GESETZ VOM ITERIERTEN LOGARITHMUS

Größe: px
Ab Seite anzeigen:

Download "GESETZ VOM ITERIERTEN LOGARITHMUS"

Transkript

1 KAPITEL 19 GESETZ VOM ITERIERTEN LOGARITHMUS Eines der Hauptanliegen der Wahrscheinlichkeitstheoretiker war seit jeher das Studium der Fluktuationen von geeignet normierten) Summen S n = X X n, deren Glieder zu einer Folge X n )vonunabhängigen und identisch verteilten Zufallsvariablen gehören. Die ersten Untersuchungen befassten sich mit dem Spezialfall von zentrierten, Bernoulli-verteilten Zufallsvariablen. Seit 1909 kannte man als erstes Resultat das starke Gesetz der grossen Zahlen von Borel, das S n /n f.s. 0 besagt. Allerdings war das ein eher bescheidenes Ergebnis, gemessen an dem Ziel, das sich die Mathematiker zu Beginn des Jahrhunderts gesteckt hatten: es besagt ja nur, dass S n = on) fast sicher gilt, was man schwerlich als eine befriedigende Antwort auf die Frage nach dem Verhalten der Folge S n ) akzeptieren konnte. Gleichwohl, ein Anfang war gemacht und herausragende Mathematiker interessierten sich für dieses Problem und erzielten präzisere Resultate. Wir verweisen speziell auf Hausdorff 1913), der zeigen konnte, dass für jedes ε>0 sogar S n = on 1/2)+ε ) fast-sicher gilt, sodann auf Hardy und Littlewood 1914), die zeigten, dass sogar S n = O n log n) fast-sicher gilt. Ein Höhepunkt wurde 1924 erreicht, als Khintchin sein berühmtes Gesetz vom iterierten Logarithmus ankündigte. Wir werden es in diesem Kapitel als Theorem 3.3 vorstellen, wobei der Beweis den historischen Weg zu diesem Resultat nachzuzeichnen versucht. 1. Notation und vorbereitende Lemmata. EsseiY n )n 1) eine Folge von unabhängigen, identisch verteilten Bernoulli-Zufallsvariablen mit 1 2 ε 1 + ε 0 ) als gemeinsamer Verteilung. Für n 1 bezeichne X n die zentrierte und reduzierte Zufallsvariable X n =2Y n 1. Mit gu) wird die erzeugende Funktion der Momente von X 1 benannt, also gu) =g X1 u) =E[e ux 1 ]= 1 2 eu + e u )=chu u R), und für jedes n 1seiS n = n X k.

2 298 KAPITEL 19: GESETZ VOM ITERIERTEN LOGARITHMUS Lemma 1.1. Für jedes u R gilt gu) e u2 /2. Beweis. Esgenügt, die Reihenentwicklungen von gu) = coshu und von e u2 /2 gliedweise miteinander zu vergleichen. Es ist: gu) =coshu = k 0 u 2k 2k)! und e u2 /2 = k 0 u 2k 2 k k!. Damit folgt die Behauptung aus der Ungleichung k 0 gilt. 1 2k)! 1 2 k k! die für jedes Bemerkungen. Setzt man S n = S n/ n und g n u) = g S n u) = gu/ n ) ) n, so folgt aus Lemma 1.1 für alle u R die Ungleichung g n u) e u2 /2. Gemäss dem zentralen Grenzwertsatz gilt aber Sn L N 0, 1) und somit für alle u R g n u) e u2 /2 n ) n ). Man erkennt, dass g n u) von unten gegen e u2 /2 konvergiert. Lemma 1.2. Für jedes a>0 und jedes n 1 gilt 1.1) 1.2) PS n >a e a2 /2n) ; P S n >a 2e a2 /2n). Beweis. Für jedes a>0 und jedes u>0 sind die beiden Ereignisse S n >a und e us n >e ua gleichwertig. Die Markov-Ungleichung zeigt nun PS n >a E[euS n ] = gu)n e ua e, ua woraus wegen Lemma 1.1 PS n >a e nu2 /2) ua folgt. Diese Ungleichung gilt für alle u > 0. Wählt man nun u > 0so, dass der Ausdruck auf der rechten Seite minimal wird, also so, dass bei u 0 die Ableitung des Exponenten verschwindet, so findet man u 0 = a/n und der Wert des Exponenten ist a 2 /2n). Damit ist die Ungleichung 1.1) gezeigt. Da die Zufallsvariable S n symmetrisch ist, gilt für jedes n 1 PS n < a =PS n >a, und daraus ergibt sich die Ungleichung 1.2).

3 1. NOTATIONEN UND VORBEREITENDE LEMMATA 299 Lemma ) P Für jedes a>0, jedesn 1 und jedes u 0 gilt sup S k a E[euS n ] e ua. Beweis. Wir betrachten die disjunkten Ereignisse A 0 = S 1 <a 1,...,S n <a, A 1 = S 1 a, A k = S 1 <a,...,s k 1 <a,s k a k =2,...,n), deren Vereinigung alle Möglichkeiten ausschöpft. Es gilt A k = sup S k a, und für jedes u 0 kann man daher n n 1.4) E[e us n ] e us n dp= e us n I Ak dp A k schreiben. Wenn wir jetzt für jedes k =1,...,n die Zerlegung S n = S k + R k mit R k = X k X n betrachten für k = n sei R n = 0), so erhalten wir ) e us n I Ak dp= e us k I Ak e ur k dp. Die beiden Zufallsvariablen e us k I Ak und e ur k sind nun aber unabhängig die erste hängt nur von den X 1,..., X k ab, die zweite von X k+1,..., X n ). Daher gilt weiter e us n I Ak dp= e us k I Ak dp e ur k dp e ua PA k ) gu) ) n k, und wegen gu) 1erhält man e us n I Ak dp e ua PA k ). Blickt man auf 1.4) zurück, so hat man insgesamt E[e us n ] e ua n PA k )=e ua P = e ua P sup A k ) S k a.

4 300 KAPITEL 19: GESETZ VOM ITERIERTEN LOGARITHMUS 1.5) 1.6) Lemma 1.4. Für jedes a>0 und jedes n 1 gilt: P sup S k >a e a2 /2n) ; P sup S k >a 2e a2 /2n). Beweis. Majorisiert man die rechte Seite von Ungleichung 1.3) aus Lemma 1.3 ebenso, wie das im Beweis von Lemma 1.2 gemacht wurde, so erhält man die Ungleichung 1.5). Da die Zufallsvariablen S n symmetrisch sind, gilt noch P P S k a ; inf S k a damit erhält man auch die Ungleichung 1.6). 2. Zwischenresultate sup Theorem 2.1 Gesetz der grossen Zahlen, E. Borel, 1909). Für n gilt S n /n f.s. 0, d.h.s n = on) fast-sicher. Beweis. Setzt man in Lemma 1.2 2) a = nε, so erhält man für jedes ε > 0 die Ungleichung P S n /n > ε 2e ε2 /2)n.Dafür jedes ε>0die rechte Seite das allgemeine Glied einer konvergenten Reihe ist, gilt ebenso n 1 P S n/n >ε < ; daraus ergibt sich die Aussage von Theorem 2.1. Im Jahr 1914 konnten Hardy und Littlewood 1 S n = O n log n) fastsicher zeigen: Dieses Resultat wurde 1922 von Steinhaus noch verfeinert. Theorem 2.2 Steinhaus, 1922). Fast-sicher gilt lim sup S n 1. 2n log n Dies besagt, dass für jedes c>1 fast-sicher nur endlich viele der Ereignisse E n = S n >c 2n log n eintreten können. Beweis. Aus Lemma 1.2 2) mit a = c 2n log n folgt PE n ) 2e c2 log n =2n c2.für jedes c>1 ist aber die rechte Seite das allgemeine Glied einer konvergenten Reihe. Das gilt also auch für PE n ) und das Lemma von Borel-Cantelli liefert die Behauptung. 1 Hardy G.H.) and Littlewood J.E.). Some problems of Diophantine approximation, Acta Math., vol ), p

5 3. DAS GESETZ VOM ITERIERTEN LOGARITHMUS Das Gesetz vom iterierten Logarithmus 2 Theorem 3.1. Fast-sicher gilt lim sup S n 1. 2n log log n Dies besagt, dass für jedes c>1 fast-sicher nur endlich viele der Ereignisse A n = S n >c 2n log log n eintreten können. Beweis. Wirwählen ein c>1 und eine Zahl γ mit 1 <γ<c.für r 1 bezeichne n r die zu γ r nächstgelegene ganze Zahl. Wir betrachten nun das Ereignis B r = sup S n > 2n r log log n r. n r <n n r+1 Wenn man nun zeigen kann, dass das Ereignis B r nur für endlich viele Indices eintreten kann, so kann auch das Ereignis A n nur für endlich viele Indices n eintreten. Wegen des Lemmas von Borel-Cantelli genügt es also, die Konvergenz der Reihe PB r ) zu zeigen. Um die Richtigkeit dieser Aussage zu erkennen, wendet man Lemma 1.4 2) mit a = c 2n r log log n r an: PB r ) 2e c2 n r /n r+1 )loglogn r 1 ) c 2 n r /n r+1 ) =2. log n r Nun ist n r /n r+1 ) 1/γ) > 1/c), und daher n r /n r+1 > 1/c für hinreichend grosses r. Damit hat man für hinreichend grosses r auch die Abschätzung 1 ) c 1 ) c. PB r ) 2 2 log n r r log γ Für jedes c > 1 ist aber die rechte Seite das allgemeine Glied einer konvergenten Reihe. Dies gilt dann auch für die PB r ), und unter Berufung auf das Lemma von Borel-Cantelli ist das Theorem somit bewiesen. Theorem 3.2. Für jedes c mit 0 < c < 1 tritt das Ereignis A n = S n >c 2n log log n für unendlich viele Indices ein. Beweis. Wirwählen 0 < c < 1, eine ganze Zahl γ und eine reelle Zahl η mit γ 2 und 0 <c<η<γ 1)/γ < 1. Dann sei noch n r = γ r r 1). a) Wenn das Ereignis A nr für unendlich viele Indices r eintritt, dann tritt auch das Ereignis A n für unendlich viele Indices n ein. 2 Dieser Abschnitt orientiert sich an der Darstellung von Feller, An Introduction to Probability and its Applications, vol. 1. Wiley, NewYork, 1966, p

6 302 KAPITEL 19: GESETZ VOM ITERIERTEN LOGARITHMUS b) Wir setzen D r = S nr S nr 1 = n r k=n r 1 +1 X k.dannsindfür jedes r 1 die Variablen D r und S nr 1 unabhängig; ebenso sind die D r r 1) untereinander unabhängig. Setzt man also B r = D r >η 2n r log log n r,c r = S nr 1 > η c) 2n r log log n r, so hat man die Inklusion B r C r A nr. c) Wir werden nun sehen, dass bei geschickter Wahl η das Ereignis C r fast-sicher für jeden Index r eintritt, und zwar bis auf eine endliche Ausnahmemenge. Tatsächlich tritt nach Theorem 3.1 das Ereignis E r = Snr 1 < 2 2nr 1 log log n r 1 fast-sicher für jeden Index r ein, bis auf eine endliche Ausnahmemenge. Wählen wir nun η genügend nahe bei 1, damit 1 η<η c)/r) 2 gilt, so ist 4n r 1 =4 n r γ < 4n r1 η) <n r η c) 2, und man erhält E r = Snr 1 < 2 2nr 1 log log n r 1 S nr 1 < η c) 2n r log log n r S nr 1 > η c) 2n r log log n r = C r. Aus der Inklusion E r C r folgt nun die Behauptung. d) Wir werden nun PB r ) = + zeigen. Da die B r r 1) unabhängig sind, folgt aus dem Lemma von Borel-Cantelli, dass das Ereignis B r fast-sicher für unendlich viele Indices r eintreten muss. In der Tat, D r ist eine Zufallsvariable mit der Varianz n r n r 1. Die reduzierte Variable ist also Dr = D r/ n r n r 1, und sie erlaubt es, B r folgendermassen zu schreiben: B r = Dr n r >η 2 log log n r. n r n r 1 Wegen n r /n r n r 1 )=γ/γ 1) < 1/η gilt für 0 <η<1 B r D r > η 2loglogn r = D r > η 2 logr log γ). NunhatmanaberDr L N 0, 1) für r. Folglich ist die Reihe mit dem allgemeinen Glied PDr > η 2 logr log γ) divergent, und daraus folgt die Behauptung. e) Aus c), d) und der Inklusion B r C r A nr folgt, dass das Ereignis fast-sicher für unendlich viele Indices r eintritt. A nr

7 3. DAS GESETZ VOM ITERIERTEN LOGARITHMUS 303 Theorem 3.2. Für jedes c mit 0 < c < 1 tritt das Ereignis A n = S n < c 2n log log n für unendlich viele Indices ein. Beweis. Dies ergibt sich aus Theorem 3.2, da die Variablen S n symmetrisch sind. Die Theoreme 3.1, 3.2, 3.2 zusammenfassen. lassen sich nun zu der folgenden Aussage Theorem 3.3 Gesetz vom iterierten Logarithmus, Khintchin, 1924). Fast-sicher gilt lim sup S n 2n log log n =1 und lim inf S n 2n log log n = 1. Anders formuliert, für jedes ε>0wird die Folge mit dem allgemeinen Term S n fast-sicher den Wert 1 + ε) 2n log log n höchstens endlich oft überschreiten; andererseits wird sie fast-sicher den Wert 1 ε) 2n log log n unendlich oft überschreiten. Ganz analog ist sie fast-sicher höchstens endlich oft kleiner als 1 + ε) 2n log log n, aber andererseits unendlich oft kleiner als 1 ε) 2n log log n. Korollar. Mit Wahrscheinlichkeit 1 nimmt die Folge S n ) jeden ganzzahligen Wert an. In späteren Untersuchungen versuchte man sich von der klassischen Hypothese zu befreien, dass die Y n Bernoulli-verteilt sind mit Parameter 1 2.Wir zitieren zum Abschluss eines der zahlreichen Ergebnisse in dieser Richtung. Theorem 3.4 Hartman-Wintner, ). Es sei X n ) n 1) eine Folge von unabhängigen, identisch-verteilten und zentrierten Zufallsvariablen aus L 2 mit σ>0als gemeinsamer Standardabweichung. Ferner sei S n = n X k n 1). Dann gilt fast-sicher lim sup S n 2n log log n = σ und lim inf S n 2n log log n = σ. 3 Hartmann Ph.) and Wintner A.). On the law of the iterated logarithm, Amer. J. Math., vol. 63, p

8 304 KAPITEL 19: GESETZ VOM ITERIERTEN LOGARITHMUS ERGÄNZUNGEN UND ÜBUNGEN 1. Es sei Y n )n 1) eine Folge von unabhängigen, identisch verteilten Zufallsvariablen mit pε 1 + qε 0 für 0 <p<1, p + q = 1 als gemeinsamer Verteilung. Man setzt X n =Y n p)/ pq und S n = n X k n 1). a) Man berechne die erzeugende Funktion gu) dermomentevonx 1. b) Für jedes u R gilt gu) 1. Für p = q = 1 ist das banal.) 2 Lösung. Für jedes reelle u ist gu) =g X1 u) =E[e ux 1 ]=pexp u q ) + q exp u p ). pq pq Setzt man a =exp u q ), b =exp u p ),soistgu) =pa + qb nichts pq pq anderes als das arithmetische Mittel von a und b, wogegen a p b q was gleich 1 ist) das geometrische Mittel von a und b ist. Nun folgt gu) 1 aus der klassischen Relation zwischen beiden Mittelwerten. 2. Es gelten weiterhin die Bezeichnungen aus der vorigen Aufgabe. Die Ungleichung gu) e u2 /2 gilt für alle u 0, falls p q ist, sowie für alle u 0, falls p q ist. Im Fall p = q = 1 2 wurde diese Ungleichung in Lemma 1.1 behandelt). Lösung. Wirführen den Beweis für p q, u 0. Dazu betrachten wir die Funktion fu) =u 2 /2) Log gu). Es ist Wegen und f u) =u g u) gu), f u) =1+ g 2 u) gu)g u). g 2 u) g u) = pq exp u q ) exp u p )) pq pq g u) =q exp u q ) + p exp u p ), pq pq hat man g 2 u) gu)g u) = exp u ) p q). pq Somit ist f u) =1 1 g 2 u) exp u ) p q). Nach Aufgabe 1 und den pq Voraussetzungen p q 0, u 0 folgert man f u) 1 exp u ) p q) 0. pq Die Funktion u fu) u 0) ist also konvex; ausserdem ist f0) = 0 und f 0) = 0. Also muss fu) 0für alle u 0gelten.

9

1 Stochastische Prozesse in stetiger Zeit

1 Stochastische Prozesse in stetiger Zeit 1 Stochastische Prozesse in stetiger Zeit 1.1 Grundlagen Wir betrachten zufällige Prozesse, definiert auf einem Wahrscheinlichkeitsraum (Ω, F, P), welche Werte in einen fest gewählten Zustandsraum annehmen.

Mehr

Bachelorarbeit: Ein diskretes Modell für Finanzmärkte

Bachelorarbeit: Ein diskretes Modell für Finanzmärkte Bachelorarbeit: Ein diskretes Modell für Finanzmärkte Die Finanzmathematik ist momentan eine der wichtigsten Anwendungender. Hier soll ein grundlegendes Modell erörtert werden, das auf der Entwicklung

Mehr

Schwach ergodische Prozesse

Schwach ergodische Prozesse Schwach ergodische Prozesse Von der Fakultät für Naturwissenschaften der Universität Duisburg-Essen (Standort Duisburg) zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte

Mehr

Mengensysteme, Wahrscheinlichkeitsmaße

Mengensysteme, Wahrscheinlichkeitsmaße Kapitel 1 Mengensysteme, Wahrscheinlichkeitsmaße Der Großteil der folgenden fundamentalen Begriffe sind schon aus der Vorlesung Stochastische Modellbildung bekannt: Definition 1.1 Eine Familie A von Teilmengen

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Extremwertverteilungen

Extremwertverteilungen Seminar Statistik Institut für Stochastik 12. Februar 2009 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen

Mehr

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0. 1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem Folg. 2 Sei (Ω, E, P) W.-raum. Seien A, B,A 1,...,A n Ereignisse. Es gelten die folgenden Aussagen: 1. P(A) = 1 P(A). 2. Für das unmögliche Ereignis gilt:

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

BONUS MALUS SYSTEME UND MARKOV KETTEN

BONUS MALUS SYSTEME UND MARKOV KETTEN Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik, Institut für Mathematische Stochastik BONUS MALUS SYSTEME UND MARKOV KETTEN Klaus D. Schmidt Ringvorlesung TU Dresden Fakultät MN,

Mehr

Algebra. Patrik Hubschmid. 8. Oktober 2013

Algebra. Patrik Hubschmid. 8. Oktober 2013 Algebra Patrik Hubschmid 8. Oktober 2013 Inhaltsverzeichnis 1 Fortführung der Gruppentheorie 7 1.1 Sylowsätze.................................... 7 3 Vorwort Dieses Skript zur Vorlesung Algebra im Wintersemester

