Die fünfte Grundrechenart kein Aprilscherz!

Größe: px
Ab Seite anzeigen:

Download "Die fünfte Grundrechenart kein Aprilscherz!"

Transkript

1 der fünften Institut für Mathematik Humboldt-Universität zu Berlin 1 April 2011

2 Vorlesung Analysis III, nach dem Skript von Urs Kirchgraber der fünften

3 Die fu nfte Mentor beim Wechsel von Zu rich Ju rg Kramer der fu nften Regelma ßige Fu nfte nach Berlin

4 Sommerschulen in Valbella Die fu nfte Ju rg Kramer der fu nften Regelma ßige Fu nfte und Blossin

5 Gemeinsames Projekt zur Didaktik der Algebra: Von der strukturierten Arithmetik zur Unlösbarkeit der allgemeinen Gleichung fünften Grades durch Radikale der fünften

6 Die vier en Anforderungen an eine fünfte? der fünften Analogie zum sechsten Sinn, als außer- bzw übersinnliche Wahrnehmung Es ergeben sich intuitiv die Anforderungen: Beinhaltet die vier bestehenden en Gehört einer übergeordneten Hierarchie an

7 Die vier en der fünften Wikipedia Eine ist eine der vier mathematischen Operatoren: Addition + Subtraktion Multiplikation Division : Zwischen ihnen gilt die Rangfolge Punktrechnung vor Strichrechnung

8 Die vier en der fünften Wikipedia, Fortsetzung Bedeutung der en Die Beherrschung der en gehört zu den während der Schulzeit von jedem Schüler zu erwerbenden Grundfertigkeiten Lesen, Schreiben und Rechnen Die en werden im Mathematik-Unterricht der Grundschule während der ersten vier Schuljahre behandelt und eingeübt, auch in Form von Textaufgaben (Sachaufgaben) Sie werden beim Übergang in eine weiterführende Schule (Hauptschule, Realschule, Gymnasium) vorausgesetzt und sind normalerweise Gegenstand von Aufnahmeprüfungen Die vier en werden in der Theorie vom mathematischen Körper auf eine formelle Grundlage gestellt Viele mathematische Probleme lassen sich auf die en zurückführen

9 Die vier en der fünften Natürliche Zahlen N (mit Hilfe der Peano-Axiome Ordinalzahlaspekt) Die Menge N ist nicht leer; es gibt ein ausgezeichnetes Element 0 N Zu jedem Element n N gibt es ein wohlbestimmtes Element n N mit n n Es gibt kein Element n N, für dessen Nachfolger n die Beziehung n = 0 gilt Besteht für zwei natürliche Zahlen n 1, n 2 die Gleichheit n 1 = n 2, so folgt daraus n 1 = n 2 Vollständige Induktion: Ist T eine Teilmenge von N mit der Eigenschaft, dass 0 T gilt und dass mit t T auch t T ist, so muss T = N gelten

10 Die vier en der fünften Induktive Definition der Addition auf N Für m, n N setzt man: n + 0 := n, n + m := (n + m) Induktive Definition der Multiplikation auf N Für m, n N setzt man: n 0 := 0, n m := (n m) + n

11 Die vier en der fünften Geometrische Interpretation z B Multiplikation: n m n 0 1 m

12 Die vier en der fünften Zahlbereichserweiterungen Erweiterung von N auf Z (ganze Zahlen) uneingeschränkte Ausführung der Subtraktion Erweiterung von Z auf Q (rationale Zahlen) uneingeschränkte Ausführung der Division (bis auf die 0) Erweiterung von Q auf R (reelle Zahlen) mit uneingeschränkter +,,, : Erweiterung von R auf C (komplexe Zahlen) mit uneingeschränkter +,,, :

13 Die vier en der fünften Abschließende Bemerkungen Addition + ist assoziativ und kommutativ Multiplikation ist assoziativ und kommutativ Es gelten die Distributivgesetze Zahlbereichserweiterung auf die nicht-kommutativen Hamiltonschen Quaternionen H Zahlbereichserweiterung auf die nicht-kommutativen und nicht-assoziativen Cayleyschen Octionen O

14 Auf der der fünften der fünften Abgeleitete strukturelle Begriffsbildungen Begriff der (kommutativen) Halbgruppe : Nicht-leere Menge H mit assoziativer Verknüpfung, zb (H, ) = (N, +) Begriff der (kommutativen) Gruppe : Halbgruppe (G, ) mit neutralem und inversen Elementen, zb (G, ) = (Z, +) Begriff des Körpers : Nicht-leere Menge K mit zwei assoziativen, kommutativen Verknüpfungen + und, so dass (K, +) und (K \ {0}, ) Gruppen sind, zb (K, +, ) = (Q, +, )

15 Auf der der fünften Geometrische Interpretation: Kreis Betrachte die Abbildung R R 2, Y der fünften gegeben durch z ( cos(z), sin(z) ) z cos(z) sin(z) X 1 Parametrisierung des Kreises: X 2 + Y 2 = 1

16 Auf der der fünften der fünften Kodierung der Addition von R durch die Additionstheoreme cos(z + w) = cos(z) cos(w) sin(z) sin(w), sin(z + w) = sin(z) cos(w) + cos(z) sin(w) Hilfsmittel: Periodische reelle Funktionen! 0 π 2π z

17 Auf der der fünften der fünften Geometrische Interpretation: Elliptische Kurve Betrachte die Abbildung gegeben durch C C 2, z ( (z), (z) ) mit der Weierstraß schen -Funktion (elliptische Funktion) (z) := m,n Z m,n 0 ( ) 1 (z (m ω 1 + n ω 2 )) 2 1 (m ω 1 + n ω 2 ) 2, wobei ω 1, ω 2 C reell linear unabhängig sind

