Komplexe Wechselstromrechnung

Größe: px
Ab Seite anzeigen:

Download "Komplexe Wechselstromrechnung"

Transkript

1 0. Oktober 06 Inhaltsverzeichnis Einleitung Komplexe Zahlen 3 Beschreibung von Wechselstromkreisen mittels komplexer Zahlen 4 4 Anwendung der komplexen Wechselstromrechnung 7 5 Literatur 0 Einleitung Eine zentrale Aufgabe der Mathematik ist es, Lösungen für Gleichungen zu finden. Anhand x + () sehen wir, dass die Lösbarkeit von Gleichungen von der zugrunde liegenden Zahlenmenge abhängt. In den natürlichen Zahlen N {,, 3,...} hat () keine Lösung. Führen wir die negativen Zahlen {,, 3,...} ein, so wird die Gleichung durch gelöst. Diese bilden zusammen mit den natürlichen Zahlen und der Null die ganzen Zahlen Z. Analog führt x zu den rationalen Zahlen Q, der Menge aller gemeinen Brüche, und zu den reellen Zahlen. Jedoch bereitet x x () selbst in den reellen Zahlen Probleme. Um () lösbar zu machen, ist die Einführung einer weiteren Menge von Zahlen nötig: Den komplexen Zahlen C.

2 Komplexe Zahlen Wir können () lösen, indem wir schlicht eine Lösung i definieren. Es gilt also i. Damit haben wir unser Problem zwar auf eine sehr simple Weise gelöst, allerdings ist noch nicht klar, ob auch x + x + 0 (3) eine Lösung besitzt. In der Hoffnung, mit (3) und allen weiteren Polynomen klarzukommen, definieren wir die Menge der komplexen Zahlen. Definition. Die Menge der komplexen Zahlen ist C : {r + is r, s }. Sei a + ib, c + id C. Wir nennen a den eal- und b den Imaginärteil von a + ib und schreiben e(a + ib) : a sowie Im(a + ib) : b. Addition und Multiplikation sind wie folgt auszuführen: (a + ib) + (c + id) :(a + c) + i(b + d), (4) (a + ib) (c + id) :(ac bd) + i(ad + bc). (5) Interpretieren wir a+i0 als a, so sind die reellen Zahlen in den komplexen enthalten. Jemanden mit wenig Erfahrung in formaler Mathematik mag es verwundern, dass wir definiert haben, wie wir komplexe Zahlen addieren und multiplizieren. Die egeln (4) und (5) erscheinen unter Verwendung von i intuitiv nachvollziehbar. Schließlich erhielten wir (4) durch schlichte Klammersetzung und (5) durch bloßes ausmultiplizieren. Allerdings ist a+ib a priori ein neues Objekt. Ohne weitere Informationen könnte es sich um ein Schriftzeichen handeln, welches für ein bestimmtes Wort steht. Erst dank (4) und (5) werden die Elemente von C zu Objekten, auf denen wir echenoperationen ausführen können, also zu Zahlen. Selbstverständlich sind die egeln für die Ausführung der Addition und der Multiplikation zweier komplexer Zahlen genau so gewählt, dass wir mit ihnen wie üblich rechen können und lediglich i beachten müssen. Das werden wir im Folgenden tun. An dieser Stelle ist noch nicht klar, ob zu einer komplexen Zahl a+ib die multiplikative Inverse a + ib existiert. Zunächst notieren wir folgende Beobachtung: Folgende Umformung bietet sich an: (a + ib)(a ib) a aib + iba i b a + b. a + ib a ib (a + ib)(a ib) a ib a + b a a + b + i b a + b. Wir haben die multiplikative Inverse einer komplexen Zahl bestimmt. Da a ib dabei eine zentrale olle zukam, geben wir ihr einen eigenen Namen. Definition. Sei z a + ib C. Die zu z komplex konjugierte Zahl ist Ferner ist der Betrag von z ist gegeben durch z : z : a ib. z : zz a + b. Mit existieren ist hier gemeint, dass es sie gibt und sie Element der komplexen Zahlen ist.

3 Als nächstes widmen wir uns verschieden Darstellungsformen komplexer Zahlen. Dazu benötigen wir den folgenden Satz 3. Sei x. Dann gilt die Eulersche Formel e ix cos(x) + i sin(x). Beweis. Siehe Kapitel.4 in []. Es kann sogar x C gewählt werden, siehe []. ichard Feynman bezeichnete diese Formel ehrfurchtsvoll als unseren Juwel [3]. Für x π erhalten wir die bemerkenswerte Gleichung e iπ + 0. Sie vereint die fünf zentralen Zahlen der Mathematik 0,, e, π und i. Mithilfe der eulerschen Formel können wir die Zahl a + ib in die Form re iϕ bringen. re iϕ r cos(ϕ) + ir sin(ϕ)! a + ib a + b r ( cos (ϕ) + sin (ϕ) ) r a a + b cos(ϕ), b sin(ϕ) (6) a + b Die Gleichungen (6) lassen sich für a > 0 durch ϕ arctan ( ) b a (7) lösen. Allgemein setzen wir ϕ arg(a, b), wobei arg die Argumentfunktion ist. Sie wird in [] näher diskutiert. Wir werden uns jedoch bei der Berechnung von ϕ auf (7) beschränken, da in unseren Beispielen a 0 gegeben sein wird. Stellen wir die komplexe Zahl a + ib als den Vektor (a, b) dar (siehe Abbildung ), so wird eine geometrische Interpretation von r und ϕ möglich. (r, ϕ) entspricht dem Vektor Im a + ib b ϕ r a e Abbildung : Darstellung der komplexen Zahl a + ib re iϕ als Vektor (a, b). (a, b) in Polarkoordinaten. Deshalb nennen wir re iϕ die Polardarstellung der komplexen Zahl a + ib. Zum Abschluss dieses Kapitels weißen wir noch auf den Fundamentalsatz der Algebra hin. Für a 0 gilt ϕ ± π, wobei das Vorzeichen gleich dem von b ist (siehe Abbildung ). 3