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Stochastische Eingangsprüfung, 17.05.2008

Stochastische Eingangsprüfung, 17.05.2008 Stochastische Eingangsprüfung, 17.5.8 Wir gehen stets von einem Wahrscheinlichkeitsraum (Ω, A, P) aus. Aufgabe 1 ( Punkte) Sei X : Ω [, ) eine integrierbare Zufallsvariable mit XdP = 1. Sei Q : A R, Q(A)

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010 Induktive Limiten Arpad Pinter, Tobias Wöhrer 30. Jänner 2010 1 Inhaltsverzeichnis 1 Induktiver Limes von Mengen 2 2 Induktiver Limes von Vektorräumen 4 3 Lokalkonvexe topologische Vektorräumen 7 4 Induktiver

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

Kapitel 4: Stationäre Prozesse

Kapitel 4: Stationäre Prozesse Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

Primzahlzertifikat von Pratt

Primzahlzertifikat von Pratt Primzahlzertifikat von Pratt Daniela Steidl TU München 17. 04. 2008 Primzahltests in der Informatik "Dass das Problem, die Primzahlen von den Zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren

Mehr

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie Notation Die in dieser Arbeit verwendete Notation ist im Wesentlichen Standard, so wie sie beispielsweise in [As] zu nden ist. Einige Abweichungen hiervon, Klarstellungen und zusätzliche Notationen (sofern

Mehr

Seminar: Lösen Spezieller Gleichungen Wintersemester 2009/2010 Prof. Dr. Annette Huber-Klawitter Betreuer: Stephen Enright-Ward

Seminar: Lösen Spezieller Gleichungen Wintersemester 2009/2010 Prof. Dr. Annette Huber-Klawitter Betreuer: Stephen Enright-Ward Seminar: Lösen Spezieller Gleichungen Wintersemester 2009/2010 Prof. Dr. Annette Huber-Klawitter Betreuer: Stephen Enright-Ward Ort und Zeit: Dienstag, 14-16 Uhr, SR 127 Inhalt: Wir wollen uns in diesem

Mehr

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Codierung Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Ein bisschen Informationstheorie Betrachten wir das folgende Problem: Wie lautet eine sinnvolle Definition für das quantitative

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

STOCHASTISCHE PROZESSE. Vorlesungsskript

STOCHASTISCHE PROZESSE. Vorlesungsskript STOCHASTISCHE PROZESSE II: Martingale und Brownsche Bewegung Wolfgang König Vorlesungsskript Universität Leipzig Wintersemester 2005/6 Inhaltsverzeichnis 1 Theorie der Martingale 3 1.1 Definition und

Mehr

Vorlesung Analysis I / Lehramt

Vorlesung Analysis I / Lehramt Vorlesung Analysis I / Lehramt TU Dortmund, Wintersemester 2012/ 13 Winfried Kaballo Die Vorlesung Analysis I für Lehramtsstudiengänge im Wintersemester 2012/13 an der TU Dortmund basiert auf meinem Buch

Mehr

Analyse von Extremwerten

Analyse von Extremwerten Analyse von Extremwerten Interdisziplinäres Seminar: Statistische Verfahren in den Geowissenschaften Anna Hamann betreut durch Prof. Dr. Helmut Küchenhoff, Institut für Statistik Ludwig Maximilians Universität

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Folgen. Kapitel 3. 3.1 Zinsrechnung

Folgen. Kapitel 3. 3.1 Zinsrechnung Kapitel 3 Folgen Eine Folge reeller Zahlen ordnet natürlichen Zahlen jeweils eine reelle Zahl zu. Liegen beispielsweise volkswirtschaftliche Daten quartalsweise vor, so kann man diese als Folge interpretieren.

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 7 Lineare Programmierung II 1 Lineare Programme Lineares Programm: Lineare Zielfunktion Lineare Nebenbedingungen (Gleichungen oder Ungleichungen) Spezialfall der konvexen Optimierung

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Finanzmathematik 1 11 Folgen und Reihen 1 111 Folgen allgemein 1 112

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe Kapitel 4 Euklidische Ringe und die Jordansche Normalform 4.1 Euklidische Ringe Die Ringe der ganzen Zahlen, Z, sowie Polynomringe über Körpern, K[X], wobei K ein Körper ist, haben die folgenden Gemeinsamheiten:

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Ausarbeitung des Seminarvortrags zum Thema

Ausarbeitung des Seminarvortrags zum Thema Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung

Mehr

Fraktale Geometrie: Julia Mengen

Fraktale Geometrie: Julia Mengen Fraktale Geometrie: Julia Mengen Gunnar Völkel 1. Februar 007 Zusammenfassung Diese Ausarbeitung ist als Stoffsammlung für das Seminar Fraktale Geometrie im Wintersemester 006/007 an der Universität Ulm

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt

Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt Leonhard Euler 1 Wann immer in den Anfängen der Analysis die Potenzen des Binoms entwickelt

Mehr

Amerikanischen Optionen

Amerikanischen Optionen Die Bewertung von Amerikanischen Optionen im Mehrperiodenmodell Universität-Gesamthochschule Paderborn Fachbereich 17 Seminar Finanzmathematik SS 2001 Referentin: Christiane Becker-Funke Dozent: Prof.

Mehr

Anwendung der Theorie von Gauß Shift Experimenten auf den Kolmogorov Smirnov Test und das einseitige Boundary Crossing Problem

Anwendung der Theorie von Gauß Shift Experimenten auf den Kolmogorov Smirnov Test und das einseitige Boundary Crossing Problem Anwendung der Theorie von Gauß Shift Experimenten auf den Kolmogorov Smirnov Test und das einseitige Boundary Crossing Problem Inauguraldissertation zur Erlangung des Doktorgrades der Mathematisch Naturwissenschaftlichen

Mehr

Modul Diskrete Mathematik WiSe 2011/12

Modul Diskrete Mathematik WiSe 2011/12 1 Modul Diskrete Mathematik WiSe 2011/12 Ergänzungsskript zum Kapitel 4.2. Hinweis: Dieses Manuskript ist nur verständlich und von Nutzen für Personen, die regelmäßig und aktiv die zugehörige Vorlesung

Mehr

17. Penalty- und Barriere-Methoden

17. Penalty- und Barriere-Methoden H.J. Oberle Optimierung SoSe 01 17. Penalty- und Barriere-Methoden Penalty- und Barriere Methoden gehören zu den ältesten Ansätzen zur Lösung allgemeiner restringierter Optimierungsaufgaben. Die grundlegende

Mehr

Zur Bewertung von Basket Optionen

Zur Bewertung von Basket Optionen Westfälische Wilhelms-Universität Münster Fachbereich Mathematik und Informatik Institut für Mathematische Statistik Zur Bewertung von Basket Optionen Bachelorarbeit August 2 Leo Bronstein MatrikelNummer

Mehr

Vorlesung Analysis I für Informatiker & Statistiker. Universität München, WS 11/12. Prof. Dr. Max v. Renesse mrenesse@math.tu-berlin.

Vorlesung Analysis I für Informatiker & Statistiker. Universität München, WS 11/12. Prof. Dr. Max v. Renesse mrenesse@math.tu-berlin. Vorlesung Analysis I für Informatiker & Statistiker Universität München, WS 11/12 Prof. Dr. Max v. Renesse mrenesse@math.tu-berlin.de Kapitel 1: Grundlagen 1.1 Aussagenlogik Elementare Aussagenlogik Definition

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Wahrscheinlichkeitstheorie. Zapper und

Wahrscheinlichkeitstheorie. Zapper und Diskrete Wahrscheinlichkeitsräume Slide 1 Wahrscheinlichkeitstheorie die Wissenschaft der Zapper und Zocker Diskrete Wahrscheinlichkeitsräume Slide 2 Münzwürfe, Zufallsbits Elementarereignisse mit Wahrscheinlichkeiten

Mehr

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Michael Schaeer 3.04.03 Abstract This seminar is about convex functions and several imortant ineualities. At the beginning the term

Mehr

Stochastische Analysis. Zufallsmatrizen. Roland Speicher Queen s University Kingston, Kanada

Stochastische Analysis. Zufallsmatrizen. Roland Speicher Queen s University Kingston, Kanada Stochastische Analysis für Zufallsmatrizen Roland Speicher Queen s University Kingston, Kanada Was ist eine Zufallsmatrix? Zufallsmatrix = Matrix mit zufälligen Einträgen A : Ω M N (C) Was ist eine Zufallsmatrix?

Mehr

Einführung in die. Wahrscheinlichkeitstheorie und Statistik

Einführung in die. Wahrscheinlichkeitstheorie und Statistik Institut für Mathematische Stochastik Einführung in die Wahrscheinlichkeitstheorie und Statistik (Kurzskript zur Vorlesung Wintersemester 2014/15 von Prof. Dr. Norbert Gaffke Inhaltsverzeichnis 1 Wahrscheinlichkeitsräume

Mehr

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Die Poisson-Verteilung Jianmin Lu RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Ausarbeitung zum Vortrag im Seminar Stochastik (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In der Wahrscheinlichkeitstheorie

Mehr

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 4 Woche Decodierung; Maximale, Perfekte und Optimale Codes 4 Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 Szenario für fehlerkorrigierende Codes Definition (n, M)-Code Sei C {0, 1}

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

RSA Verfahren. Kapitel 7 p. 103

RSA Verfahren. Kapitel 7 p. 103 RSA Verfahren RSA benannt nach den Erfindern Ron Rivest, Adi Shamir und Leonard Adleman war das erste Public-Key Verschlüsselungsverfahren. Sicherheit hängt eng mit der Schwierigkeit zusammen, große Zahlen

Mehr

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Steinerbäume Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Verfasser Flamur Kastrati Betreuer Prof. Dr. habil. Thomas

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

Folgen und endliche Summen

Folgen und endliche Summen Kapitel 2 Folgen und endliche Summen Folgen und ihre Eigenschaften Endliche arithmetische und geometrische Folgen und Reihen Vollständige Induktion Anwendungen Folgen/endliche Summen Eigenschaften Folgen

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Dr. C.J. Luchsinger 2 Zufallsgrössen Literatur Kapitel 2 * Statistik in Cartoons: Kapitel 4 * Krengel: 3.1 und 3.2 in 3 und (Honours Program) 10 sowie 11.1, 11.2 und 11.3 in

Mehr

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 1 3.34 1.1 Angabe Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 U sei auf dem Intervall (0, 1) uniform verteilt. Zeigen

Mehr

Vorlesung. 1 Zahlentheorie in Z. Leitfaden. 1.1 Teilbarkeit. Angela Holtmann. Algebra und Zahlentheorie. (natürliche Zahlen ohne die Null)

Vorlesung. 1 Zahlentheorie in Z. Leitfaden. 1.1 Teilbarkeit. Angela Holtmann. Algebra und Zahlentheorie. (natürliche Zahlen ohne die Null) Algebra und Zahlentheorie Vorlesung Algebra und Zahlentheorie Leitfaden 1 Zahlentheorie in Z Bezeichnungen: Z := {..., 3, 2, 1, 0, 1, 2, 3,...} (ganze Zahlen) und N := {1, 2, 3,...} (natürliche Zahlen

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n Über die Komposition der quadratischen Formen von beliebig vielen Variablen 1. (Nachrichten von der k. Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, 1898, S. 309 316.)

Mehr

Einführung in die Stochastik

Einführung in die Stochastik Vorlesungsnotizen Einführung in die Stochastik Hanspeter Schmidli Mathematisches Institut der Universität zu Köln INHALTSVERZEICHNIS iii Inhaltsverzeichnis 1. Diskrete Wahrscheinlichkeitsräume 1 1.1.

Mehr

Sprachen/Grammatiken eine Wiederholung

Sprachen/Grammatiken eine Wiederholung Sprachen/Grammatiken eine Wiederholung Was sind reguläre Sprachen? Eigenschaften regulärer Sprachen Sprachen Begriffe Symbol: unzerlegbare Grundzeichen Alphabet: endliche Menge von Symbolen Zeichenreihe:

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Dr. C.J. Luchsinger 1 Wahrscheinlichkeit Literatur Kapitel 1 * gelegentlich lesen: Statistik in Cartoons: Kapitel 1 und 2 (diese Fragen behandle ich in meiner Vlsg nicht) *

Mehr

Nichtlebenversicherungsmathematik Aus welchen Teilen besteht eine Prämie Zufallsrisiko, Parameterrisiko, Risikokapital Risikomasse (VaR, ES) Definition von Kohärenz Zusammengesetze Poisson: S(i) CP, was

Mehr

Trainingsaufgaben zur Klausurvorbereitung in Statistik I und II Thema: Satz von Bayes

Trainingsaufgaben zur Klausurvorbereitung in Statistik I und II Thema: Satz von Bayes Trainingsaufgaben zur Klausurvorbereitung in Statistik I und II Thema: Satz von Bayes Aufgabe 1: Wetterbericht Im Mittel sagt der Wetterbericht für den kommenden Tag zu 60 % schönes und zu 40% schlechtes

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2000 2004

Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2000 2004 Höhere Mathεmatik für Informatiker Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2 24 ii Inhaltsverzeichnis I Eindimensionale

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Einführung in die Computerlinguistik Statistische Grundlagen

Einführung in die Computerlinguistik Statistische Grundlagen Statistik 1 Sommer 2015 Einführung in die Computerlinguistik Statistische Grundlagen Laura Heinrich-Heine-Universität Düsseldorf Sommersemester 2015 Statistik 2 Sommer 2015 Überblick 1. Diskrete Wahrscheinlichkeitsräume

Mehr

P(A B) = P(A) + P(B) P(A B) P(A B) = P(A) + P(B) P(A B) Geometrisch lassen sich diese Sätze einfach nachvollziehen (siehe Grafik rechts!

P(A B) = P(A) + P(B) P(A B) P(A B) = P(A) + P(B) P(A B) Geometrisch lassen sich diese Sätze einfach nachvollziehen (siehe Grafik rechts! Frequentistische und Bayes'sche Statistik Karsten Kirchgessner In den Naturwissenschaften herrscht ein wahrer Glaubenskrieg, ob die frequentistische oder Bayes sche Statistik als Grundlage zur Auswertung

Mehr

4. Versicherungsangebot

4. Versicherungsangebot 4. Versicherungsangebot Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie (FS 11) Versicherungsangebot 1 / 13 1. Einleitung 1.1 Hintergrund In einem grossen Teil

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

Lehrstuhl IV Stochastik & Analysis. Stochastik I. Wahrscheinlichkeitsrechnung. Skriptum nach einer Vorlesung von Hans-Peter Scheffler

Lehrstuhl IV Stochastik & Analysis. Stochastik I. Wahrscheinlichkeitsrechnung. Skriptum nach einer Vorlesung von Hans-Peter Scheffler Fachschaft Mathematik Uni Dortmund Lehrstuhl IV Stochastik & Analysis Stochastik I Wahrscheinlichkeitsrechnung Skriptum nach einer Vorlesung von Hans-Peter Scheffler Letzte Änderung: 8. November 00 Gesetzt

Mehr

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975)

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975) Dass das Problem, die Primzahlen von den zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren zu zerlegen zu den wichtigsten und nützlichsten der ganzen Arithmetik gehört und den Fleiss

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Abitur 2012 Mathematik GK Stochastik Aufgabe C1

Abitur 2012 Mathematik GK Stochastik Aufgabe C1 Seite 1 Abiturloesung.de - Abituraufgaben Abitur 2012 Mathematik GK Stochastik Aufgabe C1 nter einem Regentag verstehen Meteorologen einen Tag, an dem mehr als ein Liter Niederschlag pro Quadratmeter gefallen

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

Grundlagen der Variationsrechnung

Grundlagen der Variationsrechnung Universität des Saarlandes Fachrichtung 6.1 Mathematik /home/lehrstuhl/ag-fuchs/olli/work/texstyles/eule-eps-conv Grundlagen der Variationsrechnung Eine anwendungsorientierte Einführung in die lineare

Mehr

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle.

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle. Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik Seminar Entscheidungsverfahren für logische Theorien Tobias Hebel Koblenz, am 18.02.2005 Inhaltsverzeichnis 1 Einleitung... 3 2 Grundlagen...

Mehr

Monte-Carlo Simulation

Monte-Carlo Simulation Monte-Carlo Simulation Sehr häufig hängen wichtige Ergebnisse von unbekannten Werten wesentlich ab, für die man allerhöchstens statistische Daten hat oder für die man ein Modell der Wahrscheinlichkeitsrechnung

Mehr

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É.

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Tardos Janick Martinez Esturo jmartine@techfak.uni-bielefeld.de xx.08.2007 Sommerakademie Görlitz Arbeitsgruppe 5 Gliederung

Mehr

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013 Reelle Analysis Vorlesungsskript Enno Lenzmann, Universität Basel 7. November 2013 6 L p -Räume Mit Hilfe der Masstheorie können wir nun die sog. L p -Räume einführen. Diese Räume sind wichtig in vielen

Mehr

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper 32 Andreas Gathmann 3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper Wir haben bisher von den reellen Zahlen nur die Körpereigenschaften, also die Eigenschaften der vier Grundrechenarten ausgenutzt

Mehr

Vorlesung 3 MINIMALE SPANNBÄUME

Vorlesung 3 MINIMALE SPANNBÄUME Vorlesung 3 MINIMALE SPANNBÄUME 72 Aufgabe! Szenario: Sie arbeiten für eine Firma, die ein Neubaugebiet ans Netz (Wasser, Strom oder Kabel oder...) anschließt! Ziel: Alle Haushalte ans Netz bringen, dabei

Mehr

Lösungen zur Vorrundenprüfung 2006

Lösungen zur Vorrundenprüfung 2006 Lösungen zur Vorrundenprüfung 2006 Zuerst einige Bemerkungen zum Punkteschema. Eine vollständige und korrekte Lösung einer Aufgabe ist jeweils 7 Punkte wert. Für komplette Lösungen mit kleineren Fehlern

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Wie viele Nullstellen hat ein Polynom?

Wie viele Nullstellen hat ein Polynom? Wie viele Nullstellen hat ein Polynom? Verena Pölzl 0812265 Sabine Prettner 8930280 Juni 2013 1 Inhaltsverzeichnis 1 Warum will man wissen, wie viele Nullstellen ein Polynom hat? 3 2 Oligonome 4 3 Die

Mehr

Einführung in die Stochastik

Einführung in die Stochastik Einführung in die Stochastik Josef G. Steinebach Köln, WS 2009/10 I Wahrscheinlichkeitsrechnung 1 Wahrscheinlichkeitsräume, Urnenmodelle Stochastik : Lehre von den Gesetzmäßigkeiten des Zufalls, Analyse

Mehr

Einfache Differentialgleichungen

Einfache Differentialgleichungen Differentialgleichungen (DGL) spielen in der Physik eine sehr wichtige Rolle. Im Folgenden behandeln wir die grundlegendsten Fälle 1, jeweils mit einer kurzen Herleitung der Lösung. Dann schliesst eine

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr