Einführung in die Meteorologie (met210) - Teil IV: Dynamik der Atmosphäre

Größe: px
Ab Seite anzeigen:

Download "Einführung in die Meteorologie (met210) - Teil IV: Dynamik der Atmosphäre"

Transkript

1 Einführng in die Meteorologie (met20) - Teil IV: Dnamik der Atmosphäre Clemens Simmer

2 IV Dnamik der Atmosphäre Dnamische Meteorologie ist die Lehre on der Natr nd den Ursachen der Bewegng in der Atmosphäre. Sie teilt sich af in Kinematik nd Dnamik im engeren Sinne. Kinematik Diergen nd Rotation Massenerhaltng Stromlinien nd Trajektorien 2. Die Bewegngsgleichng Newtonsche Aiome nd wirksame Kräfte Naier-Stokes-Gleichng Skalenanalse 3. Zweidimensionale Windssteme natürliches Koordinatensstem Gradientwind nd andere Reibngseinflss af das Vertikalprofil des Windes 2

3 IV.2 Die Bewegngsgleichng Die Newtonschen Aiome Die wirksamen Kräfte Drckgradient Schwerkraft Reibngskraft Scheinkräfte (Zentrifgal- Corioliskraft) Die Naier-Stokes-Gleichng Skalenanalse geostrophische Approimation hdrostatische Approimation geostrophischer Wind im p-koordinatensstem 3

4 IV.2. Bewegngsgleichng im Inertialsstem. Aiom K 0 a 2. Aiom d m a K 3. Aiom K 2 K 2 i K i const Korrolar ("4. Aiom" ) K Im kräftefreien Ram bewegt sich ein Körper mit konstanter Geschwindigkeit fort. Af angreifende Kräfte reagiert ein Körper mit einer Beschlenigng (ach Definition der Masse). Greift eine Kraft an einem Körper an so wirkt eine gleiche Kraft mit mgekehrtem Voreichen (actio reactio). Unterschiedliche Kräfte addieren sich ektoriell r Gesamtkraft. Die Newtonschen Aiome die nr in einem Inertialsstem gelten sind der Asgangspnkt für die Bewegngsgleichng af der rotierenden Erde. 4

5 IV.2.2 Af die Atmosphäre wirksame Kräfte a) in einem Inertialsstem gilt nach Aiom 2 nd dem Korrolar d d K a a m K f mit f massenspeifische Kraft m oder Beschlenigng 3 f f mit f Drckgradientbeschlenigng i i f2 f 3 Schwerebeschlenigng Reibngsbeschlenigng 5

6 Drckgradientbeschlenigng B A An allen Wänden des Volmens () wirkt der Lftdrck als Implsflssdichte pkraft/fläche Impls/(Zeit Fläche) Fläche A: p( 0 /2)p( 0 )(p/)(/2) Fläche B: p( 0 -/2)p( 0 ) -(p/)(/2) Nettoimplsflssdichte in -Richtng p( 0 /2)-p( 0 -/2)- (p/) Nettokraft (Drck Fläche) K -(p/) -(p/)v massenspeifische Kraft (Beschlenigng) f K /m-(p/)v/m -(/)(p/) f p f p f p p p p oder fp p 6

7 Schwerebeschlenigng Wir kennen bereits : g gn gz mit gn Newtonsche Aniehng (Graitation) gz Zentrifgalbeschlenigng g mss senkrecht af der Erdoberfläche sein Im Inertialsstem dürfen wir aber die Zentrifgalbeschlenigng der Erde nicht einbeiehen. g N g g Also gilt f g g N 0 g g N N 7

8 Reibngskraft () Astasch on Molekülen wischen den Schichten nterschiedlicher Geschwindigkeit drch thermische Bewegng moleklare Reibng «Astasch on Lftpaketen wischen den Schichten nterschiedlicher Geschwindigkeit drch Trblen trblente Reibng Prinip der Reibng: Analog m Drck ist Reibng als Implsastasch sehen allerdings nn parallel den Grenflächen 8

9 Reibngskraft (2) Grndlegender Ansat: Schbspannng intiti nächst nr für Reibng in der Horiontalen kg ms m / s m kg m / s m β mit β kg ms [ β ] Zähigkeit [ ] Implsflssdichte wie der Drck 2 s ( 0 / 2) ( 0 / 2) : Schb in Richtng drch Implsastasch in Richtng ± wirkt oben nd nten am Volmen Differen bewirkt Nettoschb 9

10 Reibngskraft (3) ( 0 /2) 0 ( 0 -/2) > 0 ( 0 /2)- ( 0 -/2)<0 Abbremsng β ( 0 /2) > 0 ( 0 -/2) < 0 ( 0 /2)- ( 0 -/2)»0 starke Beschlenigng ( 0 /2) >0 ( 0 -/2) > 0 ( 0 /2)- ( 0 -/2)~0 weder Abbremsng noch Beschlenigng Entscheidend für Abbremsng oder Beschnenigng ist also nicht der Implstransport selbst sondern dessen rämliche Änderng: Konergen beschlenigt Diergen bremst. 0

11 Reibngskraft (5) Berechnng der Nettokraft in -Richtng (Implsflssdiergen): Reibngsbeschlenigng nach / ) ( ) / ( über ) / ( ) / ( m V m K f K R R R ± ± Laminare nd trblente Strömngen trblenter Diffsionskoeffiient K moleklare Zähigkeit bw. kinematische mit ) ( ) ( trblent laminar 2 2 µ ν µ υ υ µ β K K f R

12 Reibngskraft (6) Problem: Neben eistieren noch nd nd analog für die anderen Richtngen nd nd nd. Die ii sind schon drch die Drckgradientkraft erledigt! Lösng: Schbspannngstensor nd fr 2

13 Bewegngsgleichng für die Atmosphäre im Inertialsstem d a p g N In der Bewegngsgleichng für das Inertialsstem treten die bekannten Coriolis- nd Zentrifgalbeschlenigngen nicht af! Als brachbares Inertialsstem kann dabei ein in der Sonne erankertes Koordinatensstem sein das seine Achsen starr am Fisternhimmels asrichtet. 3