4 Satz 4. Jedes nicht konstante komplexe Polynom besitzt in C wenigstens eine Nullstelle. Beweis. Ein elementarer Beweis wird in [4] geführt. Eleganter geht es mit dem Satz von Liouville aus der Funktionentheorie []. Dieser Satz gewährleistet nicht nur die Lösbarkeit der in den ersten beiden Kapiteln genannten, sondern aller nicht konstanter Polynome in den komplexen Zahlen. Eine formalere Einführung der komplexen Zahlen über zweidimensionale Vektoren wird in [, 5] dargeboten. Auf die algebraische Bedeutung von C wird in [6] näher eingegangen. 3 Beschreibung von Wechselstromkreisen mittels komplexer Zahlen Nicht nur zum Lösen mathematischer Gleichungen sind komplexe Zahlen geeignet. In der Physik gibt es viele Teilbereiche, in denen sie eine geeignete Darstellung der Naturgesetze erlauben. Beispielsweise ist die einen quantenmechanischen Zustand beschreibende Wellenfunktion komplexwertig (siehe z.b. [7]). Wir beschäftigen uns mit der Beschreibung physikalische Größen in Wechselstromkreisen mit Hilfe von komplexen Zahlen. Ein Kondensator befinde sich wie in C L I U (a) Kondensator I U (b) Spule I U (c) Widerstand Abbildung : Verschiedene Bauelemente im Wechselstromkreis. Abbildung a im Wechselstromkreis. Die Spannung sei durch U U 0 cos(ωt) gegeben. Wir suchen den Strom I. Dazu verwenden wir die für den Kondensator gültige Gleichung Q CU. Q CU U 0 cos(ωt) I dq dt ωcu 0 sin(ωt) (8) Alternativ ist folgender Ansatz möglich: Da U e(u 0 e iωt ), können wir statt mit U mit der komplexen Spannung Û U 0e iωt rechnen. Wir fordern, dass für Û und die komplexen Größen Î und ˆQ die gleichen Gesetze wie für U, I und Q gelten. Somit erhalten wir Î d ˆQ dt iωcu 0e iωt. Der ealteil von Î ist gleich der physikalische Lösung (8). Dieser Ansatz hat den Vorteil, dass die Zeitabhängigkeit von Î und Û durch den Faktor eiωt gegeben ist. Folglich ist deren Quotient zeitunabhängig. Wir definieren ihn als den komplexen Widerstand Z : Û Î U 0e iωt iωcu 0 e iωt iωc. 4

5 Analog können wir mit dem in Abbildung b dargestellten Stromkreis verfahren. Für die Spule gilt U L di dt, Î Ûdt L L Daraus erhalten wir ihren komplexen Widerstand Z Û Î iωl. U 0 e iωt dt U 0e iωt iωl. Für eine Widerstand im Wechselstromkreis (siehe Abbildung c) gilt wie im Gleichstromkreis Z Û Î U I. Wir können die Kirchhoffschen Gesetze benutzen, um den Gesamtwiderstand einer Verschal- Z I Z n I n U U n U Z U n Z n I I n I U (a) eihenschaltung I U (b) Parallelschaltung Abbildung 3: Verschaltung mehrerer Bauelemente im Wechselstromkreis. tung von Bauelementen (siehe Abbildung 3) zu bestimmen. Für eine eihenschaltung wie in Abbildung 3a gilt Î Î... În, (9) Û Û Ûn ÎZ ÎnZ n (9) Î(Z Z n ), Z Z Z n. Im Parallelstromkreis, der in Abbildung 3b dargestellt ist, erhalten wir Û Û... Ûn, (0) Î Î În Û Z Ûn (0) Û Z n ( Z Z n Z Z Z n. ), 5

6 Die komplexen Gesamtwiderstände können analog zu ohmschen Widerständen im Gleichstromkreis berechnet werden. Zwar haben wir dem komplexen Widerstand interessante Eigenschaften nachgewiesen, aber was teilt er uns physikalisch mit? Wir betrachten ein Bauelement mit komplexen Widerstand Z e(z) + iim(z) Z e iϕ. Dessen Darstellung als Vektor (siehe Abbildung 4) wird Zeigerdiagramm genannt. Durch das Bauelement fließe ein Strom Î I 0e iωt. Der dazugehörende Im Z Im(Z) Z ϕ e(z) e Abbildung 4: Geometrische Darstellung des komplexen Widerstandes Z, genannt Zeigerdiagramm. Spannungsabfall beträgt Û ÎZ I } 0 Z e i(ωt+ϕ). {{} U 0 Die Spannung ist gegenüber dem Strom um den Winkel ( ) Im(Z) ϕ arctan e(z) phasenverschoben 3. Messgeräte für Strom und Spannung liefern in der egel statt dem zeitlichen Verlauf die Effektivwerte der Größen (Amplitude geteilt durch die Quadratwurzel von Zwei). Das Verhältnis der Effektivwerte U eff U 0 Z I eff I 0 würden wir daher naiv als den gemessenen Widerstand der Schaltung bezeichnen. Daher nennen wir Z Scheinwiderstand (oder Impedanz). Die dazugehörende Leistung P S U eff I eff Z Ieff heißt Scheinleistung. Tatsächlich wird innerhalb einer Periode der Dauer T die mittlere Leistung P T T 0 I 0 Z T I 0 e(û)im(î)dt T 0 Z cos(ϕ) Ieff e(z) cos(ωt) cos(ωt + ϕ)dt umgesetzt. Diese wird als Wirkleistung bezeichnet. Entsprechend heißt e(z) Wirkwiderstand. Die verbleibenden Komponenten sind der Blindwiderstand Im(Z) und die Blindleistung P B Ieff Im(Z). Sie haben keine unmittelbare physikalische Bedeutung. 3 Die Gleichung gilt nur für e(z) > 0. Die Bedingung e(z) 0 ist stets erfüllt, da der ealteil von Z durch ohmsche Widerstände hervorgerufen, welche nicht negativ sind. Für e(z) 0 gilt je nach Vorzeichen des Imaginärteils ϕ ± π. 6

