Achsen eines Parallelogramms. Eckart Schmidt

Größe: px
Ab Seite anzeigen:

Download "Achsen eines Parallelogramms. Eckart Schmidt"

Transkript

1 Achsen eines Parallelogramms Eckart Schmidt Eine Achsenkonstrktion für Ellipsen dürfte hete kam Thema der Schlgeometrie sein Betrachtet man statt der Ellipse ein einbeschriebenes Parallelogramm z konjgierten Drchmessern, so lassen sich drchas Aspekte dieser Konstrktion drch eine vektorielle Ekrsion rnd m das Parallelogramm afzeigen Die Ellipsenachsen verbergen sich dann hinter den hier behandelten Parallelogrammachsen, z denen ein geometrisch leichter Zgang afgezeigt wird, der nterrichtlich in der Analytischen Geometrie thematisiert werden kann Über eine additive Zerlegng des Parallelogramms in die Bachmannschen Qadrate [1] wird abschließend eine einfache Konstrktion der Achsen entwickelt 1 Parallelogrammachsen Spricht man von Achsen, so denkt man normalerweise an Symmetrieachsen Achsensymmetrie liefert aber bei Parallelogrammen schon eine Beschränkng af Raten nd Rechtecke mit doppelter Achsensymmetrie Ein Parallelogramm ist aber pnktsymmetrisch nd jede Pnktspiegelng lässt sich drch zwei Achsenspiegelngen ersetzen, deren Achsen senkrecht zeinander sind Hier sei das Paar orthogonaler Geraden asgewählt, das benachbarte Seiten im gleichen Verhältnis teilt Definition: Die Achsen eines Parallelogramms sind zwei zeinander senkrechte Geraden drch den Diagonalenschnitt, die benachbarte Seiten im gleichen Verhältnis teilen Für Rechteck nd Rate sind die Symmetrieachsen ach Parallelogrammachsen; für ein Qadrat liefert jedes orthogonale Geradenpaar drch den Mittelpnkt Parallelogrammachsen Diese Fälle seien im Folgenden asgeschlossen Ein Parallelogramm ABCD sei rsprngssymmetrisch betrachtet; die Ortsvektoren der Ecken seien a r, b r, a r, b r Teilt eine Achse die Seite AB nd die andere Achse die Seite BC im

2 gleichen Verhältnis κ, so sind die Ortsvektoren der Teilngspnkte: r κ r r r κ r r a ( a b) nd b ( a b) 1 κ 1 κ Wegen der Orthogonalität der Achsen mss das Skalarprodkt Nll werden, dh κ der Gleichng genügen: r r a b κ r κ 1 = 0 ab r Sieht man von Rechtecken nd Raten ab, so hat die Gleichng immer zwei Lösngen mit Prodkt 1, dh beide Lösngen beschreiben das gleiche orthogonale Achsenpaar Die Lösngen 4 4 b a ± a a b cosϕ b κ 1, =, ϕ = AOB abcosϕ seien hier nicht weiter thematisiert Eine Konstrktion der Achsen bleibt vorerst offen Wählt man die Parallelogrammachsen als kartesische Koordinatenachsen nd gibt den Parallelogrammpnkt A(p;q) nd damit ach den Gegenpnkt C(-p;-q) vor, so folgt für den Zwischenpnkt B(;v) as der Definition mit Hilfe der Strahlensätze q = v AX XB = BY YC = p ; dh v = Damit lässt sich z einem Pnkt A(p;q), der nicht af den Achsen liegt, jeder Pnkt der Hyperbel mit der Gleichng y = als Folgepnkt wählen, so dass ein Parallelogramm entsteht, dessen Achsen die Koordinatenachsen sind Für die Ecken e- istiert dann folgende Koordinatendarstellng: A ( p; q), B( ; ), C( p; q), D( ; )

3 Affine Bildqadrate Parallelogramme sind affine Bilder von Qadraten Die Parallelogrammachsen erweisen sich als zgehörige Achsen normaler Achsenaffinitäten Satz 1: Die Achsen eines Parallelogramms sind die Achsen von normalen Achsenaffinitäten, die das Parallelogramm in ein Qadrat überführen Beweis: Für die -Achse als Affinitätsachse mit dem Affinitätsfaktor µ hat ein Bildparallelogramm die Ecken A ( p; µ q), B ( ; µ ), Dieses Parallelogramm ist ein Qadrat, wenn die zgehörigen Ortsvektoren die gleiche Länge haben nd senkrecht zeinander sind Dies ist der Fall für µ ± = ± q Entsprechend erhält man für die y-achse als Affinitätsachse ± q Bildqadrate mit dem Faktor µ y = ± Damit ergeben sich für das Parallelogramm vier affine Bildqadrate: z µ : Q A ( p; ), B ( ; ), 1 : 1 1 p : A ( p; ), B( ; p z µ : Q ), z µ y : Q3 : A3 ( ; q), B3 ( q; ), z µ y : Q4 : A4 ( ; q), B4( q; ), Die Qadrate nd bzw nd Q liegen symmetrisch Q1 Q Q3 4 Q1 Q3 Q zr -Achse bzw y-achse; die Qadrate nd bzw nd Q 4 liegen jeweils perspektiv zm Ursprng Af eine Konstrktion dieser affinen Bildqadrate wird hier nicht eingegangen

4 3 Bachmannsche Qadrate Wenn einem Parallelogramm Qadrate zgeordnet werden, sollte an eine Parallelogrammzerlegng erinnert werden, die sich bei Bachmann findet [1] Danach besitzt jedes Parallelogramm eine eindetige additive Zerlegng in zwei schwerpnktsgleiche Qadrate entgegengesetzten Umlafsinns Diese Zerlegng soll hier afgegriffen werden Daz seien rsprngssymmetrische Parallelogramme als Paare der Ortsvektoren ihrer ersten beiden Ecken beschrieben: P = ( a, b) r r Ursprngssymmetrische Qadrate entgegengesetzten Umlafsinns lassen sich dann darstellen in der Form: Q = ( a r, Da r r r ) nd, Q = ( a, Da) wobei D eine 90 -Drehng beschreibt: y D = y Die Ortsvektoren a r nd a r der ersten Ecken der Bachmannschen Qadrate ergeben sich as dem Ansatz r r r r r r P = Q Q ( a, b) = ( a, Da ) ( a, Da) r 1 r r r 1 r r z a = ( a Db) nd a = ( a Db) Die Konstrktion der beiden Bachmannschen Qadrate entnimmt man entsprechend der vektoriellen Darstellng nmittelbar der Abbildng Eine Beschreibng findet sich bei der abschließenden Achsenkonstrktion Die Bachmannschen Qadrate eines Parallelogramms stehen in engem geometrischen Bezg z den affinen Bildqadraten Q 1, Q, Q 3, Q 4 Satz : Der Mittelwert zweier affiner Bildqadrate gleichen Umlafsinns ergibt ein Bachmannsches Qadrat des Parallelogramms