18 Auf der der fünften der fünften Parametrisierung einer elliptischen Kurve: Y 2 = 4X 3 g 2 X g 3 mit g 2, g 3 C Y ( (z), (z) ) X

19 Auf der der fünften Kodierung der Addition von C durch das Additionstheorem (z + w) = 1 4 ( (z) ) (w) 2 (z) (w) (z) (w) Hilfsmittel: Doppelt-periodische komplexe Funktionen! der fünften ω 2 ω 1 Gitter: Λ = Zω 1 Zω 2

20 Auf der der fünften Geometrische Darstellung des Additionstheorems Y Y 2 = X 3 X + 1 der fünften P Q R X P + Q

21 Interludium: Euklidische der fünften Eine regelmäßige Pflasterung der euklidischen Ebene E ententsteht, indem man E mit Hilfe von Verschiebungen, Drehungen und Spiegelungen eines Pflastersteins lückenlos überdeckt

22 Regelma ßige Die fu nfte Ju rg Kramer der fu nften Regelma ßige Fu nfte Beispiele regelma ßiger aus der Alhambra

23 Klassifikation regelmäßiger (ohne Spiegelungen) der fünften

24 der fünften Beweisidee (im orientierungserhaltenden Fall) Betrachte die Kongruenzgruppe der orientierungserhaltenden, euklidischen Bewegungen, dh die Isometriegruppe Iso + (E) der euklidischen Ebene E: Iso + (E) = SO 2 (R) R 2 Klassifiziere die entsprechenden, diskreten Untergruppen Γ der Isometriegruppe Iso + (E) Es ergeben sich die oben gezeigten fünf Fälle

25 Sphärische der fünften Der sphärischen Geometrie liegt die 2-dimensionale Sphäre S zugrunde Die Geraden der sphärischen Geometrie sind die Großkreise auf S N P

26 der fünften Eine regelmäßige Pflasterung der Sphäre S = P 1 (C) entsteht, indem man S mit einem Pflasterstein und dessen Translaten, die mit Hilfe der Isometrien der sphärischen Geometrie gewonnen werden, lückenlos überdeckt Zur Klassifikation der regelmäßigen sphärischen gilt es die diskreten Untergruppen Γ der Isometriegruppe Iso(S) = PGL 2 (C) zu finden

27 Klassifikation regelmäßiger sphärischer der fünften

28 Zusammenhang mit platonischen Körpern der fünften

29 der fünften Invariante Funktionen Beispiel: Pflasterung gegeben durch das Ikosaeder Die Symmetriegruppe des Ikosaeders entspricht einer Gruppe Γ PGL 2 (C) der Ordnung 60; es ist Γ = A 5 Betrachte die Überlagerung vom Grad 60 q : P 1 (C) P 1 (C)/Γ = P 1 (C) u = q(z) = P(z 1, z 2 ) (z = (z 1 : z 2 )), Q(z 1, z 2 ) wobei P, Q Γ-invariante, homogene Polynome vom Grad 60 sind Kleinsche Ikosaedergleichung: ( (z ) 228(z 15 z 5 ) + 494z 10) uz 5 (z z 5 1) 5 = 0

30 der fünften Hyperbolische Der hyperbolischen Geometrie liegt die obere Halbebene H := {z = x + iy C y > 0} zugrunde Die Geraden der hyperbolischen Geometrie sind Halbkreise, die senkrecht auf der reellen Achse stehen H z w α + β + γ < 180

31 der fünften Eine regelmäßige Pflasterung der oberen Halbebene H entsteht, indem man H mit einem Pflasterstein und dessen Translaten, die mit Hilfe der Isometrien der hyperbolischen Geometrie gewonnen werden, lückenlos überdeckt Zur Klassifikation gilt es die entsprechenen diskreten Untergruppen Γ der Isometriegruppe Iso(H) = PSL 2 (R) zu finden Eine solche Isometrie ist gegeben durch eine gebrochenlineare Transformation z az + b cz + d ( ) a b SL c d 2 (R)

32 Beispiel einer regelmäßigen hyperbolischen Pflasterung: Γ = PSL 2 (Z) H der fünften

33 der fünften Invariante Funktionen f : H C mit der Eigenschaft ( ) ( ) az + b a b f = f (z) für alle Γ cz + d c d Variante: Betrachte die Ableitung von f ( ) az + b f (cz + d) 2 = f (z) für alle cz + d ( ) a b Γ c d

34 der fünften Was ist nun die fünfte???

35 der fünften Was ist nun die fünfte??? MODULFORMEN!!!

36 der fünften Was sind Modulformen? Eine Modulform vom Gewicht k zu Γ ist eine Funktion f : H C mit der Eigenschaft ( ) ( ) az + b f (cz + d) k a b = f (z) für alle Γ cz + d c d Ist insbesondere ( ) Γ, so ist f 1-periodisch, dh f (z + 1) = f (z), und es besteht die Fourierentwicklung f (z) = a n e 2πinz n=0

37 der fünften Beispiel: Eisensteinreihe E k (z) = mit = a n = c,d Z 1 (cz + d) k a n e 2πinz n=0 d teilt n d k 1 Dies ist eine Modulform vom Gewicht k zu PSL 2 (Z)

38 der fünften Beispiel: Thetareihe mit ( ϑ(z) = = m=0 ) 4 e 2πim2 z a n e 2πinz n=0 a n = { m 1, m 2, m 3, m 4 Z m m m m 2 4 = n } Dies ist eine Modulform vom Gewicht 2 zu Γ 0 (4) PSL 2 (Z)

39 der fünften Zitat von Simon Singh Modulformen gehören zu den fremdartigsten und wunderlichsten Gegenständen der Mathematik Diese höchst esoterische Beschäftigung zählte der Zahlentheoretiker Martin Eichler in diesem Jahrhundert dennoch zu den fünf Grundoperationen: Addition, Subtraktion, Multiplikation, Division und Modulformen Die meisten Mathematiker würden sich als Meister in den ersten vier Rechenarten betrachten, doch die fünfte finden sie immer noch etwas verwirrend Die wesentliche Eigenschaft der Modulformen ist ihre ungewöhnlich hohe Symmetrie

40 Martin Eichler ( ) der fünften

41 der fünften Warum sollen Modulformen die fünfte konstituieren?

42 der fünften Modulformen müssten dazu die einleitend genannten Anorderungen an eine fünfte erfüllen! Das heisst insbesondere: mit Hilfe von Modulformen können die invarianten Funktionen der euklidischen Geometrie, also die elliptischen Funktionen ( Weierstraß sche - Funktion), berechnet werden; die invarianten Funktionen der sphärischen Geometrie, also zb die Kleinsche Ikosaedergleichung, berechnet werden

43 der fünften Exemplarisch: Zusammenhang zwischen euklidischer und hyperbolischer Welt

44 der fünften Exemplarisch: Zusammenhang zwischen euklidischer und hyperbolischer Welt Geometrische Deutung des euklidischen Pflastersteins, dh des Gitters Λ = Zω 1 Zω 2, als Torus: C ω 2 ω 1 C/(Zω 1 Zω 2 )

45 der fünften Geometrische Deutung des hyperbolischen Pflastersteins, dh der diskreten Untergruppe Γ PSL 2 (R), als geschlossene, orientierte Fläche: H ϕ der fünften Γ\H C/(Zω1 Zω2)

46 der fünften C/(Zω 1 Zω 2 ) Γ\H Zusammenhang Abbildung ϕ

47 der fünften Ein solcher Zusammenhang zwischen euklidischer und hyperbolischer Welt besteht in der Tat Dies entspricht der Gültigkeit der Shimura-Taniyama-Vermutung Bewiesen im Jahr 1995 durch Andrew Wiles und Richard Taylor

48 der fünften mit dem Nebenergebnis eines Beweises der Fermat-Vermutung: Es gibt keine ganzen Zahlen a, b, c 0 mit a n + b n = c n (n > 2)

49 Alles Gute fu r Deinen neuen Lebensabschnitt, Urs! Die fu nfte Ju rg Kramer der fu nften Regelma ßige Fu nfte

Stefan Ruzika. 24. April 2016

Stefan Ruzika. 24. April 2016 Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 2: Körper 24. April 2016 1 / 21 Gliederung 1 1 Schulstoff 2 Körper Definition eines Körpers

Mehr

2.9 Die komplexen Zahlen

2.9 Die komplexen Zahlen LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in

Mehr

Elemente der Algebra

Elemente der Algebra Prof. Dr. H. Brenner Osnabrück SS 2015 Elemente der Algebra Vorlesung 1 Der Gruppenbegriff Definition 1.1. Eine Verknüpfung auf einer Menge M ist eine Abbildung : M M M, (x,y) (x,y) = x y. Statt (x,y)

Mehr

= k 0+k 0 ( ). Wir addieren (0 k) zu den Seiten der Gleichung ( ): 0 = k 0.

= k 0+k 0 ( ). Wir addieren (0 k) zu den Seiten der Gleichung ( ): 0 = k 0. Def 4 Eine Menge K mit zwei Abbildungen + : K K K und : K K K (heißen Addition und Multiplikation; wir werden a b bzw a+b statt (a,b), +(a,b) schreiben) ist ein kommutativer Ring, falls: (R1) (K, +) ist

Mehr

Symmetrie von Ornamenten

Symmetrie von Ornamenten Symmetrie von Ornamenten Teilnehmer: Theresa Lechner Alexey Loutchko Dennis Menge Simon Reinke Fynn Strohecker Thimo Wellner Gruppenleiter: Jürg Kramer Anna v. Pippich Gymnasium Ernestinum, Coburg Heinrich-Hertz-Oberschule,

Mehr

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau,

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau, Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 18 1.3 Gruppen Der Begriff der Gruppe ordnet sich in gewisser Weise dem allgemeineren Konzept der Verknüpfung (auf einer Menge) unter. So ist zum Beispiel

Mehr

Komplexe Zahlen und konforme Abbildungen

Komplexe Zahlen und konforme Abbildungen Kapitel 1 Komplexe Zahlen und konforme Abbildungen 1.0 Geometrie der komplexen Zahlen Die Menge C der komplexen Zahlen, lässt sich mithilfe der bijektiven Abbildung C := {x + iy : x,y R}, C z = x + iy

Mehr

Formale Grundlagen 2008W. Vorlesung im 2008S Institut für Algebra Johannes Kepler Universität Linz

Formale Grundlagen 2008W. Vorlesung im 2008S  Institut für Algebra Johannes Kepler Universität Linz Formale Grundlagen Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Definition Sei A eine Menge und ɛ A A A eine zweistellige

Mehr

Einführung in die Mathematik

Einführung in die Mathematik Helmut Koch Einführung in die Mathematik Hintergründe der Schulmathematik Zweite, korrigierte und erweiterte Auflage Springer Inhaltsverzeichnis Einleitung 1 1 Natürliche Zahlen 11 1.1 Zählen 11 1.2 Die