14 IV.2.2 Bewegngsgleichng im Erdsstem b) im erdfesten Begssstem Das erdfeste Sstem ist kein Inertialsstem da jeder feste Pnkt (bis af die Pole) drch die Erddrehng ständig seine Bewegngsrichtng ändern mss. Massen af der Erde reagieren af diese Beschlenigngen mit Trägheit d.h. sie erschen ihre momentane Bewegng im Inertialsstem beibehalten. Im erdfesten Sstem erscheinen diese Trägheitsbewegngen als Beschlenigngen die dann als Reaktion af Scheinkräfte interpretiert werden 4

15 Coriolisbeschlenigng - qalitati () - Ein on P (fest af der Scheibe) nach Q geworfener Körper hat ach eine -Komponente der Geschwindigkeit; sie entspricht etwa der -Bewegng on P. Nach der Zeit t ist P bei P nd ach der Körper mss etwa die gleiche Strecke in -Richtng nach Q t 0 Q Q P P tt Q rück gelegt haben. Der Pnkt Q hat sich aber nr nach Q erlagert drch die kleinere Entfernng on der Drehachse. Der Körper hat sich also relati r Scheibenoberfläche nach rechts bewegt. Analoges ergibt sich für die mgekehrte Richtng. 5

16 Coriolisbeschlenigng - qalitati (2) - P P Q Q Q P Q Q Q Die Vektoren seien Wege nach einer festen Zeit t. P wirft nach Q (blaer Vektor). Doch gleicheitig ist die Drehng der Scheibe berücksichtigen (roter Vektor). Die Smme ist der grüne Vektor der die Position des Balls im Intertialsstem aneigt. Beachte nn die Position des Balls Q relati der Geraden P Q. Rechtsablenkng P 6

17 Coriolisbeschlenigng - halb qantitati () - Ein Körper startet bei A mit konstanter Geschwindigkeit nach B (nach Norden) nd hält afrecht über ein Zeitinterall t. Drch Erhaltng des Ost-Implses nimmt er dabei eine Relatigeschwindigkeit in Ostrichtng af nd hat nach t die Strecke s nach Osten rückgelegt. B t A 2 s C 3 s t( (A)- (B))t (Rcos()/t - Rcos( )/t) t (R(cos() - cos( ))) t mit Länge nd Breite Mit b C 2s/(t)² (Annahme einer konstanten Beschlenigng nach Ost: s/2b c t²) nd /t/r t R/ folgt b C 2R(cos()-cos( )) / ( R/ ) - 2 (cos()-cos()) / () - 2 (cos()) / () -2d(cos)/d 2sin b C 2Ω sinϕ Der Körper beschlenigt nach rechts in Abhängigkeit on Geschwindigkeit nd Breite 7

18 Coriolisbeschlenigng - halb qantitati (2) - Ein Körper bewege sich mit der Relatigeschwindigkeit nach Ost. Er hat dann die Absoltgeschwindigkeit a rrcos. Da er einer Kreisbewegng folgt folgt eine Zentrifgalbeschlenigng on ( a ) 2 /r. r R P 2 cos 2 sin 2 r ( Ωr ) a 2 r Ω r 2 Ω r Der erste Term ist das bekannte g. Die beiden letten Terme beschreiben die sätliche Zentrifgalbeschlenigng drch die (relatie) -Bewegng. Der dabei meist dominierende mittlere Term (nr er hängt om Voreichen on ab!) lässt sich in eine nd eine -Komponente afteilen (Abbildng). Offensichtlich erfolgt in der Horiontalen wieder eine Rechtsablenkng nd war mit der Beschlenigng b C 2Ω sinϕ 8

19 Coriolisbeschlenigng - formal () - Betrachtng der Darstellng eines Vektors im Intertialsstem nd im rotierenden Erdsstem Bildng der eitlichen Ableitng nter Berücksichtigng der Änderng des rotierenden Koordinatensstems Anwendng af den Vektor der absolten Geschwindigkeit. 9

20 Coriolisbeschlenigng - formal (2) - i k j Ω j k i da a Vektor ai a j ak a i a j a k daras folgt da da da i j k da da da i j k d a beobachtete Änderng im beschlenigten Sstem di dj dk a a a d a a Ω i a Ω j a Ω k d a Ω a i Ω a j Ω a k d a Ω a 20

21 Coriolisbeschlenigng - formal (3) - da d a Ω a dr da d r Ω r identisch mit a Ω r d a a d d ( r ) Ω Ω Ω Ω r d d Ω d r r Ω Ω Ω Ω r 2

22 Coriolisbeschlenigng - formal (4) - d d d Ω a r 2 Ω Ω Ω r IV V I II III I. Scheinbare Beschlenigng relati r Erdoberfläche II. Beschlenigng im Inertialsstem ( Smme der angreifenden Kräfte) III. Beschlenigng drch Änderng der Erdrotation (Herbsttag 005 s kürer als Sommertag i.a. aber ernachlässigbar) IV. Coriolisbeschlenigng V. Zentrifgalbeschlenigng 22

23 Coriolisbeschlenigng - formal (5) Coriolisbeschlenigng i fc 2Ω 2 Ω j Ω k Ω w 2Ω ( sinϕ w cosϕ) 2Ω sinϕ 2Ω cosϕ da 0 cosϕ sinϕ Äq. Wo ist ²/r on Folie 8 geblieben? f Mit dem Coriolisparameter f2sin gilt für die horiontale Komponente C h f 2Ωcosϕ w f fk h f f da w << 23

24 Naier-Stokes-Gleichng () d d da d Ω r 2Ω Ω Ω r d a p gk ( ) p gk 2Ω t f R Dabei wrden totale Ableitng in partielle Ableitngen gesplittet Rotationsektor als konstant angenommen Zentrifgalbeschlenigng in der Schwerebeschlenigng integriert d /d/ gesett Reibng erallgemeinert 24