7 4 Anwendung der komplexen Wechselstromrechnung Wir wollen den hergeleiteten Formalismus auf einige Beispiele anwenden. Dazu betrachten wir die in Abbildung 5 aufgeführten Schaltungen. An die Schaltungen wird jeweils eine Eingangs- C L L C U E U A U E U A U E U A (a) Hochpassfilter (b) Tiefpassfilter (c) Schwingkreis Abbildung 5: Verschiedene Wechselstromschaltung. spannung U E angelegt. Am Widerstand wird die Ausgangsspannung U A abgegriffen. Unser Ziel ist es, dass Amplitudenverhältnis und die Phase zwischen Eingangs- und Ausgangsspannung zu ermitteln. Wir beginnen mit dem Hochpassfilter (siehe Abbildung 5a). Der Gesamtwiderstand der Schaltung ist gegeben durch Z iωc +. Da die Ausgangsspannung am Widerstand abgegriffen wird, gilt Û A Î Z ÛE, ÛA Û E iωc + ωc + ω C (i + ωc). Daraus können wir die gesuchten Werte ermitteln: ÛE ÛA Û E Û A ωc + ω C, ( ) ϕ arctan Im ÛE ( ) ( ÛA ) arctan e ÛE ωc ÛA Die dazugehörigen Graphen sind in Abbildung 6 dargestellt. Für niedrige Frequenzen verschwindet die Ausgangsspannung, für hohe stimmen die Amplituden von Eingangs- und Ausgangsspannung nahezu überein. Folglich werden Signale mit niedriger Frequenz unterdrückt, während welche mit hoher Frequenz durchgelassen werden. Dadurch wird der Name Hochpassfilter plausibel. Die Behandlung des Tiefpassfilters (siehe Abbildung 5b) ist analog zu der des 7

8 π 0.8 UA UE ϕ π ωc (a) Amplitudenverhältnis ωc (b) Phasenverschiebung Abbildung 6: Graph des Amplitudenverhältnisses und der Phasenverschiebung der Eingangsund Ausgangsspannung des Hochpassfilters UA UE ϕ π ωl (a) Amplitudenverhältnis π ωl (b) Phasenverschiebung Abbildung 7: Graph des Amplitudenverhältnisses und der Phasenverschiebung der Eingangsund Ausgangsspannung des Tiefpassfilters π UA UE ϕ π π 4 LC ω (a) Amplitudenverhältnis π ω (b) Phasenverschiebung Abbildung 8: Graph des Amplitudenverhältnisses und der Phasenverschiebung der Eingangsund Ausgangsspannung des Schwingkreises 8

9 Hochpassfilters. Z iωl + ÛA Û E iωl + ω L ( iωl + ) + ÛA ÛE + ω L ( ) ωl ϕ arctan In Abbildung 7a wird deutlich, warum der Tiefpassfilter seinen Namen trägt. Für niedrige Frequenzen passiert das Eingangssignal nahezu unverändert. Bei sehr hohen Frequenzen verschwindet die Ausgangsspannung annähernd. Auch die charakteristischen Größen des Schwingkreises lassen sich analog zu denen des Hochpassfilters bestimmen. ÛA Û E Z iωc + iωl + iωc + iωl + + ( ωl ωc ÛA ÛE + ( ωl ) ωc ( ϕ arctan ωc ωl ) ( ) ( + i ωc ωl )) Wie erwartet liegt bei ω LC esonanz vor (siehe Abbildung 8a). Weitere Anwendungen der komplexen Wechselstromrechnung werden in [8] vorgestellt. 9

10 5 Literatur [] Fritsche, Klaus: Grundkurs Analysis. Spektrum Akademischer Verlag, Heidelberg,. Auflage, 008. [] Fritsche, Klaus: Grundkurs Funktionentheorie. Spektrum Akademischer Verlag, Heidelberg, 009. [3] Feynman, ichard: Mainly Mechanics, adiation, and Heat, Band der eihe The Feynman Lectures on Physics. Basic Books, Philadelpia (USA), 0. [4] Fritsche, Klaus: Mathematik für Einsteiger. Springer Spektrum, 5. Auflage, 05. [5] Brokate, Martin: Analysis. Vorlesungsskript, an_ws4.pdf, 05. [6] Beutelspacher, Albrecht: Lineare Algebra. Vieweg+Teubner, 7. Auflage, 00. [7] Griffiths, David: Quantenmechanik. Pearson Deutschland, Hallbergmoss,. Auflage, 0. [8] Demtröder, Wolfgang: Experimentalphysik. Springer Spektrum, Berlin, Heidelberg, 6. Auflage, 03. 0

Division komplexer Zahlen

Division komplexer Zahlen Division komplexer Zahlen Der Quotient z /z 2 zweier komplexer Zahlen z k = x k + iy k = r k exp(iϕ k ) ist Speziell ist x x 2 + y y 2 x 2 2 + y 2 2 + x 2y x y 2 x 2 2 + y 2 2 i = r r 2 exp(i(ϕ ϕ 2 )).

Mehr

10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 =

10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 = 2. Februar 2009 66 0 Komplexe Zahlen 0. Komplexe Multiplikation: Für zwei Vektoren [ [ a a2 z =, z 2 = in R 2 wird neben der üblichen Addition die komplexe Multiplikation [ a a z z 2 := 2 b b 2 a b 2 +

Mehr

U N I V E R S I T Ä T R E G E N S B U R G

U N I V E R S I T Ä T R E G E N S B U R G U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch ww : Wechselstromwiderstand Dr. Tobias Korn Manuel März Inhaltsverzeichnis

Mehr

2.9 Die komplexen Zahlen

2.9 Die komplexen Zahlen LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in

Mehr

Versuch 15. Wechselstromwiderstände

Versuch 15. Wechselstromwiderstände Physikalisches Praktikum Versuch 5 Wechselstromwiderstände Name: Christian Köhler Datum der Durchführung: 26.09.2006 Gruppe Mitarbeiter: Henning Hansen Assistent: Thomas Rademacher testiert: 3 Einleitung

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation In den reellen Zahlen haben nicht alle Polynome Nullstellen. Der einfachste Fall einer solchen Nullstellen-Gleichung ist x 2 + 1 = 0. Die komplexen Zahlen ("C") sind

Mehr

Stefan Ruzika. 24. April 2016

Stefan Ruzika. 24. April 2016 Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 2: Körper 24. April 2016 1 / 21 Gliederung 1 1 Schulstoff 2 Körper Definition eines Körpers

Mehr

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen Komplexe Zahlen Allgemeines Definition Eine komplexe Zahl z x + y i besteht aus einem Realteil Re(z) x und einem Imaginärteil Im(z) y. Der Imaginärteil wird mit der Imaginären-Einheit i multipliziert.

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik

Mehr

Wechselstromwiderstände und Reihenresonanz

Wechselstromwiderstände und Reihenresonanz Versuch C8/9: Wechselstromwiderstände und Reihenresonanz. Literatur: Demtröder, Experimentalphysik : Elektrizität und Optik Pohl, Einführung in die Physik, Bd. Gerthsen, Kneser, Vogel; Physik Bergmann-Schaefer,

Mehr

2 Komplexe Rechnung in der Elektrotechnik

2 Komplexe Rechnung in der Elektrotechnik Komplexe echnung in der Elektrotechnik. Einleitung Wechselstromnetwerke sind Netwerke, in denen sinusförmige Spannungen oder ströme gleicher Frequen auf ohmsche, induktive und kapaitive Widerstände wirken.

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Kapitel 5 Komplexe Zahlen

Kapitel 5 Komplexe Zahlen Kapitel 5 Komplexe Zahlen 5 5 5 Komplexe Zahlen.................................... 191 5.1 Darstellung komplexer Zahlen... 194 5.1.1 Algebraische Normalform... 194 5.1.2 Trigonometrische Normalform...

Mehr

Weitere Beispiele zur Anwendung komplexer Zahlen

Weitere Beispiele zur Anwendung komplexer Zahlen Weitere Beispiele zur Anwendung komplexer Zahlen Harmonische Schwingungen............................... 27 Anwendung: Zeigerdiagramm bei der Wechselstromrechnung............. 28 Additionstheoreme für

Mehr

Anhang A3. Darstellung von Wechselströmen und -spannungen im Zeigerdiagramm

Anhang A3. Darstellung von Wechselströmen und -spannungen im Zeigerdiagramm Anhang A3 Darstellung von Wechselströmen und -spannungen im Zeigerdiagramm Für die Darstellung und Berechnung von Wechselstromkreisen sind sogenannte Zeigerdiagramme sehr von Nutzen. Dies sind instruktive

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 1, Montag vormittag Vektoralgebra Ein Vektor lässt sich geometrisch als eine gerichtete Strecke darstellen,

Mehr

Komplexe Zahlen (Seite 1)

Komplexe Zahlen (Seite 1) (Seite 1) (i) Motivation: + 5 = 3 hat in N keine Lösung Erweiterung zu Z = 2 3 = 2 hat in Z keine Lösung Erweiterung zu Q = 2 / 3 ² = 2 hat in Q keine Lösung Erweiterung zu R = ± 2 ² + 1 = 0 hat in R keine

Mehr

2D-Visualisierung komplexer Funktionen

2D-Visualisierung komplexer Funktionen 2D-Visualisierung komplexer Funktionen 1 Komplexe Zahlen Die komplexen Zahlen C stellen eine Erweiterung der reellen Zahlen dar, in der das Polynom z 2 + 1 eine Nullstelle besitzt. Man kann sie als Paare

Mehr

Einiges über komplexe Zahlen

Einiges über komplexe Zahlen Lineare Algebra und Analytische Geometrie I für LB WS 2001/2002 Dr. Bruno Riedmüller Einiges über komplexe Zahlen Es muss davon ausgegangen werden, dass der Leser mit komplexen Zahlen wenig oder nicht

Mehr

Elektrotechnische Anwendungen: Wechselstromgenerator

Elektrotechnische Anwendungen: Wechselstromgenerator Elektrotechnische Anwendungen: Wechselstromgenerator Das Faradaysche Induktionsgesetz bildet die Grundlage für die technische Realisierung von elektrischen Motoren und Generatoren. Das einfachste Modell

Mehr

2. Parallel- und Reihenschaltung. Resonanz

2. Parallel- und Reihenschaltung. Resonanz Themen: Parallel- und Reihenschaltungen RLC Darstellung auf komplexen Ebene Resonanzerscheinungen // Schwingkreise Leistung bei Resonanz Blindleistungskompensation 1 Reihenschaltung R, L, C R L C U L U

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Versuch 14 Wechselstromwiderstände

Versuch 14 Wechselstromwiderstände Grundpraktikum der Fakultät für Physik Georg August Universität Göttingen Versuch 4 Wechselstromwiderstände Praktikant: Joscha Knolle Ole Schumann E-Mail: joscha@htilde.de Durchgeführt am: 3.09.202 Abgabe:

Mehr

RE Elektrische Resonanz

RE Elektrische Resonanz RE Elektrische Resonanz Blockpraktikum Herbst 27 (Gruppe 2b) 24. Oktober 27 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Impedanz...................................... 2 1.2 Phasenresonanz...................................

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Physikalisches Praktikum für das Hauptfach Physik Versuch 15 Wechselstromwiderstände Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer physik@mehr-davon.de B9 Assistent:

Mehr

Komplexe Zahlen in der Elektrotechnik. ohne Ballast. von. Wolfgang Bengfort ET-Tutorials.de Elektrotechnik verstehen durch VIDEO-Tutorials

Komplexe Zahlen in der Elektrotechnik. ohne Ballast. von. Wolfgang Bengfort ET-Tutorials.de Elektrotechnik verstehen durch VIDEO-Tutorials Komplexe Zahlen in der Elektrotechnik ohne Ballast von Wolfgang Bengfort ET-Tutorials.de Elektrotechnik verstehen durch VIDEO-Tutorials Rechtlicher Hinweis: Alle Rechte vorbehalten. Dieses Buch darf ohne

Mehr

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Kondensatoren und ohmschen Widerständen. LD Handblätter Physik

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Kondensatoren und ohmschen Widerständen. LD Handblätter Physik Elektrizitätslehre Gleich- und Wechselstromkreise Wechselstromwiderstände LD Handblätter Physik P3.6.3. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Kondensatoren und ohmschen Widerständen

Mehr

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c)

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c) Komplexe Zahlen Wir betrachten Zahlenpaare (a, b, (c, d R und definieren eine Addition und eine Multiplikation wie folgt: (a, b + (c, d := (a + c, b + d (a, b (c, d := (a c b d, a d + b c Satz: R mit dieser

Mehr

Harmonische Schwingung

Harmonische Schwingung Harmonische Schwingung Eine harmonische Schwingung mit Amplitude c 0, Phasenverschiebung δ und Frequenz ω bzw. Periode T = 2π/ω hat die Form x x(t) = c cos(ωt δ). δ/ω c t T=2π/ω Harmonische Schwingung

Mehr

12 3 Komplexe Zahlen. P(x y) z = x + jy

12 3 Komplexe Zahlen. P(x y) z = x + jy 2 3 Komplexe Zahlen 3 Komplexe Zahlen 3. Grundrechenoperationen Definition Die Menge C = {z = a + jb a, b IR; j 2 = } heißt Menge der komplexen Zahlen; j heißt imaginäre Einheit. (andere Bezeichnung: i)

Mehr

TR - Transformator Blockpraktikum - Herbst 2005

TR - Transformator Blockpraktikum - Herbst 2005 TR - Transformator, Blockpraktikum - Herbst 5 8. Oktober 5 TR - Transformator Blockpraktikum - Herbst 5 Tobias Müller, Alexander Seizinger Assistent: Dr. Thorsten Hehl Tübingen, den 8. Oktober 5 Vorwort

Mehr

Analysis 1, Woche 3. Komplexe Zahlen I. 3.1 Etwas Imaginäres

Analysis 1, Woche 3. Komplexe Zahlen I. 3.1 Etwas Imaginäres Analysis, Woche 3 Komplexe Zahlen I A 3. Etwas Imaginäres Zusätzlich zu den reellen Zahlen führen wir das Symbol i ein und wir vereinbaren: i. Wir möchten die reellen Zahlen erweitern mit i. Das heißt,

Mehr

Schwingungen und komplexe Zahlen

Schwingungen und komplexe Zahlen Schwingungen und komplexe Zahlen Andreas de Vries FH Südwestfalen University of Applied Sciences, Haldener Straße 82, D-5895 Hagen, Germany e-mail: de-vries@fh-swf.de Hagen, im Mai 22 (Erste Version: November

Mehr

Komplexe Zahlen. Lernziele dieses Abschnitts sind:

Komplexe Zahlen. Lernziele dieses Abschnitts sind: KAPITEL 1 Komplexe Zahlen Lernziele dieses Abschnitts sind: (1) Analytische und geometrische Darstellung komplexer Zahlen, () Grundrechenarten fur komplexe Zahlen, (3) Konjugation und Betrag komplexer

Mehr

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Komplexe Funktionen für Studierende der Ingenieurwissenschaften Komplexe Funktionen für Studierende der Ingenieurwissenschaften Prof. Dr. Armin Iske Department Mathematik, Universität Hamburg Technische Universität Hamburg-Harburg Sommersemester 2008 Komplexe Funktionen

Mehr

Elektrische Messverfahren Versuchsauswertung

Elektrische Messverfahren Versuchsauswertung Versuche P1-70,71,81 Elektrische Messverfahren Versuchsauswertung Marco A. Harrendorf, Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 22.11.2010 1 1 Wechselstromwiderstände

Mehr

1 Wechselstromwiderstände

1 Wechselstromwiderstände 1 Wechselstromwiderstände Wirkwiderstand Ein Wirkwiderstand ist ein ohmscher Widerstand an einem Wechselstromkreis. Er lässt keine zeitliche Verzögerung zwischen Strom und Spannung entstehen, daher liegt

Mehr

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L Versuch E 1: PHASENVERSCHIEBUNG IM WECHSELSTROMKREIS Stichworte: Elektronenstrahloszillograph Komplexer Widerstand einer Spule und eines Kondensators Kirchhoffsche Gesetze Gleichungen für induktiven und

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

Komplexe Zahlen und Wechselstromwiderstände

Komplexe Zahlen und Wechselstromwiderstände Komplexe Zahlen und Wechselstromwiderstände Axel Tobias 22.2.2000 Ein besonderer Dank geht an Ingo Treunowski, der die Übertragung meines Manuskriptes in L A TEX durchgeführt hat tob skript komplex.tex.

Mehr

Elektrotechnik I Formelsammlung

Elektrotechnik I Formelsammlung Elektrotechnik I Formelsammlung Andreas itter und Marco Weber. Dezember 009 Inhaltsverzeichnis Physikalische Gesetze Physikalische Konstanten...................................... Physikalische Zusammenhänge..................................

Mehr

Die komplexen Zahlen

Die komplexen Zahlen Die komplexen Zahlen Wir haben gesehen, dass die Menge R der reellen Zahlen einen angeordneten Körper bildet und dass für die Menge Q der rationalen Zahlen entsprechendes gilt. In beiden Körpern sind Gleichungen

Mehr

Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016

Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016 Institut für Experimentelle Kernphysik, KIT Übungen zur Klassischen Physik II Elektrodynamik) SS 206 Prof. Dr. T. Müller Dr. F. Hartmann 2tes und letztes Übungsblatt - Spulen, Wechselstrom mit komplexen

Mehr

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen

Mehr

erfanden zu den reellen Zahlen eine neue Zahl

erfanden zu den reellen Zahlen eine neue Zahl Vorlesung 9 Komplexe Zahlen Die Gleichung x 2 = 1 ist in R nicht lösbar, weil es keine Zahl gibt, deren Quadrat eine negative Zahl ist. Die Mathematiker erfanden zu den reellen Zahlen eine neue Zahl i,

Mehr

Komplexe Zahlen und konforme Abbildungen

Komplexe Zahlen und konforme Abbildungen Kapitel 1 Komplexe Zahlen und konforme Abbildungen 1.0 Geometrie der komplexen Zahlen Die Menge C der komplexen Zahlen, lässt sich mithilfe der bijektiven Abbildung C := {x + iy : x,y R}, C z = x + iy

Mehr

Vorbereitung zum Versuch

Vorbereitung zum Versuch Vorbereitung zum Versuch elektrische Messverfahren Armin Burgmeier (347488) Gruppe 5 2. Dezember 2007 Messungen an Widerständen. Innenwiderstand eines µa-multizets Die Schaltung wird nach Schaltbild (siehe

Mehr

Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. Daten: U AB. der Induktivität L! und I 2. , wenn Z L. = j40 Ω ist? an!

Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. Daten: U AB. der Induktivität L! und I 2. , wenn Z L. = j40 Ω ist? an! Grundlagen der Elektrotechnik I Aufgabe K4 Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. R 1 A R 2 Daten R 1 30 Ω R 3 L R 2 20 Ω B R 3 30 Ω L 40 mh 1500 V f 159,15 Hz 1. Berechnen Sie

Mehr

Komplexe Zahlen. Rainer Hauser. Januar 2015

Komplexe Zahlen. Rainer Hauser. Januar 2015 Komplexe Zahlen Rainer Hauser Januar 015 1 Einleitung 1.1 Zahlen und Operationen auf Zahlen Addiert man mit Eins als erster gegebener Zahl beginnend sukzessive Eins zu einer bereits gefundenen Zahl, so

Mehr

(2 π f C ) I eff Z = 25 V

(2 π f C ) I eff Z = 25 V Physik Induktion, Selbstinduktion, Wechselstrom, mechanische Schwingung ösungen 1. Eine Spule mit der Induktivität = 0,20 mh und ein Kondensator der Kapazität C = 30 µf werden in Reihe an eine Wechselspannung

Mehr

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den E6 Elektrische Resonanz Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch Münster, den.. INHALTSVERZEICHNIS. Einleitung. Theoretische Grundlagen. Serienschaltung von Widerstand R, Induktivität L

Mehr

Körper sind nullteilerfrei

Körper sind nullteilerfrei Mathematik I für Informatiker Komplexe Zahlen p. 1 Körper sind nullteilerfrei Für Elemente a, b eines Körpers gilt stets: Aus a b = 0 folgt a = 0 oder b = 0. Beweis: Aus a b = 0 und a 0 folgt also b =

Mehr

Reihenresonanz - C8/ C8/9.2 -

Reihenresonanz - C8/ C8/9.2 - Versuch C8/9: - C8/9. - Wechselstromwiderstände und Reihenresonanz - C8/9.2 - Wechselstromkreis mit induktiven und kapazitiven Elementen Spannung und Strom im allgemeinen nicht die gleiche Phase haben

Mehr

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung 28. September 2016 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung Aufgabe 1. Die nachfolgende Grafik stellt das Oszillogramm zweier sinusförmiger Spannungen

Mehr

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den E Wheatstonesche Brücke Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch Münster, den 7..000 INHALTSVEZEICHNIS. Einleitung. Theoretische Grundlagen. Die Wheatstonesche Brücke. Gleichstrombrücke

Mehr

Klausurvorbereitung Elektrotechnik für Maschinenbau. Thema: Gleichstrom

Klausurvorbereitung Elektrotechnik für Maschinenbau. Thema: Gleichstrom Klausurvorbereitung Elektrotechnik für Maschinenbau 1. Grundbegriffe / Strom (5 Punkte) Thema: Gleichstrom Auf welchem Bild sind die technische Stromrichtung und die Bewegungsrichtung der geladenen Teilchen

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Ausarbeitung zum Versuch Wechselstromwiderstände Versuch 9 des physikalischen Grundpraktikums Kurs I, Teil II an der Universität Würzburg Sommersemester 005 (Blockkurs) Autor: Moritz Lenz Praktikumspartner:

Mehr

SBP Mathe Aufbaukurs 3. Imaginäre und komplexe Zahlen. Komplexe Zahlen in der Gaußschen Zahlenebene. Darstellungen komplexer Zahlen.

SBP Mathe Aufbaukurs 3. Imaginäre und komplexe Zahlen. Komplexe Zahlen in der Gaußschen Zahlenebene. Darstellungen komplexer Zahlen. SBP Mathe Aufbaukurs 3 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten

Mehr

Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 02/2002 Laborunterlagen

Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 02/2002 Laborunterlagen nstitut für Elektrotechnik Übungen zu Elektrotechnik Version 3.0, 02/2002 2 Wechselstromkreise 2. Einführung komplexer eiger 2.. Komplexe Spannung, komplexer Strom ur Vereinfachung der mathematischen Behandlung

Mehr

Grundlagenvertiefung zu PS2. A. Biedermann Updated by W. Markowitsch 15. September 2015

Grundlagenvertiefung zu PS2. A. Biedermann Updated by W. Markowitsch 15. September 2015 Grundlagenvertiefung zu PS2 A. Biedermann Updated by W. Markowitsch 15. September 2015 Inhaltsverzeichnis Inhaltsverzeichnis 1 Analogie zwischen mechanischen und elektrischen Schwingungen 2 2 Der elektrische

Mehr

Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17

Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17 1/37 0. Organisatorisches 2/37 Übung Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17 Dr. Udo Lorz TU Bergakademie Freiberg Fakultät für Mathematik und Informatik Links zur Vorlesung Website

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Argumentationstechniken Direkter Beweis einer Implikation A B (analog Äquivalenz A B): A C 1 C 2... B Beweis von A B durch Gegenbeispiel

Mehr

Elektrotechnik für Studierende Inhalt. Vorwort...11

Elektrotechnik für Studierende Inhalt. Vorwort...11 5 Inhalt Vorwort...11 1 Signale...13 1.1 Definitionen zu Signalen...13 1.2 Klassifizierung von Signalen...15 1.2.1 Klassifizierung nach dem Signalverlauf...15 1.2.1.1 Determinierte Signale...15 1.2.1.2

Mehr

Elektromagnetische Schwingkreise

Elektromagnetische Schwingkreise Grundpraktikum der Physik Versuch Nr. 28 Elektromagnetische Schwingkreise Versuchsziel: Bestimmung der Kenngrößen der Elemente im Schwingkreis 1 1. Einführung Ein elektromagnetischer Schwingkreis entsteht

Mehr

Komplexe Zahlen Rechnen mit komplexen Zahlen Anwendungen der komplexen Rechnung. Komplexe Zahlen. Fakultät Grundlagen. Juli 2015

Komplexe Zahlen Rechnen mit komplexen Zahlen Anwendungen der komplexen Rechnung. Komplexe Zahlen. Fakultät Grundlagen. Juli 2015 Komplexe Zahlen Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Komplexe Zahlen Übersicht Komplexe Zahlen 1 Komplexe Zahlen Erweiterung des Zahlbegriffs Definition Darstellung komplexer Zahlen 2 Grundrechenarten

Mehr

BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND OHMSCHEM WIDERSTAND.

BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND OHMSCHEM WIDERSTAND. Elektrizitätslehre Gleich- und Wechselstrom Wechselstromwiderstände BESTIMMUNG DES WECHSELSTOMWIDESTANDES IN EINEM STOMKEIS MIT IN- DUKTIVEM UND OHMSCHEM WIDESTAND. Bestimmung von Amplitude und Phase des

Mehr

KAPITEL 1. Komplexe Zahlen

KAPITEL 1. Komplexe Zahlen KAPITEL Komplexe Zahlen. Lernziele im Abschnitt: Komplexe Zahlen............... Was sind komplexe Zahlen?......................3 Komplexe Zahlenebene....................... 3.4 Grundrechenarten in C.......................

Mehr

4.5 Wechselstromkreise

4.5 Wechselstromkreise 4.5 Wechselstromkreise Wechselstrom in vielen Punkten praktischer: ransformatoren Elektromotoren Frequenz als Referenz... Prinzip der Erzeugung einer sinusförmigen Wechselspannung: V: Wechselstromgenerator

Mehr

Schwingungen und komplexe Zahlen

Schwingungen und komplexe Zahlen Schwingungen und komplexe Zahlen Andreas de Vries FH Südwestfalen University of Applied Sciences, Haldener Straße 82, D-58095 Hagen, Germany e-mail: de-vries@fh-swf.de Hagen, im November 2006 Die komplexe

Mehr

= 2 i 2= 2 2 i, z 4. = 1.5, z 8

= 2 i 2= 2 2 i, z 4. = 1.5, z 8 Mathematik 1 - Übungsblatt 11 Aufgabe 1 (komplexe Zahlen) Gegeben sind folgende komplexe Zahlen in der Darstellung als Normalform mit Real- und Imaginärteil z=x i y - oder wegen der Vertauschbarkeit von

Mehr

E 4 Spule und Kondensator im Wechselstromkreis

E 4 Spule und Kondensator im Wechselstromkreis E 4 Spule und Kondensator im Wechselstromkreis 1. Aufgaben 1. Die Scheinwiderstände einer Spule und eines Kondensators sind in Abhängigkeit von der Frequenz zu bestimmen und gemeinsam in einem Diagramm

Mehr

Vorbereitung: elektrische Messverfahren

Vorbereitung: elektrische Messverfahren Vorbereitung: elektrische Messverfahren Marcel Köpke 29.10.2011 Inhaltsverzeichnis 1 Ohmscher Widerstand 3 1.1 Innenwiderstand des µa Multizets...................... 3 1.2 Innenwiderstand des AVΩ Multizets.....................

Mehr

Übungen zur Komplexen Rechnung in der Elektrotechnik

Übungen zur Komplexen Rechnung in der Elektrotechnik Übungen zur Komplexen Rechnung in der Elektrotechnik Aufgabe 1 Gegeben ist nebenstehende Schaltung. Berechnen Sie den Komplexen Ersatzwiderstand Z der Schaltung sowie seinen Betrag Z und den Phasenverschiebungswinkel

Mehr

viele weitere Anwendungen wie zum Beispiel Schwingungsvorgänge. 4.1 Die algebraische Struktur der komplexen Zahlen

viele weitere Anwendungen wie zum Beispiel Schwingungsvorgänge. 4.1 Die algebraische Struktur der komplexen Zahlen 4 Komplexe Zahlen In diesem Kapitel wollen wir uns erneut mit dem R 2 beschäftigen, diesmal aber mit einer anderen algebraischen Struktur. Dies erlaubt uns weitere Anwendungen in der Geometrie die Lösung

Mehr

Aufgaben zu Kapitel 5

Aufgaben zu Kapitel 5 Aufgaben zu Kapitel 5 Aufgaben zu Kapitel 5 Verständnisfragen Aufgabe 5. Geben Sie zu folgenden komplexen Zahlen die Polarkoordinatendarstellung an z i z + i z 3 + 3i). r 5 ϕ 5 4 3 π bzw. r 6 3 ϕ 6 4 5

Mehr

2.2 Kollineare und koplanare Vektoren

2.2 Kollineare und koplanare Vektoren . Kollineare und koplanare Vektoren Wie wir schon gelernt haben, können wir einen Vektor durch Multiplikation mit einem Skalar verlängern oder verkürzen. In Abbildung 9 haben u und v die gleiche Richtung,

Mehr

Übung Grundlagen der Elektrotechnik B

Übung Grundlagen der Elektrotechnik B Übung Grundlagen der Elektrotechnik B Themengebiet E: Komplexe Zahlen Aufgabe 1: echnen mit komplexen Zahlen Stellen Sie die folgenden komplexen Zahlen in der arithmetischen Form (z = x + jy und der exponentiellen

Mehr

Physik III Übung 4 - Lösungshinweise

Physik III Übung 4 - Lösungshinweise Physik III Übung 4 - Lösungshinweise Stefan eutter WiSe 202 Moritz Kütt Stand: 20.2.202 Franz Fujara Aufgabe [P] Diskussion: Motoren (schon wieder!) Wir hatten ja schon in der letzten Übung einen Motor

Mehr

Einführung Seite 28. Zahlenebene C. Vorlesung bzw. 24. Oktober 2013

Einführung Seite 28. Zahlenebene C. Vorlesung bzw. 24. Oktober 2013 Einführung Seite 8 Vorlesung 1 3. bzw. 4. Oktober 013 Komplexe Zahlen Seite 9 Lösung von x + 1 = 0, pq-formel liefert x 1/ = ± 1 ; }{{} verboten Definition Imaginäre Einheit i := 1 Dann x 1/ = ±i; i =

Mehr

I = I 0 exp. t + U R

I = I 0 exp. t + U R Betrachten wir einen Stromkreis bestehend aus einer Spannungsquelle, einer Spule und einem ohmschen Widerstand, so können wir auf diesen Stromkreis die Maschenregel anwenden: U L di dt = IR 141 Dies ist

Mehr

BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND KAPAZITIVEM WIDERSTAND.

BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND KAPAZITIVEM WIDERSTAND. Elektrizitätslehre Gleich- und Wechselstrom Wechselstromwiderstände BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND KAPAZITIVEM WIDERSTAND. Bestimmung des Wechselstromwiderstandes

Mehr

3 Ortskurven. 3.1 Einleitung. 3.2 Spannungs-/Widerstandsdiagramme in der Reihenschaltung

3 Ortskurven. 3.1 Einleitung. 3.2 Spannungs-/Widerstandsdiagramme in der Reihenschaltung C. FEPEL 3 Ortskurven 3. Einleitung Durch ein Zeigerbild wird ein bestimmter Betriebszustand eines Wechselstromnetzes bei konstanten Parametern (Amplitude und Frequenz der einspeisenden sinusförmigen Quellspannungen

Mehr

13 Die trigonometrischen Funktionen

13 Die trigonometrischen Funktionen 13 Die trigonometrischen Funktionen Wir schreiben die Werte der komplexen Exponentialfunktion im Folgenden auch als e z = exp(z) (z C). Geometrisch definiert man üblicherweise die Werte der Winkelfunktion

Mehr

Aufgabe 1 Transiente Vorgänge

Aufgabe 1 Transiente Vorgänge Aufgabe 1 Transiente Vorgänge S 2 i 1 i S 1 i 2 U 0 u C C L U 0 = 2 kv C = 500 pf Zum Zeitpunkt t 0 = 0 s wird der Schalter S 1 geschlossen, S 2 bleibt weiterhin in der eingezeichneten Position (Aufgabe

Mehr

Primzahlen Darstellung als harmonische Schwingung

Primzahlen Darstellung als harmonische Schwingung Primzahlen Darstellung als harmonische Schwingung Die natürliche Sinusschwingung wird hier in Zusammenhang mit der Zahlentheorie gebracht um einen weiteren theoretischen Ansatz für die Untersuchung der

Mehr

Die komplexen Zahlen werden definiert als die geordneten Paare z = (x, y) reeller Zahlen x, y R, zusammen mit den Rechenoperationen

Die komplexen Zahlen werden definiert als die geordneten Paare z = (x, y) reeller Zahlen x, y R, zusammen mit den Rechenoperationen 2 Komplexe Zahlen 2.1 Definition Die omplexen Zahlen werden definiert als die geordneten Paare z = (x, y) reeller Zahlen x, y R, zusammen mit den Rechenoperationen z 1 + z 2 (x 1, y 1 ) + (x 2, y 2 ) :=

Mehr

Als Summendarstellung der komplexen Zahl bezeichnen wir den bekannten Ausdruck

Als Summendarstellung der komplexen Zahl bezeichnen wir den bekannten Ausdruck A.1 MATHEMATISCHE GRUNDLAGEN In diesem Abschnitt werden die mathematischen Grundlagen zusammengestellt, die für die Behandlung von Übertragungssystemen erforderlich sind. Unter anderem sind dies die komplexen

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Physikalisches Grundpraktikum Versuch 14 Wechselstromwiderstände Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de Tutor: Gruppe:

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

2.6 Der komplexe Logarithmus und allgemeine Potenzen

2.6 Der komplexe Logarithmus und allgemeine Potenzen 2.6 Der komplexe Logarithmus und allgemeine Potenzen Ziel: Umkehrung der komplexen Exponentialfunktion fz) = expz). Beachte: Die Exponentialfunktion expz) ist für alle z C erklärt, und es gilt Dexp) =

Mehr

Lösungen zu Kapitel 2

Lösungen zu Kapitel 2 Elektrotechnik für Studium und Praxis: Lösungen Lösungen zu Kapitel Aufgabe.1 Aus der Maschengleichung ergibt sich: I 4 = U q1 + U q R 1 I 1 R I R I R 4 I 4 = 4 V + 1 V Ω 5 A Ω, A 5 Ω 4 A Ω I 4 = (4 +

Mehr

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik erbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik ersuch 3 Grundschaltungen der Wechselstromtechnik Teilnehmer: Name orname Matr.-Nr. Datum der

Mehr

Klassische Theoretische Physik I WS 2013/ Komplexe Zahlen ( = 35 Punkte)

Klassische Theoretische Physik I WS 2013/ Komplexe Zahlen ( = 35 Punkte) Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 013/014 Prof. Dr. J. Schmalian Blatt 8 Dr. P. P. Orth Abgabe 0.1.013 1. Komplexe Zahlen (5 + 5 + 5 + 5 + 5

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

Komplexe Zahlen. Axel Schüler, Leipzig Juli 2003

Komplexe Zahlen. Axel Schüler, Leipzig Juli 2003 Komplexe Zahlen Axel Schüler, Leipzig schueler@mathematikuni-leipzigde Juli 2003 Da die komplexen Zahlen nicht mehr im Lehrplan stehen, sollen hier die Grundlagen gelegt werden Eine sehr schöne Einführung

Mehr

Abitur 2009 Physik 1. Klausur Hannover, arei LK 2. Semester Bearbeitungszeit: 90 min

Abitur 2009 Physik 1. Klausur Hannover, arei LK 2. Semester Bearbeitungszeit: 90 min Abitur 009 hysik Klausur Hannover, 0403008 arei K Semester Bearbeitungszeit: 90 min Thema: Spule, Kondensator und Ohmscher Widerstand im Wechselstromkreis Aufgabe eite begründet her: Für den Gesamtwiderstand

Mehr

Uebungsserie 1.4 Ersatzzweipole, Resonanz und Blindleistungskompensation

Uebungsserie 1.4 Ersatzzweipole, Resonanz und Blindleistungskompensation 1. Oktober 2015 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.4 Ersatzzweipole, Resonanz und Blindleistungskompensation Aufgabe 1. Ersatzzweipole a) Berechnen Sie die Bauteilwerte für R r und L

Mehr