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 3 Gruppen In der linearen Algebra wird im Allgemeinen ein Grundkörper K zugrunde gelegt, über den sich

Mehr

5. Gruppen, Ringe, Körper

5. Gruppen, Ringe, Körper 5. Gruppen, Ringe, Körper 5.1. Gruppen Die Gruppentheorie, als mathematische Disziplin im 19. Jahrhundert entstanden, ist ein Wegbereiter der modernen Mathematik. Beispielsweise folgt die Gruppe, die aus

Mehr

Algebraische Kurven. Holger Grzeschik

Algebraische Kurven. Holger Grzeschik Algebraische Kurven Holger Grzeschik 29.04.2004 Inhaltsübersicht 1.Einführung in die Theorie algebraischer Kurven 2.Mathematische Wiederholung Gruppen, Ringe, Körper 3.Allgemeine affine Kurven 4.Singuläre

Mehr

1 + 1 = 0. Prof. Dr. Otmar Venjakob. Regionale Siegerehrung der 45. Mathematik-Olympiade, Mathematisches Institut Universität Bonn

1 + 1 = 0. Prof. Dr. Otmar Venjakob. Regionale Siegerehrung der 45. Mathematik-Olympiade, Mathematisches Institut Universität Bonn 1 + 1 = 0 Prof. Dr. Otmar Venjakob Mathematisches Institut Universität Bonn Regionale Siegerehrung der 45. Mathematik-Olympiade, 2005 Zählen im Alltagsleben Beim Zählen von Tieren, Gegenständen stoßen

Mehr

Symmetrien. Transformationen. Affine und euklidische Räume

Symmetrien. Transformationen. Affine und euklidische Räume Symmetrien Transformationen Der Gruppenbegriff entwickelte sich aus dem Begriff der Transformationsgruppe. In dieser Form tauchen auch die meisten Gruppen in der Mathematik, Physik, Chemie, Kristallographie,

Mehr

Die komplexen Zahlen

Die komplexen Zahlen Die komplexen Zahlen Wir haben gesehen, dass die Menge R der reellen Zahlen einen angeordneten Körper bildet und dass für die Menge Q der rationalen Zahlen entsprechendes gilt. In beiden Körpern sind Gleichungen

Mehr

Einiges über komplexe Zahlen

Einiges über komplexe Zahlen Lineare Algebra und Analytische Geometrie I für LB WS 2001/2002 Dr. Bruno Riedmüller Einiges über komplexe Zahlen Es muss davon ausgegangen werden, dass der Leser mit komplexen Zahlen wenig oder nicht

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 2 Beispiele für Gruppen Aus der Vorlesung Mathematik I sind schon viele kommutative Gruppen bekannt. Zunächst gibt es die additiven

Mehr

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen

Mehr

Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule

Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule Berufsfeldbezogenes Fachseminar - Zahlentheorie Lisa Laudan Prof. Dr. Jürg Kramer Wintersemester 2014/2015 Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule 1.1

Mehr

5.A Die Konstruktion der komplexen Zahlen

5.A Die Konstruktion der komplexen Zahlen 5. Komplexe Zahlen 49 5. Komplexe Zahlen Nachdem wir die reellen Zahlen genau charakterisiert haben, wollen wir nun noch einen weiteren Körper einführen, der in der gesamten Mathematik sehr wichtig ist:

Mehr

01. Gruppen, Ringe, Körper

01. Gruppen, Ringe, Körper 01. Gruppen, Ringe, Körper Gruppen, Ringe bzw. Körper sind wichtige abstrakte algebraische Strukturen. Sie entstehen dadurch, dass auf einer Menge M eine oder mehrere sogenannte Verknüpfungen definiert

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Sei G eine Gruppe. Zeige, dass ( 1 ) 1 = Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Arbeitsblatt 3 Die Pausenaufgabe Aufgabe 3.1. Formuliere die binomischen

Mehr

Multiplikation und Division in Polarform

Multiplikation und Division in Polarform Multiplikation und Division in Polarform 1-E1 1-E Multiplikation und Division in Polarform: Mathematisches Rüstzeug n m b b = b n+m bn bm = bn m ( b n )m = b n m Additionstheoreme: cos 1 = cos 1 cos sin

Mehr

1 Algebraische Strukturen

1 Algebraische Strukturen Prof. Dr. Rolf Socher, FB Technik 1 1 Algebraische Strukturen In der Mathematik beschäftigt man sich oft mit Mengen, auf denen bestimmte Operationen definiert sind. Es kommt oft vor, dass diese Operationen

Mehr

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie Outline 1 Vektoren im Raum 2 Komponenten und Koordinaten 3 Skalarprodukt 4 Vektorprodukt 5 Analytische Geometrie 6 Lineare Räume, Gruppentheorie Roman Wienands (Universität zu Köln) Mathematik II für Studierende

Mehr

Langlands-Programm. Zahlentheorie = Algebra + Geometrie + Analysis. Torsten Wedhorn. 19. Januar 2012

Langlands-Programm. Zahlentheorie = Algebra + Geometrie + Analysis. Torsten Wedhorn. 19. Januar 2012 Zahlentheorie = Algebra + Geometrie + Analysis 19. Januar 2012 Inhalt 1 Dreieckszahlen 2 3 4 Dreieckszahlen Eine rationale Zahl D > 0 heißt Dreieckszahl (oder Kongruenzzahl), falls D die Fläche eines rechtwinkligen

Mehr

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen

Mehr

Zahl und Funktion Grundlagen der Analysis aus der Sek I. Oliver Passon Seminar zur Didaktik der Analysis

Zahl und Funktion Grundlagen der Analysis aus der Sek I. Oliver Passon Seminar zur Didaktik der Analysis Grundlagen der Analysis aus der Sek I Seminar zur Didaktik der Analysis Quellen Lehrpläne und Richtlinien des Landes NRW für Gymnasien und Gesamtschulen Lambacher Schweizer: Mathematik für Gymnasien, Klett

Mehr

Klausur HM I H 2005 HM I : 1

Klausur HM I H 2005 HM I : 1 Klausur HM I H 5 HM I : 1 Aufgabe 1 4 Punkte): Zeigen Sie mit Hilfe der vollständigen Induktion: n 1 1 + 1 ) k nn k n! für n. Lösung: Beweis mittels Induktion nach n: Induktionsanfang: n : 1 ) 1 + 1 k

Mehr

Axiomatische Beschreibung der ganzen Zahlen

Axiomatische Beschreibung der ganzen Zahlen Axiomatische Beschreibung der ganzen Zahlen Peter Feigl JKU Linz peter.feigl@students.jku.at 0055282 Claudia Hemmelmeir JKU Linz darja@gmx.at 0355147 Zusammenfassung Wir möchten in diesem Artikel die ganzen

Mehr

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE Wiederholungsblatt Elementargeometrie im SS 01 bei Prof. Dr. S. Goette LÖSUNGSSKIZZE Die Lösungen unten enthalten teilweise keine vollständigen Rechnungen. Es sind aber alle wichtigen Zwischenergebnisse

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2016 Einführung in die mathematische Logik Vorlesung 12 Wir haben bisher nur von Axiomensystemen im Sinne einer beliebigen Ausdrucksmenge Γ L S gesprochen, die im Allgemeinen

Mehr

11 Komplexe Zahlen. Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra

11 Komplexe Zahlen. Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra 11 Komplexe Zahlen Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra Addition ebener Vektoren Sei Ê 2 = {(x, y) : x, y Ê}. Ê 2 können wir als Punkte in der Ebene

Mehr

Formale Grundlagen 2008W. Vorlesung im 2008S Institut für Algebra Johannes Kepler Universität Linz

Formale Grundlagen 2008W. Vorlesung im 2008S  Institut für Algebra Johannes Kepler Universität Linz Formale Grundlagen Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Vektoren in der Ebene Zwei Punkten P, Q in der Ebene

Mehr

Mengenlehre. ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN. Ronald Balestra CH Zürich Name: Vorname:

Mengenlehre. ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN. Ronald Balestra CH Zürich  Name: Vorname: Mengenlehre ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 21. August 2016 Inhaltsverzeichnis 1 Mengenlehre 1 1.1 Die Menge im mathematischen

Mehr

8 Die Riemannsche Zahlenkugel

8 Die Riemannsche Zahlenkugel 8 Die Riemannsche Zahlenkugel Wir untersuchen zunächst Geraden- und Kreisgleichungen in der komplexen Ebene C = R 2. Geradengleichungen Die Parameterdarstellung einer Geraden durch zwei Punkte z 1 z 2

Mehr

Kapitel III. Aufbau des Zahlensystems

Kapitel III. Aufbau des Zahlensystems Kapitel III. Aufbau des Zahlensystems 1 Addition und Multiplikation natürlicher Zahlen Wir wollen erklären, wie man natürliche Zahlen addiert und multipliziert und dabei nur den Begriff das Zählens verwenden.

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

Kanonische Primfaktorzerlegung

Kanonische Primfaktorzerlegung Mathematik I für Informatiker Zahlen p. 1 Kanonische Primfaktorzerlegung Jede natürliche Zahl n kann auf eindeutige Weise in der Form n = p α 1 1 pα 2 2... pα k k geschrieben werden, wobei k N 0, α i N

Mehr

Anwesenheitsübung zur Vorlesung Algebra und Zahlentheorie

Anwesenheitsübung zur Vorlesung Algebra und Zahlentheorie Anwesenheitsübung zur Vorlesung Algebra und Zahlentheorie WS 205/206 A Rincón, A Schmitt 5 Dezember 205 Aufgabe (0+0 Punkte a Bestimmen Sie die Primfaktorzerlegungen der Zahlen 505 und 2600 und geben Sie

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Wintersemester 2014/15 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax

Mehr

8. Kleinsche Geometrie I: Hyperbolische Geometrie. Das Erlanger Programm.

8. Kleinsche Geometrie I: Hyperbolische Geometrie. Das Erlanger Programm. 8. Kleinsche Geometrie I: Hyperbolische Geometrie Nach den bisherigen Ergebnissen müssen wir uns nun um die Gruppe PSL 2 C kümmern. Das Studium dieser Gruppe wird uns in dieser Vorlesung zu einem neuen

Mehr

Halbgruppen, Gruppen, Ringe

Halbgruppen, Gruppen, Ringe Halbgruppen-1 Elementare Zahlentheorie Einige Bezeichnungen Halbgruppen, Gruppen, Ringe Die Menge N 0 der natürlichen Zahlen 0, 1, 2, Die Menge N = N 1 der von Null verschiedenen natürlichen Zahlen Die

Mehr

4.1. Vektorräume und lineare Abbildungen

4.1. Vektorräume und lineare Abbildungen 4.1. Vektorräume und lineare Abbildungen Mengen von Abbildungen Für beliebige Mengen X und Y bezeichnet Y X die Menge aller Abbildungen von X nach Y (Reihenfolge beachten!) Die Bezeichnungsweise erklärt

Mehr

Inhaltsverzeichnis INHALTSVERZEICHNIS 1

Inhaltsverzeichnis INHALTSVERZEICHNIS 1 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Die Parabel 2 1.1 Definition................................ 2 1.2 Bemerkung............................... 3 1.3 Tangenten................................ 3 1.4

Mehr

Vektorprodukt. Institut für Mathematik Humboldt-Universität zu Berlin & &

Vektorprodukt. Institut für Mathematik Humboldt-Universität zu Berlin & & Vektorprodukt Institut für Mathematik Humboldt-Universität zu Berlin 18.02.2004 & 17.02.2005 & 11.07.2005 zu den Vorlesungen Lineare Algebra und analytische Geometrie I (L) im WS 2003/2004, Mathematik

Mehr

Skript und Übungen Teil II

Skript und Übungen Teil II Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen

Mehr

Analysis 1, Woche 3. Komplexe Zahlen I. 3.1 Etwas Imaginäres

Analysis 1, Woche 3. Komplexe Zahlen I. 3.1 Etwas Imaginäres Analysis, Woche 3 Komplexe Zahlen I A 3. Etwas Imaginäres Zusätzlich zu den reellen Zahlen führen wir das Symbol i ein und wir vereinbaren: i. Wir möchten die reellen Zahlen erweitern mit i. Das heißt,

Mehr

4. Übung zur Linearen Algebra I -

4. Übung zur Linearen Algebra I - 4. Übung zur Linearen Algebra I - en Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. WS 2009-10. Aufgabe 13 Auf dem Cartesischen Produkt Z Z werden 2 Verknüpfungen, definiert durch: Man zeige: (a

Mehr

10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 =

10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 = 2. Februar 2009 66 0 Komplexe Zahlen 0. Komplexe Multiplikation: Für zwei Vektoren [ [ a a2 z =, z 2 = in R 2 wird neben der üblichen Addition die komplexe Multiplikation [ a a z z 2 := 2 b b 2 a b 2 +

Mehr

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN 24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN x 2 = 0+x 2 = ( a+a)+x 2 = a+(a+x 2 ) = a+(a+x 1 ) = ( a+a)+x 1 = x 1. Daraus folgt dann, wegen x 1 = x 2 die Eindeutigkeit. Im zweiten Fall kann man für a 0 schreiben

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen Komplexe Zahlen Allgemeines Definition Eine komplexe Zahl z x + y i besteht aus einem Realteil Re(z) x und einem Imaginärteil Im(z) y. Der Imaginärteil wird mit der Imaginären-Einheit i multipliziert.

Mehr

Gleichungen dritten und vierten Grades und Konstruktionen mit mehr als Zirkel und Lineal

Gleichungen dritten und vierten Grades und Konstruktionen mit mehr als Zirkel und Lineal 1 Gleichungen dritten und vierten Grades und Konstruktionen mit mehr als Zirkel und Lineal Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastic (WIAS) e-mail: stephan@wias-berlin.de

Mehr

3 Strukturen aus der Algebra: Gruppe, Ringe, Körper

3 Strukturen aus der Algebra: Gruppe, Ringe, Körper 3 Strukturen aus der Algebra: Gruppe, Ringe, Körper 3.1 Gruppen Vergleicht man die Gesetze (A1 (A4 und (M1 (M4, so stellt man eine grosse Ähnlichkeit in den Strukturen fest. Man kann das zugrundeliegende

Mehr

Natürliche, ganze und rationale Zahlen

Natürliche, ganze und rationale Zahlen Natürliche, ganze und rationale Zahlen Zunächst haben die zum Zählen verwendeten natürlichen Zahlen 0, 1, 2, 3,... nichts mit dem reellen Zahlen zu tun. Durch die ausgezeichnete reelle Zahl 1 (Maßeinheit!)

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Zahlen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Die natürlichen Zahlen Für eine beliebige Menge S definiert man den Nachfolger S + durch S + := S {S}.

Mehr

Themen und Übungen zum Lehrerweiterbildungskurs Wiederholung und Vertiefung Lineare Algebra/Analytische Geometrie I WiSe 2013/2014

Themen und Übungen zum Lehrerweiterbildungskurs Wiederholung und Vertiefung Lineare Algebra/Analytische Geometrie I WiSe 2013/2014 Themen und Übungen zum Lehrerweiterbildungskurs Wiederholung und Vertiefung Lineare Algebra/Analytische Geometrie I WiSe 2013/2014 [Sch]: R.-H.Schulz:Repetitorium Bachelor Mathematik [Sch-LAI] R.-H.Schulz:

Mehr

Gruppentheorie und Symmetrie in der Chemie

Gruppentheorie und Symmetrie in der Chemie Gruppentheorie und Symmetrie in der Chemie Martin Schütz Institut für theoretische Chemie, Universität Stuttgart Pfaffenwaldring 55, D-70569 Stuttgart Stuttgart, 26. April 2002 Mathematische Definition

Mehr

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z).