25 25 Naier-Stokes-Gleichng (2) f R gk p t d Ω 2 ) ( komponentenweise ( ) R R R f -g p w w w w t w dw f p w t d f w p w t d cos sin cos sin Ω Ω Ω ϕ ϕ ϕ ϕ gekoppelte nichtlinear Diff gleichngen 2. Ordnng

26 IV.2.3 Skalenanalse - für snoptische Ssteme der mittleren Breiten - Snoptische Skalenanalse der -Komponente (Vertikalwind) -> statische Grndgleichng Snoptische Skalenanalse der /- Komponente (Horionalwind) -> der geostrophische Wind 26

27 Skalenanalse (2) - charakteristische snoptische Größen - Horiontalgeschw. U ~ 0 m/s Vertikalgeschw. W ~ 0-2 m/s Länge L ~ 0 6 m (000 km) Höhe H ~ 0 4 m (0 km) Lftdrckariat. P ~ 0 3 Pa (0 hpa) Zeit L/U T ~ 0 5 s (ca. Tag) Coriolisparam. f 2Ωsinϕ ~ 0-4 s - Lftdichte ~ kg/m 3 Lftdrck am Boden p o ~ 0 5 Pa (000 hpa) 27

28 Skalenanalse (3) horiontale Bewegngsgleichng - d d p 2Ω( sinϕ w cosϕ) p 2Ω sin ϕ F Fr F Fr U/T / p/l fu fw m/s 2 f f p p...coriolisbeschlenigng nd Drckgradientbeschlenigng heben sich gegenseitig af! 28

29 snoptische Skalenanalse (4) geostrophischer Wind - f p p f h oder k f h p fk h h p T geostrophischer Wind: g g k f p g h p f p p 3 p p 2 p p p p F PH F CH H g 29

30 snoptische Skalenanalse (5) - 3. Bewegngsgleichng - dw p g 2Ω cos ϕ f F W/T / p o /H g fu m/s 2 p g...schwerebeschlenigng nd Drckgradientbeschlenigng heben sich gegenseitig af! 30

31 Snoptische Skalenanalse (6) - Berücksichtigng der Beschlenigng - d d f p f ( g ) d d f ( g ) ag ag p f Offensichtlich bestimmt der ageostrophische Wind die Änderng des Windes. Wann ist das wichtig? Wenn d d f f U T fu U L U fu U² L fu U fl R o Rossb - Zahl groß ist. Mit gegebenen Zahlen gilt R o 0 also 0% Fehler bei Anname des geostrophischen Windes. Bei L00 km nd sonst neränderten Skalen gilt R o also 00% Fehler (.B. für Mesosklonen oder mit U größer bei Hrrikanen) 3

32 Übngen IV.2. Berechne den Vektor der Drckgradientbeschlenigng wenn bei p000 hpa nd einer Temperatr on 20 C der Lftdrck on Westen nach Osten m 5 hpa af 00 km abnimmt. 2. Wie groß sind die Komponenten der Coriolisbeschlenigng bei einem Windektor (w) (5 m/s 5 m/s m/s) am Pol in 45 N nd am Äqator. 3. Schäte die Größe der Terme der Gleichng für die Zentrifgalbeschlenigng af Seite 8 ab. 4. Erlätere die Ableitng der Bewegngsgleichng af der rotierenden Erde in ca. 20 Zeilen. 5. Welche Beschlenigngen würden Änderngen des Betrags des Rotationsektors der Erde m %/Tag aslösen? Vergleiche den Betrag mit dem der Coriolisbeschlenigng. 6. Versche eine Skalenanalse der horiontalen Bewegngsgleichng für einen Badewannenwirbel. 32

Einführung in die Meteorologie (met211) - Teil VI: Dynamik der Atmosphäre

Einführung in die Meteorologie (met211) - Teil VI: Dynamik der Atmosphäre Einführng in die Meteorologie (met211) - Teil VI: Dnamik der Atmosphäre Clemens Simmer VI Dnamik der Atmosphäre Dnamische Meteorologie ist die Lehre on der Natr nd den Ursachen der Bewegng in der Atmosphäre.

Mehr

211 Viskosität von Luft

211 Viskosität von Luft 11 Viskosität von Lft 1. Afgaben 1.1 Messen Sie die Viskosität η von Lft in Abhängigkeit vom Drck p. Stellen Sie η als Fnktion von p grafisch dar! 1. Interpretieren Sie die Messkrve!. Grndlagen Stichworte:

Mehr

EINFÜHRUNG IN DIE TENSORRECHNUNG

EINFÜHRUNG IN DIE TENSORRECHNUNG EINFÜHRUNG IN DIE TENSORRECHNUNG Teil SIEGFRIED PETRY Nefassng vom.jni 016 I n h a l t 1 Mehr über Tensoren. Stfe Darstellng eines Tensors in einer Basis 4 Beispiele nd Übngen 5 4 Lösngen 1 1 1 Tensoren.

Mehr

Übungsaufgaben Mathematik III MST. Zu b) Klassifizieren Sie folgende Differentialgleichungen nach folgenden Kriterien : - Anfangswertproblem

Übungsaufgaben Mathematik III MST. Zu b) Klassifizieren Sie folgende Differentialgleichungen nach folgenden Kriterien : - Anfangswertproblem Übngsafgaben Mathematik III MST Lösngen z Blatt 4 Differentialgleichngen Prof. Dr. B.Grabowski Z Afgabe ) Z a) Klassifizieren Sie folgende Differentialgleichngen nach folgenden Kriterien: -Ordnng der Differentialgleichng

Mehr

7 Lineare Gleichungssysteme

7 Lineare Gleichungssysteme 116 7 Lineare Gleichngsssteme Lineare Gleichngsssteme treten in vielen mathematischen, aber ach natrwissenschaftlichen Problemen af; m Beispiel beim Lösen von Differentialgleichngen, bei Optimierngsafgaben,

Mehr

7.3 Lorentz Transformation

7.3 Lorentz Transformation 26 KAPITEL 7. SPEZIELLE RELATIVITÄTSTHEORIE 7.3 Lorent Transformation In diesem Abschnitt sollen die Transformationen im 4-dimensionalen Minkowski Raum betrachtet werden. Dabei wollen wir uns auf solche

Mehr

3 Flächen und Flächenintegrale

3 Flächen und Flächenintegrale 3 Flächen Flächen sind im dreidimensionalen Ram eingebettete zweidimensionale geometrische Objekte In der Mechanik werden zb Membranen nd chalen als Flächen idealisiert In der Geometrie treten Flächen

Mehr

5 Kinematik der Rotation (Drehbewegungen) 6 Dynamik der Translation

5 Kinematik der Rotation (Drehbewegungen) 6 Dynamik der Translation Inhalt 1 4 Kinematik der Translation 4.1 Koordinatensysteme 4. Elementare Bewegungen 5 Kinematik der Rotation (Drehbewegungen) 6 Dynamik der Translation 6.1 Die Newton sche Aiome 6.1.1 Erstes Newton sches

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 09/10. Michael Karow. Themen: Flächen und Flächenintegrale

Vorlesung: Analysis II für Ingenieure. Wintersemester 09/10. Michael Karow. Themen: Flächen und Flächenintegrale Vorlesng: Analsis II für Ingeniere Wintersemester 9/ Michael Karow Themen: lächen nd lächenintegrale Parametrisierte lächen I Sei 2 eine kompakte Menge mit stückweise glattem and (d.h. der and ist as glatten

Mehr

2. Translation und Rotation

2. Translation und Rotation 2. Translation und Rotation 2.1 Rotation eines Vektors 2.2 Rotierendes ezugssystem 2.3 Kinetik Prof. Dr. Wandinger 2. Relativbewegungen Dynamik 2 2.2-1 2.1 Rotation eines Vektors Gesucht wird die zeitliche

Mehr

Spezielle Relativitätstheorie. Dynamik der Speziellen Relativitätstheorie

Spezielle Relativitätstheorie. Dynamik der Speziellen Relativitätstheorie Seielle Relatiitätstheorie Dnamik der Seiellen Relatiitätstheorie Dnamik Dnamik als Teilgebiet der Mehanik beshreibt die Änderng der Bewegngsgrößen Weg, Geshwindigkeit nd Beshlenigng nter Einwirkng on

Mehr

E1 Mechanik Lösungen zu Übungsblatt 2

E1 Mechanik Lösungen zu Übungsblatt 2 Ludwig Maimilians Universität München Fakultät für Physik E1 Mechanik en u Übungsblatt 2 WS 214 / 215 Prof. Dr. Hermann Gaub Aufgabe 1 Drehbewegung einer Schleifscheibe Es werde die Schleifscheibe (der

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf

Mehr

1 Pythagoräische Zahlentripel

1 Pythagoräische Zahlentripel 1 Pythagoräische Zahlentripel Wir fragen ns nn, welche natürlichen Zahlen die Gleichng 2 + y 2 = 2 lösen. Übng 1 Finden Sie Zahlentripel (; y; ) 2 N 3, mit 1 ; y < ; welche die Gleichng 2 + y 2 = 2 lösen.

Mehr

5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 2009

5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 2009 5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 009 Aufgabe 5.1: Trägheitskräfte Auf eine in einem Aufzug stehende Person (Masse 70 kg) wirken

Mehr

Vorlesung Theoretische Mechanik

Vorlesung Theoretische Mechanik Julius-Maximilians-Universität Würzburg Vorlesung Theoretische Mechanik Wintersemester 17/18 Prof. Dr. Johanna Erdmenger Vorläufiges Skript 1 (Zweite Vorlesung, aufgeschrieben von Manuel Kunkel, 23. 10.

Mehr

Dynamik der Atmosphäre. Einige Phänomene

Dynamik der Atmosphäre. Einige Phänomene Dynamik der Atmosphäre Einige Phänomene Extratropische Zyklone L L L = 1000 km U = 10 m/sec Tropische Zyklon, Hurrikan, Taifun L L = 500 km U = 50 m/sec Cumulonimbuswolke L L = 10-50 km U = 10-20 m/sec

Mehr

Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird?

Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird? Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird? Beim freien Fall eines Körpers auf die Erde, muss man bedenken, dass unsere Erde ein rotierendes System ist. Um die Kräfte,

Mehr

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Aufgaben 4 Translations-Mechanik Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Lernziele - die Grössen zur Beschreibung einer Kreisbewegung und deren Zusammenhänge kennen. - die Frequenz, Winkelgeschwindigkeit,

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Punkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf einem

Mehr

Definition und Eigenschaften von elliptischen Funktionen Thomas Regier. 1. Verdoppelung des Lemniskatenbogens und erweitertes Additionstheorem

Definition und Eigenschaften von elliptischen Funktionen Thomas Regier. 1. Verdoppelung des Lemniskatenbogens und erweitertes Additionstheorem Definition nd Eigenschaften von elliptischen Fnktionen Thomas Regier. Verdoppelng des Lemniskatenbogens nd erweitertes Additionstheorem Elliptische Integrale berechnen die Krvenlänge von z.b. elliptischen

Mehr

Vektorrechnung in der Physik und Drehbewegungen

Vektorrechnung in der Physik und Drehbewegungen Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen

Mehr

Blatt 12: Satz von Gauss, Satz von Stokes

Blatt 12: Satz von Gauss, Satz von Stokes Fakltät für Physik Jan on Delft, Katharina Stadler, Frake Scharz T0: Rechenmethoden für Physiker, WiSe 203/4 http://homepages.physik.ni-menchen.de/~ondelft/lehre/3t0/ Blatt 2: Satz on Gass, Satz on Stokes

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

Übungen zur Vorlesung PN1 Lösung zu Blatt 5

Übungen zur Vorlesung PN1 Lösung zu Blatt 5 Aufgabe 1: Geostationärer Satellit Übungen zur Vorlesung PN1 Lösung zu Blatt 5 Ein geostationärer Satellit zeichnet sich dadurch aus, dass er eine Umlaufdauer von einem Tag besitzt und sich folglich seine

Mehr

Vektorraum. Ist =, so spricht man von einem reellen Vektorraum, ist =, so spricht man von einem komplexen

Vektorraum. Ist =, so spricht man von einem reellen Vektorraum, ist =, so spricht man von einem komplexen 6. Vektorra Ein Vektorra oder linearer Ra ist eine algebraische Strktr die in fast allen Zweigen der Matheatik erwendet wird. Eingehend betrachtet werden Vektorräe in der Linearen Algebra. Die Eleente

Mehr

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der

Mehr

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am 4.11. werden sie von Herrn Hofstaetter in den Übungen vorgerechnet. Vom Weg zu

Mehr

6 Dynamik der Translation

6 Dynamik der Translation 6 Dynamik der Translation Die Newton sche Axiome besagen, nach welchen Geseten sich Massenpunkte im Raum bewegen. 6.1.1 Erstes Newton sches Axiom (Trägheitsgeset = law of inertia) Das erste Newton sche

Mehr

WS 2008/ PDDr.S.Mertens. Theoretische Physik I Mechanik J. Unterhinninghofen, M. Hummel Blatt 3

WS 2008/ PDDr.S.Mertens. Theoretische Physik I Mechanik J. Unterhinninghofen, M. Hummel Blatt 3 PDDr.S.Mertens Theoretische Phsik I Mechanik J. Unterhinninghofen, M. Hummel Blatt 3 WS 2008/2009 28.10.2008 1. Bewegung im rotierenden Sstem. Ein Massenpunkt ist unächst starr mit einer gegen (4Pkt.)

Mehr

Physikalisches Praktikum M 7 Kreisel

Physikalisches Praktikum M 7 Kreisel 1 Physikalisches Praktikum M 7 Kreisel Versuchsziel Quantitative Untersuchung des Zusammenhangs von Präzessionsfrequenz, Rotationsfrequenz und dem auf die Kreiselachse ausgeübten Kippmoment Literatur /1/

Mehr

5 Kinematik der Starrkörperbewegung

5 Kinematik der Starrkörperbewegung 35 Ein starrer Körper ist eine Idealisierung eines Maschinenteils, bei der man Verformungen vernachlässigt. Verbindet man mit dem Körper in einem beliebigen Beugspunkt ein körperfestes Koordinatensstem,

Mehr

Rotierende Bezugssysteme

Rotierende Bezugssysteme Rotierende Bezugssysteme David Graß 13.1.1 1 Problematik Fährt ein Auto in eine Kurve, so werden die Innsassen nach außen gedrückt, denn scheinbar wirkt eine Kraft auf die Personen im Innern des Fahrzeuges.

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung

Mehr

3.7 Physik auf einem Karussell

3.7 Physik auf einem Karussell 3.7-1 3.7 Phsik auf einem Karussell 3.7.1 Geradlinig gleichförmige Bewegung auf einer sich drehenden Plattform Im Abschnitt 1.1 untersuchten wir einen Körper, der sich reibungsfrei mit konstanter Geschwindigkeit

Mehr

1.2 Räumliche Bewegung. Aufgaben

1.2 Räumliche Bewegung. Aufgaben Technische Mechanik 3 1.2-1 Prof. Dr. Wandinger Aufgabe 1 1.2 Räumliche Bewegung Aufgaben Ein Flugzeug fliegt mit der Geschwindigkeit v F gegenüber der Luft einen angezeigten Kurs von 30. Der Wind weht

Mehr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr Dynamik der ebenen Kreisbewegung Eine Kreis- oder Rotationsbewegung entsteht, wenn ein Drehmoment:: M = Fr um den Aufhängungspunkt des Kraftarms r (von der Drehachse) wirkt; die Einheit des Drehmoments

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

Übungsaufgaben Mathematik 3 MST Lösung zu Blatt 4 Differentialgleichungen

Übungsaufgaben Mathematik 3 MST Lösung zu Blatt 4 Differentialgleichungen Übngsafgaben Mathematik MST Lösng z Blatt 4 Differentialgleichngen Prof. Dr. B.Grabowski Z Afgabe ) Lösen Sie folgende Differentialgleichngen nd Anfangswertprobleme drch mehrfaches Integrieren nach y(x)

Mehr

Vorgehen zur Kalibrierung von Kamerabildern

Vorgehen zur Kalibrierung von Kamerabildern Vorgehen r Kalibrierng von Kamerabildern Prof. Dr.-Ing. Bernhard Lang, 06.04.2013 3 Kalibrierng von Kamerabildern 3.1 Hintergrnd Eine reale Kamera lässt sich geometrisch drch eine Lochkamera modellieren.

Mehr

Turbulente Rohrströmung

Turbulente Rohrströmung Trblente ohrströmng Strömng laminar transitionell trblent zeitliches Verhalten im Pnt P trblent transitionell laminar laminar : transitionell : & p onst p, v 0 [ t t ] V tr Vlam ; p f ( t), t l, i, r,

Mehr

8 (z.b.) (1 P.) z. (0.5 P.) (0.5 P.) x. (z.b.) (0.5 P.) z

8 (z.b.) (1 P.) z. (0.5 P.) (0.5 P.) x. (z.b.) (0.5 P.) z Gymnasim Bämlihof Matritätsprüfngen 9 Seite 1 on 1 fgabe 1 Ramgeometrie 15 P. a) k CS CS CS 4 4 9 7 CS ( 4) 7 74 8.65... 8.6 1.5 P. b) c) Variante: Direkt in Distanzformel einsetzen. x 6 g : y 4 s 4 4

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 7 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 7 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 7 (Austeilung am: 7.9.11, Abgabe am 14.9.11) Beispiel 1: Stoß in der Ebene [3 Punkte] Betrachten Sie den elastischen Stoß dreier Billiardkugeln A, B und C

Mehr

72 Grundlagen der konstruktiven Geometrie

72 Grundlagen der konstruktiven Geometrie 7 Grndlagen der konstrktiven Geometrie die Parameter nd v zgleich ein lokales kartesisches Koordinatensstem af der Eene. Flächen. Ordnng Für die implizite Darstellng eines Zlinders gilt in homogenen Koordinaten

Mehr

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Fakultät für Physik Wintersemester 2016/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 4 / 9.11.2016 1. May the force... Drei Leute A, B, C ziehen

Mehr

LZ F12.1 Impuls/B12.4 Arbeit, Energie, Leistung, Impuls 13 LZ F12.1 Impuls/B Impuls

LZ F12.1 Impuls/B12.4 Arbeit, Energie, Leistung, Impuls 13 LZ F12.1 Impuls/B Impuls LZ F. Ipls/B.4 Arbeit, Energie, Leistng, Ipls LZ F. Ipls/B.4. Ipls 4.6. Ipls 4.6. Einführng Die Änderng der Geschwindigkeit eines Körpers ist so größer, je länger die Kraft wirkt. Der Einflss der Zeit

Mehr

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend:

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend: Untersucht wird die ewegung eines Punktes P in ezug auf zwei ezugssysteme: ezugssystem Oxyz ist ruhend: Ursprung O Einheitsvektoren e x, e y, e z Koordinaten x, y, z ezugssystem ξηζ bewegt sich: Ursprung

Mehr

Klassische Theoretische Physik: Mechanik

Klassische Theoretische Physik: Mechanik Klassische Theoretische Physik: Mechanik Patrick Simon Argelander-Institut für Astronomie Auf dem Hügel 71 psimon@astro.uni-bonn.de 21. November 2013 1 Beschleunigte Bezugssysteme Die Forminvarianz der

Mehr

Blatt 14.2: Integralsätze von Gauß und Stokes

Blatt 14.2: Integralsätze von Gauß und Stokes Fakltät für Physik R: Rechenmethoden für Physiker, WiSe 205/6 Dozent: Jan on Delft Übngen: Benedikt Brognolo, Dennis Schimmel, Frake Scharz, Lkas Weidinger http://homepages.physik.ni-menchen.de/~ondelft/lehre/5r/

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

Grundlagen Arbeit & Energie Translation & Rotation Erhaltungssätze Gravitation Reibung Hydrodynamik. Physik: Mechanik. Daniel Kraft. 2.

Grundlagen Arbeit & Energie Translation & Rotation Erhaltungssätze Gravitation Reibung Hydrodynamik. Physik: Mechanik. Daniel Kraft. 2. Physik: Mechanik Daniel Kraft 2. März 2013 CC BY-SA 3.0, Grafiken teilweise CC BY-SA Wikimedia Grundlagen Zeit & Raum Zeit t R Länge x R als Koordinate Zeit & Raum Zeit t R Länge x R als Koordinate Raum

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

Physik I Musterlösung 2

Physik I Musterlösung 2 Physik I Musterlösung 2 FS 08 Prof. R. Hahnloser Aufgabe 2.1 Flugzeug im Wind Ein Flugzeug fliegt nach Norden und zwar so dass es sich zu jedem Zeitpunkt genau über einer Autobahn befindet welche in Richtung

Mehr

AUFGABENSAMMLUNG ZUM LEHRGEBIET. AUTOMATISIERUNGSTECHNIK bzw. KONTINUIERLICHE SYSTEME

AUFGABENSAMMLUNG ZUM LEHRGEBIET. AUTOMATISIERUNGSTECHNIK bzw. KONTINUIERLICHE SYSTEME Dr.-Ing. Tatjana Lange Fachhochschle für Technik nd Wirtschaft Fachbereich Elektrotechnik AUFGABENSAMMLUNG ZUM LEHRGEBIET AUTOMATISIERUNGSTECHNIK bzw. KONTINUIERLICHE SYSTEME. Differentialgleichngen Afgabe.:

Mehr

6 Dynamik der Atmosphäre

6 Dynamik der Atmosphäre 6 Dynamik der Atmosphäre Man braucht wirklich nicht viel darüber zu reden, es ist den meisten Menschen heute ohnehin klar, dass die Mathematik wie ein Dämon in alle Anwendungen unseres Lebens gefahren

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Allgemeine Mechanik Musterlösung 1.

Allgemeine Mechanik Musterlösung 1. Allgemeine Mechanik Musterlösung. HS 24 Prof. Thomas Gehrmann Übung. Kraftfelder und Linienintegrale. a) Gegeben sei das Kraftfeld F, 2 ). Berechnen Sie das Linienintegral von r, ) nach r 2 2, ) entlang

Mehr

1 Die drei Bewegungsgleichungen

1 Die drei Bewegungsgleichungen 1 Die drei Bewegungsgleichungen Unbeschleunigte Bewegung, a = 0: Hier gibt es nur eine Formel, nämlich die für den Weg, s. (i) s = s 0 + v t s ist der zurückgelegte Weg, s 0 der Ort, an dem sich der Körper

Mehr

Achsen eines Parallelogramms. Eckart Schmidt

Achsen eines Parallelogramms. Eckart Schmidt Achsen eines Parallelogramms Eckart Schmidt Eine Achsenkonstrktion für Ellipsen dürfte hete kam Thema der Schlgeometrie sein Betrachtet man statt der Ellipse ein einbeschriebenes Parallelogramm z konjgierten

Mehr

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 Differenziation und Integration von Vektorfunktionen Der Ortsvektor: Man kann einen Punkt P im Raum eindeutig durch die

Mehr

Probeklausur zur T1 (Klassische Mechanik)

Probeklausur zur T1 (Klassische Mechanik) Probeklausur zur T1 (Klassische Mechanik) WS 006/07 Bearbeitungsdauer: 10 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Schriftliche Prüfung aus Control Systems 1 am

Schriftliche Prüfung aus Control Systems 1 am TU Graz, Institt für Regelngs- nd Atomatisierngstechnik A Schriftliche Prüfng as Control Systems am 5 0 006 Name / Vorname(n): Kenn-MatrNr: Gebrtsdatm: BONUSPUNKTE as Compterrechenübng: 3 erreichbare Pnkte

Mehr

2.0 Dynamik Kraft & Bewegung

2.0 Dynamik Kraft & Bewegung .0 Dynamik Kraft & Bewegung Kraft Alltag: Muskelkater Formänderung / statische Wirkung (Gebäudestabilität) Physik Beschleunigung / dynamische Wirkung (Impulsänderung) Masse Schwere Masse: Eigenschaft eines

Mehr

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker 11. Elektrodynamik 11.5.2 Magnetische Kraft auf Stromleiter 11.5.3 Quellen von Magnetfeldern 11.5.2 Magnetische Kraft auf Stromleiter Wir hatten: Frage: Kraft auf einzelne Punktladung Kraft auf Stromleiter

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung

Mehr

PWM Teil2. Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik. Arcisstraße 21 D München

PWM Teil2. Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik. Arcisstraße 21 D München Lehrsthl für Elektrische Antriebssysteme nd Leistngselektronik Technische Universität München Arcisstraße 21 D 80333 München Email: eat@ei.tm.de Internet: http://www.eat.ei.tm.de Prof. Dr.-Ing. Ralph Kennel

Mehr

Fragestellung: Gegeben eine Bahnkurve bezüglich eines raumfesten Koordinatensystems (KS) K, beschreibe die Bewegung bezüglich eines bewegten KS K'.

Fragestellung: Gegeben eine Bahnkurve bezüglich eines raumfesten Koordinatensystems (KS) K, beschreibe die Bewegung bezüglich eines bewegten KS K'. Bewegte Bezugsysteme Fragestellung: Gegeben eine Bahnkurve bezüglich eines raumfesten Koordinatensystems (KS) K, beschreibe die Bewegung bezüglich eines bewegten KS K'. Im Allgemeinen weist K' zwei unterschiedliche

Mehr

I.6.3 Potentielle Energie eines Teilchensystems. m i. N z i. i=1. = gmz M. i=1. I.6.4 Kinetische Energie eines Teilchensystems

I.6.3 Potentielle Energie eines Teilchensystems. m i. N z i. i=1. = gmz M. i=1. I.6.4 Kinetische Energie eines Teilchensystems I.6.3 Potentielle Energie eines Teilchensystems Beispiel: Einzelmassen im Schwerefeld U i = m i gz i jetzt viele Massen im Schwerefeld: Gesamtenergie U = m i gz i m i z i = gm m i = gmz M Man muss also

Mehr

F H. Extremfälle: α ~ 0 (ganz flache Ebene) F N ~ F G ; F H ~ 0 Es gibt keine Hangabtriebskraft (Flachdach) Begründung: sin 0 = 0; cos 0 = 1

F H. Extremfälle: α ~ 0 (ganz flache Ebene) F N ~ F G ; F H ~ 0 Es gibt keine Hangabtriebskraft (Flachdach) Begründung: sin 0 = 0; cos 0 = 1 3.2.5 Zerlegung von Kräften (am Beispiel der schiefen Ebene) Aus der Statik ist bekannt, dass sich resultierende Kräfte aus einzelnen Kräften zusammensetzen können (Addition einzelner Kräfte). Ebenso kann

Mehr

Michael Buhlmann Mathematik > Vektorrechnung > Kreuzprodukt

Michael Buhlmann Mathematik > Vektorrechnung > Kreuzprodukt Michael Bhlmann Mathematik > Vektorrechnng > Krezprodkt Einleitng a Für zwei Vektoren a a nd gelten im dreidimensionalen reellen Vektorram a neen der Addition Vektoraddition) nd der Mltiplikation mit einer

Mehr

Wetter. Benjamin Bogner

Wetter. Benjamin Bogner Warum ändert sich das ständig? vorhersage 25.05.2011 Warum ändert sich das ständig? vorhersage Inhaltsverzeichnis 1 Definition 2 Warum ändert sich das ständig? Ein einfaches Atmosphärenmodell Ursache der

Mehr

1.2 Räumliche Bewegung. Aufgaben

1.2 Räumliche Bewegung. Aufgaben Technische Mechanik 3 1.-1 Prof. Dr. Wandinger Aufgabe 1 1. Räumliche Bewegung Aufgaben Ein Flugzeug fliegt mit der Geschwindigkeit v F gegenüber der Luft einen angezeigten Kurs von 30. Der Wind weht mit

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 9. Nov. Keplergleichungen, Gravitation u. Scheinkräfte Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Planetenbahnen http://www.astro.uni-bonn.de/~deboer/pdm/planet/sonnenap2/

Mehr

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker 11. Elektrodynamik 11.5.2 Magnetische Kraft auf Stromleiter 11.5.3 Quellen von Magnetfeldern 11.5.2 Magnetische Kraft auf Stromleiter Wir hatten: Frage: Kraft auf einzelne Punktladung Kraft auf Stromleiter

Mehr

3 Konsumenten. Nutzenfunktionen Konsumenten vergleichen und bewerten Güterbündel: Güter : Nutzenfunktion eines Konsumenten. Güterraum.

3 Konsumenten. Nutzenfunktionen Konsumenten vergleichen und bewerten Güterbündel: Güter : Nutzenfunktion eines Konsumenten. Güterraum. Konsmenten Ntzenfnktionen Konsmenten vergleichen nd bewerten Güterbündel: l Güter : l K l R+ Güterram Ntzenfnktion eines Konsmenten U : l R +... R a... l l Güterbündel reelle Zahl 7 Eine Ntzenfnktion ermöglicht

Mehr

4.9 Der starre Körper

4.9 Der starre Körper 4.9 Der starre Körper Unter einem starren Körper versteht man ein physikalische Modell von einem Körper der nicht verformbar ist. Es erfolgt eine Idealisierung durch die Annahme, das zwei beliebig Punkte

Mehr

5. Zustandsgleichung des starren Körpers

5. Zustandsgleichung des starren Körpers 5. Zustandsgleichung des starren Körpers 5.1 Zustandsgleichung 5.2 Körper im Schwerefeld 5.3 Stabilität freier Rotationen 2.5-1 5.1 Zustandsgleichung Zustand: Der Zustand eines starren Körpers ist durch

Mehr

1.4 Krummlinige Koordinaten I

1.4 Krummlinige Koordinaten I 15 1.4 Krummlinige Koordinaten I (A) Motivation zur Definition verschiedener Koordinatensysteme Oft ist es sinnvoll und zweckmäßig Koordinatensysteme zu verwenden, die sich an der Geometrie und/oder Symmetrie

Mehr

Spezialfall m 1 = m 2 und v 2 = 0

Spezialfall m 1 = m 2 und v 2 = 0 Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m ( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +

Mehr

Die Atmosphäre der Erde

Die Atmosphäre der Erde Helmut Kraus Die Atmosphäre der Erde Eine Einführung in die Meteorologie Mit 196 Abbildungen, 184 Übungsaufgaben und einer farbigen Klimakarte der Erde Springer VII Vorwort I. Einige Grundlagen 1.1 Erster

Mehr

Ilja Repin Die Wolgatreidler (1873) Das Skalarprodukt. 1-E Ma 1 Lubov Vassilevskaya

Ilja Repin Die Wolgatreidler (1873) Das Skalarprodukt. 1-E Ma 1 Lubov Vassilevskaya Ilja Repin Die Wolgatreidler (1873) Das Skalarprodukt 1-E Ma 1 Lubov Vassilevskaya Treideln http://www.rheinschifffahrtsgeschichte.de/mainzer%20pano%20dateien/tierer%20treideln.jpg Treideln heißt eine

Mehr

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen Experimentalphysik für ET Aufgabensammlung 1. Erhaltungsgrößen An einem massenlosen Faden der Länge L = 1 m hängt ein Holzklotz mit der Masse m 2 = 1 kg. Eine Kugel der Masse m 1 = 15 g wird mit der Geschwindigkeit

Mehr

Probeklausur zur Theoretischen Physik I: Mechanik

Probeklausur zur Theoretischen Physik I: Mechanik Prof. Dr. H. Friedrich Physik-Department T3a Technische Universität München Probeklausur zur Theoretischen Physik I: Mechanik Montag, 2.7.29 Hörsaal 1 1:15-11:5 Aufgabe 1 (8 Punkte) Geben Sie möglichst

Mehr

Lösung IV Veröffentlicht:

Lösung IV Veröffentlicht: Fx = mg sin θ = ma x 1 Konzeptionelle Frage I Welche der der folgenden Aussagen über Kraft Bewegung ist korrekt? Geben sie Beispiele an (a) Ist es für ein Objekt möglich sich zu bewegen, ohne dass eine

Mehr

1. Oszilloskop. Das Oszilloskop besitzt zwei Betriebsarten: Schaltsymbol Oszilloskop

1. Oszilloskop. Das Oszilloskop besitzt zwei Betriebsarten: Schaltsymbol Oszilloskop . Oszilloskop Grndlagen Ein Oszilloskop ist ein elektronisches Messmittel zr grafischen Darstellng von schnell veränderlichen elektrischen Signalen in einem kartesischen Koordinaten-System (X- Y- Darstellng

Mehr

Dynamik Lehre von den Kräften

Dynamik Lehre von den Kräften Dynamik Lehre von den Kräften Physik Grundkurs Stephie Schmidt Kräfte im Gleichgewicht Kräfte erkennt man daran, dass sie Körper verformen und/oder ihren Bewegungszustand ändern. Es gibt Muskelkraft, magnetische

Mehr

Arbeitsmarkt Dynamik in der Europäischen Union

Arbeitsmarkt Dynamik in der Europäischen Union Arbesmarkt Dynamik in der Eropäischen Union Jörg Decressin nd Antonio Fatás orientieren sich am Modell nd der Stdie von Blanchard&Katz nd vergleichen deren Ergebnisse für die USA für die 51 Bndesstaaten

Mehr

Projektionen von geometrischen Objekten

Projektionen von geometrischen Objekten Inhalt: Projektionen von geometrischen Objekten Überblick Hauptrisse Aonometrische Projektionen isometrisch dimetrisch trimetrisch Schiefwinklige Projektionen Kavalierprojektion Kabinettprojektion Perspektivische

Mehr

3.1 Trägheitskräfte bei linearer Bewegung. 3.2 Trägheitskräfte in rotierenden Bezugssystemen. 3.4 Die Erde als rotierendes System

3.1 Trägheitskräfte bei linearer Bewegung. 3.2 Trägheitskräfte in rotierenden Bezugssystemen. 3.4 Die Erde als rotierendes System 3. Beschleunigte Bezugssysteme und Scheinkräfte 3.1 Trägheitskräfte bei linerer Bewegung 3. Trägheitskräfte in rotierenden Bezugssystemen 3.3 ioliskrft 3.4 Die Erde ls rotierendes System R. Girwidz 1 3.1

Mehr

2. Vorlesung Wintersemester

2. Vorlesung Wintersemester 2. Vorlesung Wintersemester 1 Mechanik von Punktteilchen Ein Punktteilchen ist eine Abstraktion. In der Natur gibt es zwar Elementarteilchen (Elektronen, Neutrinos, usw.), von denen bisher keine Ausdehnung

Mehr

7.1. Aufgaben zu Vektoren

7.1. Aufgaben zu Vektoren 7.. Afgben z Vektoren Afgbe : Vektoren in der Ebene ) Zeichne die folgenden Vektoren ls Ortsvektoren in eine pssende Koordintenebene (x -x -Ebene, x -x -Ebene oder x - x -Ebene) des krtesischen Koordintensystems.,,,

Mehr

Massenträgheitsmomente homogener Körper

Massenträgheitsmomente homogener Körper http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine

Mehr

1. Bewegungsgleichung

1. Bewegungsgleichung 1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik

Mehr

M04. Stoß-Prozesse. Stoß-Beispiele sind Billard-, Tennis- oder Fußballstöße sowie Auto-Unfallversuche.

M04. Stoß-Prozesse. Stoß-Beispiele sind Billard-, Tennis- oder Fußballstöße sowie Auto-Unfallversuche. M04 Physikalisches Praktik Stoß-Prozesse Drch Erzegng elastischer bzw. nelastischer echanischer Stöße zweier Gleiter af einer Lftkissenbahn sollen die Energie- nd die Iplserhaltng experientell nterscht

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr