Computergrafik 2: Fourier-Transformation

Größe: px
Ab Seite anzeigen:

Download "Computergrafik 2: Fourier-Transformation"

Transkript

1 Computergrafik 2: Fourier-Transformation Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen der Bildverarbeitung. Pearson Studium, 2005)

2 Themen heute Fourier-Transformation Grundidee Konstruktion der Fourier-Basis Phase und Amplitude Eigenschaften der FT Konvolution und Korrelation im Frequenzraum Schnelle Fourier-Transformation (FFT) Computergrafik 2 SS20 2

3 Motivation Manche Operationen sind im Ortsraum (d.h. auf den Pixeln des Bildes) schwer Herausfiltern bestimmter Frequenzen Beseitigung störender Details Konvolution, Korrelation Frequenzraum als Labor zur Entwicklung von Filtern Idee: übertrage Bild in einen Raum, in dem diese Operationen leichter sind z.b. Zerlegung des Bildes in Frequenzen Rückweg muss möglich sein! Verschiedene Möglichkeiten, gleiches Prinzip Computergrafik 2 SS20 3

4 Beispiel: Artefakte entfernen R. C. Gonzalez & R. E. Woods, Digital Image Processing Computergrafik 2 SS20 4

5 Motivation Bisher: Darstellung des Bildes im Ortsraum durch den Grauwert an einem bestimmten Ort Jetzt: Darstellung im Frequenzraum durch cos und sin Funktionen verschiedener Frequenzen Eindeutige und vollständige Darstellung in beiden Räumen Ortsraum Frequenzraum Fourier-Transformation inverse Fourier- Transformation Computergrafik 2 SS20 5

6 Fourier Jean Baptiste Joseph Fourier ( ) Französischer Physiker und Mathematiker Erfinder der Fourier- Transformation Johann Bernoulli Advisor Leonhard Euler Advisor Joseph Louis Lagrange Advisor Jean Baptiste Joseph Fourier Quelle: Computergrafik 2 SS20 6

7 Fourier-Transformation: Grundidee Beschreibe beliebige Funktion als gewichtete Summe periodischer Grundfunktionen (Basisfunktionen) mit unterschiedlicher Frequenz Computergrafik 2 SS20 7

8 Parameter Periodischer Grundfunktionen y(x) Asin(2! f x +") A Amplitude: Intensität des Signals φ Phase: Verschiebung zum Ursprung Frequenz zeitlich f(t) Frequenz räumlich f(x) T Periodendauer [s] λ Wellenlänge [m] f Frequenz f /T [/shz] f Raumfrequenz f/λ [/m] ω Kreisfrequenz ω2πf k Wellenzahl k 2π/λ y A φ T bzw. λ x Computergrafik 2 SS20 8

9 Funktion mit sin und cos multiplizieren Originalfunktion f (x), x 0.. Abtastungsfunktionen cos(!2! x) sin(!2! x) Ergebnis (f*sin und f*cos) f (x)! cos("2! x) f (x)!sin("2! x) Computergrafik 2 SS20 9

10 sin(!2! x) f (x)"sin(!2! x) F sin () sin(!2! 2x) f (x)"sin(!2! 2x) F sin (2) sin(!2! 4x) f (x)"sin(!2! 4x) F sin (4) # $ f (x)sin(...)dx 0!# sin(!2! 5x) f (x)"sin(!2! 5x) F sin (5) # $ f (x)sin(...)dx 0!# sin(!2! 3x) f (x)"sin(!2! 3x) F sin (3) # $ f (x)sin(...)dx > 0!# # $ f (x)sin(...)dx > 0!# # $ f (x)sin(...)dx > 0!# f (x) Computergrafik 2 SS20 0

11 cos(!2! x) f (x)" cos(!2! x) F cos () cos(!2! 2x) f (x)" cos(!2! 2x) F cos (2) cos(!2! 4x) f (x)" cos(!2! 4x) F cos (4) # $ f (x)" cos(...)dx 0!# cos(!2! 5x) f (x)" cos(!2! 5x) F cos (5) f (x) # $ f (x)" cos(...)dx 0!# cos(!2! 3x) f (x)" cos(!2! 3x) F cos (3) # $ f (x)" cos(...)dx 0!# # $ f (x) " cos(...)dx 0!# # $ f (x)" cos(...)dx 0!# Computergrafik 2 SS20

12 Fouriers Theorem Jede beliebige periodische Funktion lässt sich darstellen als Summe von sin und cos Funktionen unterschiedlicher Frequenzen. Ist die Funktion nicht periodisch, aber auf einen bestimmten Definitionsbereich beschränkt, so kann man diesen Bereich einfach kopieren (periodisch fortsetzen) und hat damit wieder eine periodische Funktion. Die Zeilen und Spalten eines Bildes kann man als nichtperiodische diskrete Funktionen auffassen. Man kann also auch ein Bild Fourier-transformieren. Computergrafik 2 SS20 2

13 kontinuierliche Fourier-Transformation Transformation vom Ortsraum in den Frequenzraum F(u) # "!" f (x)e!2!ixu dx Transformation vom Frequenzraum in den Ortsraum f (x) # "!" F(u)e 2!ixu du Im z a+bi re iφ r φ sin φ b - cos φ Re a - Computergrafik 2 SS20 3

14 Ist ein Bild eine periodische Funktion? Computergrafik 2 SS20 4

15 Ist ein Bild eine periodische Funktion? Zunächst: Betrachtung der periodischen Fortführung einer Zeile λ (N Pixel) λ (N Pixel) λ (N Pixel) λ (N Pixel) λ (N Pixel) Computergrafik 2 SS20 5

16 Beispiel: F()... Originalfunktion f (x), x 0.. Gewichtungsfunktionen real(e!i2! x ) cos(!2! x) imag(e!i2! x ) sin(!2! x) Ergebnis (f*sin und f*cos) real( f (x)! e "i2! x ) imag( f (x)! e "i2! x ) F() # $ f (x)! e "i2! x dx, F() > 0 "# Computergrafik 2 SS20 6

17 Beispiel: F(2)... Originalfunktion f (x), x 0.. Gewichtungsfunktionen real(e!i2! 2 x ) cos(!2! 2x) imag(e!i2! 2 x ) sin(!2! 2x) Ergebnis (f*sin und f*cos) real( f (x)! e "i2! 2 x ) imag( f (x)! e "i2! 2 x ) F(2) # $ f (x)! e "i2! 2 x dx, F(2) 0 "# Computergrafik 2 SS20 7

18 e!i2! x f (x)e!i2! x f (x) # F() $ f (x)" e!i2! x dx > 0 e!i2! 2 x!# f (x)" e!i2! 2 x F(2) # $ f (x)" e!i2! 2 x dx 0!#!i2! 3x e!i2! 3x f (x)" e F(3) e!i2! 4 x f (x)" e!i2! 4 x # $ f (x)" e!i2! 3x dx > 0!# F(4) # $ f (x)e!i2! 4 x dx 0!#!i2! 5x e!i2! 5x f (x)" e F(5) # $ f (x)" e!i2! 5x dx > 0!# Computergrafik 2 SS20 8

19 Fourier-Transformation: Eigenschaften Transformation: verändert eine Funktion nicht, sondern stellt sie nur anders dar Transformation ist umkehrbar à inverse Fourier-Transformation Analog zum Basiswechsel in der Vektorrechnung Computergrafik 2 SS20 9

20 Computergrafik 2 SS20 20 Exkurs: Vektorrechnung 0 0, 0 0, 0 0 bilden eine Basis b des R 3 sind paarweise orthogonal haben Länge 0 0, 0 2 / 2 /, 0 2 / 2 / bilden ebenfalls eine Basis b 2 des R 3 sind ebenfalls paarweise orthogonal Haben ebenfalls Länge / 2 / 0 2 / 2 / Ist orthogonal und normiert (d.h. M T M - ) Ist Basiswechselmatrix von b nach b 2

21 Basiswechsel Sei V ein n-dimensionaler Vektorraum über Körper K mit Basen B{b,..., b n } und B {b,..., b n } Darstellung der Vektoren von B in B : Darstellung des Vektors v in B: Darstellung des Vektors v in B : v v n! i n! i b j x i b i x i 'b i ' n! i a ij b i ' v n n n n " n % n n! x j b j! x! j a ij b i '! $! x j a iji ' b ' i! c i b i '! x i 'b i ' j j i i # j & i i Computergrafik 2 SS20 2

22 Basiswechsel v n n n n " n % n n! x j b j! x! j a ij b i '! $! x j a iji ' b ' i! c i b i '! x i 'b i ' j j i i # j & i i Also: x i ' n! j x j a iji mit b j n! i a ij b i ' in Matrix-Notation:! # # # " x '! x n ' $! & # & # & # % " a " a n! #! a n " a nn $! &# &# & # %" x! x n $ & & & % Computergrafik 2 SS20 22

23 Anschaulich: Basisvektoren eines Bildes 0 0 * * + * + 0 * bilden eine Basis des R 4 sind paarweise orthogonal haben Länge Wahl anderer Basisvektoren è Transformation mittels Basiswechsel Basiswechselmatrix vom Rang der Pixelanzahl Computergrafik 2 SS20 23

24 Orthogonale Funktionen Seien f und f 2 Funktionen, die an N Stellen abgetastet sind (also N-dim. Vektoren) f und f 2 sind orthogonal, falls gilt: * N f f f ( k) f ( k) 2 k 0 2 D.h. das Skalarprodukt der zugehörigen Vektoren ist 0 N paarweise orthogonale Funktionen f f N bilden damit eine orthogonale Basis des N-dim. Raums Transformationen zwischen orthogonalen Basen sind immer umkehrbar 0 Computergrafik 2 SS20 24

25 Orthogonale Funktionen Computergrafik 2 SS20 25

26 Orthogonale Funktionstransformationen Betrachte abgetastete Funktionen wie Vektoren Finde neue geeignete orthogonalen Basis Üblicherweise Basisfunktionen, die Bedeutung bzgl. der betrachteten Eigenschaft haben Fourier-Basis: komplexe, periodische Funktionen Kosinusbasis: Kosinusfunktionen Transformiere Bild in diese Basis Bearbeite es dort Transformiere zurück y Ax x A y Computergrafik 2 SS20 26

27 Fourierbasis (. Versuch, nur cos) Ausgangspunkt: Bildzeile mit N Pixeln. Versuch: wähle N Kosinusfunktionen " cos$ 0! 2! # N % & ', cos " $! 2! # N % & ', cos " $ 2! 2! # N % & ',..., cos " $ (N ()! 2! # N % ' & Beispiel nächste Folie: N 5 Problem: abgetastete Funktionswerte gleich für i und i4 sowie i 2 und i 3 also keine Basis der Dimension N 5 Vektoren spannen nur 3-dim. Untervektorraum auf Computergrafik 2 SS20 27

28 0*2π/5 *2π/5 2*2π/5 3*2π/5 4*2π/5 5*2π/5 6*2π/5 7*2π/ Computergrafik 2 SS20 28

29 Fourierbasis (. Versuch, nur cos) N5, u i, u j 4 N u j Problem: falls u i N u j ist, sind die Abtastungen gleich è nur N/2 Funktionen verfügbar, keine Basis Siehe auch Shannon-Nyquist Theorem, Aliasing Computergrafik 2 SS20 29

30 Fourierbasis (. Versuch, nur cos) N 4 Computergrafik 2 SS20 30

31 0*2π/5 *2π/5 2*2π/5 3*2π/5 4*2π/5 5*2π/5 6*2π/5 7*2π/5 cos: sin: cos: sin: cos: sin: cos: sin: cos: sin: cos: sin: cos: sin: cos: sin: Computergrafik 2 SS20 3

32 Basisfunktionspaare (cos, sin) N 4 Computergrafik 2 SS20 32

33 Erinnerung: komplexe Zahlen Im Bereich der reellen Zahlen gibt es keine Lösung für x² - Einführung der imaginären Zahlen i: Lösung der Gleichung x² - Die Gruppe der reellen und imaginären Zahlen nennt man komplexe Zahlen Komplexe Zahl z: z a + i b, wobei a und b reell sind Computergrafik 2 SS20 33

34 Erinnerung: komplexe Zahlen Imaginäre Achse Realteil a r θ z Imaginärteil i*b Reelle Achse z iθ a + ib r e r(cos( θ) + i sin( θ )) Computergrafik 2 SS20 34

35 Komplexe periodische Funktionen Computergrafik 2 SS20 35

36 Komplexes Skalarprodukt Skalarprodukt zweier Vektoren mit komplexen Elementen! x b! N" N" # x i! y * i # Re(x i )+ iim(x i ) i0 i0 ( )( Re(y i )"iim(y i )) Zu x a + ib komplexkonjugierte Zahl ist x* a - ib Computergrafik 2 SS20 36

37 Fourierbasis (2. Versuch, komplexe Fn.) 2. Versuch: wähle komplexe Funktionen f cos( un) + isin( un) Wobei u ein ganzzahliges Vielfaches von u 0 2π/N à N verschiedene Funktionen Ist eine Basis Computergrafik 2 SS20 37

38 Repräsentation als Exponentialfunktion cos( α α i( x+ α ) x + ) + isin( x + ) e e ix e iα Computergrafik 2 SS20 38

39 D-Basisfunktionen 0 0 b 0 (n) [(, 0),(, 0),...,(, 0)] Computergrafik 2 SS20 39

40 2D-Basisfunktionen Frequenz: Richtungsvektor: r(u, v) f (u, v) u 2 + v 2 f (u, v)! # " Computergrafik 2 SS20 40 u v $ & %

41 2D-Fourier-Transformationspaar Transformationspaar für Bilder der Größe M N Transformation vom Ortsraum in den Frequenzraum F(u, v) ) M" m0) N" n0 # # f (m, n)! exp %"i2! % um M + vn $ $ N Transformation vom Frequenzraum in den Ortsraum f (m, n) MN ) M( m0) N( n0 && (( '' " " F(u, v)! exp$ i2! $ um M + vn # # N %% '' && Computergrafik 2 SS20 4

42 2D-Fourier-Transformationspaar Transformationspaar für Bilder der Größe N N Transformation vom Ortsraum in den Frequenzraum F(u, v) N ) N" m0) N" n0 # f (m, n)! exp %"i 2! $ N & ( um + vn) ( ' Transformation vom Frequenzraum in den Ortsraum f (m, n) N ) N( m0) N( n0 " F(u, v)! exp$ i 2! # N % ( um + vn) ' & Computergrafik 2 SS20 42

43 Phase und Amplitude Funktionswerte von F(u,v) a+ib sind komplexe Zahlen Betrag eines Funktionswerts: Amplitude F(u,v) sqrt(a 2 +b 2 ) Winkel zur reellen Achse: Phase tan - (b/a) Amplitude und Phase sind Parameter der jeweiligen Basisfunktion Computergrafik 2 SS20 43

44 Zweidimensionale Fouriertransformation Computergrafik 2 SS20 44

45 Beispiele für Amplitude FT FT Computergrafik 2 SS20 45

46 Darstellungsweise Original Amplitude (zentriert, d.h. von N/2 bis N/2) Amplitude (log. Skala) Amplitude (zentriert, log. Skala) Computergrafik 2 SS20 46

47 Beispiele Amplitude Phase Computergrafik 2 SS20 47

48 Einfluss von Amplitude und Phase Computergrafik 2 SS20 48

49 Translation Computergrafik 2 SS20 49

50 Computergrafik 2 SS20 50

51 Phasenverschiebung Computergrafik 2 SS20 5

52 Computergrafik 2 SS20 52

53 Periodizität und Symmetrie F(u) ) N" n0 # f (n)! exp "i2! un & % ( $ N ' x Computergrafik 2 SS20 53

54 Separabilität Computergrafik 2 SS20 54

55 Konvolution und Korrelation Konvolution und Korrelation sind zwei eng verwandte Filter-Operationen. Beide können im Ortsraum und im Frequenzraum ausgeführt werden. Die Operation im Frequenzraum ist eine einfache Multiplikation (Aufwand N 2 ). Achtung: Padding wegen Periodizität! P A + B - Computergrafik 2 SS20 55

56 Konvolution im Frequenzraum Computergrafik 2 SS20 56

57 Konvolution im Frequenzraum D-Konvolution f (x)! h(x) $ N# f (n)" h(x # n) n0 % F(u)" H(u) 2D-Konvolution M" # f (x, y)! h(x, y) f (m, n) $ h(x " m, y " n) m0# n0 % F(u, v)$ H(u, v) N" Computergrafik 2 SS20 57

58 Wraparound Error Padding: P A + B - R. C. Gonzalez & R. E. Woods, Digital Image Processing Computergrafik 2 SS20 58

59 Padding R. C. Gonzalez & R. E. Woods, Digital Image Processing Computergrafik 2 SS20 59

60 FAST FOURIER TRANSFORM (FFT) Computergrafik 2 SS20 60

61 Vorgehensweise generell Vereinfachende Annahme: N2 k, k> Nutze Separabilität, um 2D-FT auf D zurückzuführen (O(N 4 ) à O(N 3 )) Teile Summe in zwei Teilsummen auf Finde Gemeinsamkeiten in den Teilsummen und berechne beide Teilsummen miteinander Betrachte die Teilsumme und unterteile rekursiv bis N (O(N 3 ) à O(N 2 log N) Computergrafik 2 SS20 6

62 Computergrafik 2 SS20 62 Separabilität ) ( 2 exp 2 )exp, ( 2 exp 2 exp 2 )exp, ( 2 exp 2 )exp, ( ) ( 2 )exp, ( ), ( N m u N m N n N m N n N m N n N m N n m F um N i N vn N i n m f N um N i N um N i vn N i n m f N N vn N i um N i n m f N vn um N i n m f N v u F π π π π π π π π Vorgehensweise: F u (m) für alle Spalten m berechnen und dann bei den Zeilen verwenden.

63 Computergrafik 2 SS20 63 Divide Schritt ) ( ) )( (2 ) )( (2 2 ) )( ( 2 ) )( ( ) ( 2 exp, 2 K n u n K K n nu K K n un K N n un N N W n f K W n f K W n f K W n f N u F N i W K N π ( ) u K odd even K n nu K odd K n nu K even W u F u F u F W n f K u F W n f K u F ) )( ( ) ( 2 ) ( ) )( (2 ) (, ) )( (2 ) ( Finde Gemeinsamkeiten in den Teilsummen Teile Summe in zwei Teilsummen auf

64 Ausnutzen der Periodizität ( W K ) u+n ( W K ) u,( W 2K ) u+k!( W 2K ) u " N 2K,W N exp $!i 2! # N % ' & ( ) 2 F u + K even ( ) + F odd ( u + K) ( W 2K ) u+k F u + K 2 F even u ( ) ( ( )! F odd ( u) ( W 2K ) u ) Also kann man F(u+K) mithilfe F(u) berechnen (einmal F even + F odd, einmal F even F odd ) Betrachte die Teilsumme [0 K-] und unterteile rekursiv bis K (O(n 3 ) à O(n 2 log n) Computergrafik 2 SS20 64

65 Fourier Transformation zum Anschauen exploratories/ Computergrafik 2 SS20 65

66 Überlagerung von Schwingungen: anschaulich Computergrafik 2 SS20 66

Computergrafik 2: Filtern im Frequenzraum

Computergrafik 2: Filtern im Frequenzraum Computergrafik 2: Filtern im Frequenzraum Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen

Mehr

Computergraphik 1 2. Teil: Bildverarbeitung. Fouriertransformation Ende FFT, Bildrestauration mit PSF Transformation, Interpolation

Computergraphik 1 2. Teil: Bildverarbeitung. Fouriertransformation Ende FFT, Bildrestauration mit PSF Transformation, Interpolation Computergraphik 1 2. Teil: Bildverarbeitung Fouriertransformation Ende FFT, Bildrestauration mit PSF Transformation, Interpolation LMU München Medieninformatik Butz/Hoppe Computergrafik 1 SS2009 1 2 Repräsentation

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Fourier-Transformation Graphische DV und BV, Regina Pohle, 8. Fourier-Transformation 1 Einordnung in die Inhalte der Vorlesung Einführung

Mehr

Bildverarbeitung: Fourier-Transformation. D. Schlesinger () BV: Fourier-Transformation 1 / 16

Bildverarbeitung: Fourier-Transformation. D. Schlesinger () BV: Fourier-Transformation 1 / 16 Bildverarbeitung: Fourier-Transformation D. Schlesinger () BV: Fourier-Transformation 1 / 16 Allgemeines Bilder sind keine Vektoren. Bilder sind Funktionen x : D C (Menge der Pixel in die Menge der Farbwerte).

Mehr

Computergrafik 1 2. Teil: Bildverarbeitung

Computergrafik 1 2. Teil: Bildverarbeitung 1 Computergrafik 1 2. Teil: Bildverarbeitung Digitalfotografie, Abtastung von Bildern, Konvolution und Korrelation, Fouriertransformation 2 Themen heute Bilder aus der Digitalfotografie Kontrastumfang,

Mehr

Mathematische Erfrischungen III - Vektoren und Matrizen

Mathematische Erfrischungen III - Vektoren und Matrizen Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen

Mehr

Mathematik, Signale und moderne Kommunikation

Mathematik, Signale und moderne Kommunikation Natur ab 4 - PH Baden Mathematik, Signale und moderne Kommunikation 1 monika.doerfler@univie.ac.at 29.4.2009 1 NuHAG, Universität Wien monika.doerfler@univie.ac.at Mathematik, Signale und moderne Kommunikation

Mehr

Konvergenz und Stetigkeit

Konvergenz und Stetigkeit Mathematik I für Biologen, Geowissenschaftler und Geoökologen 12. Dezember 2007 Konvergenz Definition Fourierreihen Obertöne Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn

Mehr

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation Bildverarbeitung Herbstsemester 2012 Fourier-Transformation 1 Inhalt Fourierreihe Fouriertransformation (FT) Diskrete Fouriertransformation (DFT) DFT in 2D Fourierspektrum interpretieren 2 Lernziele Sie

Mehr

Konvergenz und Stetigkeit

Konvergenz und Stetigkeit Mathematik I für Biologen, Geowissenschaftler und Geoökologen 10. Dezember 2008 Konvergenz Definition Fourierreihen Obertöne Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn

Mehr

Computergrafik 2: Übung 6. Korrelation im Orts- und Frequenzraum, Filtern im Frequenzraum, Wiener Filter

Computergrafik 2: Übung 6. Korrelation im Orts- und Frequenzraum, Filtern im Frequenzraum, Wiener Filter Computergrafik : Übung 6 Korrelation im Orts- und Frequenzraum, Filtern im Frequenzraum, Wiener Filter Quiz Warum Filtern im Frequenzraum? Ideales Tiefpassfilter? Parameter? Eigenschaften? Butterworth-Filter?

Mehr

Fourier-Reihen und Fourier-Transformation

Fourier-Reihen und Fourier-Transformation Fourier-Reihen und Fourier-Transformation Matthias Dreÿdoppel, Martin Koch, Bernhard Kreft 25. Juli 23 Einleitung Im Folgenden sollen dir und die Fouriertransformation erläutert und mit Beispielen unterlegt

Mehr

Technische Universität

Technische Universität Technische Universität München Fakultät für Informatik Forschungs- und Lehreinheit Informatik IX Filterung im Frequenzraum: Fouriertransformation Proseminar: Grundlagen Bildverarbeitung / Bildverstehen

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

Technische Universität München

Technische Universität München Technische Universität München Michael Schreier Ferienkurs Lineare Algebra für Physiker Vorlesung Montag WS 2008/09 1 komplexe Zahlen Viele Probleme in der Mathematik oder Physik lassen sich nicht oder

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1! Grundbegriffe! 4.2! Frequenzspektren, Fourier-Transformation! 4.3! Abtasttheorem: Eine zweite Sicht Weiterführende Literatur (z.b.):!! Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Fourier Optik. Zeit. Zeit

Fourier Optik. Zeit. Zeit Fourier Optik Beispiel zur Fourier-Zerlegung: diskretes Spektrum von Sinus-Funktionen liefert in einer gewichteten Überlagerung näherungsweise eine Rechteckfunktion Sin t Sin 3t Sin 5t Sin 7t Sin 9t Sin

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW Lineare Gleichungssysteme Lösen Sie folgende Gleichungssysteme über R: a) x + x + x = 6x + x + x = 4 x x x = x 7x x = 7 x x = b) x + x 4x + x 4 = 9 x + 9x x x

Mehr

2.9 Die komplexen Zahlen

2.9 Die komplexen Zahlen LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in

Mehr

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition)

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition) Vektorräume In vielen physikalischen Betrachtungen treten Größen auf, die nicht nur durch ihren Zahlenwert charakterisiert werden, sondern auch durch ihre Richtung Man nennt sie vektorielle Größen im Gegensatz

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik

Mehr

4.1. Vektorräume und lineare Abbildungen

4.1. Vektorräume und lineare Abbildungen 4.1. Vektorräume und lineare Abbildungen Mengen von Abbildungen Für beliebige Mengen X und Y bezeichnet Y X die Menge aller Abbildungen von X nach Y (Reihenfolge beachten!) Die Bezeichnungsweise erklärt

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

Computergrafik 2: Morphologische Operationen

Computergrafik 2: Morphologische Operationen Computergrafik 2: Morphologische Operationen Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies

Mehr

Merkmale von Bildregionen, Einführung in Spektraltechniken

Merkmale von Bildregionen, Einführung in Spektraltechniken Merkmale von Bildregionen, Einführung in Spektraltechniken Industrielle Bildverarbeitung, Vorlesung No. 10 1 M. O. Franz 12.12.2007 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Burger

Mehr

Hilfsblätter Lineare Algebra

Hilfsblätter Lineare Algebra Hilfsblätter Lineare Algebra Sebastian Suchanek unter Mithilfe von Klaus Flittner Matthias Staab c 2002 by Sebastian Suchanek Printed with L A TEX Inhaltsverzeichnis 1 Vektoren 1 11 Norm 1 12 Addition,

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29 Dynamische Systeme und Zeitreihenanalyse Komplexe Zahlen Kapitel 3 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.0/29 Motivation Für die

Mehr

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann!

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Spektralanalyse Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Mit der Spektralanalyse können wir Antworten auf folgende Fragen bekommen:

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 34 Die Diagonalisierbarkeit von Isometrien im Komplexen Satz 34.1. Es sei V ein endlichdimensionaler C-Vektorraum

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n Universität Stuttgart Physik und ihre Didaktik PD Dr Holger Cartarius Matrizen Matrizen: Ein rechteckiges Zahlenschema der Form a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A a m,1 a m,2 a m,n (a) nennt man eine

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 4 Wintersemester 2017/18 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil

Mehr

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3

Mehr

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung Kapitel 3 Lineare Abbildungen Lineare Abbildungen sind eine natürliche Klasse von Abbildungen zwischen zwei Vektorräumen, denn sie vertragen sich per definitionem mit der Struktur linearer Räume Viele

Mehr

Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder

Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder Bei der Behandlung reeller elektromagnetischer Felder im Fourierraum ist man mit der Tatsache konfrontiert, dass

Mehr

4.3 Reelle Skalarprodukte, Hermitesche Formen, Orthonormalbasen

4.3 Reelle Skalarprodukte, Hermitesche Formen, Orthonormalbasen 196 KAPITEL 4. VEKTORRÄUME MIT SKALARPRODUKT 4. Reelle Skalarprodukte, Hermitesche Formen, Orthonormalbasen In diesem Abschnitt betrachten wir Vektorräume über IR und über C. Ziel ist es, in solchen Vektorräumen

Mehr

Stefan Ruzika. 24. April 2016

Stefan Ruzika. 24. April 2016 Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 2: Körper 24. April 2016 1 / 21 Gliederung 1 1 Schulstoff 2 Körper Definition eines Körpers

Mehr

(Fast) Fourier Transformation und ihre Anwendungen

(Fast) Fourier Transformation und ihre Anwendungen (Fast) Fourier Transformation und ihre Anwendungen Johannes Lülff Universität Münster 14.01.2009 Definition Fouriertransformation F (ω) = F [f(t)] (ω) := 1 2π dt f(t)e iωt Fouriersynthese f(t) = F 1 [F

Mehr

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }.

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }. 154 e Gegeben sind die Vektoren v 1 = ( 10 1, v = ( 10 1. Sei V 1 = v 1 der von v 1 aufgespannte Vektorraum in R 3. 1 Dann besteht V 1 aus allen Vielfachen von v 1, V 1 = { c v 1 c R }. ( 0 ( 01, v 3 =

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

Bildpunkt auf dem Gitter: Pixel (picture element) (manchmal auch Pel)

Bildpunkt auf dem Gitter: Pixel (picture element) (manchmal auch Pel) 4. Digitalisierung und Bildoperationen 4.1 Digitalisierung (Sampling, Abtastung) Rasterung auf 2D-Bildmatrix mathematisch: Abb. einer 2-dim. Bildfunktion mit kontinuierlichem Definitionsbereich auf digitales

Mehr

Fortgeschrittene Mathematik Raum und Funktionen

Fortgeschrittene Mathematik Raum und Funktionen Fortgeschrittene Mathematik Raum und Funktionen Thomas Zehrt Universität Basel WWZ Thomas Zehrt (Universität Basel WWZ) R n und Funktionen 1 / 33 Outline 1 Der n-dimensionale Raum 2 R 2 und die komplexen

Mehr

11 Komplexe Zahlen. Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra

11 Komplexe Zahlen. Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra 11 Komplexe Zahlen Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra Addition ebener Vektoren Sei Ê 2 = {(x, y) : x, y Ê}. Ê 2 können wir als Punkte in der Ebene

Mehr

Grundlagen der Computer-Tomographie

Grundlagen der Computer-Tomographie Grundlagen der Computer-Tomographie Quellenangabe Die folgenden Folien sind zum Teil dem Übersichtsvortrag: imbie.meb.uni-bonn.de/epileptologie/staff/lehnertz/ct1.pdf entnommen. Als Quelle für die mathematischen

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 =

10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 = 2. Februar 2009 66 0 Komplexe Zahlen 0. Komplexe Multiplikation: Für zwei Vektoren [ [ a a2 z =, z 2 = in R 2 wird neben der üblichen Addition die komplexe Multiplikation [ a a z z 2 := 2 b b 2 a b 2 +

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 6. Komplexe Zahlen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

1 Euklidische und unitäre Vektorräume

1 Euklidische und unitäre Vektorräume 1 Euklidische und unitäre Vektorräume In diesem Abschnitt betrachten wir reelle und komplexe Vektorräume mit Skalarprodukt. Dieses erlaubt uns die Länge eines Vektors zu definieren und (im Fall eines reellen

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Digitale Bildverarbeitung (DBV)

Digitale Bildverarbeitung (DBV) Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung

Mehr

Kapitel 7. Lineare Abbildungen. 7.1 Motivation

Kapitel 7. Lineare Abbildungen. 7.1 Motivation Kapitel 7 Lineare Abbildungen 71 Motivation Verschieben, Drehen und Scheren sind parallelentreu, dh sie lassen sich auch als Abbildung zwischen Vektorräumen fomulieren Die Verschiebung, beispielsweise,

Mehr

9. Übungsblatt zur Mathematik I für Maschinenbau

9. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 9. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-4.. Aufgabe G (Koordinatentransformation)

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens SS2013 Inhalt Fourier Reihen Sehen wir in 2 Wochen Lösung der lin. Dgln.

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

KOMPLEXE ZAHLEN UND FUNKTIONEN

KOMPLEXE ZAHLEN UND FUNKTIONEN Übungen zu Theoretische Physik L2 KOMPLEXE ZAHLEN UND FUNKTIONEN E I N R E F E R A T M I T A N N E T T E Z L A T A R I T S U N D F L O R I A N G R A B N E R. 2 1. 1 0. 2 0 1 3 INHALT Geschichte Definition

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Wintersemester 2014/15 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax

Mehr

3 Der Körper der komplexen Zahlen

3 Der Körper der komplexen Zahlen 3 Der Körper der kompleen Zahlen Nicht jede quadratische Gleichung hat eine reelle Lösung + p + q = (p, q R) Beispiel: Für alle R ist und daher + 1 Abhilfe: Man erweitert R zu einem größerem Körper C,

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch Vorkurs Mathematik-Physik, Teil 5 c 206 A. Kersch Vektoren. Vektorrechnung Definition Ein Vektor ist eine gerichtete Größe welche einen Betrag ( Zahl und eine Richtung ( in 2D, 2 in 3D hat. Alternativ

Mehr

Ferienkurs - Lineare Algebra. Hanna Schäfer. Merkinhalte

Ferienkurs - Lineare Algebra. Hanna Schäfer. Merkinhalte Technische Universität München, Fakultät für Physik Ferienkurs - ineare Algebra Hanna Schäfer 03. März 04 0. inearität. f : M N, x : y = f(x) Merkinhalte. f(x + λy) = f(x) + λf(y), x, y V, λ K 3. ineare

Mehr

7 Lineare Abbildungen und Skalarprodukt

7 Lineare Abbildungen und Skalarprodukt Mathematik II für inf/swt, Sommersemester 22, Seite 121 7 Lineare Abbildungen und Skalarprodukt 71 Vorbemerkungen Standard Skalarprodukt siehe Kap 21, Skalarprodukt abstrakt siehe Kap 34 Norm u 2 u, u

Mehr

Lineare Algebra. 1 Lineare Abbildungen

Lineare Algebra. 1 Lineare Abbildungen Lineare Algebra Die lineare Algebra ist ein Teilgebiet der Mathematik, welches u. A. zur Beschreibung geometrischer Abbildungen und diverser Prozesse und zum Lösen linearer Gleichungssysteme mit Hilfe

Mehr

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Argumentationstechniken Direkter Beweis einer Implikation A B (analog Äquivalenz A B): A C 1 C 2... B Beweis von A B durch Gegenbeispiel

Mehr

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen

Mehr

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2)

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2) Lineare Abbildungen (Teschl/Teschl.3,.2 Eine lineare Abbildung ist eine Abbildung zwischen zwei Vektorräumen, die mit den Vektoroperationen Addition und Multiplikation mit Skalaren verträglich ist. Formal:

Mehr

Komplexe Zahlen. Bemerkungen. (i) Man zeigt leicht, dass C mit diesen beiden Operationen

Komplexe Zahlen. Bemerkungen. (i) Man zeigt leicht, dass C mit diesen beiden Operationen Komplexe Zahlen Da für jede reelle Zahl x R gilt dass x 0, besitzt die Gleichung x + 1 = 0 keine Lösung in R bzw. das Polynom P (x) = x + 1 besitzt in R (!) keine Nullstelle. Dies führt zur Frage, ob es

Mehr

Fouriertransformation

Fouriertransformation Fouriertransformation Radix2 fast fourier transform nach Cooley/Tukey 1 Inhaltsübersicht Mathematische Grundlagen: Komplexe Zahlen und Einheitswurzeln Die diskrete Fouriertransformation Der Radix2-Algorithmus

Mehr

Unter einem reellen inneren Produktraum verstehen wir einen Vektorraum V über

Unter einem reellen inneren Produktraum verstehen wir einen Vektorraum V über 9 Innere Produkte In diesem Kapitel betrachten wir immer Vektorräume über dem Körper der reellen Zahlen R oder dem Körper der komplexen Zahlen C. Definition 9.1: Sei V ein Vektorraum über R. Ein inneres

Mehr

Kontinuierliche Fourier-Transformation. Laplace-Transformation

Kontinuierliche Fourier-Transformation. Laplace-Transformation Kontinuierliche Fourier-Transformation. Laplace-Transformation Jörn Loviscach Versionsstand: 16. Juni 2010, 17:56 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu:

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Universität Basel Wirtschaftswissenschaftliches Zentrum Vektoren und Matrizen Dr. Thomas Zehrt Inhalt: 1. Vektoren (a) Einführung (b) Linearkombinationen (c) Länge eines Vektors (d) Skalarprodukt (e) Geraden

Mehr

YOUNG SCIENTISTS. 4 dimensionale komplexe Zahlen in der Computergrafik. Bastian Weiß 19. Mai 2017 INSTITUT FÜR ANGEWANDTE GEOMETRIE

YOUNG SCIENTISTS. 4 dimensionale komplexe Zahlen in der Computergrafik. Bastian Weiß 19. Mai 2017 INSTITUT FÜR ANGEWANDTE GEOMETRIE YOUNG SCIENTISTS 4 dimensionale komplexe in der Computergrafik Bastian Weiß 19. Mai 2017 INSTITUT FÜR ANGEWANDTE GEOMETRIE Programm Vorbereitung (Wiederholung) Komplexe Vektoren Quaternionen Quaternionen

Mehr

Lineare Algebra I 14. Tutorium Lineare Abbildungen und Matrizen

Lineare Algebra I 14. Tutorium Lineare Abbildungen und Matrizen Lineare Algebra I 4 Tutorium Lineare Abbildungen und Matrizen Fachbereich Mathematik WS / Prof Dr Kollross 7 Februar Dr Le Roux Dipl-Math Susanne Kürsten Aufgaben Aufgabe G (Bewegungen im ) Als Bewegung

Mehr

2.3 Exponential- und Logarithmusfunktionen

2.3 Exponential- und Logarithmusfunktionen 26 2.3 Exponential- und Logarithmusfunktionen Die natürliche Exponentialfunktion f(x) = e x ist definiert durch die Potenzreihe e x = + x! + x2 2! + x3 3! + = für alle x in R. Insbesondere ist die Eulersche

Mehr

8 Lineare Abbildungen und Matrizen

8 Lineare Abbildungen und Matrizen 8 Lineare Abbildungen und Matrizen 8.1 Lineare Abbildungen Wir beschäftigen uns nun mit Abbildungen zwischen linearen Räumen. Von besonderem Interesse sind Abbildungen, die die Struktur der linearen Räume

Mehr

Basis eines Vektorraumes

Basis eines Vektorraumes Basis eines Vektorraumes Basisergänzungssatz: Ist U V ein Unterraum von V und dim V = n, so kann jede Menge linear unabhängiger Vektoren aus U zu einer Basis von U erweitert werden Und es gilt: Beweis:

Mehr

Körper der komplexen Zahlen (1)

Körper der komplexen Zahlen (1) Die komplexen Zahlen Körper der komplexen Zahlen (1) Da in angeordneten Körpern stets x 2 0 gilt, kann die Gleichung x 2 = 1 in R keine Lösung haben. Wir werden nun einen Körper konstruieren, der die reellen

Mehr

3.3 Das Abtasttheorem

3.3 Das Abtasttheorem 17 3.3 Das Abtasttheorem In der Praxis kennt man von einer zeitabhängigen Funktion f einem Signal meist nur diskret abgetastete Werte fn, mit festem > und ganzzahligem n. Unter welchen Bedingungen kann

Mehr

LINEARE ALGEBRA II. FÜR PHYSIKER

LINEARE ALGEBRA II. FÜR PHYSIKER LINEARE ALGEBRA II FÜR PHYSIKER BÁLINT FARKAS 4 Rechnen mit Matrizen In diesem Kapitel werden wir zunächst die so genannten elementaren Umformungen studieren, die es ermöglichen eine Matrix auf besonders

Mehr

Übersicht Kapitel 9. Vektorräume

Übersicht Kapitel 9. Vektorräume Vektorräume Definition und Geometrie von Vektoren Übersicht Kapitel 9 Vektorräume 9.1 Definition und Geometrie von Vektoren 9.2 Teilräume 9.3 Linearkombinationen und Erzeugendensysteme 9.4 Lineare Abhängigkeiten

Mehr

Computergrafik 2: Filtern im Frequenzraum

Computergrafik 2: Filtern im Frequenzraum Computergrafik 2: Filtern im Frequenzraum Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen

Mehr

Geometrische Deutung linearer Abbildungen

Geometrische Deutung linearer Abbildungen Geometrische Deutung linearer Abbildungen Betrachten f : R n R n, f(x) = Ax. Projektionen z.b. A = 1 0 0 0 1 0 0 0 0 die senkrechte Projektion auf die xy-ebene in R 3. Projektionen sind weder injektiv

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. 1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit

Mehr

Lineare Algebra Weihnachtszettel

Lineare Algebra Weihnachtszettel Lineare Algebra Weihnachtszettel 4..008 Die Aufgaben auf diesem Zettel sind zum Üben während der Weihnachtspause gedacht, sie dienen der freiwilligen Selbstkontrolle. Die Aufgaben müssen nicht bearbeitet

Mehr

Vortrag 20: Kurze Vektoren in Gittern

Vortrag 20: Kurze Vektoren in Gittern Seminar: Wie genau ist ungefähr Vortrag 20: Kurze Vektoren in Gittern Kerstin Bauer Sommerakademie Görlitz, 2007 Definition und Problembeschreibung Definition: Gitter Seien b 1,,b k Q n. Dann heißt die

Mehr

Klausur HM I H 2005 HM I : 1

Klausur HM I H 2005 HM I : 1 Klausur HM I H 5 HM I : 1 Aufgabe 1 4 Punkte): Zeigen Sie mit Hilfe der vollständigen Induktion: n 1 1 + 1 ) k nn k n! für n. Lösung: Beweis mittels Induktion nach n: Induktionsanfang: n : 1 ) 1 + 1 k

Mehr

12.2 Gauß-Quadratur. Erinnerung: Mit der Newton-Cotes Quadratur. I n [f] = g i f(x i ) I[f] = f(x) dx

12.2 Gauß-Quadratur. Erinnerung: Mit der Newton-Cotes Quadratur. I n [f] = g i f(x i ) I[f] = f(x) dx 12.2 Gauß-Quadratur Erinnerung: Mit der Newton-Cotes Quadratur I n [f] = n g i f(x i ) I[f] = i=0 b a f(x) dx werden Polynome vom Grad n exakt integriert. Dabei sind die Knoten x i, 0 i n, äquidistant

Mehr

Inhaltsübersicht. Definition und erste Eigenschaften komplexer Zahlen

Inhaltsübersicht. Definition und erste Eigenschaften komplexer Zahlen Inhaltsübersicht Kapitel 4: Die Macht des Imaginären: Komplexe Zahlen Definition und erste Eigenschaften komplexer Zahlen Die Polardarstellung komplexer Zahlen Polynome im Komplexen Exponentialfunktion

Mehr

Diskrete Fourier-Transformation und FFT. 1. Die diskrete Fourier-Transformation (DFT) 2. Die Fast Fourier Transform (FFT)

Diskrete Fourier-Transformation und FFT. 1. Die diskrete Fourier-Transformation (DFT) 2. Die Fast Fourier Transform (FFT) Diskrete Fourier-Transformation und FFT 2. Die Fast Fourier Transform (FFT) 3. Anwendungsbeispiele der DFT 1 Wiederholung: Fourier-Transformation und Fourier-Reihe Fourier-Transformation kontinuierlicher

Mehr