien in Zusammenarbeit mit Julia Kunze in Anlehnung an Alexander Ogrodniks krit 4. Freie Energie/Enthalie & Gibbs Gleichungen 4.5. Maxwellgleichungen Zusammenfassung der Maxwellgleichungen: d d d ) aus: d d dh ) aus: d d da 3) aus: d d 4) aus: mathematischer Zusammenhang thermodynamischer Grössen nützlich für weitere Ableitungen

11 PC (0) age: 3 Folien in Zusammenarbeit mit Julia Kunze in Anlehnung an Alexander Ogrodniks krit 4. Freie Energie/Enthalie & Gibbs Gleichungen 4.5. Maxwellgleichungen Anwendungsbeisiel - Binnendruck d d C d d d (s.. 06) zur Bestimmung von idealer und realer Gase (s.. 9) benötigen einen einfachen thermodynamischen Zusammenhang diesen liefert die Fundamentalgleichung: d d d Ableitung nach d bei d=0: kombiniert mit der Maxwellgleichuung: 0 ) ( Gas ideales m dw Gas a n a ) ( und (s.. 9)

12 4. Freie Energie/Enthalie & Gibbs Gleichungen 4.5. Maxwellgleichungen Anwendungsbeisiel - Joule-homson Koefficient J J H = Joule homson Koeffizient teigung der Isenthalen (s.. ) reales Gas J 0 d negativ Gas kühlt ab. reales Gas J 0 d ositiv Gas erwärmt sich. via Euler sche Kettenregel und Kehrwertregel (s.. 6): H Bestimmung von via Gibb sche Gleichung und Maxwellgleichung J C dh J C H d d afelanschrieb: Herleitung PC (0) Folien in Zusammenarbeit mit Julia Kunze in Anlehnung an Alexander Ogrodniks krit age: 4

13 4. Freie Energie/Enthalie & Gibbs Gleichungen 4.5. Maxwellgleichungen Anwendungsbeisiel - Joule-homson Koefficient J Korrelation mit dem erhalten eines idealen Gases ( J =0) J C ideal nr nr J C ideal = ideal < ideal > ideal J = 0 wie erwartet für ideales Gas J > 0, d.h. das Gas kühlt sich ab J < 0, d.h. das Gas wärmt sich auf weitere Details siehe krit (Dr. Ogrodnik): Ka. 4.5 PC (0) Folien in Zusammenarbeit mit Julia Kunze in Anlehnung an Alexander Ogrodniks krit age: 5

5. Die Thermodynamischen Potentiale

5. Die Thermodynamischen Potentiale 5. Die hermodynamischen Potentiale 5.1. Einführung der Potentiale Gibbs'sche Fundamentalgleichung. d = du + d, du + d δ Q d = = Ist die Entroie als Funktion von U und bekannt, = ( U, ) dann lassen sich

Mehr

1. Thermodynamische Potentiale, Maxwellgleichungen

1. Thermodynamische Potentiale, Maxwellgleichungen 69 KAPIEL G hermodynamische Potentiale 1. hermodynamische Potentiale, Maxwellgleichungen hermodynamische Potentiale sind Funktionen von den Zustandsvariablen. Wir haben schon die innere Energie kennengelernt,

Mehr

Der Zweite Hauptsatz der TD- Lernziele

Der Zweite Hauptsatz der TD- Lernziele Der Zweite Hautsatz der D- Lernziele o Einleitung o Entroie (Definition, Entroie als Zustandsfunktion, die Clausius sche Ungleichung) o Der Zweite Hautzatz der D o Die Entroieänderungen bei seziellen Prozessen

Mehr

4. Freie Energie/Enthalpie & Gibbs Gleichungen

4. Freie Energie/Enthalpie & Gibbs Gleichungen 4. Freie Energie/Enthalpie & Gibbs Gleichungen 1. Eigenschaften der Materie in der Gasphase 2. Erster Hauptsatz: Arbeit und Wärme 3. Entropie und Zweiter Hauptsatz der hermodynamik 4. Freie Enthalpie G,

Mehr

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke)

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Freie Universität Berlin W 006/007 Fachbereich Physik 8..006 tatistische Physik - heorie der Wärme (PD Dr. M. Falcke) Übungsblatt 9: hermodynamische Identitäten, hermische/kalorische Zustandsgleichung,

Mehr

5 Thermodynamische Potentiale

5 Thermodynamische Potentiale 3 Woche 5 hermodynamische Potentiale 51 Formale Einführung der Potentiale Es ist möglich, die extensiven Zustandsfunktionen (mit der Dimension der Energie) zu bilden, die die anderen ariablen als S,, N

Mehr

1 I. Thermodynamik. 1.1 Ideales Gasgesetz. 1.2 Vereinfachte kinetische Gastheorie. 1.3 Erster Hauptsatz der Thermodynamik.

1 I. Thermodynamik. 1.1 Ideales Gasgesetz. 1.2 Vereinfachte kinetische Gastheorie. 1.3 Erster Hauptsatz der Thermodynamik. 1 I. hermodynamik 1.1 Ideales Gasgesetz eilchenzahl N Stoffmenge: n [mol], N A = 6.022 10 23 mol 1 ; N = nn A molare Größen: X m = X/n ideales Gasgesetz: V = nr, R = 8.314JK 1 mol 1 Zustandsgrößen:, V,,

Mehr

T 1 T T Zustandsverhalten einfacher Systeme (Starthilfe S ) - Prozess und Zustandsänderung. Prozess (Q 12

T 1 T T Zustandsverhalten einfacher Systeme (Starthilfe S ) - Prozess und Zustandsänderung. Prozess (Q 12 . Zustandserhalten einfacher Systeme (Starthilfe S. 9-38) - Prozess und Zustandsänderung Zustandsänderung δq Prozess (Q ) - thermodynamisch einfache Systeme reiner Stoff feste flüssige damfförmige Phase

Mehr

Physikalische Chemie Physikalsiche Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/10 5. Zustandsfunktionen Idealer und Realer Gase. ZustandsÄnderungen

Physikalische Chemie Physikalsiche Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/10 5. Zustandsfunktionen Idealer und Realer Gase. ZustandsÄnderungen Prof. Dr. Norbert Ham 1/10 5. Zustandsfunktionen Idealer und Realer Gase ZustandsÄnderungen Die rennung zwischen unserem System und der ÅUmweltÇ wird durch eine Wand realisiert. WÄnde kånnen unterschiedliche

Mehr

Temperaturabhängigkeit von Enthalpie H und Entropie S

Temperaturabhängigkeit von Enthalpie H und Entropie S Prof. Dr. Norbert Ham 1/5 8. emeraturabhängigkeit von Enthalie und Entroie emeraturabhängigkeit von Enthalie H und Entroie S In abellenwerken sind Enthalien und Entroien in der Regel bezogen auf Standardbedingungen,

Mehr

I el U el. P el W V 23+W F23. Musterlösung SS Aufgabe (34 Punkte) a) Energiebilanz für die Kammer A im Zeitintervall t 12 :

I el U el. P el W V 23+W F23. Musterlösung SS Aufgabe (34 Punkte) a) Energiebilanz für die Kammer A im Zeitintervall t 12 : Musterlösung SS. Aufgabe Punkte a Energiebilanz für die Kammer A im Zeitintervall t : W A, + W V A U A U A W A, P el t U el I el t W V A 0 U A U A m A c v A A 5 m A A V A R A 6 c v κ R 7 A A A A 8 A B

Mehr

Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal

Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal 7.2 Die Enthalpie Die Enthalpie H ist definiert als H = U + pv, womit wir für die Änderung erhalten dh = pdv + TdS +

Mehr

GPH2 Thermodynamik. 27. September Dieser Entwurf ist weder vollständig oder fehlerfrei noch ein offizielles Script zur Vorlesung.

GPH2 Thermodynamik. 27. September Dieser Entwurf ist weder vollständig oder fehlerfrei noch ein offizielles Script zur Vorlesung. GPH2 Thermodynamik Dieser Entwurf ist weder ollständig oder fehlerfrei noch ein offizielles Scrit zur Vorlesung. Für Anregungen und Kritik: mail@sibbar.de 27. Setember 2004 GPH2 Thermodynamik Seite 2 on

Mehr

Die innere Energie and die Entropie

Die innere Energie and die Entropie Die innere Energie and die Entropie Aber fangen wir mit der Entropie an... Stellen Sie sich ein System vor, das durch die Entropie S, das Volumen V und die Stoffmenge n beschrieben wird. U ' U(S,V,n) Wir

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/8 15. Chemische Thermodynamik. ZustandsÄnderungen

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/8 15. Chemische Thermodynamik. ZustandsÄnderungen Physikalische Chemie Physikalische Chemie I oe 2009 Prof. Dr. Norbert Ham 1/8 15. Chemische hermodynamik Zustandsnderungen Mit Hilfe des chemischen Potentials, knnen wir offene und kommunizierende ysteme

Mehr

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Einführung in die Phsikalische Chemie Teil 2: Makroskopische Phänomene und Thermodnamik Kapitel 7: Boltzmann-Verteilung Kapitel 8: Statistische Beschreibung makroskopischer Grössen Kapitel 9: Thermodnamik:

Mehr

Besprechung der thermodynamischen Grundlagen von Wärmekraftmaschinen und Wärmepumpen

Besprechung der thermodynamischen Grundlagen von Wärmekraftmaschinen und Wärmepumpen 3.5 Zustandsänderung nderung von Gasen Ziel: Besrehung der thermodynamishen Grundlagen von Wärmekraftmashinen und Wärmeumen Zustand von Gasen wird durh Druk, olumen, und emeratur beshrieben thermodyn.

Mehr

0.1 Barometrische Höhenformel

0.1 Barometrische Höhenformel 0. Barometrische Höhenformel Da, wie aus den bisherigen Überlegungen hervorgegeangen ist, Gase komressibel sind, kann deren Dichte nicht als konstant angesehen werden. Dies hat Konsequenzen auf den Schweredruck

Mehr

Thermodynamik der Gase. Joule-Thomson-Prozeß (PHYWE)

Thermodynamik der Gase. Joule-Thomson-Prozeß (PHYWE) hermodynamik der Gase Joule-homson-Prozeß (PHYWE) Ziel des Versuches ist es, den Joule-homson-Koeffizienten µ J für zwei verschiedene Gase zu bestimmen. Vorbereitung: - hermodynamik idealer/ realer Gase

Mehr

Die innere Energie eines geschlossenen Systems ist konstant

Die innere Energie eines geschlossenen Systems ist konstant Rückblick auf vorherige Vorlesung Grundsätzlich sind alle möglichen Formen von Arbeit denkbar hier diskutiert: Mechanische Arbeit: Arbeit, die nötig ist um einen Massepunkt von A nach B zu bewegen Konservative

Mehr

Inhalt 1 Grundlagen der Thermodynamik

Inhalt 1 Grundlagen der Thermodynamik Inhalt 1 Grundlagen der Thermodynamik..................... 1 1.1 Grundbegriffe.............................. 2 1.1.1 Das System........................... 2 1.1.2 Zustandsgrößen........................

Mehr

Inhalt der Vorlesung. 1. Eigenschaften der Gase. 0. Einführung

Inhalt der Vorlesung. 1. Eigenschaften der Gase. 0. Einführung Inhalt der Vorlesung 0. Einführung 0.1 Themen der Physikal. Chemie 0.2 Grundbegriffe/ Zentrale Größe: Energie 0.3 Molekulare Deutung der inneren Energie U Molekülstruktur, Energieniveaus und elektromagn.

Mehr

Physikalisch-chemische Grundlagen der thermischen Verfahrenstechnik

Physikalisch-chemische Grundlagen der thermischen Verfahrenstechnik Lüdecke Lüdecke Thermodynamik Physikalisch-chemische Grundlagen der thermischen Verfahrenstechnik Grundlagen der Thermodynamik Grundbegriffe Nullter und erster Hauptsatz der Thermodynamik Das ideale Gas

Mehr

PC-Übung Nr.1 vom

PC-Übung Nr.1 vom PC-Übung Nr.1 vom 17.10.08 Sebastian Meiss 25. November 2008 1. Allgemeine Vorbereitung a) Geben Sie die Standardbedingungen in verschiedenen Einheiten an: Druck p in Pa, bar, Torr, atm Temperatur T in

Mehr

6 Thermodynamische Potentiale und Gleichgewichtsbedingungen

6 Thermodynamische Potentiale und Gleichgewichtsbedingungen 6 hermodynamische Potentiale und Gleichgewichtsbedingungen 6.1 Einführung Wir haben bereits folgende thermodynamische Potentiale untersucht: U(S,V ) S(U,V ) hermodynamische Potentiale sind Zustandsfunktionen

Mehr

9.4 Der 2. Hautsatz: spontane Prozesse und Entropie

9.4 Der 2. Hautsatz: spontane Prozesse und Entropie 9.4 Der 2. Hautsatz: spontane Prozesse und Entropie Beispiele für spontane Prozesse: Ein heisser Körper kühlt sich auf Umgebungstemperatur ab. Ein kalter Köper erwärmt sich auf Umgebungstemperatur. Die

Mehr

Bernhard Härder. Einführung in die PHYSIKALISCHE CHEMIE ein Lehrbuch Chemische Thermodynamik W/ WESTAR.P WISSENSCHAFTEN. Skripte, Lehrbücher Band 2

Bernhard Härder. Einführung in die PHYSIKALISCHE CHEMIE ein Lehrbuch Chemische Thermodynamik W/ WESTAR.P WISSENSCHAFTEN. Skripte, Lehrbücher Band 2 Bernhard Härder Einführung in die PHYSIKALISCHE CHEMIE ein Lehrbuch Chemische Thermodynamik Skripte, Lehrbücher Band 2 W/ WESTAR.P WISSENSCHAFTEN Inhaltsverzeichnis Vorwort zur ersten Auflage Vorwort zur

Mehr

Thermische Energie kann nicht mehr beliebig in andere Energieformen umgewandelt werden.

Thermische Energie kann nicht mehr beliebig in andere Energieformen umgewandelt werden. Wärmemenge: hermische Energie kann nicht mehr beliebig in andere Energieformen umgewandelt werden. Sie kann aber unter gewissen oraussetzungen von einem Körer auf einen nderen übertragen werden. Dabei

Mehr

Lehrbuch der Thermodynamik

Lehrbuch der Thermodynamik Ulrich Nickel Lehrbuch der Thermodynamik Eine verständliche Einführung PhysChem Verlag Erlangen U. Nickel VII Inhaltsverzeichnis 1 GRUNDLAGEN DER THERMODYNAMIK 1 1.1 Einführung 1 1.2 Materie 2 1.3 Energie

Mehr

Musterlösung zu Übung 7

Musterlösung zu Übung 7 PCI hermodynamik G. Jeschke FS 05 Musterlösung zu Übung 7 08.04.05 a Der Goldbarren wird beim Einbringen in das Reservoir sprunghaft erwärmt. Der Wärmeaustausch erfolgt daher auf irreversiblem Weg. Um

Mehr

Lehrbuch der Thermodynamik

Lehrbuch der Thermodynamik Ulrich Nickel Lehrbuch der Thermodynamik Eine verständliche Einführung PhysChem Verlag Erlangen U.Nickel Vll Inhaltsverzeichnis 1 GRUNDLAGEN DER THERMODYNAMIK 1 1.1 Einführung l 1.2 Materie ' 2 1.3 Energie

Mehr

3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen

3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen Inhalt Kapitel 3 3.0-1 3. Mehrkomponentensysteme 3.1 Partielle molare Zustandsgrößen 3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen Das Chemische Potential reiner Stoffe und von Stoffen

Mehr

Skizze zur Veranschaulichung der Legendretransformation

Skizze zur Veranschaulichung der Legendretransformation 9 Die thermodynamischen Funktionen G und H Ehe das Schema des vorherigen Abschnittes zur Konstruktion weiterer thermodynamischer Potentiale zu Ende gebracht wird, kurz einige Erläuterungen zur Legendretransformation.

Mehr

Allgemeine Speicherberechnung

Allgemeine Speicherberechnung doc 6. Seite von 5 Allgemeine Seicherberechnung echnische Daten Grundlage Die Berechnung eines Hydroseichers bezieht sich auf die Zustandsänderung des Gases im Hydroseicher. Die gleiche Veränderung erfolgt

Mehr

Zur Erinnerung. Wärmetransport durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung. Planck sches Strahlungsgesetz. Stefan-Boltzman-Gesetz

Zur Erinnerung. Wärmetransport durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung. Planck sches Strahlungsgesetz. Stefan-Boltzman-Gesetz Zur Erinnerung Stichworte aus der 9. orlesung: Wärmetransort durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung Planck sches Strahlungsgesetz Stefan-Boltzman-Gesetz Wiensches erschiebungsgesetz Hautsätze

Mehr

wegen adiabater Kompression, d.h. kein Wärmeaustausch mit der Umgebung, gilt:

wegen adiabater Kompression, d.h. kein Wärmeaustausch mit der Umgebung, gilt: Ü 7. Adiabate Komression on Luft Luft wird in einem adiabaten Zylinder on. bar, T 5 C solange erdichtet bis eine Endtemeratur on T 00 C erreicht wird. Gesucht sind die zur Verdichtung erforderliche Arbeit

Mehr

Die Innere Energie U

Die Innere Energie U Die Innere Energie U U ist die Summe aller einem System innewohnenden Energien. Es ist unmöglich, diese zu berechnen. U kann nicht absolut angegeben werden! Differenzen in U ( U) können gemessen werden.

Mehr

Verhalten reiner, realer Stoffe. Maxwellsche Beziehungen. Kapitel 7

Verhalten reiner, realer Stoffe. Maxwellsche Beziehungen. Kapitel 7 Verhalten reiner, realer Stoffe Kaitel 7 Maxwellsche Beziehungen Verknüfen die energetischen Zustandsgrößen und die Entroie mit den thermischen Zustandsgrößen Zustandsgröße sezifische Innere Energie du

Mehr

Kompressor in CHEMCAD

Kompressor in CHEMCAD Komressor in CHEMCAD Berechnungsmethoden Die im Menü des Komressors zu wählenden Berechnungsmethoden sollen hier näher besrochen werden: Die Auswahl besteht aus. Adiabatic,. Polytroic und 3. Polytroic

Mehr

Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie

Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie Kapitel 1: Quantenmechanik Kapitel 2: Atome Kapitel 3: Moleküle Mathematische Grundlagen Schrödingergleichung Einfache Beispiele

Mehr

Vorlesung PC I Thermodynamik Teil B: Thermodynamische Funktionen, Berechnungen und mathematische Methoden

Vorlesung PC I Thermodynamik Teil B: Thermodynamische Funktionen, Berechnungen und mathematische Methoden Vorlesung PC I hermodynamik eil B: hermodynamische Funktionen, Berechnungen und mathematische Methoden Martin Quack, Jürgen Stohner Sommer 2006 2 PC I, hermodynamik, Martin Quack, Jürgen Stohner, SS 2006

Mehr

Übungen zur VL Chemie für Biologen und Humanbiologen 05.12.2011 Lösung Übung 6

Übungen zur VL Chemie für Biologen und Humanbiologen 05.12.2011 Lösung Übung 6 Übungen zur VL Chemie für Biologen und Humanbiologen 05.12.2011 Lösung Übung 6 Thermodynamik und Gleichgewichte 1. a) Was sagt die Enthalpie aus? Die Enthalpie H beschreibt den Energiegehalt von Materie

Mehr

Probeklausur STATISTISCHE PHYSIK PLUS

Probeklausur STATISTISCHE PHYSIK PLUS DEPARTMENT FÜR PHYSIK, LMU Statistische Physik für Bachelor Plus WS 2011/12 Probeklausur STATISTISCHE PHYSIK PLUS NAME:... MATRIKEL NR.:... Bitte beachten: Schreiben Sie Ihren Namen auf jedes Blatt; Schreiben

Mehr

Musterlösung Übung 10

Musterlösung Übung 10 Musterlösung Übung 10 Aufgabe 1: Phasendiagramme Abbildung 1-1: Skizzen der Phasendiagramme von Wasser (links) und Ethanol (rechts). Die Steigung der Schmelzkurven sind zur besseren Anschaulichkeit überzogen

Mehr

Kalorimetrie. Wärmekapazität idealer Gase, c p /c v (PHYWE)

Kalorimetrie. Wärmekapazität idealer Gase, c p /c v (PHYWE) Kalorimetrie Wärmekaazität idealer Gase, c /c (PHYWE) Ziel des Versuches ist, die Molwärmen C und C on Luft zu bestimmen. Dabei wird angenommen, dass die Luft sich unter den Versuchsbedingungen wie ein

Mehr

Zur Thermodynamik des idealen Gases (GK Physik 1)

Zur Thermodynamik des idealen Gases (GK Physik 1) Zur hermodynamik des idealen Gases (GK Physik 1 Zusammenfassung im Hinblick auf Prozesse. Reinhard Honegger, im Januar 2012. 1 Grundbegriffe 1.1 Zustandsgleichung = Ideale Gasgleichung Druck, olumen, emeratur

Mehr

Übung 4. SS 2013 Übung - Einführung in die Verbrennung - Methling, Özuylasi 1

Übung 4. SS 2013 Übung - Einführung in die Verbrennung - Methling, Özuylasi 1 Ziel: Grundlagen der chemischen Reaktionskinetik verstehen Verstehen qualitativer Reaktionsverläufe Aufstellung des Zeitgesetzes Umgang mit nicht reagierenden Stoßpartner (M) Berechnung Geschwindigkeitskoeffizient

Mehr

14 Massenwirkungsgesetz

14 Massenwirkungsgesetz 14 Massenwirkungsgesetz Im vorherigen Abschnitt haben wir uns mit der Mischungsentroie beschäftigt, die aber nur einen Asekt der Mischung von idealen Gasen berücksichtigt, nämlich des Mischens und rennens

Mehr

Inhaltsverzeichnis Teil I Grundlagen der Thermodynamik Grundlagen Temperatur und Zustandsgleichungen

Inhaltsverzeichnis Teil I Grundlagen der Thermodynamik Grundlagen Temperatur und Zustandsgleichungen Inhaltsverzeichnis Teil I Grundlagen der Thermodynamik 1 Grundlagen... 3 1.1 Druck und mechanisches Gleichgewicht... 4 1.2 Thermodynamische Systeme... 5 1.3 Arbeit... 8 1.3.1 Arbeit in der Mechanik...

Mehr

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur Thermodynamik Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur kann voraussagen, ob eine chemische Reaktion abläuft oder nicht kann nichts über den zeitlichen

Mehr

Aufgaben Kreisprozesse. 1. Ein ideales Gas durchläuft den im V(T)- Diagramm dargestellten Kreisprozess. Es ist bekannt:

Aufgaben Kreisprozesse. 1. Ein ideales Gas durchläuft den im V(T)- Diagramm dargestellten Kreisprozess. Es ist bekannt: Aufgaben Kreisrozesse. Ein ideales Gas durchläuft den im ()- Diagramm dargestellten Kreisrozess. Es ist bekannt: 8 cm 6 cm 00 K 8MPa MPa a) Geben Sie die fehlenden Zustandsgrößen, und für die Zustände

Mehr

Lehrbuch der Thermodynamik

Lehrbuch der Thermodynamik Ulrich Nickel Lehrbuch der Thermodynamik Eine verständliche Einführung Ж HANSER Carl Hanser Verlag München Wien VII Inhaltsverzeichnis 1 GRUNDBEGRIFFE DER THERMODYNAMIK 1 Einführung 1 Systeme 3 offene

Mehr

3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen

3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen Inhalt Kapitel 3 3.0-1 3. Mehrkomponentensysteme 3.1 Partielle molare Zustandsgrößen 3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen Das Chemische Potential reiner Stoffe und von Stoffen

Mehr

8. Mehrkomponentensysteme. 8.1 Partielle molare Größen. Experiment 1 unter Umgebungsdruck p:

8. Mehrkomponentensysteme. 8.1 Partielle molare Größen. Experiment 1 unter Umgebungsdruck p: 8. Mehrkomponentensysteme 8.1 Partielle molare Größen Experiment 1 unter Umgebungsdruck p: Fügen wir einer Menge Wasser n mit Volumen V (molares Volumen v m =V/n) bei einer bestimmten Temperatur T eine

Mehr

Thermodynamik. Thermodynamics. Markus Arndt. Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008

Thermodynamik. Thermodynamics. Markus Arndt. Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008 Thermodynamik Thermodynamics Markus Arndt Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008 Die Hauptsätze der Thermodynamik & Anwendungen in Wärmekraft und Kältemaschinen

Mehr

Das Chemische Gleichgewicht

Das Chemische Gleichgewicht Prof. Dr. Norbert Ham 1/6 14. Chemisches Gleichgewicht Das Chemische Gleichgewicht Chemische eaktionen, d.h. die Saltung und Neubildung von chemischen indungen, verlaufen immer so, dass sie sich einem

Mehr

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch herodynaik _ herodynaik Prof. Dr.-Ing. Peter Hakenesch eter.hakenesch@h.edu www.lrz-uenchen.de/~hakenesch _ herodynaik Einleitung Grundbegriffe 3 Systebeschreibung 4 Zustandsgleichungen 5 Kinetische Gastheorie

Mehr

Thermodynamik. Thermodynamik

Thermodynamik. Thermodynamik Geschlossenes System: Energieaustausch, aber kein Materieaustausch mit der Umgebung. Innere Energie: Jeder Stoff hat in sich Energie in irgendeiner Form gespeichert: die innere Energie U. U 1 = innere

Mehr

D. Schuller. Thermodynamik

D. Schuller. Thermodynamik D. Schuller Thermodynamik uni-text Dieter Schuller Thermodynamik Methode zur Beschreibung stofflicher Systeme Lehrbuch tür Naturwissenschaftler Mit 25 Abbildungen Friedr. Vieweg + Sohn. Braunschweig Dr.

Mehr

Erhöhung der inneren Energie durch Temperaturerhöhung um ΔT: 1. Hauptsatz (einfache Form): ΔU = ΔQ + ΔW ;

Erhöhung der inneren Energie durch Temperaturerhöhung um ΔT: 1. Hauptsatz (einfache Form): ΔU = ΔQ + ΔW ; 4.11. Innere Energie (ideals. Gas): U =!! nr Erhöhung der inneren Energie durch emperaturerhöhung um Δ: bei konstanten olumen (isochor): ΔU = C! Δ Differentiell: du = C v d δq=du=c d => d=δq/c 1. Hauptsatz

Mehr

Karl Stephan Franz Mayinger. Thermodynamik. Grundlagen und technische Anwendungen. Zwölfte, neubearbeitete und erweiterte Auflage

Karl Stephan Franz Mayinger. Thermodynamik. Grundlagen und technische Anwendungen. Zwölfte, neubearbeitete und erweiterte Auflage Karl Stephan Franz Mayinger Thermodynamik Grundlagen und technische Anwendungen Zwölfte, neubearbeitete und erweiterte Auflage Band 2 Mehrstoffsysteme und chemische Reaktionen Mit 135 Abbildungen Springer-Verlag

Mehr

Einführung in die Technische Thermodynamik

Einführung in die Technische Thermodynamik Arnold Frohn Einführung in die Technische Thermodynamik 2., überarbeitete Auflage Mit 139 Abbildungen und Übungen AULA-Verlag Wiesbaden INHALT 1. Grundlagen 1 1.1 Aufgabe und Methoden der Thermodynamik

Mehr

Physikalische Chemie I

Physikalische Chemie I Physikalische Chemie I 2017 Physikalische Chemie I Dozenten: Vorlesung Prof. Dr. Cornelia Palivan (Tel: 0612673839 Cornelia.Palivan@unibas.ch) Prof. Dr. Wolfgang Meier (Tel: 0612673802 Wolfgang.Meier@unibas.ch)

Mehr

DAMPFDRUCK EINER REINEN FLÜSSIGKEIT. 1. Versuchsplatz. 2. Allgemeines zum Versuch

DAMPFDRUCK EINER REINEN FLÜSSIGKEIT. 1. Versuchsplatz. 2. Allgemeines zum Versuch DAMPFDRUCK EINER REINEN FLÜSSIGKEI 1. ersuchslatz Komonenten: - hermostat - Woulffsche Flasche - Dreihalskolben mit ersuchssubstanz - hermometer - Druckmesser - Druckanzeige 2. Allgemeines zum ersuch Befindet

Mehr

Die Bedeutung von Zustandsfunktionen:

Die Bedeutung von Zustandsfunktionen: Die Bedeutung von Zustandsfunktionen: Innere Energie und Enthalie 3.1 Die mathematischen Eigenschaften von Zustandsfunktionen... 54 3 3.2 Die Abhängigkeit von U von und... 57 3.3 Hängt die Innere Energie

Mehr

Übung 1: Thermodynamik Berechnung von Aufschmelzkurven, Adiabat und Aufschmelzpfad

Übung 1: Thermodynamik Berechnung von Aufschmelzkurven, Adiabat und Aufschmelzpfad J K (thermische = MAGMATIMU und VULKANE ÜBUNG 1-2012 Übung 1: Thermodynamik Berechnung von Aufschmelzkurven, Adiabat und Aufschmelzfad U1.1 Rekaitulation der Theorie U1.1.1 Adiabtischer Gradient des festen

Mehr

Thermodynamik II. für den Studiengang Computational Engineering Science. H. Pitsch, B. Binninger Institut für Technische Verbrennung Templergraben 64

Thermodynamik II. für den Studiengang Computational Engineering Science. H. Pitsch, B. Binninger Institut für Technische Verbrennung Templergraben 64 Thermodynamik II für den Studiengang Computational Engineering Science H. Pitsch, B. Binninger Institut für Technische Verbrennung Templergraben 64 Inhalt von Thermodynamik II 6. Beziehungen zwischen Zustandsgrößen

Mehr

PHYSIKALISCHE CHEMIE: Eine Einführung

PHYSIKALISCHE CHEMIE: Eine Einführung 1 PHYSIKALISCHE CHEMIE: Eine Einführung makroskoische Phänomene statische Phänomene Gleichgewichte in makroskoischen Systemen THERMODYNAMIK ELEKTROCHEMIE dynamische Phänomene Änderung der Konzentration

Mehr

Physikalische Chemie I

Physikalische Chemie I Ideale Gase 0. Hautsatz der hermodynamik: Wenn A im thermischen Gleichgewicht mit b ist und desgleichen B mit C, so sind auch A und c miteinander im thermischen Gleichgewicht. Gesetz von Boyle: V = Konstante

Mehr

Das chemische Potential- eine Übersicht wichtiger Beziehungen

Das chemische Potential- eine Übersicht wichtiger Beziehungen Das chemische Potential- eine Übersicht wichtiger Beziehungen Definition des chem. Potentials Das chemische Potential beschreibt die bhängigkeit der extensiven thermodynamischen Energiegrößen von der Stoffmenge.

Mehr

Kolligative Eigenschaften

Kolligative Eigenschaften Prof. Dr. Norbert Hampp 1/8 11. Kolligative Eigenschaften Kolligative Eigenschaften Unter kolligativen Eigenschaften versteht man die Eigenschaften eines Systems die auf der Mischung unterschiedlicher

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 2007 ladimir Dyakonov # am 25.0.2007 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E43, Tel. 888-5875,

Mehr

Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3

Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3 Aufgaben zum Stirlingschen Kreisrozess. Ein Stirling-Motor arbeite mit 50 g Luft ( M 0g mol )zwischen den emeraturen 50 C und 50 C sowie den olumina 000cm und 5000 cm. a) Skizzieren Sie das --Diagramm

Mehr

Theoretische Luftverflüssigungsanlage. Reversibler Kälteprozess. - Isotherme Verdichtung des Gases bei Umgebungstemperatur

Theoretische Luftverflüssigungsanlage. Reversibler Kälteprozess. - Isotherme Verdichtung des Gases bei Umgebungstemperatur Lösung Aufgabe 6.2 Gaserflüssigung nach Linde heoretische Lufterflüssigungsanlage Reersibler Kälteprozess - Isotherme Verdichtung des Gases bei Umgebungstemperatur 1 2 2 1 - adiabate und reibungsfreie

Mehr

11 Stochastisches Integral und Itô-Formel

11 Stochastisches Integral und Itô-Formel 11 Stochastisches Integral und Itô-Formel Im diskreten Finanzmodell bei selbstfinanzierender Strategie ϑ = {ϑ n n=,...,n mit Anfangswert V gilt : Ṽ n ϑ = V + n ϑ T j S j. j=1 Dieser diskontierte Wertprozess

Mehr

4.2. Quadratische Funktionen

4.2. Quadratische Funktionen Definition: Normalform der Parabelgleichung.. Quadratische Funktionen Eine Funktion mit der Gleichung f() = a + b + c mit a R* und b,c R heißt quadratische Funktion oder ganzrationale Funktion. Grades

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Übungen zu Physik 1 für Ingenieure Musterlösung Blatt 6

Übungen zu Physik 1 für Ingenieure Musterlösung Blatt 6 Übungen zu Physik 1 für Ingenieure Musterlösung Blatt 6 Aufgabe 1 Hook sches Gesetz für ein Federpendel Bei einer Feder, für die das Hook sche Gesetz gilt, ist die rücktreibende Kraft F F proportional

Mehr

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17 Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie Moderne heoretische Physik III (heorie F Statistische Mechanik) SS 17 Prof. Dr. Alexander Mirlin Blatt 2 PD Dr. Igor Gornyi,

Mehr

Theoretische Physik 6: Thermodynamik und Statistik

Theoretische Physik 6: Thermodynamik und Statistik Rainer J.Jelitto Theoretische Physik 6: Thermodynamik und Statistik Eine Einführung in die mathematische Naturbeschreibung 2. korrigierte Auflage Mit 82 Abbildungen, Aufgaben und Lösungen dulfc AU LA-Verlag

Mehr

Physikalische Chemie. Heinz Hug Wolfgang Reiser EHRMITTEL. EUROPA-FACHBUCHREIHE für Chemieberufe. 2. neu bearbeitete Auflage. von

Physikalische Chemie. Heinz Hug Wolfgang Reiser EHRMITTEL. EUROPA-FACHBUCHREIHE für Chemieberufe. 2. neu bearbeitete Auflage. von 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. EHRMITTEL EUROPA-FACHBUCHREIHE für Chemieberufe Physikalische Chemie

Mehr

Analysis III Gewöhnliche Differentialgleichungen 3. Übungsblatt (mit Lösungshinweisen)

Analysis III Gewöhnliche Differentialgleichungen 3. Übungsblatt (mit Lösungshinweisen) Analysis III Gewöhnliche Differentialgleichungen 3. Übungsblatt (mit Lösungshinweisen) Fachbereich Mathematik Wintersemester 0/0 Prof. Dr. Burkhard Kümmerer./3. November 0 Andreas Gärtner Walter Reußwig

Mehr

Das Chemische Gleichgewicht Massenwirkungsgesetz

Das Chemische Gleichgewicht Massenwirkungsgesetz Das Chemishe Gleihgewiht Massenwirkungsgesetz Reversible Reaktionen: Beisiel : (Bodenstein 899 Edukt (Reaktanden Produkt H + I HIH Beobahtung: Die Reaktion verläuft unvollständig! ndig! D.h. niht alle

Mehr

7. Chemische Reaktionen

7. Chemische Reaktionen 7. Chemische Reaktionen 7.1 Thermodynamik chemischer Reaktionen Welche Reaktion läuft spontan freiwillig ab? H 2 + I 2 2HI H 2 + I 2 2HI H 2 + I 2 2HI Wie ist der Energieumsatz einer Reaktion? Welche Wärme

Mehr

Experimentalphysik II: Thermodynamik

Experimentalphysik II: Thermodynamik Exerimentalhysik II: Thermodynamik Zweitversuch-Ferienkurs Sommersemester 09 William Hefter 11/09/2009 Inhaltsverzeichnis 1 Temeratur, Wärme und Arbeit 2 1.1 Einschub zur mathematischen Schreibweise.........................

