Thermodynamische Hauptsätze, Kreisprozesse Übung

Größe: px
Ab Seite anzeigen:

Download "Thermodynamische Hauptsätze, Kreisprozesse Übung"

Transkript

1 Thermodynamische Hauptsätze, Kreisprozesse Übung Marcus Jung

2 Inhaltsverzeichnis Inhaltsverzeichnis Thermodynamische Hauptsätze. Aufgabe : Aufgabe : Aufgabe : Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Kreisprozesse 6. Aufgabe : Aufgabe : Aufgabe : Aufgabe 4: Aufgabe 5:

3 Thermodynamische Hauptsätze Thermodynamische Hauptsätze. Aufgabe : Für ein ideales Gas ist U = NkT, für T = const folgt U = 0 und damit aus dem. Hauptsatz: 0 = Q + W Q = W mit pv = NkT = const. W = p = NkT NkT ln( V V ) = NkT ln(e) = NkT Q = NkT. Aufgabe : V V V = Betrachte reversible Zustandsänderung entlang V = V 0 ( T T 0 ) b. Der thermische Ausdehnungskoezient ist damit α = V ( ) = V V b T = b T Die Arbeit, die das Gas verrichtet, bei Temperaturerhöhung T = T T : W = p = T NkT V = NkT V NkT α = Nkb = Nkb T < 0 T =. Aufgabe : T m = C T +C T C +C = 40 C ds j = c j T j =, T m S = c T T + c T m T T = c ln( Tm T ) + c ln( Tm T ) = 745, 64 J K.4 Aufgabe 4: pv = NkT Q = W = 0 U = 0 NkT + N kt = N kt f T f(irr) = 4 T p f V = Nk 4 T p f = p = NkT V S(T, V, N) = Nk[ ln(t ) + ln( V N ) + const.] S = S( 4 t, V, N ) S(T, V, N) S(T, V, N ) = Nk[ ln( 4 T ) + ln( 4V N ) + const] = 5 4 Nkln( 7 ) = 0, 4Nk > 0 S = 0 S(T f, V, N ) = S(T, V, N) + S(T, V, N ) = 9 4 ln(t f ) + 4V ln( N ) = ln(t ) + ln( V N ) + 4 ln(t ) + ln( V N ) T f(rev) =, T < T f(irr) U = Q W = 0 W W = NkT + N kt N kt f = Nk(T 9 4 T f ) = 0, 70NkT

4 Thermodynamische Hauptsätze.5 Aufgabe 5: p = NkT V b a V, allg. Zusammenhang: ( U V ) T = T ( p = a V T ) V p ( U V ) T = T ( Nk V b ) NkT V b + a V U = a V + const(t ), mit U id = NkT lim V const(t ) = NkT.6 Aufgabe 6: Die aussage lässt sich leicht an einem Beispiel beweisen: Man betrachtet ein von der Auÿenwelt in jeder Weise isoliertes System, das aus zwei Systemen a und b, die im thermischen Kontakt stehen (nicht aber im thermischen Gleichgewicht), besteht und die zeitunabhängigen Temperaturen T a und T b haben. Gemäÿ der Wärmeleitungsgleichung ieÿt ein Wärmestrom b in System b und a in System a. Nach dem ersten Hauptsatz muss gelten: b = a. Gemäÿ der Entropiedenition gilt für die Entropieströme: δs a,b = a,b T a,b. Mithilfe des ersten Hauptsatzes lässt sich nun für die Entropieänderung des Gesamtsystems schreiben: δs = a ( T a T b ) = a ( T b T a T at b ). Jetzt passiert das Entscheidende: δs 0 gemäÿ dem zweiten Hauptsatz, also ist entweder T b > T a und a 0 oder T a > T b und b 0 Dieses Beispiel hat insofern allgemeine Gültigkeit, dass jeder Wärmeuss aufgrund einer Temperaturdierenz in Teilsysteme der obigen Gestalt zerlegt werden kann. Mit der Extensivität der Entropie fogt dann, dass aus der Entropieformulierung des zweiten Hauptsatzes der ursprüngliche Satz folgt: Wärme ieÿt in einem von selbst ablaufenden Vorgang immer vom wärmeren zum kälteren System..7 Aufgabe 7: Bei konstantem Volumen verrichtet das System keine Kraft entlang eines Weges, also W = 0. Damit lautet der erste Hauptsatz: du = = C V Der Gleichverteilungssatz besagt aber für ein ideales Gas mit N Teilchen: U = f Nk BT = f du nrt = f nr du = f nr Setzt man dies nun in den ersten Hauptsatz ein, erhält man als Ergebnis für die molare Wärmekapazität eines idealen Gases bei konstantem Volumen c V = f R Bei konstantem Druck lautet der erste Hauptsatz (nun bereits unter Verwendung des Gleichverteilungssatzes): du = δw f nr = C p p f nr = C p nr p p n ( f R + R) = C p c p = c V + R Im zweiten Schritt wurde die ideale Gasgleichung verwendet, um zu ersetzen. Die isobare, molare Wärmekapazität ist also gerade um die universelle Gaskonstante R gröÿer als diejenige bei konstantem Volumen, weil zusätzliche Energie aufgewendet wird, um die Volumenausdehnung zu bewerkstelligen. 4

5 Thermodynamische Hauptsätze Wenn = 0, eine Zustandsänderung, also adiabatisch ist, lautet der erste Hauptsatz für eine innitessimale Expansion: du = C V = δw = p Mit der idealen Gasgleichung lässt sich p = nrt V ersetzen und man weiÿ jetzt, c V = f R. Damit nimmt der erste Hauptsatz nun folgende Form an: f T = V ln( T T 0 ) f = ln( V V 0 ) wobei die Konstanten T 0 und V 0 über das Integrieren auf beiden Seiten als Integrationskonstante gemäÿ der Rechenregel in den Logarithmus gelangt sind. Schreibt man nun beide Seiten der Gleichung in den Exponenten der Exponentialfunktion, erhält man eine erste Variante des Adiabatengesetzes für ideale Gase: und stellt das gewohnte Adia- T f V = T f 0 V 0 = const. Wiederum mit der Gasgleichung ersetzt man T = pv batengesetz mit c p = c V + R und γ = cp auf: p f V f + nr = const. p V p V γ = const. f + f = const. c V nr.8 Aufgabe 8: Für eine reversible Zustandsänderung lautet der erste Hauptsatz: du = T ds p für dn = 0 Mit den Zustandsgleichungen U = NkT, pv = NkT für ein ideales Gas kann man den ersten Hauptsatz nach ds auösen: ds = Nk T + Nk V Ausgehend von einem Zustand T 0, V 0 mit der Entropie S 0 kann man diese Gleichung integrieren: S(T, V ) S 0 (T 0, V 0 ) = Nkln( T T 0 ) + Nkln( V V 0 ) = Nkln[( T T 0 ) ( V V 0 )] und wenn man für V T p substituiert: S(T, p) S 0 (T 0, p 0 ) = Nkln[( T T 0 ) 5 ( p 0 p )] Die Entropie eines idealen Gases nimmt also mit der Temperatur und Volumen zu..9 Aufgabe 9: T m = C T +C T C +C = 7 C ds j = c j T j =, T m S = c T T + c T m T T = c ln( Tm T ) + c ln( Tm T ) = 5, 64 J K Was der Student nicht beachtet hat, ist das dies ein irreversibler Prozess ist und dadurch natürlich auch noch zusätzlich Entropie entsteht! 5

6 Kreisprozesse Kreisprozesse. Aufgabe : Wirkungsgrad: η = Wout Q in = Q in Q out Q in = Qout Q in Es gilt: p a V a = NkT a, p a V b = NkT b T b = V b V a T a = T a a b: isobare Expansion: Q ab = C p (T b T a ) = C p T a > 0 W ab = b a p = p a (V b V a ) = p a V a = NkT a < 0 Das System verrichtet also Arbeit. b c: isochore Abkühlung: = 0 W bc = 0 Q bc = U bc = C V (T c T b ) = C V T a < 0 c a: isotherme Kompression: a V a W ca = p = NkT a c V b V = NkT aln( Va V a ) = NkT ln() > 0 T = const. U ca = 0 Q ca = W ca = NkT a ln() < 0 η = ( NkTa+NkTaln()) C pt a = 5 ( ln()) = 0, η carnot = T tief T hoch = 0, 5 η = 4 η carnot. Aufgabe : r = V V, r c = V V, γ = cp c V : adiabatische Kompression: Q = 0 W = U = C V (T T ) > 0 : isobare Expansion: Q = C p (T T ) > 0 W = p (V V ) 4:adiabatische Expansion: Q 4 = 0 W 4 = U 4 = C V ( T ) < 0 4 : isochore Abkühlung: W 4 = 0 Q 4 = U 4 = C V (T ) < 0 6

7 Kreisprozesse η Diesel = C V (T T ) Nk(T T )+C V ( T ) C p(t T ) = C p(t T ) C V ( T ) C p(t T ) Verwende: 0 = S = = C V T C p T T T + T + 4 = γ T + C p C T + V T = C p ln( T T ) + C V ln( T ) = 0 4 T = ( T T ) γ = ( V V ) γ = η Diesel = γ T r γ T T T T = T T γ r c Verwende nun die Adiabatengleichung: T V γ = T V γ T T = r (γ ) η Diesel = γ r γ r γ c r c T T T 4 T =. Aufgabe : r = V V, γ = cp c V : adiabatische Kompression: Q = 0 W = U = C V (T T ) > 0 : isochore Erwärung: W = 0 Q = U = C V (T T ) > 0 4:adiabatische Expansion: Q 4 = 0 W 4 = U 4 = C V ( T ) < 0 4 : isochore Abkühlung: W 4 = 0 Q 4 = U 4 = C V (T ) < 0 η Otto = C V (T ) C V (T T ) = T T T = T T Benutze Adiabatengleichung: T V γ = T V γ T T = r (γ ) Auÿerdem gilt: 0 = S = T C V T T + T T T = T T + 4 T = C V T = C V (ln( T T ) + ln( T )) = 0 η Otto = r (γ ) T T T 7

8 Kreisprozesse Prinzipiell hat der Otto-Prozess einen höheren Wirkungsgrad. Da man aber technisch beim Diesel-Prozess eine höhere Verdichtung erreichen kann ca. :8 im Vergleich zu ca. :) hat der Diesel-Prozess technisch gesehen den höheren Wirkungsgrad..4 Aufgabe 4: η St. = c a: isotherme Expansion: V W = p = NkT V V = NkT ln( V V ) < 0 T = const. U = 0 Q = W = NkT ln( V V ) > 0 : isochore Abkühlung: W = 0 Q = U = C V (T T ) < 0 4:isotherme Kompression: 4 V 4 W 4 = p = NkT V V = NkT ln( V V ) > 0 T = const. U 4 = 0 Q 4 = W 4 = NkT ln( V V ) < 0 4 : isochore Erwärmung: W 4 = 0 Q 4 = U 4 = C V (T T ) > 0 W Q + Q 4 = (T V T )ln( ) V (T T )+T ln( V ) V Falls die abgegebene Wärme Q > 0 in Schritt 4 wieder vollständig eingespeist werden kann, erhält man: η St. = (T T )ln( V ) V = T T ln( V ) T = η carnot V.5 Aufgabe 5: Da der Carnotprozess ein Kreisprozess ist, gilt U = 0 nach einem Umlauf. Dies führt mit dem ersten Hauptsatz zu: U = 0 = Q ein + Q aus W ges Also reicht es, Q ein und Q aus zu berechnen, um die Leistungsziern zu ermitteln. Es gilt mit dem zweiten Hauptsatz und der Tatsache, dass die Wärme im T-S-Diagramm die Fläche unter der Kurve ist: S k Q aus = T ds = T h (S k S h ) S h S h Q ein = T ds = T k (S h S k ) S k 8

9 Kreisprozesse W ges = (T k T h )(S h S k ) Daran, dass W ges < 0 sieht man, dass beim linksläugen Carnotprozess netto Arbeit verrichtet werden muss. Mit der Denition der Leistungsziern und den angegebenen Temperaturen erhält man: ɛ = Qaus W ges = T h T h T k = 9, 9 ɛ 0 = Q ein W ges = T k T h T k = 9, 9 9

Thermodynamische Hauptsätze, Kreisprozesse Übung

Thermodynamische Hauptsätze, Kreisprozesse Übung Thermodynamische Hauptsätze, Kreisprozesse Übung Marcus Jung 14.09.2010 Inhaltsverzeichnis Inhaltsverzeichnis 1 Thermodynamische Hauptsätze 3 1.1 Aufgabe 1:.................................... 3 1.2 Aufgabe

Mehr

(b) Schritt I: freie adiabatische Expansion, also ist δw = 0, δq = 0 und damit T 2 = T 1. Folglich ist nach 1. Hauptsatz auch U = 0.

(b) Schritt I: freie adiabatische Expansion, also ist δw = 0, δq = 0 und damit T 2 = T 1. Folglich ist nach 1. Hauptsatz auch U = 0. 3 Lösungen Lösung zu 65. (a) Siehe Abbildung 1. (b) Schritt I: freie adiabatische Expansion, also ist δw 0, δq 0 und damit. Folglich ist nach 1. Hauptsatz auch U 0. Schritt II: isobare Kompression, also

Mehr

TU-München, Musterlösung. Experimentalphysik II - Ferienkurs Andreas Schindewolf

TU-München, Musterlösung. Experimentalphysik II - Ferienkurs Andreas Schindewolf TU-München, 18.08.2009 Musterlösung Experimentalphysik II - Ferienkurs Andreas Schindewolf 1 Random Kreisprozess a Wärme wird nur im isochoren Prozess ab zugeführt. Hier ist W = 0 und Q ab = nc V t b T

Mehr

Physik 2 (B.Sc. EIT) 2. Übungsblatt

Physik 2 (B.Sc. EIT) 2. Übungsblatt Institut für Physik Werner-Heisenberg-Weg 9 Fakultät für Elektrotechnik 85577 München / Neubiberg Universität der Bundeswehr München / Neubiberg Prof Dr H Baumgärtner Übungen: Dr-Ing Tanja Stimpel-Lindner,

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

Musterlösung zur Abschlussklausur PC I Übungen (27. Juni 2018)

Musterlösung zur Abschlussklausur PC I Übungen (27. Juni 2018) 1. Abkühlung (100 Punkte) Ein ideales Gas (genau 3 mol) durchläuft hintereinander zwei (reversible) Zustandsänderungen: Zuerst expandiert es isobar, wobei die Temperatur von 50 K auf 500 K steigt und sich

Mehr

Probeklausur STATISTISCHE PHYSIK PLUS

Probeklausur STATISTISCHE PHYSIK PLUS DEPARTMENT FÜR PHYSIK, LMU Statistische Physik für Bachelor Plus WS 2011/12 Probeklausur STATISTISCHE PHYSIK PLUS NAME:... MATRIKEL NR.:... Bitte beachten: Schreiben Sie Ihren Namen auf jedes Blatt; Schreiben

Mehr

T4p: Thermodynamik und Statistische Physik Prof. Dr. H. Ruhl Übungsblatt 8 Lösungsvorschlag

T4p: Thermodynamik und Statistische Physik Prof. Dr. H. Ruhl Übungsblatt 8 Lösungsvorschlag T4p: Thermodynamik und Statistische Physik Pro Dr H Ruhl Übungsblatt 8 Lösungsvorschlag 1 Adiabatengleichung Als adiabatische Zustandssänderung bezeichnet man einen thermodynamischen organg, bei dem ein

Mehr

Winter-Semester 2017/18. Moderne Theoretische Physik IIIa. Statistische Physik

Winter-Semester 2017/18. Moderne Theoretische Physik IIIa. Statistische Physik Winter-Semester 2017/18 Moderne Theoretische Physik IIIa Statistische Physik Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Do 11:30-13:00, Lehmann Raum 022, Geb 30.22 http://www.tkm.kit.edu/lehre/

Mehr

Ferienkurs Experimentalphysik II Elektro- und Thermodynamik. Thermodynamik Teil II. 12. September 2011 Michael Mittermair

Ferienkurs Experimentalphysik II Elektro- und Thermodynamik. Thermodynamik Teil II. 12. September 2011 Michael Mittermair Ferienkurs Experimentalphysik II Elektro- und Thermodynamik Thermodynamik Teil II 12. September 2011 Michael Mittermair Inhaltsverzeichnis 1 Allgemeines 3 1.1 Kategorisierung von Systemen..................

Mehr

Physikalische Chemie: Kreisprozesse

Physikalische Chemie: Kreisprozesse Physikalische Chemie: Kreisprozesse Version vom 29. Mai 2006 Inhaltsverzeichnis 1 Diesel Kreisprozess 2 1.1 Wärmemenge Q.................................. 2 1.2 Arbeit W.....................................

Mehr

Klausur Thermodynamik E2/E2p SoSe 2019 Braun. Formelsammlung Thermodynamik

Klausur Thermodynamik E2/E2p SoSe 2019 Braun. Formelsammlung Thermodynamik Klausur Thermodynamik E2/E2p SoSe 2019 Braun Name: Matrikelnummer: O E2 O E2p (bitte ankreuzen) Die mit Stern (*) gekennzeichneten Aufgaben sind für E2-Kandidaten vorgesehen - E2p-Kandidaten dürfen diese

Mehr

Kapitel IV Wärmelehre und Thermodynamik

Kapitel IV Wärmelehre und Thermodynamik Kapitel IV Wärmelehre und Thermodynamik a) Definitionen b) Temperatur c) Wärme und Wärmekapazität d) Das ideale Gas - makroskopisch e) Das reale Gas / Phasenübergänge f) Das ideale Gas mikroskopisch g)

Mehr

Ferienkurs Experimentalphysik IV

Ferienkurs Experimentalphysik IV Ferienkurs Experimentalphysik IV Michael Mittermair, Daniel Jost 04.09.14 Inhaltsverzeichnis 1 Moleküle 2 1.1 Das H + 2 Molekül-Ion....................... 2 1.2 Näherungen............................ 3

Mehr

Hauptsatz der Thermodynamik

Hauptsatz der Thermodynamik 0.7. Hauptsatz der Thermodynamik Die einem System von außen zugeführte Wärmemenge Q führt zu Erhöhung U der inneren Energie U und damit Erhöhung T der Temperatur T Expansion des olumens gegen den äußeren

Mehr

Thermodynamik Thermodynamische Systeme

Thermodynamik Thermodynamische Systeme Thermodynamik Thermodynamische Systeme p... Druck V... Volumen T... Temperatur (in Kelvin) U... innere Energie Q... Wärme W... Arbeit Idealisierung; für die Betrachtung spielt die Temperatur eine entscheidende

Mehr

Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler

Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler TU München Reinhard Scholz Physik Department, T33 Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler http://www.wsi.tum.de/t33/teaching/teaching.htm Übung in Theoretischer Physik B (Thermodynamik)

Mehr

1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases. f=5 Translation + Rotation. f=7 Translation + Rotation +Vibration. Wiederholung

1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases. f=5 Translation + Rotation. f=7 Translation + Rotation +Vibration. Wiederholung 1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases Wiederholung Speziische molare Wärmekapazität c m,v = 2 R R = N A k B = 8.315 J mol K =5 Translation + Rotation =7 Translation + Rotation +ibration 1.

Mehr

Aufgaben zur Experimentalphysik II: Thermodynamik

Aufgaben zur Experimentalphysik II: Thermodynamik Aufgaben zur Experimentalphysik II: Thermodynamik Lösungen William Hefter - 5//8 1. 1. Durchmesser der Stahlstange nach T : D s D s (1 + α Stahl T) Durchmesser der Bohrung im Ring nach T : D m D m (1 +

Mehr

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert.

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert. Grundbegriffe der Thermodynamik Die Thermodynamik beschäftigt sich mit der Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur. Die Thermodynamik kann voraussagen,

Mehr

T 300K,p 1,00 10 Pa, V 0, m,t 1200K, Kontrolle Physik Leistungskurs Klasse Hauptsatz, Kreisprozesse

T 300K,p 1,00 10 Pa, V 0, m,t 1200K, Kontrolle Physik Leistungskurs Klasse Hauptsatz, Kreisprozesse Kontrolle Physik Leistungskurs Klasse 2 7.3.207. Hauptsatz, Kreisprozesse. Als man früh aus dem Haus gegangen ist, hat man doch versehentlich die Kühlschranktür offen gelassen. Man merkt es erst, als man

Mehr

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17 Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie Moderne heoretische Physik III (heorie F Statistische Mechanik) SS 17 Prof. Dr. Alexander Mirlin Blatt 2 PD Dr. Igor Gornyi,

Mehr

Musterlösung zu Übung 7

Musterlösung zu Übung 7 PCI Thermodynamik G. eschke FS 011 Musterlösung zu Übung 7 (8. April 011) Aufgabe 1 (a) Die Shomate-Gleichung (Script (153)) lautet: C p (gas, T ) A + BT + CT + DT 3 + E T (1) Für das Kohlenstoffmonooxid

Mehr

Die Carnot-Maschine SCHRITT III. Isotherme Kompression bei einer Temperatur T 2 T 2. Wärmesenke T 2 = konstant. Nicolas Thomas

Die Carnot-Maschine SCHRITT III. Isotherme Kompression bei einer Temperatur T 2 T 2. Wärmesenke T 2 = konstant. Nicolas Thomas Die Carnot-Maschine SCHRITT III Isotherme Kompression bei einer Temperatur T 2 T 2 Wärmesenke T 2 = konstant Die Carnot-Maschine SCHRITT IV Man isoliert das Gas wieder thermisch und drückt den Kolben noch

Mehr

Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie

Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Sommer-Semester 2011 Moderne Theoretische Physik III Statistische Physik Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Di 09:45-11:15, Lehmann HS 022, Geb 30.22 Do 09:45-11:15,

Mehr

Thermodynamische Hauptsätze, Kreisprozesse Vorlesung

Thermodynamische Hauptsätze, Kreisprozesse Vorlesung Thermodynamische Hauptsätze, Kreisprozesse Vorlesung Marcus Jung 14.09.2010 Inhaltsverzeichnis Inhaltsverzeichnis 1 Thermisches Gleichgewicht und nullter Hauptsatz 3 2 Arbeit, Wärme und erster Hauptsatz

Mehr

Wärmelehre Zustandsänderungen ideales Gases

Wärmelehre Zustandsänderungen ideales Gases Wärmelehre Zustandsänderungen ideales Gases p Gas-Gleichung 1.Hauptsatz p V = N k B T U Q W p 1 400 1 isobar 300 200 isochor isotherm 100 p 2 0 2 adiabatisch 0 1 2 3 4 5 V V 2 1 V Bemerkung: Mischung verschiedener

Mehr

Übungsblatt 2 ( )

Übungsblatt 2 ( ) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 01 Übungsblatt (11.05.01) 1) Geschwindigkeitsverteilung eines idealen Gases (a) Durch welche Verteilung lässt sich die Geschwindigkeitsverteilung

Mehr

Übungen zu Experimentalphysik 2 für MSE

Übungen zu Experimentalphysik 2 für MSE Physik-Department LS für Funktionelle Materialien SS 208 Übungen zu Experimentalphysik 2 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. olker Körstgens, Sebastian Grott, Julian Heger, Dr. Neelima Paul,

Mehr

10. Thermodynamik Der erste Hauptsatz Der zweite Hauptsatz Thermodynamischer Wirkungsgrad Der Carnotsche Kreisprozess

10. Thermodynamik Der erste Hauptsatz Der zweite Hauptsatz Thermodynamischer Wirkungsgrad Der Carnotsche Kreisprozess Inhalt 10.10 Der zweite Hauptsatz 10.10.1 Thermodynamischer Wirkungsgrad 10.10.2 Der Carnotsche Kreisprozess Für kinetische Energie der ungeordneten Bewegung gilt: Frage: Frage: Wie kann man mit U Arbeit

Mehr

Der 1. Hauptsatz. Energieerhaltung:

Der 1. Hauptsatz. Energieerhaltung: Der 1. Hauptsatz Energieerhaltung: Bei einer Zustandsänderung tauscht das betrachtete System Energie ( W, Q mit seiner Umgebung aus (oft ein Wärmereservoir bei konstantem. Für die Energiebilanz gilt: U

Mehr

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung a) Ein Kilogramm Wasser bei = C wird in thermischen Kontakt mit einem Wärmereservoir bei

Mehr

II. Wärmelehre. II.2. Die Hauptsätze der Wärmelehre. Physik für Mediziner 1

II. Wärmelehre. II.2. Die Hauptsätze der Wärmelehre. Physik für Mediziner 1 II. Wärmelehre II.2. Die auptsätze der Wärmelehre Physik für Mediziner 1 1. auptsatz der Wärmelehre Formulierung des Energieerhaltungssatzes unter Einschluss der Wärmenergie: die Zunahme der Inneren Energie

Mehr

4 Hauptsätze der Thermodynamik

4 Hauptsätze der Thermodynamik I Wärmelehre -21-4 Hauptsätze der hermodynamik 4.1 Energieformen und Energieumwandlung Innere Energie U Die innere Energie U eines Körpers oder eines Systems ist die gesamte Energie die darin steckt. Es

Mehr

Übungen zur Theoretischen Physik F SS Ideales Boltzmann-Gas: ( =25 Punkte, schriftlich)

Übungen zur Theoretischen Physik F SS Ideales Boltzmann-Gas: ( =25 Punkte, schriftlich) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Theoretischen Physik F SS 2016 Prof. Dr. A. Shnirman Blatt 2 Dr. B. Narozhny, Dipl.-Phys. P. Schad Lösungsvorschlag

Mehr

Verbundstudium TBW Teil 1 Wärmelehre 1 3. Semester

Verbundstudium TBW Teil 1 Wärmelehre 1 3. Semester Verbundstudium TBW Teil 1 Wärmelehre 1 3. Semester 1. Temperaturmessung Definition der Temperaturskala durch ein reproduzierbares thermodynam. Phänomen, dem Thermometer Tripelpunkt: Eis Wasser - Dampf

Mehr

Statistische Zustandsgröße Entropie Energieentwertung bei Wärmeübertragungen II. Hauptsatz der Thermodynamik

Statistische Zustandsgröße Entropie Energieentwertung bei Wärmeübertragungen II. Hauptsatz der Thermodynamik Statistische Zustandsgröße Entropie Energieentwertung bei Wärmeübertragungen II. Hauptsatz der hermodynamik Die nachfolgenden Ausführungen stellen den Versuch dar, die zugegeben etwas schwierige Problematik

Mehr

ST Der Stirling-Motor als Wärmekraftmaschine

ST Der Stirling-Motor als Wärmekraftmaschine ST Der Stirling-Motor als Wärmekraftmaschine Blockpraktikum Herbst 2007 Gruppe 2b 24. Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Stirling-Kreisprozess............................. 2 1.2 Technische

Mehr

Musterlösung Aufgabe 1: Zweikammermesssysatem

Musterlösung Aufgabe 1: Zweikammermesssysatem Klausur Thermodynamik I (08.09.2016) 1 Musterlösung Aufgabe 1: Zweikammermesssysatem Teilaufgabe a) Da die Membrane zunächst für Wärme undurchlässig ist, handelt es sich um eine adiabate Zustandsänderung

Mehr

Thermodynamik I Formeln

Thermodynamik I Formeln Thermodynamik I Formeln Tobi 4. September 2006 Inhaltsverzeichnis Thermodynamische Systeme 3. Auftriebskraft........................................ 3 2 Erster Hauptsatz der Thermodynamik 3 2. Systemenergie........................................

Mehr

Moderne Theoretische Physik IIIa WS 18/19

Moderne Theoretische Physik IIIa WS 18/19 Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie Moderne heoretische Physik IIIa WS 18/19 Prof. Dr. Alexander Mirlin Lösungen zu Blatt 2 Dr. Stefan Rex Besprechung: 06.11.2018

Mehr

Lehrbuch der Thermodynamik

Lehrbuch der Thermodynamik Ulrich Nickel Lehrbuch der Thermodynamik Eine verständliche Einführung Ж HANSER Carl Hanser Verlag München Wien VII Inhaltsverzeichnis 1 GRUNDBEGRIFFE DER THERMODYNAMIK 1 Einführung 1 Systeme 3 offene

Mehr

Klausur Wärmelehre E2/E2p SoSe 2016 Braun. Formelsammlung Thermodynamik

Klausur Wärmelehre E2/E2p SoSe 2016 Braun. Formelsammlung Thermodynamik Klausur Wärmelehre E2/E2p SoSe 2016 Braun Name: Matrikelnummer: O E2 O E2p (bitte ankreuzen) Die mit Stern (*) gekennzeichneten Aufgaben sind für E2-Kandidaten vorgesehen - E2p-Kandidaten dürfen diese

Mehr

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 10/09/15

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 10/09/15 Physikdepartment Ferienkurs zur Experimentalphysik 4 Daniel Jost 10/09/15 Inhaltsverzeichnis Technische Universität München 1 Kurze Einführung in die Thermodynamik 1 1.1 Hauptsätze der Thermodynamik.......................

Mehr

Thermodynamik (Wärmelehre) IV Kreisprozesse und Entropie

Thermodynamik (Wärmelehre) IV Kreisprozesse und Entropie Physik A VL7 (..0) hermodynamik (Wärmelehre) IV Kreisprozesse und Entropie Kreisprozesse Carnot scher Kreisprozess Reale Wärmemaschinen (tirling-motor, Dampfmaschine, Otto- und Dieselmotor) Entropie Der.

Mehr

4.6 Hauptsätze der Thermodynamik

4.6 Hauptsätze der Thermodynamik Thermodynamik.6 Hautsätze der Thermodynamik.6. Erster Hautsatz: Energieerhaltungssatz In einem abgeschlossenen System bleibt der gesamte Energievorrat, also die Summe aus Wärmeenergie, mechanischer Energie

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 21. 05. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 21. 05.

Mehr

Höhere Experimentalphysik 1

Höhere Experimentalphysik 1 Höhere Experimentalphysik 1 Institut für Angewandte Physik Goethe-Universität Frankfurt am Main 9. Vorlesung 20.01.2017 Was bisher geschah Thermodynamik Thermodynamische Systeme und Zustandsgrößen Gleichgewichtszustand

Mehr

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a)

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a) Aufgabe 1: Multiple Choice (10P) Geben Sie an, welche der Aussagen richtig sind. Unabhängig von der Form der Fragestellung (Singular oder Plural) können eine oder mehrere Antworten richtig sein. a) Welche

Mehr

Q i + j. dτ = i. - keine pot. und kin. Energien: depot. - adiabate ZÄ: Q i = 0 - keine technische Arbeit: Ẇ t,j = 0

Q i + j. dτ = i. - keine pot. und kin. Energien: depot. - adiabate ZÄ: Q i = 0 - keine technische Arbeit: Ẇ t,j = 0 Institut für hermodynamik hermodynamik - Formelsammlung. Hauptsätze der hermodynamik (a. Hauptsatz der hermodynamik i. Offenes System de = de pot + de kin + du = i Q i + j Ẇ t,j + ein ṁ ein h tot,ein aus

Mehr

Die 4 Phasen des Carnot-Prozesses

Die 4 Phasen des Carnot-Prozesses Die 4 Phasen des Carnot-Prozesses isotherme Expansion: A B V V T k N Q ln 1 1 isotherme Kompression: adiabatische Kompression: adiabatische Expansion: 0 Q Q 0 C D V V T k N Q ln 2 2 S Q 1 1 /T1 T 1 T 2

Mehr

Experimentalphysik II: Thermodynamik

Experimentalphysik II: Thermodynamik Experimentalphysik II: Thermodynamik Ferienkurs Wintersemester 08/09 William Hefter 23/02/2009 Inhaltsverzeichnis 1 Thermodynamik 2 1.1 Temperatur, Wärme und Arbeit.................................. 2

Mehr

Thermodynamik Hauptsatz

Thermodynamik Hauptsatz Thermodynamik. Hauptsatz Inhalt Wärmekraftmaschinen / Kälteprozesse. Hauptsatz der Thermodynamik Reversibilität Carnot Prozess Thermodynamische Temperatur Entropie Entropiebilanzen Anergie und Exergie

Mehr

Musterlösung für die Aufgaben zur experimentellen Thermodynamik

Musterlösung für die Aufgaben zur experimentellen Thermodynamik Musterlösung für die Aufgaben zur experimentellen Thermodynamik 04.08.008 Experimentalphysik--Ferienkurs Fragen gerne an johannes.burkart@mytum.de 1 Bimetallthermometer In Skizze 1 ist das einfache Bimetallthermometer

Mehr

Aufgabe 1: Kolben. Allgemeine Hinweise:

Aufgabe 1: Kolben. Allgemeine Hinweise: Matrikelnummer Anzahl der bisherigen Antritte Familienname Vorname Allgemeine Hinweise: Alle Blätter sind mit Namen und Matrikelnummer zu versehen. Aus der Beschriftung muss deutlich ersichtlich sein,

Mehr

Allgemeine Gasgleichung und technische Anwendungen

Allgemeine Gasgleichung und technische Anwendungen Allgemeine Gasgleichung und technische Anwendungen Ziele i.allgemeine Gasgleichung: Darstellung in Diagrammen: Begriffsdefinitionen : Iso bar chor them Adiabatische Zustandsänderung Kreisprozess prinzipiell:

Mehr

Repetition Carnot-Prozess

Repetition Carnot-Prozess Wärmelehre II Die Wärmelehre (bzw. die Thermodynamik) leidet etwas unter den verschiedensten Begriffen, die in ihr auftauchen. Diese sind soweit noch nicht alle aufgetreten - Vorhang auf! Die neu auftretenden

Mehr

Grundlagen der Physik II

Grundlagen der Physik II Grundlagen der Physik II Othmar Marti 05. 07. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Wärmelehre Grundlagen der Physik II 05. 07. 2007 Klausur Die Klausur

Mehr

Klausur Wärmelehre E2/E2p, SoSe 2012 Braun. Formelsammlung Thermodynamik

Klausur Wärmelehre E2/E2p, SoSe 2012 Braun. Formelsammlung Thermodynamik Name: Klausur Wärmelehre E2/E2p, SoSe 2012 Braun Matrikelnummer: Benotung für: O E2 O E2p (bitte ankreuzen, Mehrfachnennungen möglich) Mit Stern (*) gekennzeichnete Aufgaben sind für E2-Kandidaten [E2p-Kandidaten

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti.

Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti. (c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 14. 05. 2007 Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik Universität Ulm (c) Ulm University p.

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 200 Abbildungen und 7 Tabellen Springer Inhaltsverzeichnis Liste der Formelzeichen XV 1 Grundlagen der Technischen Thermodynamik 1 1.1 Gegenstand und Untersuchungsmethodik

Mehr

Physik 2 Hydrologen et al., SoSe 2013 Lösungen 3. Übung (KW 19/20) Carnot-Wärmekraftmaschine )

Physik 2 Hydrologen et al., SoSe 2013 Lösungen 3. Übung (KW 19/20) Carnot-Wärmekraftmaschine ) 3. Übung KW 19/20) Aufgabe 1 T 4.5 Carnot-Wärmekraftmaschine ) Eine Carnot-Wärmekraftmaschine arbeitet zwischen den Temperaturen und. Während der isothermen Expansion vergrößert sich das Volumen von auf

Mehr

3 Der 1. Hauptsatz der Thermodynamik

3 Der 1. Hauptsatz der Thermodynamik 3 Der 1. Hauptsatz der Thermodynamik 3.1 Der Begriff der inneren Energie Wir betrachten zunächst ein isoliertes System, d. h. es können weder Teilchen noch Energie mit der Umgebung ausgetauscht werden.

Mehr

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 04. Aufgabe 6: (1): p 1 = 1 bar, t 1 = 15 C.

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 04. Aufgabe 6: (1): p 1 = 1 bar, t 1 = 15 C. Aufgabe 6: 2) 3) ): p = bar, t = 5 C 2): p 2 = 5 bar ) 3): p 3 = p 2 = 5 bar, t 3 = 5 C Die skizzierte Druckluftanlage soll V3 = 80 m 3 /h Luft vom Zustand 3) liefern. Dazu wird Luft vom Zustand ) Umgebungszustand)

Mehr

Klausur-Musterlösungen

Klausur-Musterlösungen Klausur-Musterlösungen 9.7.4 Theoretische Physik IV: Statistische Physik Prof. Dr. G. Alber Dr. O. Zobay. Der in Abb. dargestellte Kreisprozess wird mit einem elektromagnetischen Feld ausgeführt. Abb..

Mehr

Theoretische Physik 25. Juli 2013 Thermodynamik und statistische Physik (T4) Prof. Dr. U. Schollwöck Sommersemester 2013

Theoretische Physik 25. Juli 2013 Thermodynamik und statistische Physik (T4) Prof. Dr. U. Schollwöck Sommersemester 2013 Theoretische Physik 25. Juli 2013 Thermodynamik und statistische Physik (T4) Klausur Prof. Dr. U. Schollwöck Sommersemester 2013 Matrikelnummer: Aufgabe 1 2 3 4 5 6 Summe Punkte Note: WICHTIG! Schreiben

Mehr

Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden.

Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden. Fakultät für Physik der LMU München Prof. Ilka Brunner Vorlesung T4p, WS08/09 Klausur am 11. Februar 2009 Name: Matrikelnummer: Erreichte Punktzahlen: 1.1 1.2 1.3 2.1 2.2 2.3 2.4 Hinweise Die Bearbeitungszeit

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Vorlesung 1 Thermodynamik Andreas Brenneis, Marcus Jung, Ann-Kathrin Straub 13.09.2010 1 Allgemeines und Grundbegriffe Grundlegend für das nun folgende Kapitel Thermodynamik

Mehr

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Wärmekapazitäten isochore/isobare Zustandsänderungen Standardbildungsenthalpien Heizwert/Brennwert adiabatische Flammentemperatur WS 2013/14

Mehr

Aufgaben Kreisprozesse. 1. Ein ideales Gas durchläuft den im V(T)- Diagramm dargestellten Kreisprozess. Es ist bekannt:

Aufgaben Kreisprozesse. 1. Ein ideales Gas durchläuft den im V(T)- Diagramm dargestellten Kreisprozess. Es ist bekannt: Aufgaben Kreisrozesse. Ein ideales Gas durchläuft den im ()- Diagramm dargestellten Kreisrozess. Es ist bekannt: 8 cm 6 cm 00 K 8MPa MPa a) Geben Sie die fehlenden Zustandsgrößen, und für die Zustände

Mehr

Thermodynamik. Kapitel 4. Nicolas Thomas

Thermodynamik. Kapitel 4. Nicolas Thomas Thermodynamik Kapitel 4 Arbeit und Wärme Länge, x F Kolben Länge, x F Der Kolben wird sehr langsam um die Distanz -dx verschoben. dx Kolben Wieviel Arbeit mussten wir leisten, um den Kolben zu bewegen?

Mehr

Thermodynamik. Thermodynamics. Markus Arndt. Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008

Thermodynamik. Thermodynamics. Markus Arndt. Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008 Thermodynamik Thermodynamics Markus Arndt Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008 Die Hauptsätze der Thermodynamik & Anwendungen in Wärmekraft und Kältemaschinen

Mehr

Das Ideale Gas Kinetische Gastheorie (auf atomarer Ebene)

Das Ideale Gas Kinetische Gastheorie (auf atomarer Ebene) Das Ideale Gas Kinetische Gastheorie (auf atomarer Ebene) Wir haben gesehen, dass ein sogenanntes 'ideales Gas' durch die Zustandsgleichung pv = νr T [1] beschrieben wird; wir wollen nun verstehen, welchen

Mehr

Allgemeines Gasgesetz. PV = K o T

Allgemeines Gasgesetz. PV = K o T Allgemeines Gasgesetz Die Kombination der beiden Gesetze von Gay-Lussac mit dem Gesetz von Boyle-Mariotte gibt den Zusammenhang der drei Zustandsgrößen Druck, Volumen, und Temperatur eines idealen Gases,

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Thermodynamik des Kraftfahrzeugs Bearbeitet von Cornel Stan 1. Auflage 2012. Buch. xxiv, 598 S. Hardcover ISBN 978 3 642 27629 3 Format (B x L): 15,5 x 23,5 cm Gewicht: 1087 g Weitere Fachgebiete > Technik

Mehr

Isotherme 3. 4 Adiabate 2 T 1. Adiabate Isotherme T 2. Arbeit nach außen = eingeschlossene Kurve

Isotherme 3. 4 Adiabate 2 T 1. Adiabate Isotherme T 2. Arbeit nach außen = eingeschlossene Kurve Carnotscher Kreisprozess Carnot Maschine = idealisierte Maschine, experimentell nicht gut zu realisieren. Einfacher Kreisprozess aus zwei isothermen und zwei adiabatischen Zustandsänderungen. Arbeit nach

Mehr

Auswahl von Prüfungsfragen für die Prüfungen im September 2011

Auswahl von Prüfungsfragen für die Prüfungen im September 2011 Auswahl von Prüfungsfragen für die Prüfungen im September 2011 Was ist / sind / bedeutet / verstehen Sie unter... Wie nennt man / lautet / Wann spricht man von / Definieren Sie... Die anschließenden Fragen

Mehr

(ohne Übergang der Wärme)

(ohne Übergang der Wärme) Adiabatische Zustandsänderungen Adiabatische Zustandsänderungen δq= 0 (ohne Übergang der Wärme) Adiabatischer Prozess (Q = const) Adiabatisch = ohne Wärmeaustausch, Temperatur ändert sich bei Expansion/Kompression

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] orbemerkung Dies ist ein abgegebener Übungszettel aus dem Modul physik2. Dieser Übungszettel wurde nicht korrigiert. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle Übungszettel

Mehr

Ferienkurs - Experimentalphysik 2

Ferienkurs - Experimentalphysik 2 Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 Wärmelehre Qi Li 22/08/2012 Inhaltsverzeichnis Inhaltsverzeichnis 1 Wärmelehre 1 2 Das ideale Gas 1 3 Nullter Hauptsatz

Mehr

Formelsammlung. Experimentalphysik II. Zur Vorlesung bei Prof. Dr. M. Wuttig, Sommersemester Pascal Del Haye 27.

Formelsammlung. Experimentalphysik II. Zur Vorlesung bei Prof. Dr. M. Wuttig, Sommersemester Pascal Del Haye   27. Formelsammlung Experimentalphysik II Zur Vorlesung bei Prof. Dr. M. Wuttig, Sommersemester 2003 Pascal Del Haye www.delhaye.de 27. Juli 2003 Inhaltsverzeichnis Thermodynamik 3. Ideale Gasgleichung........................

Mehr

Einführung in die Technische Thermodynamik

Einführung in die Technische Thermodynamik Arnold Frohn Einführung in die Technische Thermodynamik 2., überarbeitete Auflage Mit 139 Abbildungen und Übungen AULA-Verlag Wiesbaden INHALT 1. Grundlagen 1 1.1 Aufgabe und Methoden der Thermodynamik

Mehr

Musterlösung zu Übung 7

Musterlösung zu Übung 7 PCI hermodynamik G. Jeschke FS 05 Musterlösung zu Übung 7 08.04.05 a Der Goldbarren wird beim Einbringen in das Reservoir sprunghaft erwärmt. Der Wärmeaustausch erfolgt daher auf irreversiblem Weg. Um

Mehr

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke)

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Freie Universität Berlin W 006/007 Fachbereich Physik 8..006 tatistische Physik - heorie der Wärme (PD Dr. M. Falcke) Übungsblatt 9: hermodynamische Identitäten, hermische/kalorische Zustandsgleichung,

Mehr

Physikalische Chemie I

Physikalische Chemie I M.Bredol / MP Physikalische Chemie I / 10.3.16 1 Physikalische Chemie I Nachname orname Matrikel Aufgabe Punkte erreicht Note 1 20 2 20 3 20 4 22 5 18 Summe: 100 1. Gegeben seien 20 g Kohlendioxid, die

Mehr

Thermodynamik I Klausur 1

Thermodynamik I Klausur 1 Aufgabenteil / 100 Minuten Name: Vorname: Matr.-Nr.: Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern abgegeben werden. Nicht nachvollziehbare

Mehr

Inhaltsverzeichnis. Formelzeichen...XIII. 1 Einleitung Einheiten physikalischer Größen...3

Inhaltsverzeichnis. Formelzeichen...XIII. 1 Einleitung Einheiten physikalischer Größen...3 Inhaltsverzeichnis Formelzeichen...XIII 1 Einleitung...1 2 Einheiten physikalischer Größen...3 3 Systeme...6 3.1 Definition von Systemen...6 3.2 Systemarten...7 3.2.1 Geschlossenes System...7 3.2.2 Offenes

Mehr

3 Diskussion und Beispiele

3 Diskussion und Beispiele Woche 2 3 Diskussion und Beispiele 31 Abhängigkeit zwischen kalorischer und thermischer Zustandsgleichung Die kalorische und die thermische Zustandsgleichungen sind nicht unabhängig Aus den Integrabilitätsbedingungen

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 ladimir Dyakonov #0 am 4.0.007 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E43, Tel. 888-5875,

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - hermodynamische Maschinen - Prof. Dr. Ulrich Hahn WS 2008/09 Folge von Prozessen mit Z Ende = Z Anfang rechtsläufig pro Umlauf verrichtete Arbeit: W r = W + W

Mehr

Mögliche Klausurfragen und aufgaben (Beispiele mit keinem Anspruch auf Vollständigkeit)

Mögliche Klausurfragen und aufgaben (Beispiele mit keinem Anspruch auf Vollständigkeit) LTT ERLANGEN 1 VON 5 FRAGENSAMMLUNG Mögliche Klausurfragen und aufgaben (Beispiele mit keinem Anspruch auf Vollständigkeit) Neben den Fragen können einfachste Rechenaufgaben gestellt werden. Bei einigen

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 2 Prof. Dr. Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3Bilanzgleichungen 3.3.1Massenbilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen

2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen 2. Thermodynamik 1 2.1 Grundbegriffe 2 2.2 Hauptsätze 3 2.3 Thermodynamische Potentiale 4 2.4 response -Funktionen G. Kahl & B.M. Mladek (E136) Statistische Physik I Kapitel 2 5. März 2012 1 / 25 2.1 Grundbegriffe

Mehr

2 Grundbegriffe der Thermodynamik

2 Grundbegriffe der Thermodynamik 2 Grundbegriffe der Thermodynamik 2.1 Thermodynamische Systeme (TDS) Aufteilung zwischen System und Umgebung (= Rest der Welt) führt zu einer Klassifikation der Systeme nach Art der Aufteilung: Dazu: adiabatisch

Mehr

Thermodynamik I. Sommersemester 2014 Kapitel 5. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2014 Kapitel 5. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2014 Kapitel 5 Prof. Dr.-Ing. Heinz Pitsch Kapitel 5: Übersicht 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse

Mehr

ÜBUNGEN ZUR VORLESUNG Physikalische Chemie I (PC I) (Prof. Meerholz, Hertel, Klemmer) Blatt 14,

ÜBUNGEN ZUR VORLESUNG Physikalische Chemie I (PC I) (Prof. Meerholz, Hertel, Klemmer) Blatt 14, ÜBUNGEN ZUR VORLESUNG Physikalische Chemie I (PC I) (Prof. Meerholz, Hertel, Klemmer) Blatt 14, 12.02.2016 Aufgabe 1 Kreisprozesse Mit einem Mol eines idealen, monoatomaren Gases (cv = 3/2 R) wird, ausgehend

Mehr

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System: Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar

Mehr

E2: Wärmelehre und Elektromagnetismus 4. Vorlesung

E2: Wärmelehre und Elektromagnetismus 4. Vorlesung E2: Wärmelehre und Elektromagnetismus 4. Vorlesung 19.04.2018 Heute: - Freiheitsgrade realer Gase - Adiabatische Volumenänderungen - Kurze Einführung in die Quantenmechanik - Freiheitsgrade & Wärmekapazität

Mehr

1. Hauptsatz der Thermodynamik W + Q = ΔU (1.Hauptsatz) IHV

1. Hauptsatz der Thermodynamik W + Q = ΔU (1.Hauptsatz) IHV In der Physik und Technik wird häufiger mit der Masse m als mit der Stoffmenge n gerechnet. Deshalb wird meist nicht mit der allgemeinen Gaskonstante R, sondern mit der spezifischen Gaskonstante R S gearbeitet.

Mehr