Lsöungen Eigenschaften der Fourier-Transformation Mathematik 4 MST, Blatt 4

Größe: px
Ab Seite anzeigen:

Download "Lsöungen Eigenschaften der Fourier-Transformation Mathematik 4 MST, Blatt 4"

Transkript

1 Lsöug Eigschaft dr Furir-Trasfrmati Mathmatik 4 MST, Blatt 4 grabwski@htw-saarlad.d Zu Aufgab aus! Füll Si di bigfügt Tabll zur FR ud zum FI vllstädig zum FI Sih Ahag! Zu Aufgab Ord Si jdr dr Fukti i a) bis d) das zughörig Spktrum zu! Fukti: für < x π a) f ( x), f(x) f(x+kp) für k œz für π < x π b) für π / < x π / f ( x), f(x) f(x+kp) für k œz für π / < x 3/ π c) f ( x),5 + cs(ω x) d) f ( x) Ax für < x ud f(x) f(x+k) für k œz a) puktsymm. h Offst <-> C) b) achssymm. Offst --> a <-> B) c) ist sch di FR, hat ur i Spktrallii für a-kffizit : <-> A) d) <->D) Zu Aufgab 3 jwt Wir vrwd di Symblik f(t) F(, w F( w) π ghörd Spktralfukti ist. di zu f(t) Bwis Si flgd Eigschaft dr Furir-Trasfrmati f(t) F( :

2 Lsöug Eigschaft dr Furir-Trasfrmati Mathmatik 4 MST, Blatt 4 a) Liaritätssatz grabwski@htw-saarlad.d a,b R gilt: W f(t) F(w) ud f(t) F(w), s gilt: f(t)a f(t) + bf(t) F(w) af(w) + bf(w) Bwis: Si f(t)a f(t) + bf(t). Da gilt ach Dfiiti dr Spktralfukti: F( f t af t + bf t π ( ) π ( ( ) ( )) Liarität ds Itgrals [ a π + b f ] af(w) + bf(w) q..d b) Dämpfugsatz (Dämpfug im Zitbrich bwirkt Vrschibug im Frquzbrich) at a R, a > gilt: W f(t) F(w), s gilt: е F( w ja) Bwis: Es gilt laut Dfiiti dr Spktralfukti: at G( π g π ( ) π a (j ω + )t f(t) j π f(t) π f(t) (j ω ja)t (a + jt F( ω ja) qd. c) Vrschibugssatz im Zitbrich (Vrschibug im Zitbrich bwirkt Dämpfug im Frquzbrich) jwa R, a > f t a F( w) a gilt: f(t) F(w) ( ) Bwis: Es gilt laut Dfiiti dr Spktralfukti: G( π g π f ( t t ) Substituti: ut-t du t:, dmzuflg u:. Mit disr Substituti rhalt wir :

3 Lsöug Eigschaft dr Furir-Trasfrmati Mathmatik 4 MST, Blatt 4 G( π f j t ω F( ω ) t t f ( u) ( ) π ( j ω u t ) du grabwski@htw-saarlad.d j ωt π jωu f ( u) du qd. Zu Aufgab 4 falls t Di Fukti u bzicht ma als Havisid-Fukti. falls t < Si wird vrwdt, um Eischaltvrgäg (Stärk ud Daur is Sigals) zu bschrib. u(t-a) ist di ach rchts um a vrschb Havisid-Fukti: falls t a u( t a). falls t < a a) Stll Si di Fukti f(t) u(t-) grafisch dar! b) Stll Si di Fukti f(t) u(t) + u(t-) u(t-) grafisch dar! c) Wi lautt di Fuktisglichug dr i Abb. a dargstllt Fukti f (t)? d) Wi lautt di Fuktisglichug dr i Abb. b dargstllt Fukti f (t)? Abba. Abbb. f falls falls falls sst t < t < t < 4 a t < a f sst ) Brch Si utr Vrwdug ds Liaritätssatzs di Furirtrasfrmirt dr bid Fukti f(t) ud f(t) utr Vrwdug dr Furir-Trasfrmirt dr Havisid-Fukti ud dr Eigschaft dr Furir-Trasfrmati! 3

4 Lsöug Eigschaft dr Furir-Trasfrmati Mathmatik 4 MST, Blatt 4 Zu a) ud b) grabwski@htw-saarlad.d Zu c) ud d) Darstllug: f (t) u(t) + u(t-) -3u(t-) + u(t-4) f (t) u(t-a) u(t-a) Brch Si di Furirtrasfrmirt disr Fukti utr Vrwdug dr Furir- Trasfrmirt dr Havisid-Fukti ud dr Eigschaft dr Furir-Trasfrmati! Zu ) Lösug: Zu f(t): f(t)u(t)+u(t-) u(t-). Daraus flgt wg () Liaritätssatz ud () u(t-a) jωa U ( dass gilt: f(t) F( j πω jωa j jω jω ( + ) πω Zu f(t): f (t) u(t-a) u(t-a) Daraus flgt wg () Liaritätssatz ud () u(t-a) jωa U ( dass gilt: f(t) F( j πω jωa j jωa jω a ( + ) πω 4

5 Lsöug Eigschaft dr Furir-Trasfrmati Mathmatik 4 MST, Blatt 4 Zu Aufgab 5 grabwski@htw-saarlad.d Es si flgd Furir-Trasfrmati bkat (wr s icht glaubt, muss s slbst achprüf): si( at) F ( ω ) [ u( ω + a) u( ω a)] (u( ist di Havisid-Fukti) t bt t f ) sst ( b ω F ( j (b>) π b + ω b + ω Gb Si utr Vrwdug dr Sätz aus Aufgab 3) di Furir-Trasfrmirt F( flgdr Fukti a: a) 3f (t) b) ( b+ ) t, t, sst c) 4si( at 3a) t 3 Lösug : Zu a) 3f(t ) 3 3 b ω F ( j ) π b + ω b + ω Liaritätssatz ( b+ ) t, t Zu b) t f, sst F ( ω j) π b + j( ω j) π ( b + ) + jω Dämpfugssatz Zu c) 4si( at 3a) t 3 4si( a( t 3)) t 3 f (t 3) jω3 Vrschibugssatz F ( jω3 ( u( ω + a) u( ω a)) Ahag : Tabll zu Aufgab 5

6 Lsöug Eigschaft dr Furir-Trasfrmati Mathmatik 4 MST, Blatt 4 grabwski@htw-saarlad.d Eigschaft Furir-Rih Furir-Itgral Vrausstzug für π ) f(t) ist icht pridisch, Existz ud Eidutigkit ) f(t) ist pridisch, Prid T, ω ds Spktrums ω Grudfrquz, ud ) f(t) rfüllt di Dirichlt-Bdigug D ud D ) f(t) ist abslut itgrirbar: d.h. < Zrlgug v f(t) i Schwigug (kmplx) Di kmplx Amplitud, bzw. das kmplx Spktrum jωt c, c kmplx Amplitud dr Schwigug mit dr Frquz ω. (D.h., i di Schwigugszrlgug gh ur gazzahlig Vilfach dr Grudfrquz i). Als Spktrum wrd di kmplx Amplitud c bzicht. Es ist: jωt F( F( kmplx Amplitud zur Schwigug mit dr Frquz ω (D.h. i di Schwigugszrlgug gh all rll Frquz i!) F( wird als Spktralfukti bzicht. c T j ω t ( T ) für Z F( π I NF ist: c R(c ) + jim(c ) j () I EF ist: c c ϕ c hißt Amplitudspktrum ϕ() hißt Phasspktrum I NF: F( R(F() + j Im(F() jϕ ( I EF: F ( F( F ( Amplitudspktrum ϕ ( Phasspktrum 6

7 Lsöug Eigschaft dr Furir-Trasfrmati Mathmatik 4 MST, Blatt 4 Di grafisch Darstllug ds Amplitudspktrums lifrt i Liispktrum : grabwski@htw-saarlad.d Di grafisch Darstllug ds Amplitudspktrums (ud Phasspktrums) lifrt i ktiurlich Fukti: Jdr Strich a dr Stll stllt di (rll) Amplitud dr Schwigug zur Frquz ω dar. Eigschaft ds Spktrums Es gilt: * ) c c ud daraus flgt: ) c c (D.h. das Amplitudspktrum ist achssymmtrisch). Es gilt: ) F*( F(- ) F( F(- Ampl.Spktrum ist achssym. 3) R(F() R(F(-) Raltil ist achssymm. 4) Im(F() - Im(F(-) Immag.til puktsymm. Rll Frm dr Furir- a Zrlgug, + [ a wbi: cs( ω t) + b si( ω t)] wbi: A( cs( + B( si( dω 7

8 Lsöug Eigschaft dr Furir-Trasfrmati Mathmatik 4 MST, Blatt 4 a c T ( T ) grabwski@htw-saarlad.d (Offst dr Glichspaugsatil dr Schwrpuktlii a R( c ) cs( ωt) T b Im( c ) T ( T ) ( T ) di rll Amplitud sid. si( ω t) Wir rhalt das rll Liispktrum: A( R( F( ) B( Im( F( ) di rll Amplitud sid. Wir rhalt das rll Spktrum: A(w) achssymm., B(w) puktsymm. Auswirkug v Symmtriigschaft v f(t) f(t) achssymmtrisch ---> b f(t) puktsymmtrisch ---> a f(t) achssymm. --> A( cs( dω f(t) puktsymmm.---> B( si( dω 8

Im folgenden werden zeitkontinuierliche Signale x(t) betrachtet, für die das Fourier- Integral X( j ω ) existiert:

Im folgenden werden zeitkontinuierliche Signale x(t) betrachtet, für die das Fourier- Integral X( j ω ) existiert: 95 4. Fourir-Itgral Im folgd wrd zitkotiuirlich Sigal x(t) btrachtt, für di das Fourir- Itgral ( j ω ) xistirt: j ω t ( jω) x( t) dt (4.) ( j ω ) wird auch als Fourirtrasformirt vo x(t) bzicht. Di i (4.)

Mehr

Lösungen zu Übungsblatt 5 Fourier-Integral

Lösungen zu Übungsblatt 5 Fourier-Integral Zu Aufgab : Si f() für - < und f() sons. Zu a) Es gil: F( d d jω j j j [ ] D.h., di Spkralfunkion F ( zu inr sückwis konsann Funkion f() is in grad Funkion. Si is in gdämpf Schwingung, drn Asympon für

Mehr

Quantenmechanik I. Musterlösung 4.

Quantenmechanik I. Musterlösung 4. Quatmchaik I. Mustrlösug 4. Hrbst 011 Prof. Rato Rr Übug 1. Rch mit Kommutator. Dr Kommutator [A, B] AB BA zwir Oprator ist liar i A, B ud atisymmtrisch: [A, B] [B, A]. a Zig di Produktrgl ud di Jacobi-Idtität,

Mehr

Wir betrachten hier nur den Fall m,n N, also m>0 und n>0. Die anderen Fälle, bei denen m=0 oder n=0 ist, können leicht selbst gelöst werden.

Wir betrachten hier nur den Fall m,n N, also m>0 und n>0. Die anderen Fälle, bei denen m=0 oder n=0 ist, können leicht selbst gelöst werden. Übugsaufgab Fourirrih Mahmaik III M Prof. Dr. B. Grabowski Bla 6 grabowski@hw-saarlad.d Lösug zu Übugs-Bla 6 Zu Aufgab Wir brach hir ur d Fall m, N, also m> ud >. Di adr Fäll, bi d m odr is, kö lich slbs

Mehr

Reihenentwicklung die Taylorentwicklung

Reihenentwicklung die Taylorentwicklung Rihtwicklug di Taylortwicklug Motivatio: Es lig i Potrih olgdr Form vor: Durch Umorm rgibt sich: s s s s s K K K Für udlich groß rgibt sich im Wrtbrich < < i dlich Summ s. Dis lässt sich als Fuktio vo

Mehr

HTW. Probe-Klausur (und klausurvorbereitende Übungsaufgaben) Angewandte Mathematik MST

HTW. Probe-Klausur (und klausurvorbereitende Übungsaufgaben) Angewandte Mathematik MST HTW Probe-Klausur (und klausurvorbereitende Übungsaufgaben) Angewandte Mathematik MST Dauer : 100 Minuten Prof. Dr. B. Grabowski Name: Matr.Nr.: Erreichte Punktzahl: Hinweise zur Bearbeitung der Aufgaben:

Mehr

e = lim ( n n) und Folgerungen

e = lim ( n n) und Folgerungen = lim + ud Folgrug Ergäzug zur Vorlsug Aalysis I, Dail Grisr, Dz. 2005 Satz: Si x = +, y = + +. Da gilt lim x = lim y = x ist strg mooto wachsd, y ist strg mooto falld. Isbsodr gilt für all x < < y. Bmrug:

Mehr

L Hospital - Lösungen der Aufgaben B1

L Hospital - Lösungen der Aufgaben B1 L Hospital - Lösug dr Aufgab B Gsucht: = Übrprüf ob di Rgl vo L'Hospital agwdt wrd darf Für ght dr Zählr gg L'Hospital darf agwdt wrd, Für ght dr Nr gg = da Zählr ud Nr gg gh Zählr ud Nr diffrzir: ' =

Mehr

R. Brinkmann Seite Achsenschnittpunkte von e- Funktionen und Exponentialgleichungen

R. Brinkmann  Seite Achsenschnittpunkte von e- Funktionen und Exponentialgleichungen R. Brikma http://brikma-du.d Sit 08..009 Achsschittpukt vo - Fuktio ud Epotialglichug Eiführugsbispil Bispil : Zu bstimm sid di Achsschittpukt vo s + f = D Schittpukt mit dr y y=f 0 Achs fidt ma übr d

Mehr

1 + n n. 1 n > 1

1 + n n. 1 n > 1 4. Fudamtal Kovrgzsätz für Folg 97 Bispil 4.11 Stirligsch Forml) Dazu btracht wir für IN zuächst di Folg c :=!. Wg c +1 c = + 1)+1 +1 + 1)!! = 1 ) + 1 = ) 1 + 1 < 1 ist c mooto falld, ud somit gilt für

Mehr

StudiumPlus- SS 2017 Torsten Schreiber

StudiumPlus- SS 2017 Torsten Schreiber StudiumPlus- SS 07 Torst Schribr 44 Dis rg sollt Si uch oh Skript btwort kö: N Si di wichtigst Eigschft vo Mg! Wi kö Si i Itrvll dfiir? Wi fuktioirt di Modulo-Oprtio? Wofür brucht m ds d Morg Gstz? Ws

Mehr

Lösungen zu Übungsblatt 1 Eigenschaften der Fourier-Transformation Angew. Mathematik MT

Lösungen zu Übungsblatt 1 Eigenschaften der Fourier-Transformation Angew. Mathematik MT Löungn zu Übungblatt Zu Aufgab Zu a) Auftllung dr Diffrntialglichung, di dn Zuammnhang zwichn dr Eingangpannung x(t) u (t) und dr Augangpannung y(t) u a (t) hrtllt! u u u u u R i( t) c R u u Ruɺ Diffrntialglichung:

Mehr

HOCHSCHULE HANNOVER Name... Fakultät II Abt. M WS 2016/2017 Matrikelnummer... Übungsklausur Experimentalphysik 2

HOCHSCHULE HANNOVER Name... Fakultät II Abt. M WS 2016/2017 Matrikelnummer... Übungsklausur Experimentalphysik 2 HOCHSCHULE HANNOVER Na... Fakultät II Abt. M WS 6/7 Matriklur... Übugsklausur Expritalphysik 3 4 SUM /5 /5 /3 /3 / a. Hydrostatik: Ei rchtckig Kist (Grudsit 3 x.5, Höh.5 ) ist ob off, hat i Mass = 7 kg

Mehr

Hohlleiter Quasioptische Ableitung der Felder der Hohlleiterwellen

Hohlleiter Quasioptische Ableitung der Felder der Hohlleiterwellen ohllit Quasioptisch blitug d Fld d ohllitwll 8.3 Mod i Rchtck- ud Rudhohllit Zu gau Bhadlug d Vilahl öglich Wll i ohllit uß a üb di ifühd ggb aschaulich Dastllug hiausgh ud di gigt Lösug d Mawll sch Glichug

Mehr

Lösungen zu Übungsblatt 5

Lösungen zu Übungsblatt 5 Lösungn u Übungsblatt 5 Zu Aufgab Stlln Si folgnd komplxn Zahln als Zigr im kartsischn Koordinatnsystm dar! Gbn Si Raltil, Imaginärtil und dn Btrag an! a + b 5 c Grafisch Darstllung als komplx Zigr: Raltil,

Mehr

Plancksches Strahlungsgesetz

Plancksches Strahlungsgesetz Packschs Strahugsgstz Spktra Strahdicht ds schwarz Strahrs Packschs Strahugsgstz Dr schwarz Strahr ist dadurch gkzicht, dass auffad Strahug aus bibigr Richtug vöig absorbirt wird ud di ausgsadt Strahug

Mehr

Prof.Dr.B.Grabowski (Schwingungen als komplexe Zeiger) Lösung zum Übungsblatt Nr. 2. (Wiederholung Linearfaktorzerlegung von Polynomen)

Prof.Dr.B.Grabowski (Schwingungen als komplexe Zeiger) Lösung zum Übungsblatt Nr. 2. (Wiederholung Linearfaktorzerlegung von Polynomen) Maheaik 3 Übug Schwiguge als koplexe Zeiger KI Maheaik 3 Lösug zu Übugsbla Nr. I. LFZ Zu Aufgabe Wiederholug Liearfakorzerlegug vo Polyoe Zerlege Sie folgede Polyoe i Liearfakore: a y x 4 x 5 4 3 b y.5x.5x

Mehr

Klausur (Mathematik II) - Sommersemester 2013

Klausur (Mathematik II) - Sommersemester 2013 Klusur Mthmtik II) - Sommrsmstr Nm: Mtrikl-Nr: EMil: optiol Schll-Korrktur) Aug 6 7 8 Pukt 6 Als Hilsmittl sid di vo dm Lhrutrgt zur Vrügug gstllt sowi ig Utrlg zuglss Skript ud Mustrug sowi dr Lösug).

Mehr

Digitale Signalverarbeitung

Digitale Signalverarbeitung Tchisch Uivrsität Brli Fakultät V Vrkhrs- ud Maschisystm FG Tchisch Akustik Prof. Dr.-Ig Michal Mösr Digital Sigalvrarbitug Brli Ihaltsvrzichis Sit Vorwort. Eilitug. Liar Systm 3. Dr Ivariazsatz 7.3 Harmoisch

Mehr

Eigenschaften trigonometrischer Reihen. Trigonometrische Reihen. Reihenentwicklung. Reihenentwicklung. Fourierreihenentwicklung

Eigenschaften trigonometrischer Reihen. Trigonometrische Reihen. Reihenentwicklung. Reihenentwicklung. Fourierreihenentwicklung roomrsch Rh Do: Rh dr Gsal a + a cos x + b s x + a cos x + L + a cos x + b s x +L hß roomrsch Rh. D Zahl a a, b,..., a, b,..., b: prodsch Fuko sd hr Koz. Escha roomrschr Rh a + a cos x + b s x + a cos

Mehr

6. Fourier-Transformation

6. Fourier-Transformation 6. Fourier-rasformatio Wir betrachte zuächst eie periodische Fuktio: f t+ f t. (6- Die Idee ist, das sie sich durch eie Überlagerug periodischer, harmoischer Schwiguge darstelle lässt. Aalogie: ( + cos(

Mehr

Logarithmusfunktionen

Logarithmusfunktionen V Logarithmusfuktio Widrholug wichtigr Rchgstz Üug ach http://www.hrdr-orschul.d/madica/aufg000/pu.pdf (utr Hälft ds Aritslatts!) mit folgd Zusatzfrag: Brch Si ud drück Si durch i izig Logarithmus glichr

Mehr

Aufgaben Interferenz am Gitter

Aufgaben Interferenz am Gitter Aufga Itrfrz a Gittr 38. Auf i optich Gittr it dr Gittrkotat 4,00 * 0-6 fällt Licht dr Wllläg 694 krcht i. Da Itrfrzild wird auf i,00 tfrt Schir oachtt, dr paralll zu Gittr tht. a) Brch Si d Atad dr auf

Mehr

Diagramm. 1.2 Geben Sie das elektrische Potential an der Kugeloberfläche an!

Diagramm. 1.2 Geben Sie das elektrische Potential an der Kugeloberfläche an! Aufgab zum lktrich Pottial 9.0 Ei fldrzugd Ladug Q 5,0 0 C it auf i Koduktorkugl mit dm Radiu R,0cm aufgbracht.. Stll Si i im r Diagramm d Pottialvrlauf für r R dar! Q E gilt: (r) Diagramm 40 r. Gb Si

Mehr

BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education. Höhere Mathematik II. Übungen. Komplexe Zahlen. i e π + 1=

BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education. Höhere Mathematik II. Übungen. Komplexe Zahlen. i e π + 1= BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education Höhere Mathematik II Übungen Komplexe Zahlen i e π + 0 8 R. Mohr FK Blatt Komplexe Zahlen I WS 004/ Aufgabe : Gegeben sind die komplexen

Mehr

Erweiterung: (3) Arbeitslosenunterstützung als Versicherungsleistung

Erweiterung: (3) Arbeitslosenunterstützung als Versicherungsleistung Erwitrg: (3) Arbitslostrstützg als Vrsichrgslistg Suchthori ist ztrals Modll, um di Wirkg vo Arbitslostrstützg auf d Abgag aus Arbitslosigkit zu trsuch Kritisch Aahm ds Grdmodlls: b wird abhägig vom Grd

Mehr

Übungen zu Frage 79: Nr. 1: Im rechtwinkligen Dreieck ABC ist D der Mittelpunkt

Übungen zu Frage 79: Nr. 1: Im rechtwinkligen Dreieck ABC ist D der Mittelpunkt Übungn Trigonomtri Rchnn mit Paramtr Übungn zu rag 79: Nr 1: Im rchtwinklign rick ist dr Mittlpunkt dr Sit Zign Si ohn Vrwndung grundtr Wrt, dass dr lächninhalt ds 1 Vircks mit dr orml = wrdn kann (i Lösung

Mehr

Fachhochschule Hannover vorgezogene Wiederholungsklausur

Fachhochschule Hannover vorgezogene Wiederholungsklausur achhochschul Haovr vorzo idrholusklausur.. achbrich aschibau Zit: 9 i ach: hysik II i S Hilfsittl: orlsalu zur Vorlsu. i ir hydrostatisch äu vrlicht a (ählich wi rchids ist bi dr rüfu ds Goldhalts dr öiskro)

Mehr

Schulinternes Curriculum der Jahrgangsstufe 6 im Fach Mathematik

Schulinternes Curriculum der Jahrgangsstufe 6 im Fach Mathematik Sit 1 vo 5 Schulitrs Curriculum dr Jahrgagsstuf 6 im Fach Mathmatik Eigstzt Lhrmittl: Mathmatik, Nu Wg, Bad 6 Arithmtik/ Algbra mit Zahl ud Symbol umgh Ihaltsbzog Komptz Ord Oprir Darstll ord ud vrglich

Mehr

44. Lektion: Stehende Wellen

44. Lektion: Stehende Wellen 44. Lektio: Stehede Welle H. Zabel 38. Lektio: Schwiguge 1 15.Schwiguge Lerziel Stehede Welle etstehe aus der Überlagerug vo laufede Welle a feste oder lose Ede. Die Superpositio vo eilaufeder ud reflektierter

Mehr

Übungsaufgaben "Vektorrechnung"

Übungsaufgaben Vektorrechnung stllt vo Olf Gmkow Sit / Übugsufgb "Vktochug" ) Vo i Gd g ist d ukt (; ; ) ud d Richtugsvkto bkt. Bch Si d Abstd ds ukts (; ; ) vo dis Gd. Lösug, dt d g ) Di i d,-b vlufd Gd g schidt di bid Kooditchs jwils

Mehr

Corporate Semantic Search - Semantische Suche: Tagging und Wissensgewinnung. Olga Streibel

Corporate Semantic Search - Semantische Suche: Tagging und Wissensgewinnung. Olga Streibel Corport Smtic Srch - Smtisch Such: Tggig ud Wisssgwiug Olg Stribl Ihlt Tggig Folksoomy Extrm Tggig Algorithmic Extrctio of Tg Smtics Us Cs: Chmischs Ztrlbltt Prprocssig d Extrm Tggig: Wisssgwiug 2 Ws ist

Mehr

N G R C. 6.1 Definition und Darstellungsformen der komplexen Zahlen. Def.: Die formale Summe aus einer reellen Zahl a imaginären Zahl bj heißt

N G R C. 6.1 Definition und Darstellungsformen der komplexen Zahlen. Def.: Die formale Summe aus einer reellen Zahl a imaginären Zahl bj heißt 6 Komplexe Zahle Natürliche Zahle N {0,,,...} Gae Zahle G {...,-,-,0,,,...} Reelle Zahle Komplexe Zahle R (-,+ ) C N G R C 6. Defiitio ud Darstellugsforme der komplexe Zahle Def.: Die formale Summe aus

Mehr

Hinweise zur Korrektur und Bewertung der Abiturprü fungsarbeiten in PHYSIK. als Leistungskursfach. Nicht fü r den Prü fling bestimmt

Hinweise zur Korrektur und Bewertung der Abiturprü fungsarbeiten in PHYSIK. als Leistungskursfach. Nicht fü r den Prü fling bestimmt Hiwis zur Korrktur ud Bwrtug dr Abiturprü fugsarbit i PHYSIK als Listugskursfach Nicht fü r d Prü flig bstit Di Korrkturhiwis thalt ki vollstädig Lösug dr Aufgab, sodr ur i kurz Abriss ds Erwartugshorizots.

Mehr

+ a 3 cos (3ωt) + b 3 sin (3ωt)

+ a 3 cos (3ωt) + b 3 sin (3ωt) Fourier-Reihe Wir gehe aus vo eier gegebee periodische Fuktio f (t). Die Fuktio hat die Fudametalperiode ( Schwigugsdauer ) ud damit die Grud-Kreisfrequez ω = π. Zeit t Periode Die Fuktio f (t) soll zerlegt

Mehr

Lösung der Schrödinger- Gleichung für ein Harmonisches Potential.

Lösung der Schrödinger- Gleichung für ein Harmonisches Potential. Lösug dr Srödigr- Gliug für i aroiss Poial. Ggb is di Srödigr Gliug i saioärr For: o s soll i aroisr Oszillaor vorlig: o i Variablrasforaio wird durgfür: ( ε ) Lösug dur d Asaz a Allgi, oog, liar Diffrialgliug.

Mehr

Aufgabe 1: Transformationen 25 Pkt. 1.1 Berechnen und skizzieren Sie die Werte der drei Signale für k = 0,...,5 und

Aufgabe 1: Transformationen 25 Pkt. 1.1 Berechnen und skizzieren Sie die Werte der drei Signale für k = 0,...,5 und Aufgab 1: Transformationn Aufgab 1: Transformationn Ggbn sin di diskrtn Signal ) k 1 v 1 k) = sin Ω 0 k) ε k), 2 v 2 k) = v 1 k 2), ) k 1 v 3 k) = sin Ω 0 k) ε k 2), Ω 0 R. 2 1.1 Brchnn und skizzirn Si

Mehr

Direkt-Vertrieb Hersteller vertreibt seine Ware direkt an den Kunden (B2C; B2B)

Direkt-Vertrieb Hersteller vertreibt seine Ware direkt an den Kunden (B2C; B2B) (Eiführug) Optimirug Vrtribsprozss Sit: 1 Vrtribsart Dirkt-Vrtrib Hrstllr vrtribt si War dirkt a d Kud (B2C; B2B) Idirktr-Vrtrib War wrd übr Partr, Hädlr, Distributio, Ntzwrk agbot (B2C, B2B) Gmischtr

Mehr

Diskrete Fouriertransformation. Informationsgewinnung. ω 1. ω 2. Signale können als Überlagerung (Summe) periodischer Funktionen mit

Diskrete Fouriertransformation. Informationsgewinnung. ω 1. ω 2. Signale können als Überlagerung (Summe) periodischer Funktionen mit Sinal könnn als Übrlarn Smm priodischr nktionn mit rqnzn ω nd mit Amplitdn darstllt wrdn. Cosins nktionn Sins nktionn cos π π + o sin ω ω ω ω ω ω Dis Koffizintn bn an, mit wlchr Häfikit di ntsprchndn nktionn

Mehr

0.1 E: Der Haupsatz der Mineralogie

0.1 E: Der Haupsatz der Mineralogie 0. E: Der Haupsatz der Mieralogie Satz: I eiem Kristall gibt es ur,,3,4 ud 6-zählige Symmetrie. Defiitio: Seie u, v 0 zwei Vektore, die icht auf eier Gerade liege. Die Mege heißt Gitter. Satz: Die Vektore

Mehr

Nicht-Anwendbarkeit des Master- Theorems

Nicht-Anwendbarkeit des Master- Theorems Nicht-Awedbarkeit des Master- Theorems Beispiel: Betrachte die Rekursiosgleichug T () = 2T ( 2 ) + log. Es gilt sicherlich f () = Ω( log b a ) = Ω(), aber icht f () = Ω( log b a+ɛ ). Ma beachte, dass f

Mehr

1.2) Bestimmen Sie die Leistung, welche in Abhängigkeit der Frequenz ω am Widerstand abfällt und stellen Sie diesen Zusammenhang graphisch dar.

1.2) Bestimmen Sie die Leistung, welche in Abhängigkeit der Frequenz ω am Widerstand abfällt und stellen Sie diesen Zusammenhang graphisch dar. Übung /Grundgebiete der Elektrotechnik 3 (WS7/8 Frequenzabhängiges Übertragungsverhalten Dr. Alexander Schaum, Lehrstuhl für vernetzte elektronische Systeme Christian-Albrechts-Universität zu Kiel Aufgabe

Mehr

INFLATIONSSCHUTZ 156,00 RAIFFEISEN BANK INTERNATIONAL 10 2012

INFLATIONSSCHUTZ 156,00 RAIFFEISEN BANK INTERNATIONAL 10 2012 Mi Lb INFLATIONSSCHUTZ 156,00 RAIFFEISEN BANK INTERNATIONAL 10 2012 Vorsorg Alg Mobilität Woh * szahlug u a t s d ag 156 % Mi ttobitr N d f au il: bzog! Ihr Vor t ih l A sschutz durch i io t a fl I ug

Mehr

Lineare zeitinvariante Systeme

Lineare zeitinvariante Systeme Lineare zeitinvariante Systeme Signalflussgraphen Filter-Strukturen Fouriertransformation für zeitdiskrete Signale Diskrete Fouriertransformation (DFT) 1 Signalflussgraphen Nach z-transformation ist Verzögerung

Mehr

:46 1/9 Kinder gut betreut

:46 1/9 Kinder gut betreut 30.09.2017 02:46 1/9 gut btrut LANDKREIS AUGSBURG (DRUCKANSICHT) KINDER GUT BETREUT KINDERTAGESSTÄTTEN & SCHULISCHE BETREUUNGSANGEBOTE IM LANDKREIS AUGSBURG Di G mi d im La dkr is Aug sbu rg vrf üg üb

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Digitale und analoge Filter Wintersemester 6/7 Wiederholung Übertragung eines sinusförmigen Signals u t = U sin(ω t) y t = Y sin ω t + φ ω G(ω) Amplitude: Y = G ω U Phase:

Mehr

Musterlösung Grundlagen der Elektrotechnik B

Musterlösung Grundlagen der Elektrotechnik B Prof. Dr.-Ing. Joachim Böcker Musterlösung Grundlagen der Elektrotechnik B 7.4.2 7.4.2 Musterlösung Grundlagen der Elektrotechnik B Seite von 4 Version vom 6. Mai 2 Aufgabe : Ausgleichsvorgang 2 Punkte).

Mehr

e aus der Parameterform (*). Die Ebene E, in b c > a 1 = 0, so dass: a a

e aus der Parameterform (*). Die Ebene E, in b c > a 1 = 0, so dass: a a Mihl Buhlm Mthmtik > Vktohug > Kis Pmtfom Eilitug Im didimsiol ll Vktoum kö Gd ud E uh Kis mit Hilf vo Pmtfom dgstllt wd. Gg si im Folgd i Kis k mit Kismittlpukt Mm m m 3 ud Kisdius, >. Sid ud zwi Eihitsvkto,

Mehr

Lösung: Grafische Darstellung als komplexe Zeiger: Realteil, Imaginärteil und Betrag: ( z Re( z) = Länge des Zeigers)

Lösung: Grafische Darstellung als komplexe Zeiger: Realteil, Imaginärteil und Betrag: ( z Re( z) = Länge des Zeigers) Zu Aufgab Stlln Si folgnd komplxn Zahln als Zigr im kartsischn Koordinatnsystm dar! Gbn Si Raltil, Imaginärtil und dn Btrag an! Gbn Si dann all Zahln in EF (Eulrform) an! a) b) 5 c) Grafisch Darstllung

Mehr

Klasse WI06b MLAN2 zweite-klausur 13. Juni 2007

Klasse WI06b MLAN2 zweite-klausur 13. Juni 2007 Klasse WI6b MLAN zweite-klausur 3. Juni 7 Name: Aufgabe Gegeben sind die beiden harmonischen Schwingungen ( y = f (t) = +3 sin ωt + π ) (), ( 4 y = f (t) = 8 cos ωt + π ) (). 4 a) Bestimmen Sie mit Hilfe

Mehr

I. Bohrsches Atommodell

I. Bohrsches Atommodell I. Bohschs Atoodll I si Üblgug liß Boh ifliß, dass a sowohl i Absotio als auch i issio vo d lt so gat Sktallii bobachtt. Boh dutt dis Lii dahighd, dass si Übgäg zwisch lktoisch Zustäd i d Ato dastll. Das

Mehr

1.2.2 Frequenzverhalten einer Hochpass-Schaltung

1.2.2 Frequenzverhalten einer Hochpass-Schaltung Dipl.-In. G. Lblt.... Frqunzvrhaltn inr Hchpass-Schaltun Sachwrt: Frqunzan, Übrtraunsfunktin, Amplitudnan, Phasnan, RC-Hchpass Dis Aufab ist praktisch idntisch dr Aufab... Nur wird jtzt in CR- Schaltun

Mehr

O. Univ.-Prof. Dr. Fritz Scheuch, Wirtschaftsuniversität Wien / Institut für MarketingManagement

O. Univ.-Prof. Dr. Fritz Scheuch, Wirtschaftsuniversität Wien / Institut für MarketingManagement Ablauf & Ihalt Eröffugsstatmt O. Uiv.-Prof. Dr. Fritz Schuch, Wirtschaftsuivrsität Wi / Istitut für MarktigMaagmt Bdutug Olishoppig ud Prisvrglichsplattform & Mthodik dr Studi Uiv. Ass. Dr. Ar Floh, Wirtschaftsuivrsität

Mehr

2 Differentialrechnung und Anwendungen

2 Differentialrechnung und Anwendungen Diffrtialrchug ud Awdug 1 Diffrtialrchug ud Awdug Dr Bgriff ds Diffrtialquotit hat sich i zahlrich Awdug irhalb ud außrhalb dr Mathmatik als äußrst fruchtbar rwis. Bstimmug vo Etrmwrt, lokal Approimatio

Mehr

mit k k Die Wellenlänge der Gesamtwelle im Medium wird kleiner, obwohl sich Primär- und Sekundärwellen im interatomaren Raum mit c 0 ausbreiten.

mit k k Die Wellenlänge der Gesamtwelle im Medium wird kleiner, obwohl sich Primär- und Sekundärwellen im interatomaren Raum mit c 0 ausbreiten. 3_ElmagWll_Disrsiosthori_BA.doc - / 4 Klassisch Disrsiosthori (Disrsio ud Absortio i Dilkrika ud Mtall) Gbud Elktro vrhalt sich klassisch wi gdämft Oszillator. Im lktrisch Fld dr ifalld lktromagtisch Wll

Mehr

Mathematik Geometrie. Inhalt. Berner Fachhochschule. Hochschule für Technik und Informatik Burgdorf. Autor: Niklaus Burren Datum: 7.

Mathematik Geometrie. Inhalt. Berner Fachhochschule. Hochschule für Technik und Informatik Burgdorf. Autor: Niklaus Burren Datum: 7. Bee Fchhochschule Hochschule fü Techik ud Ifomtik Bugdof Mthemtik Geometie Auto: Niklus Bue Dtum: 7. Septeme 4 Ihlt. Mtize ud Detemite..... Defiitio..... Detemite..... Ivese eie Mti....4. Cmeegel... 4.5.

Mehr

1. Klausur des LK Physik im 2. Kurshalbjahr K12 am

1. Klausur des LK Physik im 2. Kurshalbjahr K12 am 1. Klausur ds LK Physik im. Kurshaljahr K1 am.03.00 1. Ahängigkit dr Mass vn dr Gschwindigkit Elktrnn wrdn durch in pannung vn 50 kv schlunigt. a. Bstimmn i di Gschwindigkit dr Elktrnn. [Ergnis: 0,90 c

Mehr

Lösungen zu Blatt 8 Spezielle stetige und diskrete Verteilungen Biostatistik BMT

Lösungen zu Blatt 8 Spezielle stetige und diskrete Verteilungen Biostatistik BMT Zu Aufgab 0) Folgnd Mssdatn wurdn von inr sttign Glichvrtilung R([a,b]) rhobn: 3,5,4, 5, 4, 3, 3, 5 Gbn Si in Schätzung für di Grnzn a und b nach dr Momntnmthod an! sih Vorlsung. Zu Aufgab ) Es wurd übr

Mehr

Analysis 1 für Informatiker und Statistiker Beispielslösungen, Woche 13

Analysis 1 für Informatiker und Statistiker Beispielslösungen, Woche 13 Mathematisches Istitut der LMU WS 016/17 Prof. Dr. S. Morozov Olie am: Dr. H. Hogreve 1. 01. 017 Aalysis 1 für Iformatiker ud Statistiker Beispielslösuge, Woche 1 1.1 (a Um festzustelle, ob die utestehede

Mehr

Technische Universität München Lehrstuhl für Technische Elektrophysik. Tutorübungen zu Elektromagnetische Feldtheorie. (Prof.

Technische Universität München Lehrstuhl für Technische Elektrophysik. Tutorübungen zu Elektromagnetische Feldtheorie. (Prof. Technische Universität München Lehrstuhl für Technische Elektrophysik Tutorübungen zu Elektromagnetische Feldtheorie Prof. Wachutka Wintersemester 08/09 Lösung Blatt 0 Allgemeines zum Thema komplexe Wechselstromrechnung

Mehr

3.2 Die Fouriertransformierte

3.2 Die Fouriertransformierte 5 3.2 Die Fouriertransformierte Eine Funktion f : R C heißt absolut integrabel, falls sie stückweise stetig und fx dx < ist. Definition: Sei f : R C absolut integrabel. Dann bezeichnen wir die durch fω

Mehr

8. Die Exponentialfunktion und die trigonometrischen Funktionen. 8.1 Definition der Exponentialfunktion

8. Die Exponentialfunktion und die trigonometrischen Funktionen. 8.1 Definition der Exponentialfunktion 8. Die Expoetialfuktio ud die trigoometrische Fuktioe 8. Defiitio der Expoetialfuktio Fudametallemma: Für jede Folge w mit dem Grezwert w gilt: w lim + = k = 0 k w. k! Defiitio der Expoetialfuktio : k

Mehr

ˆ Dichtefunktion: ƒ X ( ) = F ( ) bei differenzierbarer Verteilungsfunktion (stetige Zufallsvariable) (, ) E [X] = E X 1

ˆ Dichtefunktion: ƒ X ( ) = F ( ) bei differenzierbarer Verteilungsfunktion (stetige Zufallsvariable) (, ) E [X] = E X 1 Formlsmmlug Eigschft vo Zufllsvril X si i (disrt odr sttig Zufllsvril. ˆ Vrtilugsfutio: F X ( = P(X ˆ Dichtfutio: ƒ X ( = F ( i diffrzirrr Vrtilugsfutio (sttig Zufllsvril ˆ Zähldicht, Frquz- odr Mssfutio:

Mehr

STUDIENMATERIAL Teil 9 für Studenten der Elektrotechnik/Informationstechnik UNENDLICHE REIHEN

STUDIENMATERIAL Teil 9 für Studenten der Elektrotechnik/Informationstechnik UNENDLICHE REIHEN Techische Uiversität Chemitz Fakultät für Mathematik Zahlereihe STUDIENMATERIAL Teil 9 für Studete der Elektrotechik/Iformatiostechik UNENDLICHE REIHEN Utersuche für folgede uedliche Reihe jeweils die

Mehr

INCIDENT MANAGEMENT SYSTEM

INCIDENT MANAGEMENT SYSTEM INCIDENT MANAGEMENT SYSTEM Uivrslls Srvicud Vorgagsmaagmt WAS KANN i NORIS IMS TATSÄCHLICH FÜR IHR UNTERNEHMEN LEISTEN? Übrzug Si sich vo usrr vollitgrirt Awdug zur Erfassug, Barbitug, Dokumtatio ud Auswrtug

Mehr

Mathematik 2 für Ingenieure

Mathematik 2 für Ingenieure Übungsaufgabn zur Vorlsung Mathmatik für Ingniur Diffrntialglihungn Prof. Dr.-Ing. Norbrt Höptnr (nah inr Vorlag von Prof. Dr.-Ing. Torstn Bnknr) Fahhohshul Pforzhim FB-Ingniurwissnshaftn, Elktrothnik/Informationsthnik

Mehr

NMR-Spektroskopie. (Bloch-Gleichungen) (Puls-Fourier-Spektroskopie) D. Leibfritz

NMR-Spektroskopie. (Bloch-Gleichungen) (Puls-Fourier-Spektroskopie) D. Leibfritz NR-Sekrske (lch-glechungen (Puls-Furer-Sekrske D. Lebfr lch-glechungen Zur eschrebung ur eschrebung der Zeabhänggke der agneserung vn Snensembles: Drehmmen:: D r r r (vgl. Elekrmr D r dl r r r di Drall-Sa

Mehr

Harmonische Schwingung

Harmonische Schwingung Harmonische Schwingung Eine harmonische Schwingung mit Amplitude c 0, Phasenverschiebung δ und Frequenz ω bzw. Periode T = 2π/ω hat die Form x x(t) = c cos(ωt δ). δ/ω c t T=2π/ω Harmonische Schwingung

Mehr

Mathematik 2 (Master Sicherheitstechnik)

Mathematik 2 (Master Sicherheitstechnik) Priv.-Doz. Dr. J. uppenthal Wuppertal, 8.4.6 Aufgabe 5. Mathematik Master Sicherheitstechnik) Übungsblatt Gegeben seien die Schwingungen f t) 3 sin4πt + π) und f t) 4 sin4πt + π/). Berechnen Sie die Amplitude

Mehr

Die vollständige Induktion - Lösungen 1. Aufgabe: Sind die folgenden Aussageformen in N allgemeingültig?

Die vollständige Induktion - Lösungen 1. Aufgabe: Sind die folgenden Aussageformen in N allgemeingültig? Start Mathematik Lektioe i Aalysis Aufgabe zur vollstädige Iduktio Die vollstädige Iduktio - Lösuge. Aufgabe: Sid die folgede Aussageforme i N allgemeigültig? a) We ei Vielfaches vo ist, da ist eie gerade

Mehr

Lösungen zu den Aufgaben zu Mathematik I. w w w f f f f w w f f w w f f w f w w f w w w w f f w w w w w w. s = p q p q erhalten wir folgende Tabelle:

Lösungen zu den Aufgaben zu Mathematik I. w w w f f f f w w f f w w f f w f w w f w w w w f f w w w w w w. s = p q p q erhalten wir folgende Tabelle: TEIL B Lösuge zu de Aufgabe zu Mathematik I.. Logik... A B A B A B A B A B w w w f f f f w f f w f w w f w f w w f w f f f w w w w A B A B B A B [ ] ( A B) ( A B) A ( ) ( ) A B A B A w w w f f f f w w

Mehr

Fourier- und Laplace- Transformation

Fourier- und Laplace- Transformation Übungsaufgaben zur Vorlesung Mathematik für Ingenieure Fourier- und Lalace- Transformation Teil : Lalace-Transformation Prof. Dr.-Ing. Norbert Hötner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner)

Mehr

Korrespondenzen der FOURIER - Transformation I

Korrespondenzen der FOURIER - Transformation I Korresodee der FOURIER - rsormio I A: HEOREME s() S() F-rsormio s () jπ S( ) = s e d Iverse F- jπ rsormio s () = S e d S( ) 3 Zerlegug reeller Zeiukioe mi s () = s() + s() S( ) = Re{ S( )} + jim{ S( )}

Mehr

Darstellung periodischer Funktionen durch Fouriersche Reihen

Darstellung periodischer Funktionen durch Fouriersche Reihen Aus Fuschau 6-8/957. Digitalisiert 9/6 vo Eie Grud für http://www.radiomuseum.org mit freudlicher Geehmigug der Fuschau-Redatio. Die atuelle Ausgabe der FUNKSCHAU fide Sie uter http://www.fuschau.de (Im

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) Seite /9 Frage ( Punkte) Bei einer Messung ist ein harmonishes Geshwindigkeitssignal v(t) = ˆv os(ωt + ϕ ) aufgezeihnet worden. a) Wie groß ist die komplexe Amplitude ˆv der Geshwindigkeit bei Verwendung

Mehr

Prof. Dr. Wolfgang Konen Mathematik 2, SS2015 06.05.2015

Prof. Dr. Wolfgang Konen Mathematik 2, SS2015 06.05.2015 Prof. Dr. Wolfgag Ko Mathmatk, SS05 06.05.05. Komlx Zahl Dr kürst Wg wsch w Wahrht m Rll führt übr das Komlx. [Jacus Hadamard, fra. Mathmatkr, 865-96] Am Afag stad w so oft b wssschaftlch Etdckug d Nchtlösbarkt

Mehr

Einführung in die Laplace Transformation

Einführung in die Laplace Transformation Einführung in die aplace Transformation Peter Riegler 17. Oktober 2 Zusammenfassung Dieser Text gibt Ihnen eine kurze Einführung in das Werkzeug der aplace Transformation. Es zeigt Ihnen, wo und warum

Mehr

Bildverbesserung. Operationen im Frequenzraum

Bildverbesserung. Operationen im Frequenzraum Bildverbesserug Operatioe im Frequezraum Begriffsdefiitioe Der Ortsraum ist die übliche Repräsetatio vo Bilder. Jedem Bildpukt ist eie bestimmte Koordiate eideutig zugeordet. Der dazu duale Raum ist der

Mehr

2. Solarmodule und Solargeneratoren

2. Solarmodule und Solargeneratoren . olarmodul ud olargrator Di Halblitrthori ud dr Aufbau dr olarzll sid wstlichr Bstadtil vom il A. dism il dr Vorlsug wir ur kurz auf d Aufbau ud das Fuktiosprizip vo olarzll iggag. Zur Erzugug praktisch

Mehr

Tutorial 01 (korrigierte Fassung): Beispiele zu vollständig zufälligen Prozessen.

Tutorial 01 (korrigierte Fassung): Beispiele zu vollständig zufälligen Prozessen. SS 6 uorial _rv. / S. von 5 uorial (orriir Fassun): Bispil zu vollsändi zufällin Prozssn. Di Bispil in dr Oriinalfassun von uorial wurdn nich unmissvrsändlich lassifizir. Bi auschn Si di Oriinalvrsion

Mehr

Zur Internetkompetenz - vor allem auch unter schulischen Aspekten

Zur Internetkompetenz - vor allem auch unter schulischen Aspekten Zur Itrtkomptz - vor allm auch utr schulisch Aspkt Vo: Marti Wigartz 1. Eilitug Sit iig Jahr hat sich das Itrt als Wisss- ud Iformatiosplattform tablirt. Dabi ist disr Prozss kiswgs abgschloss, sodr i

Mehr

Volksbank Wittenberg eg

Volksbank Wittenberg eg Volksbak Wittbrg G Offlgugsbricht i. S. d. Istituts- Vrgütugsvrordug pr 31.12.2011 Ihaltsvrzichis 1 Ihaltsvrzichis 1 Ihaltsvrzichis... 2 2 Bschribug ds Gschäftsmodlls... 3 3 Agab zur Eihaltug dr Afordrug

Mehr

e Oe-Of Oe-Of TT - HOe - HO - Of - Oe

e Oe-Of Oe-Of TT - HOe - HO - Of - Oe HO TT t i h 6 1 20 N HO O-Of O-Of TT - HO - HO - Of - O Shr ghrtr Kd, libr Modllbahr mit srm Nhitkatalog 2016 zig wir Ih di st Etwicklg für das Jahr 2016. Disr wird Si Asführlich übr das mfagrich Nhitprogramm

Mehr

Serie 12 Musterlösung

Serie 12 Musterlösung Serie 2 Musterlösung ineare Algebra www.adams-science.org Klasse: Ea, Eb, Sb Datum: HS 7 In dieser Serie werden alle echnungen in der Basis und in SI-Einheiten durchgeführt. e ˆ cos(ω t) und e 2 ˆ sin(ω

Mehr

Normalverteilung als Näherung der Binomialverteilung

Normalverteilung als Näherung der Binomialverteilung V Normalvrtilung als Nährung dr Binomialvrtilung Ggbn ist in nach B(n,p) vrtilt Zufallsgröß mit großm n. Sthn di Wahrschinlichkitn für das btrffnd n nicht in dr Tabll (z.b. wil n zu groß ist), dann ist

Mehr

Inklusionskiste für Kinder mit besonderem Förderbedarf

Inklusionskiste für Kinder mit besonderem Förderbedarf Iklusioskist für Kidr mit bsodrm Fördrbdarf Dutsch Afagsutrricht k o o E-B Basistraiig Phoologisch Bwussthit 1 rk b ta s h c u db u t au L, Rim Ihalt 1 Arbitsblättr Phoologisch Bwussthit 1 Rimwörtr sprch

Mehr

Übungen mit dem Applet Fourier-Reihen

Übungen mit dem Applet Fourier-Reihen Fourier-Reihe 1 Übuge mit dem Applet Fourier-Reihe 1 Mathematischer Hitergrud... Übuge mit dem Applet... 3.1 Eifluss der Azahl ud der Sprugstelle...3. Eifluss vo y-verschiebug ud Amplitude...4.3 Eifluss

Mehr

6.Übung Schaltungstechnik SS2009

6.Übung Schaltungstechnik SS2009 6.Übung Schaltungstchnik SS29. Aufgab: mkhrvrstärkr Lrnzil Dimnsionirung ds mkhrvrstärkrs anhand ds Btragsfrqunzgangs. Brücksichtigung nicht-idalr OPV-Eignschaftn. Aufgabnstllung 2 d Ggbn si dr obn dargstllt

Mehr

3. Beschreibung dynamischer Systeme im Frequenzbereich

3. Beschreibung dynamischer Systeme im Frequenzbereich 3. Laplace-Transformation 3. Frequenzgang 3.3 Übertragungsfunktion Quelle: K.-D. Tieste, O.Romberg: Keine Panik vor Regelungstechnik!.Auflage, Vieweg&Teubner, Campus Friedrichshafen --- Regelungstechnik

Mehr

3.3 Das Abtasttheorem

3.3 Das Abtasttheorem 17 3.3 Das Abtasttheorem In der Praxis kennt man von einer zeitabhängigen Funktion f einem Signal meist nur diskret abgetastete Werte fn, mit festem > und ganzzahligem n. Unter welchen Bedingungen kann

Mehr

mit unbekannter Systemmatrix A. Die Transitionsmatrix zu obigem System lautet e t. 2 e t u(s) =

mit unbekannter Systemmatrix A. Die Transitionsmatrix zu obigem System lautet e t. 2 e t u(s) = 1. Teilklausur SS 18 Betrachten Sie folgendes mathematische Modell mit der Eingangsgröße u, der Ausgangsgröße und dem Zustandsvektor x [ ] dx 1 = Ax + bu = Ax + u = c T x + du = [ 1 0 ] x dt 0 mit unbekannter

Mehr

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge Heavisidefunktion σ (t), Diracimpuls δ (t),faltung Definition Heavisidefunktion, t > 0 σ ( t) = 0, t < 0 Anwendungen ) Rechteckimpuls, t < T r( t) = = σ ( t + T ) σ ( t T ) 0, t > T 2) Sprungfunktionen,

Mehr

Grundlegende Eigenschaften der Atomkerne: β-zerfall (Teil I)

Grundlegende Eigenschaften der Atomkerne: β-zerfall (Teil I) Krhysik I Grudlgd Eigschaft dr Atomkr: β-zrfall (Til I) Motivatio Für di Bschribug dr Elmtsyths i astrohysikalisch Umgbug sid isbsodr gut Ktiss übr di β-zrfalls- Eigschaft vo istabil Kr frab vom Tal dr

Mehr

Bis zu 20 % Ra. b b. a h

Bis zu 20 % Ra. b b. a h btt! Bis zu 20 % R www.gvb.ch h? ic s b b d d u W s s d ich t lück lo s s u H Ih h ic s W i v Mit us kö Si Ih Hus udum vsich Mit us Zustzvsichug ist Ih Vsichugsschutz i ud Sch W glichzitig i Lück i d Gbäudvsichug

Mehr

n i (cm -3 ) bei 300K Si 1,17 1,12 0,19 0,98 1, Ge 0,75 0,67 0,082 1,57 2, GaAs 1,52 1,43 0, m * l t m

n i (cm -3 ) bei 300K Si 1,17 1,12 0,19 0,98 1, Ge 0,75 0,67 0,082 1,57 2, GaAs 1,52 1,43 0, m * l t m 7. Halblitr 7. lktrisc Struktur llstädig lr ud vllstädig gfüllt Bädr kö ict zur lktrisc itfäigkit bitrag (all Zust. lr bzw. bstzt ki rgiaufa öglic) Bs.: iaat xzlltr Islatr Waru sid als grad Si ud G ( islktrisc

Mehr

Physik 2 (GPh2) am

Physik 2 (GPh2) am Name, Matrikelummer: Physik (GPh) am 5.9.0 Fachbereich Elektrtechik ud Ifrmatik, Fachbereich Mechatrik ud Maschiebau Zugelassee Hilfsmittel zu dieser Klausur: Beiblätter zur Vrlesug Physik + im SS 00 (Prf.

Mehr

ev. Jugend Böckingen Freizeit Programm 2015

ev. Jugend Böckingen Freizeit Programm 2015 v. Jugd Böckig Fzt Poga 2015 Zltlag fü 9-13 Jähig 2. - 15. August 2015 Wi sog fü gaos ud uvgsslich Fzt i Mt ds Hohloh Walds, i Etthaus kl gütlich Dof. Dikt vo Bauhof ba gibt s täglich fischst Milch du

Mehr

Konfliktmanagement in der Psychiatrie. Christoph Hebborn, Fachkraft für Arbeitssicherheit Klinikum Oberberg GmbH

Konfliktmanagement in der Psychiatrie. Christoph Hebborn, Fachkraft für Arbeitssicherheit Klinikum Oberberg GmbH Kofliktmaagmt i dr Psychiatri Christoph Hbbor, Fachkraft für Arbitssichrhit Kliikum Obrbrg GmbH Kofliktmaagmt am Bispil ds Kriskrakhaus Gummrsbach Ztrum für slisch Gsudhit Kliik Marihid 01 Kliikum Obrbrg

Mehr