5 Beweis: Zm Beweis bestätigt man leicht: 1 P = ( Q1 Q Q3 Q4 ) 1 1 = ( Q Q4 ) ( Q1 Q3 ) = Q Q 4 Napoleonische Qadrate Der Satz von Fermat-Napoleon mfasst eine Reihe von geometrischen Assagen Hier sei in Verallgemeinerng der folgende Zsammenhang afgegriffen [3]: Zeichnet man z den Seiten eines Parallelogramms Qadrate gleichen Umlafsinns, so bilden die Mittelpnkte dieser Qadrate wieder ein Qadrat Wir sprechen von den Napoleonischen ± ± ± ± Qadraten Na Nb Nc Nd eines Parallelogramms Für die Ortsvektoren der Ecken ergibt sich : 1 r 1 r 1 r 1 r ± r r ± r r Na : ( a b) m D( a b), L, Nd : ( a b) m D( a b) Die Seitenmitten dieser Qadrate ± ± 1 r r r zb von : ( a m Db) = a N d N a ± sind die Ecken der Bachmannschen Qadrate Damit ergibt sich eine weitere einfache Konstrktionsmöglichkeit der Bachmannschen Qadrate Satz 3 Die Seitenmittenqadrate der Napoleonischen Qadrate sind die Bachmannschen Qadrate eines Parallelogramms 5 Achsenkonstrktion Es wäre schade, die afgezeigten geometrischen Zsammenhänge ohne eine Konstrktionsmöglichkeit der Parallelogrammachsen abzschließen Asgangspnkt ist die Konstrk-

6 tion der Bachmannschen Qadrate, zmindest zweier entsprechender Pnkte Die Bachmannschen Qadrate sind die Mittelwerte jeweils zweier affiner Bildqadrate gleichen Umlafsinns: Q perspektiv z Q nd Q 4, Q - perspektiv z Q 1 nd Q 3, Q 1 nd Q symmetrisch zr -Achse, Q 3 nd Q 4 symmetrisch zr y-achse Damit sind die Achsen des Parallelogramms die Symmetrieachsen der Ursprngsgeraden z entsprechenden Pnkten der beiden Bachmannschen Qadrate Hieras ergeben sich zb folgende zwei Konstrktionsmöglichkeiten für die Parallelogrammachsen Konstrktion 1: Dreht man zb den Parallelogrammpnkt B m ± 90 m den Diagonalenschnitt O nd verbindet die Bildpnkte P nd P mit dem Pnkt A, so sind die Mittelpnkte dieser Verbindngsstrecken die Asgangspnkte A nd A der Bachmannschen Qadrate Die Symmetrieachsen der Ursprngsgeraden OA nd OA sind dann die Achsen des Parallelogramms Konstrktion : Zeichnet man Qadrate zb mit den Diagonalen AD nd AB, betrachtet die Mittelpnkte der äßeren bzw inneren Qadratpnkte sowie die zgehörigen Ursprngsgera-

7 den, dann sind die Symmetrieachsen dieser Ursprngsgeraden die Parallelogrammachsen 5 Ellipsenachsen Z einer Ellipse in Normallage mit der Gleichng y = 1 b a werden zwei konjgierte Drchmesser betrachtet mit den Endpnkten ay b A ( o ; yo), B( o o ayo bo ; ), C( o ; yo), D( ; ) b a b a Dann werden die Seite AB drch die -Achse nd BC drch die ayo y-achse im gleichen Verhältnis bzw die Seite AB drch bo die y-achse nd BC drch die -Achse im gleichen Verhältnis bo geteilt Damit sind die Ellipsenachsen als Koordinatenachsen ach die ayo Parallelogrammachsen Satz 4 Die Parallelogrammachsen sind die Achsen einer mbeschriebenen Ellipse, für die die Parallelogrammdiagonalen konjgierte Drchmesser sind Entsprechend lässt sich zeigen, dass die Parallelogrammachsen die Achsen einer einbeschriebenen Ellipse sind, deren Berührpnkte in den Seitenmitten liegen Die obige Konstrktion der Parallelogrammachsen lässt sich also als weitere Konstrktionsmöglichkeit für die Ellipsenachsen z vorgegebenen konjgierten Halbmessern betrachten Ein Vergleich der bekanntesten Konstrktionen der Ellipsenachsen zb nach Rytz oder Jacobi findet sich bei Sieber [] Die hier beschriebene Konstrktionsmöglichkeit ähnelt eher der Rytzschen Achsenkonstrktion Dabei liegt der Reiz im geometrischen Hintergrnd einer additiven Zerlegng des Parallelogramms in seine Bachmannschen Qadrate nd deren Bezg z den Napoleonischen Qadraten Literatr [1] F Bachmann / E Schmidt: n-ecke BI- Hochschltaschenbch 471/471a, Bibliographisches Institt AG, Mannheim 1970, S 156 [ ] H Siebert: Wie die Konstrktionen von Rytz nd Jacobi miteinander zsammenhängen PM 5 (1983), Nr, S 50

8 [3] E Schmidt: Affin-regläre n-ecke nd ihre reglären Komponenten MNU 39/4 (1986), S195 Eckart Schmidt - Hasenberg 7 - D 43 Raisdorf de eckart_schmidt@t-onlinede

Rauten-Mitten-Kegelschnitte zu vier Geraden. Eckart Schmidt. 1. Vorbemerkungen

Rauten-Mitten-Kegelschnitte zu vier Geraden. Eckart Schmidt. 1. Vorbemerkungen Raten-Mitten-Kegelschnitte z ier Geraden 1 Vorbemerkngen Eckart chmidt Z ier Geraden g 1, g, g 3, g 4 erden Raten R 1 R R 3 R 4 betrachtet, deren Ecken entsprechend der Indizierng af den orgegebenen Geraden

Mehr

ACHSENAFFINE BILDQUADRATE EINES PARALLELOGRAMMS

ACHSENAFFINE BILDQUADRATE EINES PARALLELOGRAMMS ACHSENAFFINE BILDQUADRAE EINES PARALLELOGRAMMS Parallelogramme sind affine Bilder von Quadraten, umgekehrt lassen sich Parallelogrammen affine Bildquadrate zuordnen. Beschränkt man sich zu vorgegebenem

Mehr

Die wichtigsten Ergebnisse seien in der folgenden Abbildung vorweggenommen.

Die wichtigsten Ergebnisse seien in der folgenden Abbildung vorweggenommen. EULER-GERADE EINES VIERECKS Eckart Schmidt Vorbemerkung Zu einem Viereck ABCD lassen sich die Teildreiecke ABC, BCD, CDA und DAB betrachten. Wählt man erstens - einen merkwürdigen Dreieckspunkt, z.b. den

Mehr

Vektorraum. Ist =, so spricht man von einem reellen Vektorraum, ist =, so spricht man von einem komplexen

Vektorraum. Ist =, so spricht man von einem reellen Vektorraum, ist =, so spricht man von einem komplexen 6. Vektorra Ein Vektorra oder linearer Ra ist eine algebraische Strktr die in fast allen Zweigen der Matheatik erwendet wird. Eingehend betrachtet werden Vektorräe in der Linearen Algebra. Die Eleente

Mehr

Sehnen-Tangenten-Vierecke kartesisch. Eckart Schmidt

Sehnen-Tangenten-Vierecke kartesisch. Eckart Schmidt Sehnen-Tangenten-Vierecke kartesisch Eckart Schmidt Schon die Schulgeometrie zeigt für Sehnen- Tangenten-Vierecke, dass die diagonalen Berühr- Sehnen orthogonal sind Diese Eigenschaft wird hier für eine

Mehr

B: Gleichung der Kugel mit Zentrum M(3, -2, 1), die den Punkt P(1, 4, 4) enthält.

B: Gleichung der Kugel mit Zentrum M(3, -2, 1), die den Punkt P(1, 4, 4) enthält. 5 0. Die Kgel 0. Die Kgelgleichng Def. Unter der Kgel k mit Mittelpnkt M nd adis verstehen wir die Menge aller Pnkte P, die vom Mittelpnkt M einen vorgegebenen abstand haben, für die also gilt: MP MP oder

Mehr

Sehnenvierecke mit Inkreismittenquadrat. 1. Vorbemerkung. 2. Inkreismitten

Sehnenvierecke mit Inkreismittenquadrat. 1. Vorbemerkung. 2. Inkreismitten Sehnenvierecke mit Inkreismittenquadrat Eckart Schmidt 1. Vorbemerkung Betrachtet werden konvexe Sehnenvierecke ABCD mit den Inkreismitten I 1, I, I 3, I 4 der Teildreiecke ABC, BCD, CDA, DAB. Es ist bekannt,

Mehr

Um-Strophoiden eines Dreiecks

Um-Strophoiden eines Dreiecks Um-Strophoiden eines Dreiecks Eckart Schmidt Es wird konstruktiv und analytisch untersucht, wie zu vorgegebenem Doppelpunkt einem Dreieck eine Strophoide umbeschrieben werden kann. Geometrie der Strophoide

Mehr

Lokale Eigenschaften des Hilbert-Symbols

Lokale Eigenschaften des Hilbert-Symbols Lokale Eigenschaften des Hilbert-Symbols (Nach J.P. Serre: A Corse in Arithmetic) Bettina Böhme, Karin Loch 24.05.2007 Im Folgenden bezeichnet k entweder den Körer R der reellen Zahlen oder den Körer Q

Mehr

Definition und Eigenschaften von elliptischen Funktionen Thomas Regier. 1. Verdoppelung des Lemniskatenbogens und erweitertes Additionstheorem

Definition und Eigenschaften von elliptischen Funktionen Thomas Regier. 1. Verdoppelung des Lemniskatenbogens und erweitertes Additionstheorem Definition nd Eigenschaften von elliptischen Fnktionen Thomas Regier. Verdoppelng des Lemniskatenbogens nd erweitertes Additionstheorem Elliptische Integrale berechnen die Krvenlänge von z.b. elliptischen

Mehr

7.1. Aufgaben zu Vektoren

7.1. Aufgaben zu Vektoren 7.. Afgben z Vektoren Afgbe : Vektoren in der Ebene ) Zeichne die folgenden Vektoren ls Ortsvektoren in eine pssende Koordintenebene (x -x -Ebene, x -x -Ebene oder x - x -Ebene) des krtesischen Koordintensystems.,,,

Mehr

Michael Buhlmann Mathematik > Vektorrechnung > Kreuzprodukt

Michael Buhlmann Mathematik > Vektorrechnung > Kreuzprodukt Michael Bhlmann Mathematik > Vektorrechnng > Krezprodkt Einleitng a Für zwei Vektoren a a nd gelten im dreidimensionalen reellen Vektorram a neen der Addition Vektoraddition) nd der Mltiplikation mit einer

Mehr

EINFÜHRUNG IN DIE TENSORRECHNUNG

EINFÜHRUNG IN DIE TENSORRECHNUNG EINFÜHRUNG IN DIE TENSORRECHNUNG Teil SIEGFRIED PETRY Nefassng vom.jni 016 I n h a l t 1 Mehr über Tensoren. Stfe Darstellng eines Tensors in einer Basis 4 Beispiele nd Übngen 5 4 Lösngen 1 1 1 Tensoren.

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 09/10. Michael Karow. Themen: Flächen und Flächenintegrale

Vorlesung: Analysis II für Ingenieure. Wintersemester 09/10. Michael Karow. Themen: Flächen und Flächenintegrale Vorlesng: Analsis II für Ingeniere Wintersemester 9/ Michael Karow Themen: lächen nd lächenintegrale Parametrisierte lächen I Sei 2 eine kompakte Menge mit stückweise glattem and (d.h. der and ist as glatten

Mehr

72 Grundlagen der konstruktiven Geometrie

72 Grundlagen der konstruktiven Geometrie 7 Grndlagen der konstrktiven Geometrie die Parameter nd v zgleich ein lokales kartesisches Koordinatensstem af der Eene. Flächen. Ordnng Für die implizite Darstellng eines Zlinders gilt in homogenen Koordinaten

Mehr

6. Analytische Geometrie : Geraden in der Ebene

6. Analytische Geometrie : Geraden in der Ebene M 6. Analtische Geometrie : Geraden in der Ebene 6.. Vektorielle Geradengleichung Eine Gerade ist durch einen Punkt A und einen Richtungsvektor r eindeutig bestimmt. Durch die Einführung eines Parameters

Mehr

Technische Mechanik I. Vektorrechnung Eine Einführung

Technische Mechanik I. Vektorrechnung Eine Einführung Uniersität Stttgart Institt für Mechanik Prof. Dr.-Ing. W. Ehlers www. mechba. ni-stttgart. de Ergänzng zr Vorlesng Technische Mechanik I Vektorrechnng Eine Einführng WS 2015/16 Lehrsthl für Kontinmsmechanik,

Mehr

3 Flächen und Flächenintegrale

3 Flächen und Flächenintegrale 3 Flächen Flächen sind im dreidimensionalen Ram eingebettete zweidimensionale geometrische Objekte In der Mechanik werden zb Membranen nd chalen als Flächen idealisiert In der Geometrie treten Flächen

Mehr

1 Pythagoräische Zahlentripel

1 Pythagoräische Zahlentripel 1 Pythagoräische Zahlentripel Wir fragen ns nn, welche natürlichen Zahlen die Gleichng 2 + y 2 = 2 lösen. Übng 1 Finden Sie Zahlentripel (; y; ) 2 N 3, mit 1 ; y < ; welche die Gleichng 2 + y 2 = 2 lösen.

Mehr

7.6. Prüfungsaufgaben zu Normalenformen

7.6. Prüfungsaufgaben zu Normalenformen 7.6. Prüfungsaufgaben zu Normalenformen Aufgabe () Gegeben sind die Gerade g: x a + r u mit r R und die Ebene E: ( x p ) n. a) Welche geometrische Bedeutung haben die Vektoren a und u bzw. p und n? Veranschaulichen

Mehr

Aufgaben zu Exponentialgleichungen

Aufgaben zu Exponentialgleichungen www.mathe-afgaben.com Afgaben z Eponentialgleichngen Definition Logarithms: b a b a Logarithmengesetze. Logarithmengesetz: ( y) () (y) b b. Logarithmengesetz: b( ) b() b(y) y. Logarithmengesetz: ( ) m

Mehr

7 Lineare Gleichungssysteme

7 Lineare Gleichungssysteme 116 7 Lineare Gleichngssysteme Lineare Gleichngssysteme treten in vielen mathematischen, aber ach natrwissenschaftlichen Problemen af; zm Beispiel beim Lösen von Differentialgleichngen, bei Optimierngsafgaben,

Mehr

} Symmetrieachse von A und B.

} Symmetrieachse von A und B. 5 Symmetrieachsen Seite 1 von 6 5 Symmetrieachsen Gleicher Abstand von zwei Punkten Betrachtet man zwei fest vorgegebene Punkte A und B, drängt sich im Zusammenhang mit dem Abstandsbegriff eine Frage auf,

Mehr

7 Lineare Gleichungssysteme

7 Lineare Gleichungssysteme 116 7 Lineare Gleichngsssteme Lineare Gleichngsssteme treten in vielen mathematischen, aber ach natrwissenschaftlichen Problemen af; m Beispiel beim Lösen von Differentialgleichngen, bei Optimierngsafgaben,

Mehr

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene Rechnen mit 1. im Koordinatensystem 1.1. Freie in der Ebene 1) Definition Ein Vektor... Zwei sind gleich, wenn... 2) Das ebene Koordinatensystem Wir legen den Koordinatenursprung fest, ferner zwei zueinander

Mehr

Achsen- und punktsymmetrische Figuren

Achsen- und punktsymmetrische Figuren Achsensymmetrie Der Punkt P und sein Bildpunkt P sind symmetrisch bzgl. der Achse s, wenn ihre Verbindungsstrecke [PP ] senkrecht auf der Achse a steht und von dieser halbiert wird. Zueinander symmetrische......strecken

Mehr

3.6 Einführung in die Vektorrechnung

3.6 Einführung in die Vektorrechnung 3.6 Einführung in die Vektorrechnung Inhaltsverzeichnis Definition des Vektors 2 2 Skalare Multiplikation und Kehrvektor 4 3 Addition und Subtraktion von Vektoren 5 3. Addition von zwei Vektoren..................................

Mehr

Umdruck IV: Transformatoren. 1 Idealer, festgekoppelter und realer Transformator

Umdruck IV: Transformatoren. 1 Idealer, festgekoppelter und realer Transformator Universität Stttgart Institt für Leistngselektronik nd lektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow ÜBUG ZU LKTRISCH RGITCHIK II Hinweis zr Pfeilng der Spannngen nd zr Festlegng des Wickelsinnes:

Mehr

Lemniskaten und eine Strophoide des Dreiecks

Lemniskaten und eine Strophoide des Dreiecks Lemniskaten und eine Strophoide des Dreiecks Eckart Schmidt Spiegelt man Umkegelschnitte eines Dreiecks am Umkreis, so erhält man im allgemeinen Kurven vierter Ordnung. Hier werden nur gleichseitige Umhyperbeln

Mehr

Mathematik Klasse 5 Bereich (Kartennummer): Innermathematisch. Schwierigkeitsgrad: Strategie. Mathematisches Thema: Symmetrie.

Mathematik Klasse 5 Bereich (Kartennummer): Innermathematisch. Schwierigkeitsgrad: Strategie. Mathematisches Thema: Symmetrie. Bereich (Kartennummer): Strategie Fortsetzung Strategie Vertiefung Welche der folgenden Verkehrsschilder sind achsen- bzw. punktsymmetrisch? Mögliche Lösung A B C D E F G punkt- und achsensymmetrisch achsensymmetrisch

Mehr

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung Vektoren - Skalar- und Vektorprodukt ================================================================== 1. Gegeben sind die Punkte A 1 2 3 und B 3 4 1 bzgl. eines kartesischen Koordina- tensystems mit

Mehr

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,

Mehr

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 c 001 by Rainer Müller - www.emah.de 1 Lösng Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR a Asympoen Senkreche Asympoen Es

Mehr

Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck Überraschung? Haus der Vierecke. Dr.

Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck Überraschung? Haus der Vierecke. Dr. Haus der Vierecke Dr. Elke Warmuth Sommersemester 2018 1 / 40 Konvexes Viereck Trapez Drachenviereck Parallelogramm Rhombus Rechteck Sehnenviereck Tangentenviereck Überraschung? 2 / 40 Wir betrachten nur

Mehr

Mathematische Probleme, SS 2015 Montag $Id: quadratisch.tex,v /06/22 12:08:41 hk Exp $

Mathematische Probleme, SS 2015 Montag $Id: quadratisch.tex,v /06/22 12:08:41 hk Exp $ Mathematische Probleme, SS 15 Montag 6 $Id: quadratischtex,v 111 15/06/ 1:08:41 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen In der letzten Sitzung hatten wir die Normalform (1 ɛ )x + y pɛx p =

Mehr

30. Satz des Apollonius I

30. Satz des Apollonius I 30. Satz des Apollonius I Das Teilverhältnis T V (ABC) von drei Punkten ABC einer Geraden ist folgendermaßen definiert: Für den Betrag des Teilverhältnisses gilt (ABC) = AC : BC. Für das Vorzeichen des

Mehr

Vorkurs Mathematik für Naturwissenschaftler und Ingenieure 2015

Vorkurs Mathematik für Naturwissenschaftler und Ingenieure 2015 7 Kombinatorik https://de.wikipedia.org/wiki/abzählende_kombinatorik 7.1 Grundformeln https://de.wikipedia.org/wiki/variation_(kombinatorik) https://de.wikipedia.org/wiki/permutation https://de.wikipedia.org/wiki/fakultät_(mathematik)

Mehr

Die einleitend angesprochenen Zusammenhänge sind in der folgenden Tabelle zusammengestellt:

Die einleitend angesprochenen Zusammenhänge sind in der folgenden Tabelle zusammengestellt: Ein konstantes Abstandsrodukt Eckart Schmidt Zu zwei fest vorgegebenen Punkten sind die Ortslinien für Punkte mit konstanten Abstandssummen, Abstandsdifferenzen oder Abstandsverhältnissen Kegelschnitte;

Mehr

Elementare Geometrie Vorlesung 16

Elementare Geometrie Vorlesung 16 Elementare Geometrie Vorlesung 16 Thomas Zink 19.6.2017 1.Homothetien Definition Es sei E eine Ebene. Eine Homothetie h : E E ist eine bijektive Abbildung, so dass (1) Wenn a E eine Gerade ist, so ist

Mehr

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin Geometrie Aufgabe G.1 Berechne die Innenwinkelsumme eines n-ecks. Aufgabe G.2 Zeige, dass

Mehr

Komplexe Zahlen und Geometrie

Komplexe Zahlen und Geometrie Komplexe Zahlen und Geometrie Dr. Axel Schüler, Univ. Leipzig März 1998 Zusammenfassung Ziel dieses Beitrages ist es, die komplexen Zahlen bei einfachen geometrischen Aufgaben einzusetzen. Besonderes Augenmerk

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

Geometrie der Triplex-Punkte. Anmerkungen zu K.Mütz: Die Triplex-Punkte und die Eulersche Gerade eines Dreiecks (PM 2/45. Jg. 2003) Eckart Schmidt

Geometrie der Triplex-Punkte. Anmerkungen zu K.Mütz: Die Triplex-Punkte und die Eulersche Gerade eines Dreiecks (PM 2/45. Jg. 2003) Eckart Schmidt Geometrie der Triplex-Punkte Anmerkungen zu K.Mütz: Die Triplex-Punkte und die Eulersche Gerade eines Dreiecks (PM 2/45. Jg. 2003) Eckart Schmidt In einem Dreieck ABC lässt sich zu jedem Innenwinkel z.b.

Mehr

BADEN-WÜRTTEMBERG Vektoren Geraden im Raum Lösungen Herausgegeben von Heinz Griesel Helmut Postel Friedrich Suhr Schroedel

BADEN-WÜRTTEMBERG Vektoren Geraden im Raum Lösungen Herausgegeben von Heinz Griesel Helmut Postel Friedrich Suhr Schroedel ELEMENTE DER MATHEMATIK BADEN-WÜRTTEMBERG Vektoren Geraden im Raum Lösungen Herausgegeben von Heinz Griesel Helmut Postel Friedrich Suhr Schroedel Vektoren Geraden im Raum. Kartesisches Koordinatensystem

Mehr

Klausur Strömungsmaschinen I SoSem 2015

Klausur Strömungsmaschinen I SoSem 2015 Klasr Strömngsmaschinen I SoSem 2015 26. Agst 2015, Beginn 13:00 Uhr Prüfngszeit: 90 Minten Zgelassene Hilfsmittel sind: Taschenrechner Geodreieck Zeichenmaterial gestellte Formelsammlng Andere Hilfsmittel,

Mehr

sinω t und der sich einstellenden stationären

sinω t und der sich einstellenden stationären 26 6.6.4. Bedetng des Freqenzganges als Systemcharakteristik Die bisherigen Asführngen nd Erläterngen zm Freqenzgang eines linearen zeitinvarianten Systems einschließlich seiner grafischen Darstellng als

Mehr

Phasenseparation (Entmischung) in binären, homogenen Mischungen

Phasenseparation (Entmischung) in binären, homogenen Mischungen Phasenseparation (Entmischng) in binären homogenen Mischngen Exkrs: Tangenten an molare Zstandsfnktionen In einer binären Mischng (enthält 2 Komponenten) seien Teilchen der orte nd Teilchen der orte vorhanden.

Mehr

Eine Hilfe, wenn du mal nicht mehr weiterweisst...

Eine Hilfe, wenn du mal nicht mehr weiterweisst... Geometrie 6. Klasse Eine Hilfe, wenn du mal nicht mehr weiterweisst... Themen Seite Das 1 Das Viereck 2 Der Kreis 2 Die Winkel 3 Parallele Geraden zeichnen 4 Eine Senkrechte zeichnen 4 Die Spiegelsymmetrie

Mehr

Die Begriffe der absoluten, relativen und kumulierten Häufigkeit - diskrete Beobachtungen - (empirische Dichte und empirische Verteilung)

Die Begriffe der absoluten, relativen und kumulierten Häufigkeit - diskrete Beobachtungen - (empirische Dichte und empirische Verteilung) Häfigkeit (relative nd kmlierte Häfigkeit) Akademische Disziplin der Statistik/academic field of statistics/ la discipline statistiqe/estadística/disciplina academica della statistica deskriptive Statistik/descriptive

Mehr

8 (z.b.) (1 P.) z. (0.5 P.) (0.5 P.) x. (z.b.) (0.5 P.) z

8 (z.b.) (1 P.) z. (0.5 P.) (0.5 P.) x. (z.b.) (0.5 P.) z Gymnasim Bämlihof Matritätsprüfngen 9 Seite 1 on 1 fgabe 1 Ramgeometrie 15 P. a) k CS CS CS 4 4 9 7 CS ( 4) 7 74 8.65... 8.6 1.5 P. b) c) Variante: Direkt in Distanzformel einsetzen. x 6 g : y 4 s 4 4

Mehr

Ferienkurs Analysis 3 für Physiker. Integralsätze

Ferienkurs Analysis 3 für Physiker. Integralsätze Ferienkrs Analysis 3 für Physiker Integralsätze Ator: Benjamin Rüth Stand: 17. März 214 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Differentialoperatoren 3 2 Integralsatz von Gaß 4 2.1

Mehr

Lektionen zur Vektorrechnung

Lektionen zur Vektorrechnung Die Homepage von Joachim Mohr Start Mathematik Lektionen zur Vektorrechnung in Aufgaben Diese Datei kann auch als PDF-Datei heruntergeladen werden. Download... Es handelt sich um " Basisaufgaben " der

Mehr

a) b) Abb. 1: Schiefer Drachen

a) b) Abb. 1: Schiefer Drachen Hans Walser, [20161123] Viereck-Viertelung Anregung: Heinz Klaus Strick, Leverkusen 1 Problemstellung Welche Vierecke lassen sich von einem inneren Punkt aus mit geraden Verbindungen zu den vier Ecken

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt

Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt a ( b c) bilden. Aus der geometrischen Interpretation von Skalarprodukt und Vektorprodukt ist sofort ersichtlich,

Mehr

Waagbalkenuhr BUCO 1320

Waagbalkenuhr BUCO 1320 Waagbalkenhr BUCO 130 Waagbalkenhr BUCO 130 Berechnng - 1 - Waagbalkenhr BUCO 130 1 INHALTVERZEICHNIS 1 Inhaltverzeichnis... Einleitng...3 3 Berechnngen...4 3.1 Drehbewegng des Waagbalkens...4 1. Schwingngsamplitde...4

Mehr

~ v 2. Abbildung 3: Zweiter Schritt des Gram-Schmidt-Verfahrens. k 1. i=1. v k = w k

~ v 2. Abbildung 3: Zweiter Schritt des Gram-Schmidt-Verfahrens. k 1. i=1. v k = w k v 1 v 1 v 2 v 2 W 2 -v (v, v ) 1 1 2 Abbildung 3: Zweiter Schritt des Gram-Schmidt-Verfahrens. k. Schritt: Subtraktion der Komponenten von ṽ k in Richtung von v 1,v 2,...,v k 1 und Normierung von w k auf

Mehr

12 Übungen zu Gauß-Algorithmus

12 Übungen zu Gauß-Algorithmus Aufgaben zum Vorkurs B S. 2 Übungen zu Gauß-Algorithmus 2x x 2 = 7x +, 5x 2 = 7 Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: 2x x 2 = x +2x 2 = 2 2x x 2 = 7x +, 5x 2 =, 5 x 2x 2 = x +x 2 = 5 2x +x 2 = 4

Mehr

Thomas Beier Petra Wurl. Regelungstechnik. Basiswissen, Grundlagen, Beispiele. 2., neu bearbeitete Auflage

Thomas Beier Petra Wurl. Regelungstechnik. Basiswissen, Grundlagen, Beispiele. 2., neu bearbeitete Auflage Thomas Beier Petra Wrl Regelngstechnik Basiswissen, Grndlagen, Beispiele 2., ne bearbeitete Aflage 1.2 Darstellng von Regelkreisen 19 Am Eingang der Regelstrecke befindet sich das Stellglied. Es ist ein

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ c a b = 1 3. tan(2φ) =

Mathematische Probleme, SS 2013 Donnerstag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ c a b = 1 3. tan(2φ) = Mathematische Probleme SS 13 Donnerstag 136 $Id: quadratischtexv 18 13/08/1 09:49:46 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen Nachdem wir in der letzten Sitzung die Hauptachsentransformation

Mehr

12 Der Abstand eines Punktes von einer Geraden Seite 1 von Der Abstand eines Punktes von einer Geraden

12 Der Abstand eines Punktes von einer Geraden Seite 1 von Der Abstand eines Punktes von einer Geraden 12 Der Abstand eines Punktes von einer Geraden Seite 1 von 5 12 Der Abstand eines Punktes von einer Geraden Die Bestimmung des Abstands eines Punktes von einer Geraden gehört zu den zentralen Problemen

Mehr

Grundlagen Mathematik 7. Jahrgangsstufe

Grundlagen Mathematik 7. Jahrgangsstufe ALGEBRA 1. Grundlagen Grundlagen Mathematik 7. Jahrgangsstufe Menge der ganzen Zahlen Z = {..., -3, -2, -1, 0, 1, 2, 3,... } Menge der rationalen Zahlen Q = { z z Z und n N } (Menge aller n positiven und

Mehr

Vektorprodukt. Satz: Für a, b, c V 3 und λ IR gilt: = a b + a c (Linearität) (Linearität) b = λ

Vektorprodukt. Satz: Für a, b, c V 3 und λ IR gilt: = a b + a c (Linearität) (Linearität) b = λ Vektorprodukt Satz: Für a, b, c V 3 und λ IR gilt: 1 a b = b a (Anti-Kommutativität) ( ) 2 a b + c ( 3 a λ ) b = λ = a b + a c (Linearität) ( a ) b (Linearität) Satz: Die Koordinatendarstellung des Vektorprodukts

Mehr

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. 1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit

Mehr

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9. Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten

Mehr

Integrationsmethoden. für. gebrochen rationale Funktionen DEMO. Übersicht über die wichtigsten Methoden. Vor allem für das Studium!

Integrationsmethoden. für. gebrochen rationale Funktionen DEMO. Übersicht über die wichtigsten Methoden. Vor allem für das Studium! Integralrechnng Integrationsmethoden für gebrochen rationale Fnktionen Übersicht über die wichtigsten Methoden Vor allem für das Stdim! Tet 800 Stand 8. Febrar 08 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK

Mehr

Formfunktionen (Interpolation): Bedeutung und praktischer Einsatz

Formfunktionen (Interpolation): Bedeutung und praktischer Einsatz Formfnktionen (Interpolation): Bedetng nd praktischer Einsatz Dr.-Ing. Martin Zimmermann Lehrsthl für Konstrktionslehre nd CAD Universität Bayreth Einleitng, Problem nd Motivation Knoten Steifigkeit Elemente

Mehr

3 Konsumenten. Nutzenfunktionen Konsumenten vergleichen und bewerten Güterbündel: Güter : Nutzenfunktion eines Konsumenten. Güterraum.

3 Konsumenten. Nutzenfunktionen Konsumenten vergleichen und bewerten Güterbündel: Güter : Nutzenfunktion eines Konsumenten. Güterraum. Konsmenten Ntzenfnktionen Konsmenten vergleichen nd bewerten Güterbündel: l Güter : l K l R+ Güterram Ntzenfnktion eines Konsmenten U : l R +... R a... l l Güterbündel reelle Zahl 7 Eine Ntzenfnktion ermöglicht

Mehr

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck.

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. Beweise 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. (a) Gib Satz und Kehrsatz in der Wenn-dann-Form an! (b) Ist die Voraussetzung des Satzes notwendig,

Mehr

Übungsblatt

Übungsblatt Übungsblatt 6..7 ) Zeigen Sie die Gültigkeit der folgenden Sätze durch Verwendung abstrakter Vektoren (ohne Bezug auf konkrete Komponenten), deren Addition bzw. Subtraktion und Multiplikation mit Skalaren:

Mehr

Waben-Sudoku. Günter Aumann und Klaus Spitzmüller. Sudoku ist in. Oder ist es schon wieder langweilig? Es gibt Alternativen.

Waben-Sudoku. Günter Aumann und Klaus Spitzmüller. Sudoku ist in. Oder ist es schon wieder langweilig? Es gibt Alternativen. Waben-Sudoku Günter Aumann und Klaus Spitzmüller Sudoku ist in. Oder ist es schon wieder langweilig? Es gibt Alternativen. Eine Vorüberlegung Reguläre Vierecke und Sechsecke zeichnen sich vor allen anderen

Mehr

Kegelschnitte. Mathematik I ITB. Kegelschnitte. Prof. Dr. Karin Melzer

Kegelschnitte. Mathematik I ITB. Kegelschnitte. Prof. Dr. Karin Melzer Kegelschnitte 10.11.08 Kegelschnitte: Einführung Wir betrachten,,,. Literatur: Brücken zur Mathematik, Band 1 Grundlagen, Analytische Geometrie Kreis Denition als geometrischer Ort: Der geometrische Ort

Mehr

1 Begriffe und Bezeichnungen

1 Begriffe und Bezeichnungen 1 Begriffe und Bezeichnungen Verbindet man vier Punkte A, B, C, D einer Ebene, von denen keine drei auf einer Geraden liegen, der Reihe nach miteinander, können unterschiedliche Figuren entstehen: ein

Mehr

Vektoren, Skalarprodukt, Ortslinien

Vektoren, Skalarprodukt, Ortslinien .0 Gegeben sind die Punkte A(0/-4), C(0/4), sowie die Pfeile mit α [ 90 ; 90 ]. 4cosα AB = 4sinα+ 4. Zeichne die drei Punkte B, B und B 3 mit α { 30;0;30 } in ein KOS.. Zeige: 4cosα CB =. 4sinα 4.3 Zeige,

Mehr

F B. Abbildung 2.1: Dreieck mit Transversalen

F B. Abbildung 2.1: Dreieck mit Transversalen 2 DS DREIECK 16 2 Das Dreieck 2.1 Ein einheitliches Beweisprinzip Def. Eine Gerade, die jede Trägergerade der Seiten eines Dreiecks (in genau einem Punkt) schneidet, heißt Transversale des Dreiecks. Eine

Mehr

Abiturprüfung 2000 LK Mathematik Baden-Württemberg

Abiturprüfung 2000 LK Mathematik Baden-Württemberg Abiturprüfung 000 LK Mathematik Baden-Württemberg Aufgabe I 1 Analysis ( )² Gegeben ist die Funktion f durch f ( ) = ; D f. Ihr Schaubild sei K. ( 4) a) Geben Sie die maimale Definitionsmenge D f an. Untersuchen

Mehr

Tag der Mathematik 2007

Tag der Mathematik 2007 Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Geometrie (4b) Wintersemester 2015/16. Kapitel 2. Abbildungsgeometrie. Teil 2

Geometrie (4b) Wintersemester 2015/16. Kapitel 2. Abbildungsgeometrie. Teil 2 Kapitel 2 Abbildungsgeometrie Teil 2 1 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau Kapitel 2 Abbildungsgeometrie 2.1 2,3,4 Geradenspiegelungen 2.2 Sinn & Orientierung

Mehr

6. Vektor- und Koordinaten-Geometrie.

6. Vektor- und Koordinaten-Geometrie. 6. Vektor- und Koordinaten-Geometrie. Jeder endlichen Menge, etwa der Menge kann man durch M = {,,, }. R 4 (M) = { a 1 + a 2 + a 3 + a 4 a i R } die Menge der formalen Linearkombinationen zuordnen. Es

Mehr

Prof. S. Krauter Endliche Geometrie. SS 05. Blatt Wiederholen Sie die Abschnitte zum Rechnen mit Restklassen aus der Einführungsveranstaltung.

Prof. S. Krauter Endliche Geometrie. SS 05. Blatt Wiederholen Sie die Abschnitte zum Rechnen mit Restklassen aus der Einführungsveranstaltung. Prof. S. Krauter Endliche Geometrie. SS 05. Blatt03 1. Wiederholen Sie die Abschnitte zum Rechnen mit Restklassen aus der Einführungsveranstaltung. 2. Die zahlentheoretische Kongruenz ist folgendermaßen

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie 1 Punkte und Vektoren im Raum G 1.1 Gegeben sind die Vektoren in nebenstehender Abbildung. Drücke die Vektoren AC durch a und b AB durch z und w BC durch c und d DB durch b und u

Mehr

Quellen und Senken als Feldursachen

Quellen und Senken als Feldursachen Kapitel 2 Qellen nd Senken als Feldrsachen Wir sprechen von Qellenfeldern nd Wirbelfeldern. Beide nterscheiden sich grndlegend voneinander. Wir wollen deswegen beide Feldarten getrennt besprechen, m deren

Mehr

1. Theoretische Grundlagen

1. Theoretische Grundlagen Fachbereich Elektrotechnik / Informationstechnik Elektrische Mess- nd Prüftechnik Laborpraktikm Abgabe der Aswertng dieses Verschs ist Vorassetzng für die Zlassng zm folgenden ermin Grndlagen der Leistngsmessng

Mehr

Blatt 12: Satz von Gauss, Satz von Stokes

Blatt 12: Satz von Gauss, Satz von Stokes Fakltät für Physik Jan on Delft, Katharina Stadler, Frake Scharz T0: Rechenmethoden für Physiker, WiSe 203/4 http://homepages.physik.ni-menchen.de/~ondelft/lehre/3t0/ Blatt 2: Satz on Gass, Satz on Stokes

Mehr

Geometrie. 1 Vektoren, Vektorielle analytische Geometrie der Ebene

Geometrie. 1 Vektoren, Vektorielle analytische Geometrie der Ebene Geometrie Geometrie W. Kuhlisch Brückenkurs 207. Vektoren, Vektorrechnung und analytische Geometrie der Ebene 2. Vektorrechnung und analytische Geometrie des Raumes 3. Anwendungen in der Geometrie, Lagebeziehungen

Mehr

Analytische Geometrie I

Analytische Geometrie I Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend

Mehr

Definition, Grundbegriffe, Grundoperationen

Definition, Grundbegriffe, Grundoperationen Aufgaben 1 Vektoren Definition, Grundbegriffe, Grundoperationen Lernziele - einen Vektor korrekt kennzeichnen bzw. schreiben können. - wissen, was ein Gegenvektor ist. - wissen, wie die Addition zweier

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

Zissoide zu Gerade und Kreis. Eckart Schmidt

Zissoide zu Gerade und Kreis. Eckart Schmidt Zissoide zu Gerade und Kreis Eckart Schmidt ei einer Zissoide denkt man zunächst an die nach Diokles benannte Form [Sch;7]. llgemeiner wird zu zwei Kurven und einem Punkt eine Zissoide erklärt [Loc;131].

Mehr

Algebraische Eigenschaften des Skalarprodukts

Algebraische Eigenschaften des Skalarprodukts Voyage TM 00/ TI-89 Titanium Analytische Geometrie Vektorrechnung Name des KB: Algebraische Eigenschaften des Skalarprodukts Wir wissen: Das Rechnen mit Zahlen beruht auf bestimmten Rechengesetzen. Gesetze

Mehr

Elementare Geometrie Vorlesung 19

Elementare Geometrie Vorlesung 19 Elementare Geometrie Vorlesung 19 Thomas Zink 28.6.2017 1.Gleichungen von Kreisen Es sei OAB ein kartesisches Koordinatensystem der Ebene E. Für einen Punkt P mit den Koordinaten (x, y) schreiben wir auch

Mehr

3.3 Klassifikation quadratischer Formen auf R n

3.3 Klassifikation quadratischer Formen auf R n 3.3. Klassifikation quadratischer Formen auf R n 61 3.3 Klassifikation quadratischer Formen auf R n Wir können den Hauptsatz über symmetrische Matrizen verwenden, um uns einen Überblick über die Lösungsmengen

Mehr

B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen :

B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen : Seite I Einige interessante elementargeometrische Konstruktionen Ausgehend von einigen bekannten Sätzen aus der Elementargeometrie lassen sich einige hübsche Konstruktionen herleiten, die im folgenden

Mehr

AT AB., so bezeichnet man dies als innere Teilung von

AT AB., so bezeichnet man dies als innere Teilung von Teilverhältisse Aus der Geometrie der Dreiecke ket ma die Aussage, dass der Schwerpukt T eies Dreiecks die Seitehalbierede im Verhältis : teilt. Für die Strecke AT ud TM gilt gemäß der Abbildug AT : TM

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur April/Mai 2002 Mathematik (Grundkurs) Arbeitszeit: 210 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten G 1, G 2 und G 3 zur Bearbeitung aus.

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

2 Die Algebra der Matrizen

2 Die Algebra der Matrizen Die Algebra der Matrizen Ein Hauptziel der Vorlesung zur Linearen Algebra besteht darin, Aussagen über die Lösungsmenge linearer Gleichungssysteme zu machen Etwa ob das Gleichungssystem x y + z 1 x + y

Mehr

Analytische Geometrie des Raumes

Analytische Geometrie des Raumes Analytische Geometrie des Raumes Als Begründer der analytischen Geometrie gilt René Descartes (Discours de la méthode). Seine grundliegende Idee bestand darin, geometrische Gebilde (Gerade, Kreis, Ellipse

Mehr