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z). 17 Wir setzen in diesem Buch die reellen Zahlen als gegeben voraus. Um auf sicherem Boden zu stehen, werden wir in diesem und den folgenden Paragraphen einige Axiome formulieren, aus denen sich alle Eigenschaften

Mehr

Vom Satz des Pythagoras zu aktueller Algebraischer Geometrie

Vom Satz des Pythagoras zu aktueller Algebraischer Geometrie Vom Satz des Pythagoras zu aktueller Algebraischer Geometrie Universität des Saarlandes, Saarbrücken, E-Mail: Labs@Math.Uni-Sb.de, mail@oliverlabs.net, Web: www.oliverlabs.net Saarbrücken, Otto Hahn Gymnasium,

Mehr

Vorlesung Diskrete Strukturen Gruppe und Ring

Vorlesung Diskrete Strukturen Gruppe und Ring Vorlesung Diskrete Strukturen Gruppe und Ring Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul Einführung in

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation In den reellen Zahlen haben nicht alle Polynome Nullstellen. Der einfachste Fall einer solchen Nullstellen-Gleichung ist x 2 + 1 = 0. Die komplexen Zahlen ("C") sind

Mehr

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH )

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH ) Grundlegende Bemerkungen : Der Begriff des Vektors wurde in den vergangenen Jahren im Geometrieunterricht eingeführt und das mathematische Modell des Vektors wurde vor allem auch im Physikunterricht schon

Mehr

Ergänzung zu komplexe Zahlen

Ergänzung zu komplexe Zahlen Juli 2015 Übersicht 1 Ortskurven 2 Wechselstromkreis mit ohmschem und kapazitivem Widerstand (Parallelschaltung) i(t) u(t) R C Bei festen Werten für den ohmschen Widerstand R und die Kapazität C ergibt

Mehr

Teilbarkeitslehre und Restklassenarithmetik

Teilbarkeitslehre und Restklassenarithmetik Vorlesung Teilbarkeitslehre und Restklassenarithmetik.1 Gruppentheorie WiewirinVorlesung2gesehenhaben,hatdieMengeZmitderAdditiongewisse Eigenschaften. Wir fassen nun bestimmte Eigenschaften zusammen und

Mehr

12 3 Komplexe Zahlen. P(x y) z = x + jy

12 3 Komplexe Zahlen. P(x y) z = x + jy 2 3 Komplexe Zahlen 3 Komplexe Zahlen 3. Grundrechenoperationen Definition Die Menge C = {z = a + jb a, b IR; j 2 = } heißt Menge der komplexen Zahlen; j heißt imaginäre Einheit. (andere Bezeichnung: i)

Mehr

Didaktik der Zahlbereichserweiterungen

Didaktik der Zahlbereichserweiterungen Jürgen Roth Didaktik der Zahlbereichserweiterungen Modul 5: Fachdidaktische Bereiche Kapitel 5: Reelle Zahlen R 5.1 Didaktik der Zahlbereichserweiterungen 1 Ziele und Inhalte 2 Natürliche Zahlen N 3 Ganze

Mehr

In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa. Unterraum,

In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa. Unterraum, 2 Vektorräume In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa Unterraum, Linearkombination, lineare Unabhängigkeit und Erzeugendensystem.

Mehr

Kernlernplan Jahrgangsstufe 5 5 NATÜRLICHE ZAHLEN. Algebra 1.) Darstellen natürlicher Zahlen: Vor- und Nachteile der Darstellungsformen erarbeiten.

Kernlernplan Jahrgangsstufe 5 5 NATÜRLICHE ZAHLEN. Algebra 1.) Darstellen natürlicher Zahlen: Vor- und Nachteile der Darstellungsformen erarbeiten. Kernlernplan Jahrgangsstufe 5 5 NATÜRLICHE ZAHLEN 1.) Darstellen natürlicher Zahlen: Stochastik Funktionen Zahl als Ziffern- und Wortform Große Zahlen Darstellung am Zahlenstrahl; Darstellung im Zehnersystem

Mehr

3. Diskrete Mathematik

3. Diskrete Mathematik Diophantos von Alexandria um 250 Georg Cantor 1845-1918 Pythagoras um 570 v. Chr Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 3: Diskrete Mathematik 3.1 Zahlentheorie: Abzählbarkeit,

Mehr

Reelle Zahlen, Gleichungen und Ungleichungen

Reelle Zahlen, Gleichungen und Ungleichungen 9 2. Vorlesung Reelle Zahlen, Gleichungen und Ungleichungen 4 Zahlenmengen und der Körper der reellen Zahlen 4.1 Zahlenmengen * Die Menge der natürlichen Zahlen N = {0,1,2,3,...}. * Die Menge der ganzen

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

Die komplexe Exponentialfunktion und die Winkelfunktionen

Die komplexe Exponentialfunktion und die Winkelfunktionen Die komplexe Exponentialfunktion und die Winkelfunktionen In dieser Zusammenfassung werden die für uns wichtigsten Eigenschaften der komplexen und reellen Exponentialfunktion sowie der Winkelfunktionen

Mehr

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2)

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2) Lineare Abbildungen (Teschl/Teschl.3,.2 Eine lineare Abbildung ist eine Abbildung zwischen zwei Vektorräumen, die mit den Vektoroperationen Addition und Multiplikation mit Skalaren verträglich ist. Formal:

Mehr

Rationale, irrationale und reelle Zahlen. 4-E Vorkurs, Mathematik

Rationale, irrationale und reelle Zahlen. 4-E Vorkurs, Mathematik Rationale, irrationale und reelle Zahlen 4-E Vorkurs, Mathematik Rationale Zahlen Der Grund für die Einführung der rationalen Zahlen ist der, dass wir mit ihnen auch Gleichungen der Form q x = p lösen

Mehr

4. Vortrag - Garben. Ling Lin, Kristijan Cule Datum: 26. April 2009

4. Vortrag - Garben. Ling Lin, Kristijan Cule Datum: 26. April 2009 4. Vortrag - Garben Datum: 26. April 2009 1 Graduierte Ringe Definition 4.1.1. Eine k-algebra R heißt graduiert, wenn sie dargestellt werden kann als eine direkte Summe R = R n, wobei die R n als k-unterräume

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 1 /27 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 8. Das Skalarprodukt, metrische

Mehr

2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen

2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen bezüglich der Addition und Multiplikation: a, b N mit

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

Komplexe Zahlen. Axel Schüler, Leipzig Juli 2003

Komplexe Zahlen. Axel Schüler, Leipzig Juli 2003 Komplexe Zahlen Axel Schüler, Leipzig schueler@mathematikuni-leipzigde Juli 2003 Da die komplexen Zahlen nicht mehr im Lehrplan stehen, sollen hier die Grundlagen gelegt werden Eine sehr schöne Einführung

Mehr

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG MATHEMATISCHES INSTITUT SEMINAR: QUADRATISCHE FORMEN ÜBER DEN RATIONALEN ZAHLEN SOMMERSEMESTER 2007 DOZENT: PROF. DR. KAY WINGBERG ASSISTENT: JOHANNES BARTELS KAPITEL

Mehr

Programm des Hauptseminars Symmetrie

Programm des Hauptseminars Symmetrie Programm des Hauptseminars Symmetrie Prof. Dr. Irene Bouw Universität Ulm Institut für Reine Mathematik SS 2008 irene.bouw at uni-ulm.de Vortrag 1: Einführung (2 Personen) Dieser Vortrag soll eine Einführung

Mehr

Zahlen und elementares Rechnen (Teil 1)

Zahlen und elementares Rechnen (Teil 1) und elementares Rechnen (Teil 1) Dr. Christian Serpé Universität Münster 6. September 2010 Dr. Christian Serpé (Universität Münster) und elementares Rechnen (Teil 1) 6. September 2010 1 / 40 Gliederung

Mehr

1 Vektoren, Vektorräume, Abstände: 2D

1 Vektoren, Vektorräume, Abstände: 2D Vektoren, Vektorräume, Astände: D Definition: Die Menge aller (geordneten Paare reeller Zahlen (oder allgemeiner: Elemente eines elieigen Körpers, als Spalten geschrieen, ezeichnen wir als Vektoren: R

Mehr

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c)

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c) Komplexe Zahlen Wir betrachten Zahlenpaare (a, b, (c, d R und definieren eine Addition und eine Multiplikation wie folgt: (a, b + (c, d := (a + c, b + d (a, b (c, d := (a c b d, a d + b c Satz: R mit dieser

Mehr

Kongruenzen und Restklassenringe. 2. Kongruenzen und Restklassenringe

Kongruenzen und Restklassenringe. 2. Kongruenzen und Restklassenringe 2. Kongruenzen und Restklassenringe Kongruenzen Definition: Wir sagen a ist kongruent zu b modulo m schreiben a b mod m, wenn m die Differenz b-a te Beispiel: Es gilt 2 19 mod 21, 10 0 mod 2. Reflexivität:

Mehr

2.2 Konstruktion der rationalen Zahlen

2.2 Konstruktion der rationalen Zahlen 2.2 Konstruktion der rationalen Zahlen Wie wir in Satz 2.6 gesehen haben, kann man die Gleichung a + x = b in Z jetzt immer lösen, allerdings die Gleichung a x = b im allgemeinen immer noch nicht. Wir

Mehr

Vorlesung Mathematik I für Wirtschaftswissenschaftler. Universität Leipzig, WS 16/17

Vorlesung Mathematik I für Wirtschaftswissenschaftler. Universität Leipzig, WS 16/17 Vorlesung Mathematik I für Wirtschaftswissenschaftler Universität Leipzig, WS 16/17 Prof. Dr. Bernd Kirchheim Mathematisches Institut kirchheim@math.uni-leipzig.de 1 / 1 Kapitel 1: Grundlagen 4 / 1 Kap.1

Mehr

Kapitel 2: Mathematische Grundlagen

Kapitel 2: Mathematische Grundlagen [ Computeranimation ] Kapitel 2: Mathematische Grundlagen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 2. Mathematische Grundlagen

Mehr

Symmetrie als fundamentale Idee Bezeichnungen (in dieser Vorlesung):

Symmetrie als fundamentale Idee Bezeichnungen (in dieser Vorlesung): Symmetrie als fundamentale Idee Bezeichnungen (in dieser Vorlesung): N := {1, 2, 3,...} (natürliche Zahlen ohne Null) N 0 := {0, 1, 2, 3,...} (natürliche Zahlen mit Null) Z := {..., 2, 1, 0, 1, 2, 3,...}

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

10 Untermannigfaltigkeiten

10 Untermannigfaltigkeiten 10. Untermannigfaltigkeiten 1 10 Untermannigfaltigkeiten Definition. Eine Menge M R n heißt k-dimensionale Untermannigfaltigkeit des R n, 1 k n, falls es zu jedem a M eine offene Umgebung U R n von a und

Mehr

Lineare Algebra I 8. Übungsblatt - Weihnachtszettel - Lösungen

Lineare Algebra I 8. Übungsblatt - Weihnachtszettel - Lösungen Prof. Dr. Duco van Straten Blatt 8 - Lösungen Oliver Labs 8. Dezember 2003 Konrad Möhring Lineare Algebra I 8. Übungsblatt - Weihnachtszettel - Lösungen. Skizzieren Sie die folgenden Teilmengen der GAUSSschen

Mehr

$Id: korper.tex,v /05/10 12:25:27 hk Exp $

$Id: korper.tex,v /05/10 12:25:27 hk Exp $ $Id: korper.tex,v 1.17 2012/05/10 12:25:27 hk Exp $ 4 Körper In der letzten Sitzung hatten wir den Körperbegriff eingeführt und einige seiner elementaren Eigenschaften vorgeführt. Insbesondere hatten wir

Mehr