Mehr

ÜBUNGEN ZUR VORLESUNG Physikalische Chemie I (PC I) (Prof. Meerholz, Hertel, Klemmer) Blatt 14,

ÜBUNGEN ZUR VORLESUNG Physikalische Chemie I (PC I) (Prof. Meerholz, Hertel, Klemmer) Blatt 14, ÜBUNGEN ZUR VORLESUNG Physikalische Chemie I (PC I) (Prof. Meerholz, Hertel, Klemmer) Blatt 14, 12.02.2016 Aufgabe 1 Kreisprozesse Mit einem Mol eines idealen, monoatomaren Gases (cv = 3/2 R) wird, ausgehend

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr

3 Der 1. Hauptsatz der Thermodynamik

3 Der 1. Hauptsatz der Thermodynamik 3 Der 1. Hauptsatz der Thermodynamik 3.1 Der Begriff der inneren Energie Wir betrachten zunächst ein isoliertes System, d. h. es können weder Teilchen noch Energie mit der Umgebung ausgetauscht werden.

Mehr

Theoretische Physik IVa Thermodynamik und Statistik

Theoretische Physik IVa Thermodynamik und Statistik Institut für heoretische Physik echnische Universität Berlin heoretische Physik Ia hermodynamik und Statistik Udo Scherz Wintersemester 2006/07 1 emeratur und Wärmemenge Wir untersuchen in dieser orlesung

Mehr

Exakte Differentialgleichungen

Exakte Differentialgleichungen Exakte Differentialgleichungen M. Vock Universität Heidelberg Seminar Mathematische Modellierung am 11.11.2008 Gliederung Differentialgleichungen eine erste Begegnung Definition Gewöhnliche DGL Die exakte

Mehr

Der Joule-Thomson Effekt

Der Joule-Thomson Effekt Der Joule-hoson Effekt Einleitung Der Joule-hoson Effekt bezeichnet die eeraturänderung eines realen Gases bei einer adiabatischen Voluenveränderung. Der Effekt wird großtechnisch zu Beisiel i Linde- Verfahren

Mehr

Physikalische Chemie: Kreisprozesse

Physikalische Chemie: Kreisprozesse Physikalische Chemie: Kreisprozesse Version vom 29. Mai 2006 Inhaltsverzeichnis 1 Diesel Kreisprozess 2 1.1 Wärmemenge Q.................................. 2 1.2 Arbeit W.....................................

Mehr

Mathematischer Selbsttest für Studienanfänger(innen)

Mathematischer Selbsttest für Studienanfänger(innen) Mathematischer Selbsttest für Studienanfänger(innen) Der folgende Mathematiktest dient zur Einschätzung Ihrer eigenen mathematischen Fähigkeiten. Das Niveau entspricht ungefähr dem der gymnasialen Mittel-

Mehr

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Wärmekapazitäten isochore/isobare Zustandsänderungen Standardbildungsenthalpien Heizwert/Brennwert adiabatische Flammentemperatur WS 2013/14

Mehr

erster Hauptsatz der Thermodynamik,

erster Hauptsatz der Thermodynamik, 1.2 Erster Hautsatz der hermodynamik Wir betrachten ein thermodynamisches System, dem wir eine beliebige Wärmemenge δq zuführen, und an dem wir eine Arbeit da leisten wollen. Werden umgekehrt dem System

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Oktober 2015 HSD. Physik. Bewegung in einer Dimension

Hochschule Düsseldorf University of Applied Sciences. 22. Oktober 2015 HSD. Physik. Bewegung in einer Dimension Physik Bewegung in einer Dimension Überblick für heute 2. Semester Mathe wird das richtig gemacht! Differenzieren (Ableitung) Integration Strecke Geschwindigkeit Beschleunigung Integrieren und differenzieren

Mehr

Übungsblatt 2 ( )

Übungsblatt 2 ( ) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 01 Übungsblatt (11.05.01) 1) Geschwindigkeitsverteilung eines idealen Gases (a) Durch welche Verteilung lässt sich die Geschwindigkeitsverteilung

Mehr

Mitschrift Thermodynamik

Mitschrift Thermodynamik Mitschrift hermodynamik Herleitung für den Gasdruck Berechnung des oberen Kreisradius d cosϕ dϕ dψ d N eilchen im Gesamtvolumen dn d N Aufschlagswahrscheinlichkeit eines eilchens Fläche df df sinϕ Gesamte

Mehr

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Kapitel 7: Boltzmann-Verteilung Kapitel 8: Statistische Beschreibung makroskopischer Grössen Kapitel 9: Thermodynamik:

Mehr